An Uncertainty Principle is a Price of
Privacy-Preserving Microdata

John Abowd Robert Ashmead Ryan Cumings-Menon
U.S. Census Bureau U.S. Census Bureau U.S. Census Bureau
and Cornell University

Simson Garfinkel Daniel Kifer Philip Leclerc
(formerly) U.S. Census Bureau U.S. Census Bureau U.S. Census Bureau
U.S. Department of Homeland Security ~ and Penn State University
and George Washington University

William Sexton Ashley Simpson Christine Task Pavel Zhuravlev
(formerly) U.S. Census Bureau Knexus Knexus U.S. Census Bureau
and Tumult Labs
Abstract

Privacy-protected microdata are often the desired output of a differentially pri-
vate algorithm since microdata is familiar and convenient for downstream users.
However, there is a statistical price for this kind of convenience. We show that
an uncertainty principle governs the trade-off between accuracy for a population
of interest (“sum query”) vs. accuracy for its component sub-populations (“point
queries”). Compared to differentially private query answering systems that are not
required to produce microdata, accuracy can degrade by a logarithmic factor. For
example, in the case of pure differential privacy, without the microdata require-
ment, one can provide noisy answers to the sum query and all point queries while
guaranteeing that each answer has squared error O(1/€2). With the microdata
requirement, one must choose between allowing an additional 1og2(d) factor (d
is the number of point queries) for some point queries or allowing an extra O(d?)
factor for the sum query. We present lower bounds for pure, approximate, and
concentrated differential privacy. We propose mitigation strategies and create a
collection of benchmark datasets that can be used for public study of this problem.

1 Introduction

Differential Privacy [16] is a mathematical theory of information leakage that allows organizations to
publish noisy statistics about their datasets while protecting the confidentiality of user information.
Its state-of-the-art guarantees have resulted in adoption by data collectors such as the U.S. Census
Bureau [31}110} 23} 1], Google [19, 6], Apple [37], Microsoft [[13]], Uber [26], and Facebook [33]].

In many cases, downstream users want the output of disclosure avoidance systems in the form of
microdata (a set of records about individuals). For example, this has historically been the case
for tabulations of Census Bureau data, and is currently a requirement for most 2020 Census of
Population and Housing tabulations[20]. However, an end-user study of demonstration data products
released by an early prototype of the Census Bureau’s disclosure avoidance system showed significant

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

anomalies in the privacy-protected microdata [34][1_-] They noted the following: the system first
produced differentially private noisy query answers, called measurements, and then synthesized
privacy-protected microdata so that query answers computed from the privacy-protected microdata
matched the noisy measurements as closely as possible (based on some objective function). However,
after the privacy-protected microdata were created, they compared (1) the original measurement
query noisy answers and (2) the values of the same queries computed from the privacy-protected
microdata. They noted that in some cases, the query error from the privacy-protected microdata was
“much larger” than the measurement query error [34]].

In this paper, we show that such anomalies are an inherent and unavoidable consequence of privacy-
protected microdata (they affect all differentially private algorithms that must output microdata).
We further show that the additional errors caused by privacy-protected microdata also satisfy a
new uncertainty principle that trades off error between accuracy on populations and accuracy on
sub-populations. We next explain this principle.

First, our criterion is per-query expected squared error. That is, if () is a collection of queries, D is

the true data, and © is the privacy-protected microdata, we are interested in the left side of Equation
(below), where the expectation is taken over the randomness of the algorithm that ingests ® and

outputs privacy protected 2.

max Ex[(q(D) — q(D))*] < Eg[max(¢(D) —q(D))*] . 1
max B3 [(q(9) — (@) = Ezmax(q(9) —4(9))7] (1)
Our focus: per-query error Most other papers: simultaneous/outlier error.

This metric measures whether there exist “bad” queries that have systematically large errors on
average. It is not to be confused with simultaneous/outlier noise error (right side of Equation
that is the focus of most theoretical papers on differential privacy, such as [7]. The reason is that
simultaneous error cannot distinguish between systematic error in specific queries vs. outliers that
result by chance when dealing with many random variables. On the other hand per query-error can
make this distinction because it considers the average behavior of each query separately.

Next, consider a collection of d disjoinﬂ counting queries q1, . . . , ¢¢ and a special query g, that is
equal to their sum (¢.(D) = >, ¢;(D)). Wecall q1, . . ., gq the point queries and g, the sum query.
Examples include (1) ¢.(D) = “# of Black or African Americans in the data living in California”

and ¢;(®) = “# of Black or African Americans in the data living in county ¢ in California” and
(2) ¢.(D) = “population of a given county” (which can be used in federal and state-level funding
allocations) and ¢;(®©) = “population in census block ¢ in that county” (useful for redistricting).

Thus, for different use-cases, accuracies at these local and aggregate scales are important.

It is well-known that queries q1, . . ., g4, ¢« can be answered using e-differential privacy by adding
Laplace(2/¢) noise to each query [18]], thus guaranteeing that each query answer has expected squared
error 8/¢%. However, in this paper, we show that it is not possible to guarantee this kind of error

if one is required to produce differentially private microdata ® and answer queries using it (i.e.,

computing ¢1 (D), ..., q4(D), ¢.(D)). Specifically, suppose an e-differentially private microdata-

producing algorithm can guarantee that, for all datasets D, Ez[(¢.(D) — ¢.(9))?] < D? and

max; E5((¢;(D) — ¢:(D))?] < C? for some constants C' and D. Then one has to choose:
e If D? € O(1/€?) then C? € Q(Z% log®(d)). That is, making the sum query accurate may
force us to take a log? (d) penalty in the expected squared error some of the point queries, or

o If C? € O(1/€?%) then D? € Q(f—;) That is, a low per-query error guarantee for point
queries may increase expected squared error of the sum query by a factor of d?.

We present such lower bound results for pure differential privacy [[16], approximate differential
privacy [[15], and concentrated differential privacy [8]], with nearly matching upper bounds.

"Throughout this paper we use privacy-protected and privacy-preserving synonymously. The Census Bureau
prefers “privacy-protected,” whereas the scientific literature has more often used “privacy-preserving.” Both
terms mean that the confidentiality of individual responses has been protected using differentially private
algorithms.

’That is, adding/removing a record into the data can only affect the answer to one of the queries.

We note that this uncertainty principle affects some, but not all, possible datasets. That is, there
are datasets for which the error penalties do not exist. Thus, the goal in practical privacy-protected
microdata generation should be to minimize the occurrence of this uncertainty principle (since
eliminating it entirely is impossible). To this end, we propose a benchmark suite of real and synthetic
datasets that can be used by the wider community for further study of this problem. We also propose
some algorithms, inspired by our lower and upper bound proofs, for mitigating the effects of this
uncertainty principle. Limitations: empirically, these algorithms perform well on the benchmarks but
we do not have theoretical proofs of performance.

2 Preliminaries

Let © denote a dataset, M a differentially private algorithm, and let Dbea privacy-preserving dataset

(e.g., M(D) = D). A counting query g is associated with a predicate v, and the query answer q(?D)
is the number of records in © that satisfy 1. We let q1, . . ., gq represent a set of d counting queries
whose corresponding predicates 1, . . . , ¥4 are disjoint (no record can satisfy more than one of the

predicates). We also let g, denote their sum: ¢, (D) = Zf’zl ¢ (D).

2.1 Differential Privacy

Differential privacy is currently considered the gold standard in privacy protections. It relies on the
concept of neighboring datasets, defined as follows.

Definition 1 (Neighbors). Two datasets D1 and D4 are neighbors, denoted by 01 ~ Do, if D1 can
be obtained from Do by adding or removing one record.

Using this concept of neighbors, differential privacy ensures that adding or removing one record from
a dataset has little effect on the probabilistic outcomes of an algorithm:

Definition 2 (Differential Privacy [16]). Given privacy parameters ¢ > 0 and § > 0, a randomized
algorithm M satisfies (e, 8)-DP if for all pairs of datasets D1, D that are neighbors of each other,
and for all S C range(M), the following equation holds:

P(M(©1) € S) < €6P(M(©2) S S) + (S,

where the probability is only over the randomness in M (not the randomness in the data). When
0 = 0, we say that M satisfies pure differential privacy (also known as e-differential privacy or e-DP)
and when § > 0 we say that M satisfies approximate differential privacy.

Another important version of differential privacy, is p-zCDP (concentrated differential privacy):

Definition 3 (zCDP [8]). Given a privacy parameter p, a randomized algorithm M satisfies p-zCDP
if for all pairs of datasets ®1, D that are neighbors of each other and all numbers o > 1,

Do (M(D1)[[M(D2)) < pa

where D, (P||Q) = ﬁ log (E:mp {%}) is the Renyi divergence of order « between proba-
bility distributions P and Q).

Although zCDP is difficult to interpret, there are useful results that help provide intuition. First, any

M that satisfies e-differential privacy also satisfies p-zCDP with p = % [8]. In general a p-zCDP
algorithm does not satisfy pure differential privacy but does satisfy (¢, §)-DP for infinitely many pairs
of € and 0 that lie along a curve (see [9]] and [2] for conversions between p-zCDP and (¢, §)-DP).

2.2 Algorithm Design with Differential Privacy

A few basic principles underlie the construction of many algorithms for differential privacy. The
first is sensitivity, which measures the maximum impact that one record can have on a set of queries
(regardless of input data):

Definition 4 (Sensitivity [16]]). The L, global sensitivity of a set Q) of queries, denoted by A, (Q), is
1/p
defined as sup q(®D1) — q(D2)|P .
finedas swp (,e01a(D1) — a(D2)P)

Global sensitivity can be used with the Laplace and Gaussian distributions to form basic mechanisms.
Let Lap(«) represent a draw from the Laplace distribution with density f(z) = ie“””‘/ “ and
N(0,02) represent the zero-mean Gaussian distribution with variance o2. Each appearance of
Lap(«) or N (0, 02) represents an independent sample from the corresponding distribution.

Theorem 1 (Laplace Mechanism [[16]). Given a privacy parameter € > 0, a set Q) of queries, and an
input dataset ®, the mechanism M that returns the set of noisy answers {q(9)+Lap(A1(Q)/€) }qeq
satisfies e-differential privacy.

Theorem 2 (Gaussian Mechanism [8)]). Given a privacy parameter € > 0, a set Q) of queries,
and an input dataset ©, the mechanism M that returns the set of noisy answers {q(D) +

N(0,A2(Q)*/(2p)) }4eq satisfies p-zCDP.

All of these privacy definitions are postprocessing invariant [[18]]. That is, let A be an arbitrary
algorithm. Then Ao M (i.e., the algorithm that outputs A(M (D))) satisfies (e, §)-DP (resp., p-zCDP)
if M satisfies (¢, §)-DP (resp., p-zCDP); in other words, the privacy parameters do not degrade.

They also have useful sequential composition properties. Let M7, ..., M} be algorithms that satisfy
pure differential privacy with corresponding parameters €1, . . . , € (resp., ZzCDP with corresponding
privacy parameters p1, ..., px), then the algorithm M that releases all of their outputs (i.e., releases
M(D),..., M(D)) satisfies) _, ¢;—differential privacy [18] (resp., >, p;-zCDP [8])).

3 The Uncertainty Principle

The setting of d disjoint queries g1, . . . , g¢ and their sum ¢, are some of the most important types of
query sets. As discussed earlier, population counts in small geographic regions such as census blocks
(examples of g;) are important for redistricting while population counts in larger regions such as
counties (examples of g,) are used for federal and state funding formulas. Thus any tension between
the ¢; and ¢, can have significant impact on the entire U. S. population. While this is just one example
of a query set, almost every table produced in previous censuses is a query set with disjoint queries
and their sums [40]. Thus this is an important collection of queries to study.

3.1 Lower Bounds

We first remove some restrictions on M. While its input is a dataset, its output can be a positively
weighted dataset — a collection of records in which each record r has a nonnegative weight w. A
query ¢ with predicate v can be evaluated over a weighted dataset by summing the weights of the
records that satisfy . This simplifies our proofs and slightly increases generality, since normal
microdata is a special case of positively weighted data in which all weights are 1 (hence lower bounds
for positively weighted data are also lower bounds for normal microdata). It also emphasizes the fact
that these lower bounds arise specifically because negative query answers are disallowed. The lower
bound is the following (see supplementary material for proofs).

Theorem 3. Let q1 .. ., qq be a set collection of disjoint queries and let q, be their sum. Let M be a
randomized algorithm whose input is a dataset and whose output is a positively weighted dataset.
Suppose M guarantees that for each query q; and dataset ®, E[(¢;(D) — ¢:(M(D)))?] < C? and
E[(q«(D) — .(M(D)))?] < D? for some values C and D, where the expectation is only over the
randomness in M.

o If M satisfies e-differential privacy then for any k > 0, we have e>(C+F) > %

which implies (a) if D* < \/€* for some constant \, then C* € Q(% log®(d)), and) if
C < \/e? then D € Q(d*/€?).

o If M satisfies (¢,0)-DP then for any k > 0, we have (g + %*_DJIC) eleCt2ke >
1/4, which implies (a) if D* < \/€* for some constant), then C? €
Q (min(% log?(d), 1 log? €)); (0) if C < \/€? then either € € O(0) or D* € Q(d?/é?).

o [f M satisfies p-zCDP, then the tradeoff function between C and D (which is more complex
and omitted due to space constraints) implies: (a) if D? < \/p for some \, then C? €

Q (log(d)/p), and (b) if C* < X/ p, then for any v € (0,1), we must have D* € Q(d*" /p).

Balcer and Vadhan [3]] recently showed a statistical price of privacy-preserving release of the top-k
counts in a histogram. They proved an analogous O (log®(d/k)) penalty for point queries under e-DP
(and also results for approximate DP). Interestingly, although they did not consider tradeoffs with the
sum query (since its value was assumed to be public in their work), the results in our Theorem 3] (for
€-DP and approximate DP, but not zCDP) can be proved using the result of their Theorem 7.2.

We also note that the tradeoff functions between C' and D in Theorem [3]show a much stronger result
than items (a) and (b) in Theorem For example, they rule out the possibility that both C? and D?
can simultaneously be just slightly larger than O(1/¢?). To understand and interpret Theorem let
us compare to the Laplace and Gaussian mechanisms, which can produce negative query answers,
hence are not equivalent to producing positively weighted datasets (hence not covered by Theorem [3).

It is easy to see that A1(q1, - .., qa, ¢«) = 2 and Ay (qi, - ., qd, ¢) = v/2. Hence, an algorithm M/
can add independent Lap(2/¢) noise to each query to satisfy e-DP, and an algorithm M /; can add
independent N (0, 1/p) noise to each query to satisfy p-zCDP. Thus M/ achieves expected squared
error of 8/€ for ¢, and each ¢; (i.e., C* = D> = 8/¢?). Meanwhile M) achieves 1/p expected
squared error (C2 = D? = 1/p). These expected error guarantees hold for all datasets D.

Theorem|3[says that privacy-preserving algorithms M that are required to produce positively weighted
datasets cannot guarantee the same low error — there are input datasets © for which the expected
errors can be significantly larger. In the case of M that satisfy e-DP, if we want low error for the sum
query (e.g., D? = O(1/€?), matching the Laplace mechanism), on some datasets we may need to pay
a logQ(d) penalty for some point queries (i.e., there will be specific point queries with consistently
large error). On the other hand, if we want low error for the point queries (e.g., C? = O(1/€?)) then
on some datasets we will pay a d? penalty on the sum query.

In the case of p-zCDP, the penalties are smaller. If we want to match the error of the Gaussian
mechanism on the sum query, we may need to pay a penalty of log(d) on point queries; if we want
O(1/p) expected squared error on each point query, we may need to pay a penalty of nearly d? on g..

For approximate DP, the weakest privacy definition here, the degradation factor can be roughly
log?(€/d) no matter how large d is.

Remark 1. The lower bounds in Theorem [3|imply that if privacy-preserving microdata is generated
by obtaining noisy measurement query answers (e.g., with the Laplace or Gaussian mechanisms) and
then postprocessing the noisy answers (e.g., [28l 24]), some of the measurement queries computed
directly from the privacy-preserving microdata will have errors that are larger than their original noisy
answers.

Remark 2. All is not lost, however, as the proofs are based on packing arguments that show
that these errors are unavoidable for some difficult datasets (but not all datasets are difficult). An
example of a difficult dataset ®* under pure differential privacy is one for which exactly one of the
query answers ¢ (D7), ..., qq(D") equals log(d)/e while the other d — 1 queries equal 0 (clearly,
q.(D*) = log(d)/e). As mentioned earlier, the Laplace mechanism [[I8]], which does not produce
microdata, can achieve 8/e2 per query error although many of the noisy query answers will be
negative. However, the proof of Theorem [3]implies that no algorithm that produces privacy-protected
microdata (and hence nonnegative query answers) can do as well on such a dataset. In fact, for
this specific difficult dataset D™, the large error described by Theorem will either occur for ¢, or
for that ¢; whose answer on ©* is log(d)/e. On the other hand, an easy dataset is one for which
¢1(®),...,q4(D) are all large, since almost no effort is needed in ensuring that the privacy-protected
query answers are nonnegative.

3.2 Upper Bounds

These lower bounds are nearly tight, as shown by the upper bounds in Theorem[d] The proofs construct
postprocessing algorithms that first obtain noisy answers ay, . . ., aq, a. to the queries q1, . . ., q4, Gx-
A postprocessing step converts the a; and a, into consistent noisy answers a}, . .., al;, a/, (i.e., they
are nonnegative and) , a; = a’,). Weighted datasets are constructed from the latter quantities. To
get weighted datasets with higher accuracy on point queries, the postprocessing ignores a, and sets
a; = max{0, a; }. To obtain synthetic data with higher accuracy on the sum query, @/, is set to a, and

the a are obtained by minimizing squared distance to the a; subject to the a} being nonnegative and
adding up to a,. The full proofs are in the supplementary material.

Theorem 4 (Upper bound for pure DP and zCDP). Let q1, ..., qq be a set of disjoint queries and let
q« be their sum. Given privacy parameters € > 0 and p > 0, there exist algorithms M¢, M,, M/, M ;,
M 6’7 s that output a positively weighted dataset and have the following properties:

1. M, satisfies €-DP. and for all ® and i, E [(¢;(Mc(D)) —q:(D))?] < 2/€* and
E [(¢:(Mc(D)) — ¢:(9))°] < 2d%/€%,

2. M, satisfies p-zCDP. and for all ® and i, E [(q;(M,(D)) — ¢:(D))?] < 1/(2p) and

E [(g:(M,y(D)) — ¢:(D))?] < d?/(2p).
3. M satisfies e-DP, and for all ® and i, E [(g;(M!(D)) — ¢;(D))?] € O(log®(d)/€*) and

E [(q(M{(D)) — ¢:(9))?] € O(1/¢?)

4. M) satisfies p-zCDP, and for all ® and i, E [(q:(M}(D)) — ¢;(D))?] € O(log(d)/p) and
E [(a:(M}(D)) — 4.(D))?] € O(1/p)

5. M ; satisfies (e,0)-DP and for all © and i, E[(qi(Me'ﬁ(@))—qi(@))Q} €

O(log?(1/6)/€* + 1) and E {(q*(Me’(;(’D)) - q*(D))Q] € O(1/€%). Also note M, and
M satisfy e, 6-DP.

Note that Theorem A matches the lower bounds in Theorem [3]except for a slight difference for zCDP,
where Item of Theorem has a d? while the lower bound in Theoremhas in its place a d2” for
any -y arbitrarily close to 1.

4 Algorithms

For tabular data, typically end-users are interested in multiple marginals of the data. Examples include
the gender by age marginals at the national, state, and county levels (for constructing age pyramids);
the marginal on race at the national, state, county, tract, and block levels both for demographic
research and for enforcement of voting rights; total populations in each state, county, etc. (for various
funding formulas). Thus these query sets have many different point query/sum query collections
embedded in them. Examples include: female population in a county (sum query) and number of
females of each age in the county (point queries); or total Asian population (sum query) and Asian
population in each county (point queries). Thus algorithms designed to minimize the appearance of
the uncertainty principle should not be designed for a single collection of sum/point queries; instead,
they should support many counting queries.

To describe algorithms, it is helpful to view the dataset ® as a vector x, where each element ¢
corresponds to a possible record 7;. Then x[i] is the number of times r; appears in ©. The goal is
to produce a privacy-protected version X whose entries are nonnegative real numbers, which can be
converted to a positively weighted dataset © (x[i] is the weight of record r; in ©). In this setting,
a counting query q is just a vector of 1s and Os with the same dimensionality as x, and the query
answer is computed as the dot product ¢ - x.

The algorithms we present here (2 baselines and 2 proposed algorithms) are all based on the idea of
first computing noisy query answers and then postprocessing them to obtain X. This setup allows
an organization to release both x and the noisy answers (for more statistically-oriented end-users).
Thus, given a set () of counting queries, for each ¢ € @, the data collector computes a noisy answer
a4 by adding noise with distribution F} to the true answer and then must postprocess them to create
microdata] We assume the data collector chooses the noise distributions to achieve their desired
privacy definition (e.g., e-DP, p-zCDP).

3 Although a data collector could add noise to a different set of queries and use them to infer the answers
to g € Q [431129]142], it is the subsequent postprocessing step that would be more important in mitigating the
uncertainty principle.

N

~ (=) wm s W

Baseline: NNLS Postprocessing. The first baseline we consider is the commonly used nonnegative
least squares (NNLS), in which X is produced as the solution to the following optimization problem:

p— . X 2
X ¢ arg min Z M s.t. X[¢] > 0 forall 4
< = variance(Fy)

Baseline: Max Fitting Postprocessing. The next baseline is an adaptation of a bilevel optimization
approach [32] that was originally used for optimization problems whose parameters are sensitive.
The idea here is to find the positively weighted datasets whose query answers minimize the L,
distance to the noisy query answers, breaking ties using least squares error:

; : lag — q - X|
dist < minmax ———
ol std(Fy)

— . X 2 —_ .
7(60(1‘ q X> S.t. max 7‘6@ d X|
variance(Fy) €Q std(Fy)

s.t. X[i] > 0 for all ¢

X ¢ arg min Z < dist and X[i] > 0 for all 4

q€Q

Sequential Fitting Postprocessing. Since it is provably not always possible to output microdata that
fits the noisy answers well, we propose an approach that prioritize queries. Thus the query set () is
partitioned by the user into query sets @1, . . ., Q. We use the above NNLS approach to fit a vector
X1 to the noisy answers of queries in ()1 (highest priority). We then fit X to the noisy answers for
queries in Qo (next highest priority) subject to the constraints that X matches X; on queries in Q.
Then we fit X3 using noisy answers to queries in Q3 while forcing X3 to match X» on queries in (1
and)2, and so on and return the final X, at the end. The pseudocode is shown in Algorithm 1] This
algorithm is the one that matches the upper bounds in TheoremE] (referred to as M when the noisy
answers a, use Laplace noise, and M ", for Gaussian noise).

Algorithm 1: Sequential Fitting (Postprocessing)

Input: Query set (), noisy answers a, for ¢ € () and noise distributions F; for ¢ € Q.
Input: Qq, ..., Qy: partition of) based on query priority.

X1 ¢ arg ming quch % s.t. X[7] > 0 for all ¢
Fit < Ql
for(=2,...,kdo
L Xy ¢ arg ming ZQEQe % s.t. X[i] > O foralliand ¢-X = q-X¢_1 forall ¢ € Fit
Fit < Fit UQ,

Return: x;,

Remark. The constrained optimizations in max fitting and sequential fitting are difficult for quadratic
program optimizers, often resulting in numerical errors, slow convergence, and infeasibility errors
(due to occasional insufficient solution quality in earlier stages of the multistage optimization). They
require significant engineering effort, tuning of slack parameters (slightly relaxing equality and
inequality constraints) and optimizer-specific parameters. So, an ideal solution would also avoid
constraints other than nonnegativity for point queries. This is a rationale for our next method.

ReWeighted Fitting Postprocessing. This method (shown in Algorithm [2)) avoids constraints as
much as possible in an eventual NNLS solve (Line [I4) but is limited to query sets of the form

Q= Ule @i, where the queries inside each @; are disjoint and have the same noise distribution.
One example is when @ is a collection of marginal queries (e.g.,)1 = marginal on age, Q2 =
marginal on age by race, ()35 = marginal on gender by race), which are arguably the most important
types of queries. Within each @;, the algorithm tries to find a cutoff value so that queries with noisy
answers above it are likely to have true value that is non-zero (Lines [5}{6)). The idea is that if n; is the
number of queries below the threshold, and if they truly had value 0, then their largest noisy value
(i.e., the max of ny O-mean Laplace or Gaussian random variables) should not be near the cutoff with
high probability (controlled by the confidence parameter y). The “low” queries are the ones with
noisy answers below the cutoff. The algorithm uses the existing noisy answers to estimate the sum
of these “low” queries (Lines and adds that “low query sum” (Line [T3)) to the nonnegative

[

N-T- RN B L7 N I)

10
11
12

13

14
15

least squares optimization while downweighting the individual low queries (Line[9] the downweight
depends on the extreme value distribution of the max of n; 0-mean Laplace or Gaussian random
variables, Line[7). To avoid double counting, both places where a “low” query is used (individually
and as part of a sum) have their weights cut in half. Note the algorithm only uses existing noisy
answers and has no access to the true data.

Algorithm 2: ReWeighted Fitting (Postprocessing)

Input: Query set) = Ule Q;; Within a @;, the queries are disjoint. F; is the noise distribution
of each query in @);. Given noisy answers a, for ¢ € @ that satisfy the chosen privacy
definition.

Input: Confidence parameter «y close to 1 (e.g., 0.99, the setting used in experiments)

S« 0fori=1,...,kdo

a1y, a(2), - - - are the given noisy answers (to queries in ();) arranged in sorted order

J* < smallest j s.t. P(max(j fresh random variable with distributionF;) > a(;))< 1 — 7

cutof f < aj«.

downweight <— median of distribution of max of j random variables sampled from F;

For each query ¢ € Q; whose noisy answer a, is > cutof f, add (g, a4, 1/var(F;)) to S.

For each query ¢ € Q; whose a4 is < cutof f, add (¢, aq, Srvar L to S.

nj < number of queries selected in Line 9 (i.e., their noisy answers were < cutof f)
g+ < sum of queries selected in Line@]

at < sum of their existing noisy answers

Add (g1, 01, 5 —s) 0 S

F;)*downweight?)

X 4 argming s o yes W (¢ (%) — a’)? s.t., X[i] > 0 for all i.
Return: x

S Experiments

To make our code fully open source, we wrote it in Julia [5] and after trying several open-source
optimizers, we settled on COSMO [21]]. We created a collection of benchmark datasets that were
small enough to permit running the postprocessing algorithms thousands of times on each dataset
(to estimate expected errors) but large enough to demonstrate the uncertainty principle. The full
benchmark of 15 real datasets and 16 synthetic datasets is described in the supplementary materialE]
Here we present results for an interesting subset. The only synthetic dataset discussed here, called
Level00-2d, is a 10 x 10 histogram where one element is large (i.e., 10,000) and the others are 0. The
other 15 datasets we discuss here were taken from the 2016 ACS Public-Use Microdata Sample [39].
Each represents a 9 x 24 “race by Hispanic origin” histogram from Public-Use Microdata Areas that
were considered outliers in their states in terms of racial composition.

For these datasets, we applied the Laplace mechanism with € = 0.5 to answer the sum query, both
1-way marginal queries, and identity queries (for each cell, how many people are in it). This is also
the priority order used by Sequential Fitting. Error results for the marginals, other privacy parameters
and zCDP results can be found in the supplementary material. We ran the Laplace mechanism using
different postprocessing strategies (described in Section[d)) 1,000 times for each dataset to estimate
expected squared error of each query. We added an ordinary least squares (OLS) optimization
for comparison purposes (OLS is NNLS without nonnegativity constraints). OLS is free from the
uncertainty principle because it does not produce positively weighted microdata. Thus, to minimize
the effect of the uncertainty principle, the other postprocessing methods should try to achieve errors
that are not much worse than OLS. We note that the multi-stage optimization in Max and Sequential
fitting are generally very difficult for optimization software, so we only kept those runs in which the
optimizer succeeded (thus results for Max and Sequential Fitting are slightly optimistically biased).

In Table[I] we show the squared error of these postprocessing methods for the sum query. The NNLS
and MaxFitting baselines perform poorly for this query, with errors typically 4-5x those of the OLS
method (which is close to the variance of the original noisy answer to the sum query). Meanwhile

*See https://github.com/uscensusbureau/Cost0fMicrodataNeurIPS2021|for the code and data.

https://github.com/uscensusbureau/CostOfMicrodataNeurIPS2021

Dataset Nickname Dataset OLS NNLS MaxFit Seq ReWeight

901 Level00-2d 101.3 4619 5339 149.2 108.5
002 PUMAO101301 | 107.2 547.2 500.3 106.7 112.5
003 PUMAO0S00803 | 107.2 446.1 5717 1203 107.2
D04 PUMA1304600 | 107.2 408.1 4263 120.8 109.8
005 PUMA1703529 | 107.2 4353 4263 1349 110.9
D06 PUMA1703531 | 107.2 584.0 6774 1114 108.1
207 PUMA1901700 | 107.2 395.1 443.6 119.1 110.4
D08 PUMAZ2401004 | 107.2 369.3 329.0 109.6 107.5
209 PUMA2602702 | 107.2 467.8 472.0 146.0 109.2
10 PUMA2801100 | 107.2 543.7 5582 117.8 110.8
D11 PUMAZ2901901 | 107.2 485.2 464.4 1265 110.8
D12 PUMA3200405 | 107.2 329.1 301.0 1229 108.4
D13 PUMA3603710 | 107.2 300.3 2933 85.7 108.8
D14 PUMA3604010 | 107.2 399.9 386.5 129.8 111.3
D15 PUMAS5101301 | 107.2 396.1 369.5 139.2 107.2
D16 PUMAS151255 | 107.2 330.7 280.3 139.1 107.8

Table 1: Squared Error for Sum Query (overall € = 0.5))

OLS NNLS MaxFit Seq ReWeight
Data Total Max Total Max Total Max Total Max Total Max

D01 | 105165 124.0 | 3442 1474 | 4437 173.1 | 4373 283.6 | 159.2 784
©02 | 23906.2 1429 | 809.0 1356 | 9107 1446 | 7829 179.7 | 7313 209.8
D03 | 23906.2 1429 | 1179.8 107.5 | 12353 1254 | 1171.7 189.8 | 1123.8 141.9
D04 | 23906.2 1429 | 1313.0 1119 | 13855 1423 | 1049.1 1263 | 12644 136.0
D05 | 23906.2 1429 | 1243.8 1053 | 12572 96.7 | 1019.1 1143 | 1285.7 160.5
D06 | 23906.2 1429 | 5622 949 | 599.0 721 | 4299 1129 | 4098 788
D07 | 23906.2 1429 | 1516.1 1159 | 16659 129.7 | 1312.1 156.9 | 1617.1 205.0
D08 | 23906.2 1429 | 19544 130.0 | 1971.8 147.8 | 1983.4 3113 | 1760.1 168.9
D09 | 23906.2 1429 | 977.2 100.0 | 956.4 1094 | 8434 121.7 | 930.1 156.2
D10 | 23906.2 1429 | 6869 975 | 7057 79.0 | 5342 927 | 5160 78.7
D11 | 23906.2 1429 | 9444 1004 | 9192 103.2 | 8094 131.6 | 888.2 1382
D12 | 23906.2 1429 | 2189.2 119.6 | 2191.5 1347 | 19185 1423 | 2336.1 259.1
D13 | 23906.2 1429 | 2884.1 119.2 | 3088.6 149.1 | 2484.2 140.7 | 2870.4 166.1
D14 | 23906.2 1429 | 14325 1059 | 14423 120.6 | 1262.1 122.7 | 1448.6 194.0
D15 | 23906.2 1429 | 14747 108.3 | 1498.6 101.8 | 13945 203.4 | 13929 153.2
D16 | 23906.2 1429 | 2239.7 1303 | 2274.1 124.3 | 2079.0 1785 | 2123.0 172.8

Table 2: Squared Errors Id Query (overall € = 0.5).

Sequential and ReWeighted fitting perform much better. Standard errors were roughly 2-6% of the
reported metrics (omitted for space, but shown in the supplementary materials).

For Table [2] we examine the expected errors of each cell query (i.e., g; is the number of people in cell
1). We find the cell with the largest expected error and report it (the “Max” column). We also find
the total squared error of the cell queries and report them in the “Total” column. Again, the standard
errors are roughly 2-6% of the reported metrics, except that they are sometimes higher for Max and
Sequential fitting since averages were only computing on the subset of runs for which the optimizer
did not fail.

Generally, NNLS performed slightly better in terms of the maximum expected error compared to
ReWeight, although their total errors are comparable and ReWeight significantly outperforms NNLS
on the sum query.

Overall, these experiments and our supplementary material show that both ReWeight and Sequential
fitting (though not perfect) avoid incidents where there are extremely high errors (unlike NNLS and
Max Fitting for sum queries), and this is important in practice. ReWeight and Sequential fitting have
similar performance. ReWeight is faster while Sequential needs significant tuning of optimizers
in order to succeed. However, one advantage of Sequential is its algorithmic transparency — it can

directly prioritize queries for the tradeoffs caused by the uncertainty principle (in our experiments,
the sum query had highest priority for Sequential Fitting).

6 Related Work

The requirement to produce microdata is an example of consistency in privacy-preserving query
answering. A variety of work [4} 25/ 3528} [11} [14} 30, 27, 124] has shown that creation of a privacy-
preserving data synopsis from which all queries are answered can improve query accuracy under a
variety of metrics such as maximum simultaneous error and total error. However, it is known that the
production of privacy-preserving microdata comes at the expense of increased computational cost
[411117,138]]. For example, under standard complexity assumptions [38]], there is no polynomial-time
algorithm for generating privacy-protected synthetic data whose two-way marginals are all accurate.

Aside from the computational price, Balcer and Vadhan [3] also recently showed a statistical price
of privacy-protected synthetic data. They considered releasing different kinds of privacy-protected
representations of nonnegative noisy histograms (for example, releasing the top-k noisy cells under
e-DP had a log? (d/k) penalty term for squared error), but assumed the value of the sum query was
publicly known in their work. Our constructions are based on their proof techniques (see discussion
after Theorem [3)).

7 Conclusions, Future Work, and Broader Impact

Public-use data have many different end-users, so a single aggregated performance measure, such
as total error across all queries, is not a reliable measure of data quality. The accuracy of each
query is important, which implies multiple conflicting quality criteria for public-use data. Thus an
important direction for future work is to identify all tradeoffs in privacy-preserving microdata as well
as algorithms with provable guarantees on instance-optimality (i.e., improve performance on datasets
that do not trigger the uncertainty principles).

Broader Impact

The uncertainty principle presented in this paper (as well as the cost of microdata results in [3]) along
with the known computational price of generating microdata suggests that organizations should also
consider alternative formats for their privacy-protected data products. The uncertainty principle can
be avoided by releasing noisy query answers that are allowed to be negative or by producing weighted
datasets that can feature negative weights (however, adding a sparsity requirement could re-introduce
systematic errors [3]]). Such alternative formats may also require educating and providing training
materials to end-users. If an organization nevertheless decides to produce privacy-protected microdata,
then microdata-generating algorithms should be designed as postprocessing algorithms that convert
unbiased noisy measurements into microdata (so that the “statistics-friendly” noisy measurements can
also be released and studied by data scientists). Further research into such postprocessing algorithms
is needed to mitigate the effects of the uncertainty principle.

Acknowledgments and Disclosure of Funding

We thank Salil Vadhan for helpful discussions that allowed us to sharpen the lower bound results.
Affiliations are provided solely for the purpose of identification. All work was performed under
the supervision of the U.S. Census Bureau as part of the authors’ employment or contractual work
product. The views and opinions in this article are those of the authors and do not represent the policy
or official position of the U.S. Government, the U.S. Department of Commerce, the U.S. Census
Bureau, the U.S. Department of Homeland Security, Knexus, or Tumult Labs.

Competing interests: None.

Additional revenues related to this work: None.

10

References

[1] John M. Abowd. The U.S. Census Bureau adopts differential privacy. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
2018, pages 2867-2867, New York, NY, USA, 2018. ACM. https://dl.acm.org/doi/10!|
1145/3219819.3226070.

[2] Shahab Asoodeh, Jiachun Liao, Flavio P. Calmon, Oliver Kosut, and Lalitha Sankar. A better
bound gives a hundred rounds: Enhanced privacy guarantees via f-divergences. In 2020 IEEE
International Symposium on Information Theory (ISIT), 2020.

[3] Victor Balcer and Salil Vadhan. Differential privacy on finite computers. Journal of Privacy
and Confidentiality, 9(2), Sep. 2019.

[4] Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank McSherry, and Kunal
Talwar. Privacy, accuracy and consistency too: A holistic solution to contingency table release.
In Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS), 2007.

[5] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to
numerical computing. SIAM review, 59(1):65-98, 2017.

[6] Andrea Bittau, Ulfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghunathan, David
Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard Seefeld. Prochlo: Strong
privacy for analytics in the crowd. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP *17, pages 441-459, New York, NY, USA, 2017. ACM.

[7] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to non-interactive
database privacy. In Proceedings of the Fortieth Annual ACM Symposium on Theory of Comput-
ing, 2008.

[8] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions,
and lower bounds. In Theory of Cryptography, 2016.

[9] Clément L. Canonne, Gautam Kamath, and Thomas Steinke. The discrete gaussian for differen-
tial privacy. In NeurlPS, 2020.

[10] U.S. Census Bureau. LEHD Origin-Destination Employment Statistics (2002-2018) [computer
file], 2021. U.S. Census Bureau, Longitudinal-Employer Household Dynamics Program [dis-
tributor], accessed on October 11, 2021 at https://onthemap.ces.census.gov. LODES
7.5 [version].

[11] Graham Cormode, Cecilia Procopiuc, Divesh Srivastava, Entong Shen, and Ting Yu. Differen-
tially private spatial decompositions. In ICDE, 2012.

[12] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, USA, 2006.

[13] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting telemetry data privately. In
Proceedings of the 31st International Conference on Neural Information Processing Systems,
NIPS’ 17, pages 3574-3583, USA, 2017. Curran Associates Inc.

[14] Bolin Ding, Marianne Winslett, Jiawei Han, and Zhenhui Li. Differentially private data
cubes: Optimizing noise sources and consistency. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data, 2011.

[15] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our
data, ourselves: Privacy via distributed noise generation. In Serge Vaudenay, editor, Advances
in Cryptology - EUROCRYPT 2006, 2006.

[16] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of cryptography conference, pages 265-284.
Springer, 2006.

11

https://dl.acm.org/doi/10.1145/3219819.3226070
https://dl.acm.org/doi/10.1145/3219819.3226070
https://onthemap.ces.census.gov

[17] Cynthia Dwork, Aleksandar Nikolov, and Kunal Talwar. Efficient algorithms for privately
releasing marginals via convex relaxations. Discrete Comput. Geom., 53(3):650-673, 2015.

[18] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Founda-
tions and Trends in Theoretical Computer Science, 9(3—4):211-407, 2014.

[19] Ulfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Randomized aggregatable
privacy-preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’14, pages 1054-1067, New York, NY, USA,
2014. ACM.

[20] Simson L. Garfinkel, John M. Abowd, and Sarah Powazek. Issues encountered deploying
differential privacy. In Proceedings of the 2018 Workshop on Privacy in the Electronic Society,
2018.

[21] Michael Garstka, Mark Cannon, and Paul Goulart. COSMO: A conic operator splitting method
for large convex problems. In European Control Conference, 2019.

[22] Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. Universally utility-maximizing
privacy mechanisms. In Proceedings of the Forty-First Annual ACM Symposium on Theory of
Computing, 2009.

[23] Samuel Haney, Ashwin Machanavajjhala, John M. Abowd, Matthew Graham, Mark Kutzbach,
and Lars Vilhuber. Utility cost of formal privacy for releasing national employer-employee
statistics. In Proceedings of the 2017 ACM International Conference on Management of Data,
SIGMOD ’17, pages 1339-1354, New York, NY, USA, 2017. ACM.

[24] Moritz Hardt, Katrina Ligett, and Frank McSherry. A simple and practical algorithm for
differentially private data release. In NIPS, 2012.

[25] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting the accuracy of
differentially private histograms through consistency. Proc. VLDB Endow., 3(1-2):1021-1032,
September 2010.

[26] Noah Johnson, Joseph P Near, and Dawn Song. Towards practical differential privacy for sql
queries. Proceedings of the VLDB Endowment, 11(5):526-539, 2018.

[27] Jaewoo Lee, Yue Wang, and Daniel Kifer. Maximum likelihood postprocessing for differential
privacy under consistency constraints. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), 2015.

[28] Chao Li, Michael Hay, Vibhor Rastogi, Gerome Miklau, and Andrew McGregor. Optimizing
linear counting queries under differential privacy. In PODS, 2010.

[29] Chao Li, Michael Hay, Vibhor Rastogi, Gerome Miklau, and Andrew McGregor. Optimizing
linear counting queries under differential privacy. In Proceedings of the Twenty-Ninth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, 2010.

[30] Chao Li, Gerome Miklau, Michael Hay, Andrew Mcgregor, and Vibhor Rastogi. The matrix
mechanism: Optimizing linear counting queries under differential privacy. The VLDB Journal,
24(6):757-1781, 2015.

[31] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and L. Vilhuber. Privacy: Theory meets
practice on the map. In 2008 IEEE 24th International Conference on Data Engineering, pages
277-286, Piscataway, NJ, USA, April 2008. IEEE.

[32] T. W. Mak, Ferdinando Fioretto, and P. V. Hentenryck. Bilevel optimization for differentially
private optimization. ArXiv, abs/2001.09508, 2020.

[33] Solomon Messing, Christina DeGregorio, Bennett Hillenbrand, Gary King, Saurav Mahanti,

Zagreb Mukerjee, Chaya Nayak, Nate Persily, Bogdan State, and Arjun Wilkins. Facebook
Privacy-Protected Full URLs Data Set, 2020.

12

[34] National Academies of Sciences, Engineering, and Medicine. Chapter 11: Census bureau’s
responses and own analyses of 2010 demonstration data products. In Proceedings of the 2020
CNSTAT Workhop on Census Data Products: Data Needs and Privacy Considerations. The
National Academies Press, 2020.

[35] Wahbeh Qardaji, Weining Yang, and Ninghui Li. Understanding hierarchical methods for
differentially private histograms. 2013.

[36] D. Ridgeway, M. Theofanos, T. Manley, and C. Task. Challenge Design and Lessons Learned
from the 2018 Differential Privacy Challenges, National Institute of Standards and Technology
Technical Note. https://doi.org/10.6028/NIST.TN.2151, 2021.

[37] Apple Differential Privacy Team. Learning with privacy at scale, 2017.

[38] Jonathan Ullman and Salil Vadhan. Pcps and the hardness of generating private synthetic data.
In Proceedings of the 8th Conference on Theory of Cryptography, TCC’11, page 400-416,
Berlin, Heidelberg, 2011. Springer-Verlag.

[39] U.S. Census Bureau. 2016 american community surve public use microdata samples (pums).
https://www.census.gov/programs-surveys/acs/microdata/access.2016.html.

[40] U.S. Census Bureau. Decennial census: 2010 summary files. https://www.census.gov/
mp/www/cat/decennial _census_2010/.

[41] Salil Vadhan. The Complexity of Differential Privacy, pages 347—450. Springer International
Publishing, 2017.

[42] Yingtai Xiao, Zeyu Ding, Yuxin Wang, Danfeng Zhang, and Daniel Kifer. Optimizing fitness-
for-use of differentially private linear queries. Proc. VLDB Endow., 14(10), 2021.

[43] Ganzhao Yuan, Yin Yang, Zhenjie Zhang, and Zhifeng Hao. Convex optimization for linear
query processing under approximate differential privacy. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.

13

https://doi.org/10.6028/NIST.TN.2151
https://www.census.gov/programs-surveys/acs/microdata/access.2016.html
https://www.census.gov/mp/www/cat/decennial_census_2010/
https://www.census.gov/mp/www/cat/decennial_census_2010/

