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Abstract
In machine learning, tackling fairness, robustness, and safeness requires to solve nonconvex op-
timization problems with various constraints. In this paper, we investigate the warped proximal
iterations for solving the nonmonotone inclusions and its application to nonconvex QP with equal-
ity constraints.

1. Introduction

In general, a monotone inclusion problem in a real Hilbert space H refers to finding a zero of a set-
valued maximally monotone operator A, i.e., the zero set zer(A) [1]. The term ”warped proximal
iteration” was recently introduced in [3] as generalization of the proximal point algorithm for finding
a zero point of a maximally monotone operator A acting on H. The maximal monotonicity of A
restricted its applicability to the class of convex optimization problems as well as operator splitting
methods for composite monotone inclusions [7] [2] [6] [12] [3] [9]. On the other hand, solving a
nonmonotone inclusion, i.e., an inclusion where the operator A is nonmonotone, is generally open
and challenging [4]. Consequently, over the last two decades, only few papers were published where
the notion of ρ-(co)hypomonotonicity has been used [11] [5] to guarantee the convergence of the
generated sequence. More precisely, the proximal point algorithm converges weakly to a solution
to the following problem:

Find x ∈ H such that 0 ∈ Ax,where A−1 is ρ-hypomonotone, ρ > 0. (1.1)

Its motivation stems from the observation that compared to the case where the operator A is (max-
imally) monotone, the solving of this problem becomes considerably more complicated when the
operator A fails to be monotone. From this perspective, the first objective of this work is to extend
the notion of ρ- to (ρV,W )-hypomotonicity and investigate the weak convergence property of the
warped proximal iteration as well as its various applications to (constrained) nonconvex optimiza-
tion problems. In particular, we place our attention to finding a KKT point of a class of quadratic
programming problems with equality constraints.

In general, the finding of zer(A) when A is nonmonotone is by nature more complex [4] but fun-
damental from the optimization perspective when convexity assumptions are relaxed. Indeed, the
application of Augmented Lagrangian methods (ALM) for the minimization of nonconvex functions
can be defined as a particular instance of the proximal point method for finding zeroes of nonmono-
tone operators. Recent developments of proximal ALM methods when applied to convex problems
have been shown to be equivalent to resolvent iterations on the monotone operator encoding the
KKT optimality conditions.
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From the machine learning perspective, various requirements are often imposed using penalties,
i.e., by integrating constraint violation costs in the empirical risk minimization (ERM) objective.
While it is straightforward to find penalty terms leading to optimal solutions when the objective
of the ERM problem is convex, training of neural networks leads to nonconvex optimization prob-
lems. Enforcing their behavior to tackle fairness, robustness, and safety requires to solve instead
constrained nonconvex optimization problems. Incorporating constraints into the model enables to
account for prior knowledge as well as smoothness or sparsity.

2. Background, Notation and Preliminary Results

Let H be a real Hilbert space. Its inner product and induced norm are denoted ⟨· | ·⟩ and ∥·∥, respec-
tively. The power set of H is denoted 2H. B(H) refers to the algebra of all bounded linear operators
acting on H. The graph of an operator A : H → 2H is defined by gra(A) = {(x, u) ∈ H×H | u ∈
Ax} where Ax denotes that A operates on x, i.e. Ax = A(x). The range of an operator A writes as
ran(A). The set of zero points of the operator A is defined by zer(A) = {x ∈ dom(A)|Ax ∋ 0}. Id
denotes the Identity operator. An operator A is monotone if ⟨x− y | u− v⟩ ≥ 0 ∀(x, u) ∈ gra(A)
and (y, v) ∈ gra(A). Further, it is maximal(ly) monotone if no extension of gra(A) exists that
preserves monotonicity. The operator A is said strongly monotone with constant θ ∈ ]0,+∞[ if
A − θ Id is monotone. More specific definitions including (maximally) hypermonotone operator,
ρ− and (ρV,W )−hypomonotone operator, nonexpansive operator as well as the W−resolvent of
an operator that are used in the context of this paper are detailed in Appendix A.

The following Lemma plays a central role in the demonstration of the main Theorem of this
paper as it provides a necessary condition on the iterates.

Lemma 1 Let W : H → H be a single-valued (nonlinear) operator and V : H → H be a bounded
linear operator with dom(V ) = dom(W ) = H. Let A : H → 2H be such that A−1 is (ρV,W )-
hypomonotone with ρ in ]0,+∞[. Then, the following hold.

(i) If x ∈ dom(JW
γA) and γ ∈

]
ρ∥V ∥2,+∞

[
; then, WJW

γAx is at most single-valued.

(ii) Moreover,(
∀γ ∈

]
ρ∥V ∥2,+∞

[ ) (
∀(x, y) ∈ (dom(JW

γA))
2
)

∥WJW
γAx−WJW

γAy∥2 ≤ ∥x− y∥2 −
(
1− 2ρ∥V ∥2/γ

)
∥x− y −WJW

γAx+WJW
γAy)∥2.

(2.1)

As a consequence, if γ > 2ρ∥V ∥2, then, W (W + γA)−1 is 1
2

γ
γ−ρ∥V ∥2 -averaged whenever

dom((W + γA)−1) = H.

Proof. See Appendix B.1.

Remark 2 Lemma 1 can be found in [11] [5] for the case W = V = Id. When V = 0, the notion
of (ρV,W )-hypomotonocity reduces to the notion of hypermonotonicity with respect to W . Several
examples of this case can be found in [17].
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3. Main Algorithm

In this section, we investigate the convergence properties of the following warped proximal itera-
tions for solving the nonmonotone inclusion (1.1). Let W : dom(W ) = H → H be a nonzero,
single-valued (nonlinear) operator such that (∀n ∈ N) dom(JW

γnA
) = H. Assume (λn, γn)n∈N is a

sequence in ]0,+∞[2. Select x0 ∈ H and iterate, for n ∈ N,{
yn ∈ (W + γnA)−1(Wxn)

Wxn+1 = Wxn + λn(Wyn −Wxn).
(3.1)

Here are some main connections to existing work.

(i) When A is a maximally monotone operator and W = Id, the iterative Algorithm (3.1) reduces
to the classical proximal point algorithm. When W is a linear self-adjoint positive definite
or semi-definite operator, the iteration (3.1) is known to as the preconditioned proximal point
algorithm. The proper choice of W and A in suitable space enables recovering various primal-
and primal-dual splitting algorithms such as [7] [2] [6] [12] [3] [9]. When W is a nonlinear
operator, the Algorithm (3.1) is referred to as the warped proximal iteration [3]; it was also
investigated independently in [9]. In these references, we can also find several choices of the
nonlinear operator W .

(ii) When A is nonmonotone, solving inclusions is challenging in general, cf. [4]. However,
when A−1 is hypomonotone and W = Id, the iteration (3.1) first appeared in [11] where
the weak convergence of the generated sequence to a point in zer(A) was proved. A general
proximal point framework for finding a common zero point of the sequence (Ai)i∈I of co-
hypomonotone operators was also presented in [5]. When A is the sum of two operators,
two Nesterov’s accelerated variants were recently proposed in [14] although without proving
convergence of the iterations. Instead, when W is self-adjoint, and positive semidefinite, (3.1)
has been recently studied under the V-oblique weak Minty solutions condition on A [8].

(iii) When A is hypermonotone w.r.t. W [15] [16], the Algorithm (3.1) was investigated in [16]
and its extension in [17]. In particular, some special nonlinearly composed inclusions were
also investigated in [17].

(iv) When A−1 is hypomonotone and W nonlinear, the convergence of (3.1) is still open. In this
work, we show that weak convergence can be obtained when A−1 is (ρV,W )-hypomonotone.

When A is maximally monotone or maximally ρ-hypermonotone, the graph of A, gra(A), is
closed in Hweak × Hstrong, i.e., for every sequence (xn, un)n∈N such that un ∈ Axn, if un → u
(strong convergence) and xn ⇀ x (weak convergence); then, u ∈ Ax. In the following Proposition,
we extend this property to the case where A−1 is (ρV,W )-maximally hypomonotone.

Proposition 3 Suppose that A−1 is (ρV,W )-maximally hypomonotone for some ρ ∈ ]0,+∞[,
V ∈ B(H) and W : H → H is sequentially weakly continuous. Then, the graph of A, gra(A), is
closed in Hweak ×Hstrong.

Proof. See Appendix C.1
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Theorem 4 Suppose that the operator A−1 is (ρV,W )-hypomonotone for some ρ ∈ ]0,+∞[, the
operator V belongs to B(H), i.e., the space of bounded linear operators from H to H with domain
H, and the single-valued operator W : H → H with dom(W ) = dom(V ) = dom(JW

γA) = H for
all γ ∈ ]0,+∞[. Let n ∈ N, λn ∈ [ε, 1], and 1 − 2ρ∥V ∥2/γn ≥ ε for some ε ∈ ]0, 1[. Suppose
either one of the following conditions is satisfied.

(c1) A−1 is maximally hypomonotone and W is weakly continuous.

(c2) The graph of A, gra(A), is closed in Hstrong ×Hweak.

Then,

(i) The sequence (xn)n∈N converges weakly to a point in zer(A) if W is injective, weakly con-
tinuous, and lim∥x∥→∞ ∥Wx∥ = ∞.

(ii) The sequence (yn)n∈N converges weakly to a point in zer(A) if JW
γnA

is singled-valued, and
for all (x, u) ∈ gra(JW

γnA
) and (y, v) ∈ gra(JW

γnA
),

∥u− v∥ ≤ µ∥x− y∥, (3.2)

where µ is a positive constant that is independent of n.

Proof. See Appendix C.2.

Remark 5 The assumption that the graph of A is closed in Hweak ×Hstrong was also used in [8].

4. Applications

In this section, we apply Algorithm (3.1) to quadratic programming (QP) with equality constraints
[10] and with (at least) one negative eigenvalue [13].

4.1. Nonconvex Quadratic programming

Let A : H → H be a self-adjoint, linear operator with closed range (ran(A) is closed). Let b ∈ H
and c ∈ R. Consider the following (unconstrained) problem:

minimize
x∈H

1

2
⟨Ax | x⟩+ ⟨b | x⟩+ c. (4.1)

This problem is nonconvex in general. We aim at finding a stationary point of this problem by
solving the non-monotone inclusion of the form

0 ∈ Ax+ b. (4.2)

Since the range of A, ran(A), is closed and A = A∗, in view of [1, Fact 2.25, Fact 2.26], for each
u ∈ ran(A), there exists only one x ∈ ran(A) such that y = Ax. Let denote by x = A−1

r y; then,
A−1

r is a bounded linear operator as well.

Lemma 6 Let W be an unitary operator on H, and A : H → H a self-adjoint, linear operator.
Then, A−1 : H → 2H is (ρ Id,W )-maximally hypomonotone with ρ = ∥A−1

r ∥.
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Proof. See Appendix D.1.
The main result of this section can now be stated.

Theorem 7 Let W : H → H be a unitary operator on H, and γ ∈
]
2∥A−1

r ∥,+∞
[
. Choose

x0 ∈ H and iterate
xn+1 ∈ (W + γA)−1(Wxn − γb). (4.3)

Then, (xn)n∈N converges weakly to a point x ∈ zer(A+ b).

Proof. See Appendix D.2.

4.2. Constrained quadratic programming

Let H = Rn. Suppose the operator A : H → H is self-adjoint, b ∈ H and c ∈ R. Consider the
following constrained minimization problem, where X is a closed convex set of H, C : H → Rm is
a linear operator and d ∈ Rm

minimize
x∈X,Cx=d

1

2
⟨Ax | x⟩+ ⟨b | x⟩+ c. (4.4)

Let us consider the Lagrangian function L(x, λ) defined by

L : (x, λ) 7→ ιX(x) +
1

2
⟨Ax | x⟩+ ⟨b | x⟩+ c− ⟨λ | Cx− d⟩ , (4.5)

where ιX(x) = ι{x∈X} is the indicator function of the set X . The first order optimality conditions
are ∇xL(x, λ) = 0 and ∇λL(x, λ) = 0, which lead to the KKT system{

∂ιX(x) +Ax+ b− C⊺λ = 0

Cx− d = 0,

where ∂ιX(x) = NX(x) is the normal cone operator of the set X at x. This system can be formu-
lated as follows (

∂ιX 0
0 0

)
︸ ︷︷ ︸

B

(
x
λ

)
︸︷︷︸

x

+

(
A −C⊺

C 0

)
︸ ︷︷ ︸

A

(
x
λ

)
+

(
b
−d

)
︸ ︷︷ ︸

b

∋ 0 (4.6)

Corollary 8 Let W : H → H be a single-valued operator. Set

W :=

(
W 0
0 V = Id

)
, (4.7)

and M := A + B, where A and B are defined per (4.6). Suppose that M + b is (ρ Id,W)-
hypomonotone with closed graph. Let γ ∈ ]2ρ,+∞[. Choose x0 ∈ Rn and λ0 ∈ Rm. Then, the
iteration{

xn+1 =
(
W + γ(∂ιX +A) + γ2C⊺C

)−1(
Wxn − γ(b− C⊺λn) + γ2C⊺d

)
λn+1 = λn − γ(Cxn+1 − d),

(4.8)

converges to a point x = (x, λ) solving (4.6).
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Proof. See Appendix D.3. The problem is convex when the matrix of the (linear) operator A is
positive semi-definite (PSD). On the other hand, the problem is nonconvex when the matrix of the
(linear) operator A is indefinite. Similar condition applies to the reduced problem of the original
linearly constrained QP defined by (4.1). Consider the constrained problem (4.9) is feasible for
x = (x1, x2).

minimize
C⊺x=d

1

2
⟨Ax | x⟩+ ⟨b | x⟩+ c. (4.9)

Assume the constraint matrix C(m × n),m ≤ n is decomposable into [C1, C2] with nonsingular
C1(m×m) and C2(m×(n−m)) such that the constraint (4.9) can be written as C1x1+C2x2 = d.
Then, the constrained problem can be reformulated as the reduced unconstrained problem (4.10) by
eliminating x1 = C−⊺

1 (d− C⊺
2x2)

minimize
x2

1

2
x⊺2Ãx2 + b̃⊺x2, (4.10)

Note that if the matrix Ã is not PSD (i.e., has negative eigenvalues); then, the reduced QP is un-
bounded. On the other hand, the reduced QP admits a unique solution if and only if the reduced
Hessian Ã = Z⊺AZ is positive definite, where Z is a basis of the null-space, i.e., Z⊺C = 0.

4.3. Numerical results

In this section, we report the numerical results obtained when solving i) the constrained problem
(4.9) by means of iteration (4.3) named W-Hypo, and ii) the constrained problem (4.4) by means
of iteration (4.8) named Hypo-Lag. Two types of datasets are considered: sparse matrices (nnz
elements < 20%) and dense matrices (nnz elements > 80%). All datasets are generated such that C
has full rank (FR), C1 is nonsingular and A+ C⊺C is positive semi-definite. Results are compared
against the QP solver of Octave 8.3, where we set the execution time limit (TL) to 104s.

4.3.1. SPARSE MATRICES (NNZ < 20%)

Method (n,m) A C min. Feasibility Best Nbr of Time
eigen (A) objective iterations (s)

(1000,100) NS:ND FR -0.1092
W-Hypo * * * * 1e-15 -120.13 5 0.6899

Hypo-Lag * * * * 1e-15, 1e-14 -120.13 168 0.1282
QP * * * * 1e-14, 1e-14 -120.13 2 1.3985

(5000,500) NS:ND FR -0.5068
W-Hypo * * * * 1e-15 -599.08 6 60.839

Hypo-Lag * * * * 1e-15, 1e-14 -599.08 459 8.4778
QP * * * * 1e-14, 1e-14 -599.08 2 144.54

(10000,1000) NS:ND FR -0.1181
W-Hypo * * * * 1e-15 -1225.0 6 463.18

Hypo-Lag * * * * 1e-14, 1e-14 -1225.0 164 34
QP * * * * 1e-14, 1e-14 -1225.0 2 1213.2

(15000,1000) NS:ND FR -0.5133
W-Hypo * * * * 1e-15 -2060.3 6 2295.3

Hypo-Lag * * * * 1e-13, 1e-13 -2060.3 159 102.75
QP * * * * 1e-14, 1e-14 -2060.3 2 5745.4

(15000,1500) NS:ND FR -0.010099
W-Hypo * * * * 1e-15 -1988.2 6 2937.6

Hypo-Lag * * * * 1e-13, 1e-12 -1988.2 144 115.46
QP * * * * 1e-14, 1e-14 -1988.2 2 6630.23

Table 1: Results: Hypo(Lag) vs. QP Solver (NS = nonsingular, ND = indefinite, FR = Full Rank)
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4.3.2. DENSE MATRICES (NNZ > 80%)

Method (n,m) A C min. Feasibility Best Nbr of Time
eigen (A) objective iterations (s)

(1000,100) NS:ND FR -0.1522
W-Hypo * * * * 1e-15 -40.038 5 0.7434

Hypo-Lag * * * * 1e-14, 1e-14 -40.038 180 0.1638
QP * * * * 1e-14, 1e-14 -40.038 2 1.6882

(5000,500) NS:ND FR -3.8495e-03
W-Hypo * * * * 1e-14 -158.20 6 63.456

Hypo-Lag * * * * 1e-14, 1e-13 -158.20 188 6.3901
QP * * * * 1e-14, 1e-13 -158.20 2 206.10

(10000,1000) NS:ND FR -0.012110
W-Hypo * * * * 1e-14 -311.68 6 506.48

Hypo-Lag * * * * 1e-15, 1e-13 -311.68 557 66.670
QP * * * * 1e-13, 1e-13 -311.68 2 2102.1

(15000,1000) NS:ND FR -0.017933
W-Hypo * * * * 1e-14 -625.71 6 2215.3

Hypo-Lag * * * * 1e-15, 1e-13 -625.71 319 181.46
QP * * * * 1e-13, 1e-13 -625.71 2 9688.2

(15000,1500) NS:ND FR -0.3705
W-Hypo * * * * 1e-13 -668.57 6 2756.4

Hypo-Lag * * * * 1e-13, 1e-13 -668.57 1046 243.95
QP * * * * 1e-13, 1e-13 -668.57 2 TL

Table 2: Results: Hypo(Lag) vs. QP Solver (NS = nonsingular, ND = indefinite, FR = Full Rank)
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Appendix A. Definitions

Definition 9 Let W : H → H be a single-valued operator. We say that the operator A : H → 2H

is

(i) hypermonotone with respect to (w.r.t.) W if(
∀(x, u) ∈ gra(A)

) (
∀(y, v) ∈ gra(A)

)
⟨Wx−Wy | u− v⟩ ≥ 0, (A.1)

(ii) maximally hypermonotone w.r.t. W if it is hypermonotone w.r.t. W and it follows from(
∃
(
x, u) ∈ H2

) (
∀(y, v) ∈ gra(A)

)
⟨Wx−Wy | u− v⟩ ≥ 0, (A.2)

that (x, u) ∈ gra(A).

Definition 10 Let ρ be in ]0,+∞[. An operator A : H → 2H is ρ-hypomonotone if(
∀(x, u) ∈ gra(A)

) (
∀(y, v) ∈ gra(A)

)
⟨x− y | u− v⟩+ ρ∥x− y∥2 ≥ 0. (A.3)

Equivalently, an operator A is ρ-hypomonotone if and only if A + ρ Id is monotone. Next, A is
maximally ρ-hypomonotone if A is ρ-hypomonotone and there exists no ρ-hypomonotone operator
B : H → 2H such that gra(B) properly contains gra(A).

Definition 11 Let ρ be in ]0,+∞[. Let W : H → H and V : H → H be single-valued opera-
tors with full domains, i.e, dom(W ) = dom(V ) = H. An operator A : H → 2H is (ρV,W )-
hypomonotone if(

∀(x, u) ∈ gra
) (

∀(y, v) ∈ gra(A)
)
⟨x− y | Wu−Wv⟩+ ρ∥V x− V y∥2 ≥ 0. (A.4)

Next, A is maximally (ρV,W )-hypomonotone if A is (ρV,W )-hypomonotone and if there exists
(y, v) ∈ H2 such that(

∀(x, u) ∈ gra(A)
)
⟨x− y | Wu−Wv⟩+ ρ∥V x− V y∥2 ≥ 0, (A.5)

then (y, v) ∈ gra(A).

Definition 12

(i) An operator T : H → H is nonexpansive if

(∀x ∈ H) (∀y ∈ H) ∥Tx− Ty∥ ≤ ∥x− y∥. (A.6)

(ii) Let α ∈ ]0, 1[, an operator T : H → H is α-averaged if there exists an nonexpansive operator
R : H → H such that

T = (1− α) Id+αR. (A.7)

Equivalently,

(∀x ∈ H) (∀y ∈ H) ∥Tx− Ty∥2 ≤ ∥x− y∥2 − 1− α

α
∥(x− y)− (Tx− Ty)∥2. (A.8)

Our algorithm relies on the W−resolvent of operator A.

Definition 13 The W−resolvent of the operator A : H → 2H of index γ > 0 is defined by(
γ ∈ ]0,+∞[

)
JW
γA : H → H : x 7→ (W + γA)−1x. (A.9)
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Appendix B. Proof of Section 2

B.1. Proof of Lemma 1

Proof. (i) Let x ∈ dom(JW
γA), and let p and q be two points in JW

γAx = (W + γA)−1x. Then,{
(x−Wp)/γ ∈ Ap

(x−Wq)/γ ∈ Aq
⇐⇒

{
p ∈ A−1((x−Wp)/γ)

q ∈ A−1((x−Wq)/γ).
(B.1)

Since A−1 is (ρV,W )-hypomonotone, it follows from (B.1) and (A.4) that

⟨(x−Wp)/γ − (x−Wq)/γ | Wp−Wq⟩+ ρ∥V (x−Wp)/γ − V (x−Wq)/γ∥2 ≥ 0. (B.2)

Since V is linear, we obtain

ρ∥V ∥2∥Wp−Wq∥2 ≥ ρ∥V (Wp−Wq)∥2 ≥ γ∥Wp−Wq∥2, (B.3)

which implies that Wp = Wq whenever γ > ρ∥V ∥2. Hence, WJW
γA is single-valued.

(ii) For each x ∈ dom(JW
γA) and each y ∈ dom(JW

γA), define p ∈ (W + γA)−1x and q ∈ (W +

γA)−1y. Then, (x − Wp)/γ ∈ Ap and (y − Wq)/γ ∈ Aq. Hence, p ∈ A−1((x − Wp)/γ) and
q ∈ A−1((y −Wq)/γ). Since A−1 is (ρV,W )-hypomonotone, we obtain

0 ≤ γ ⟨Wp−Wq | x−Wp− y +Wq⟩+ ρ∥V (x−Wp− y +Wq)∥2

≤ γ ⟨Wp−Wq | x− y − (Wp−Wq)⟩+ ρ∥V ∥2∥x− y − (Wp−Wq)∥2

= −(γ − ρ∥V ∥2)∥Wp−Wq∥2 + ρ∥V ∥2∥x− y∥2 − (2ρ∥V ∥2 − γ) ⟨x− y | Wp−Wq⟩
= −(γ − ρ∥V ∥2)∥Wp−Wq∥2 + ρ∥V ∥2∥x− y∥2

+ (ρ∥V ∥2 − γ/2)[∥x− y −Wp+Wq∥2 − ∥Wp−Wq∥2 − ∥x− y∥2]
= (−γ/2)∥Wp−Wq∥2 + (γ/2)∥x− y∥2 + (ρ∥V ∥2 − γ/2)∥x− y +Wq −Wp∥2. (B.4)

Expression (B.4) implies that

∥Wp−Wq∥2 ≤ ∥x− y∥2 + (2ρ∥V ∥2/γ − 1)∥x− y +Wq −Wp∥2, (B.5)

which proves (2.1). In view of (A.8), a given operator is α-averaged if there exists α ∈ ]0, 1[ such
that (1 − α)/α = (1 − 2ρ∥V ∥2/γ). Hence, with α = 1

2
γ

γ−ρ∥V ∥2 and γ > 2ρ∥V ∥2, the operator
W (W + γA)−1 is α-averaged.

Appendix C. Proof of Section 3

C.1. Proof of Proposition 3

Proof. Suppose that A−1 is (ρV,W )-hypomonotone. Let (xn, un)n∈N be a sequence in gra(A)
such that un → u and xn ⇀ x for some (x, u) ∈ H ×H. For every (v, y) ∈ gra(A−1), we have

⟨un − v | Wxn −Wy⟩+ ρ∥V un − V v∥2 ≥ 0. (C.1)

Let n → ∞, we obtain

⟨Wu−Wv | x− y⟩+ ρ∥V u− V v∥2 ≥ 0. (C.2)

Since this inequality holds for every (v, y) ∈ gra(A−1), by definition, we obtain (u, x) ∈ gra(A−1).
Hence, (x, u) ∈ gra(A).
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C.2. Proof of Theorem 4

Proof. Let x ∈ zer(A). Then, following (1.1),

x ∈ (W + γnA)−1Wx. (C.3)

Since γn > 2ρ∥V ∥2 > ρ∥V ∥2. The operator W (W + γnA)−1 is single-valued by Lemma 1(i).
Hence,

Wx = W (W + γnA)−1Wx and Wyn = W (W + γnA)−1Wxn. (C.4)

We also obtain following Lemma 1(ii) that

∥Wyn −Wx∥2 = ∥W (W + γnA)−1(Wxn)−W (W + γnA)−1(Wx)∥2

≤ ∥Wxn −Wx∥2 + (2ρ∥V ∥2/γn − 1)∥Wxn −Wx−Wyn +Wx||2

≤ ∥Wxn −Wx∥2 − ε∥Wxn −Wyn||2. (C.5)

Following the update rule, we have

Wxn+1 −Wx = (1− λn)(Wxn −Wx) + λn(Wyn −Wx), (C.6)

which together with the convexity of ∥ · ∥2, yields

∥Wxn+1 −Wx∥2 = (1− λn)∥Wxn −Wx∥2 + λn∥Wyn −Wx∥2. (C.7)

Hence,

∥Wxn+1 −Wx∥2 ≤ ∥Wxn −Wx∥2 − ελn|Wxn −Wyn||2 (C.8)

≤ ∥Wxn −Wx∥2 − ε2∥Wxn −Wyn||2, (C.9)

which implies that {
∃ lim ∥Wxn −Wx∥ = ξ(x) ∈ R+

Wxn −Wyn → 0.
(C.10)

Hence, (∥Wxn −Wx∥)n∈N is a bounded sequence. Since (∥Wxn −Wyn∥)n∈N is also bounded,
the sequence (∥Wyn −Wx∥)n∈N is bounded.
(i) Since lim∥x∥→∞ ∥Wx∥ = +∞, it follows that (xn, yn)n∈N is bounded. Hence, the set of weak
cluster points of (yn)n∈N is non-empty. Let y∗ be a weak cluster point of (yn)n∈N. Then, there
exists a subsequence ykn ⇀ y∗. Note that by using (3.1), we can also deduce that

(Wxn −Wyn)/γn ∈ Ayn. (C.11)

Suppose that the condition (c1) is verified. Henceforth, by using Proposition 3, we obtain 0 ∈ Ay∗,
i.e., y∗ ∈ zer(A). Instead, if the condition (c2) is satisfied; then, we derive directly from (C.10)
and (C.11) that y∗ ∈ zer(A). Since W is injective, in view of [17, Lemma 2.8], (xn)n∈N converges
weakly to some point x ∈ zer(A).
(ii) Using (3.2), we have

∥yn − x∥ = ∥(W + γnA)−1(Wxn)− (W + γnA)−1(Wx)∥ ≤ µ∥Wxn −Wx∥. (C.12)

11
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Hence, (yn)n∈N is bounded.
Next, we prove that (yn)n∈N has only one weak cluster point. Indeed, suppose that ykn ⇀ y1

and ykm ⇀ y2. In view of (C.10), there exists ξ(x) = lim ∥Wyn − Wx∥. If Wy1 ̸= Wy2, the
Opial property would give a contradiction. Indeed, the proof of this last statement follows from{

ξ(y1) = lim ∥Wykn −Wy1∥ < lim ∥Wykn −Wy2∥ = ξ(y2)

ξ(y2) = lim ∥Wykm −Wy2∥ < lim ∥Wykm −Wy2∥ = ξ(y1).
(C.13)

Therefore, Wy1 = Wy2. If either of the conditions (c1) or (c2) is satisfied; then, as shown above,
every weak cluster point of (yn)n∈N is in zer(A). Hence,

y1 = JW
γnAWy1 and y2 = JW

γnAWy2. (C.14)

By using (3.2) again, we obtain y1 = y2. Thus, the sequence (yn)n∈N possesses at most one weak
sequential cluster point. In view of [1, Lemma 2.46], since bounded, (yn)n∈N converges weakly to
a point x ∈ zer(A).

Appendix D. Proof of Section 4

D.1. Proof of Lemma 6

Proof. We first note that H = ran(A) ⊕ ker(A). Hence, for each x ∈ H, there exist x1 ∈ ran(A)
and x2 ∈ ker(A) (thus, by definition, Ax2 = 0) such that x = x1 + x2. Since A is linear, we have
thus

Ax = Ax1 +Ax2 = Ax1 = Arx1. (D.1)

Hence, x ∈ A−1y implies that y = Ax = Arx1; thus, x1 = A−1
r y. In turn, x = x1 + x2 ∈

A−1
r y + ker(A), i.e.,

A−1y = A−1
r y + ker(A). (D.2)

Next, we let (u, x) ∈ gra(A−1) and (v, y) ∈ gra(A−1). Then, x = A−1
r u+w1 and y = A−1

r v+w2

for some (w1, w2) ∈ ker(A)2. Therefore, since W is unitary, we obtain

⟨u− v | Wx−Wy⟩ = ⟨u− v | x− y⟩ =
〈
u− v | A−1

r u−A−1
r v

〉
≥ −∥u− v∥∥A−1

r u−A−1
r v∥ ≥ −∥A−1

r ∥∥u− v∥2,
(D.3)

which implies that A is (ρ Id,W )-hypomonotone.
Next, we prove that A−1 is maximally hypomonotone. Suppose that there exists (v, y) ∈ H

such that for every (u, x) ∈ gra(A−1),

⟨u− v | Wx−Wy⟩+ ρ∥u− v∥2 ≥ 0. (D.4)

Let us write v = v1 + v2 ∈ ran(A) ⊕ ker(A). It follows that there exists ȳ ∈ ran(A) such that
v1 = Aȳ. For each λ ∈ R, set xλ = ȳ + λv2 and uλ = Aȳ = Axλ = v1; thus, Axλ = uλ. Hence,
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(uλ, xλ)λ∈R ⊂ gra(A−1). Using (D.4), we obtain

0 ≤ ⟨uλ − v | Wxλ −Wy⟩+ ρ∥uλ − v∥2

= ⟨uλ − v | xλ − y⟩+ ρ∥uλ − v∥2

= ⟨−v2 | ȳ − y + λv2⟩+ ρ∥v2∥2

= (ρ− λ)∥v2∥2 + ⟨v2 | y − ȳ⟩
= (ρ− λ)∥v2∥2 + ⟨v2 | y⟩ (D.5)

If v2 ̸= 0, let λ → +∞, we get a contraction. Therefore, v2 = 0 and (D.4) becomes

(∀x ∈ H) ⟨Ax−Aȳ | x− y⟩+ ρ∥Ax−Aȳ∥2 ≥ 0. (D.6)

By taking x = y, it follows that Ay = Aȳ = v; thus, (v, y) ∈ gra(A−1). Consequently, A−1 is
maximally hypomonotone.

D.2. Proof of Theorem 7

Proof. Let define B : x 7→ Ax + b. Then, zer(B) = zer(A + b) and B−1 is also (∥A−1
r ∥ Id,W )-

maximally hypomonotone. Moreover, the iteration (4.3) can be rewritten as

xn+1 ∈ (W + γB)−1(Wxn), (D.7)

which is an instance of (3.1) with λn := 1. Moreover, by Lemma 6, all the conditions set on
B are satisfied. In addition, since W is unitary, it is injective, weakly continuous and coercive
∥Wx∥ → +∞ as ∥x∥ → ∞. Therefore, by Theorem 4(i), xn ⇀ x ∈ zer(B) = zer(A+ b).

D.3. Proof of Corollary 8

Proof. Let n ∈ N. It follows from the definition of xn+1 in (4.8) that

Wxn −Wxn+1 − γb+ γ2C⊺d+ γC⊺λn ∈ γ∂ιX(xn+1) + γAxn+1 + γ2C⊺Cxn+1, (D.8)

which is equivalent to

Wxn −Wxn+1 − γb ∈ γ∂ιX(xn+1) + γAxn+1 + γC⊺(γCxn+1 − λn − γd). (D.9)

By (4.8), we also have λn+1 = λn − γCxn+1 + γd. Hence, we can deduce from (D.10) that

Wxn −Wxn+1 − γb ∈ γ∂ιX(xn+1) + γAxn+1 − γC⊺λn+1. (D.10)

Next, we define xn := (xn, λn)
⊺. Using the definition of M , we then obtain

Wxn −Wxn+1 − γb ∈ γMxn+1. (D.11)

Therefore, xn+1 = (W + γM)−1(Wxn − γb). Hence, xn → x solves (4.6).
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