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Abstract

Chain-of-Thought (CoT) prompting plays an indispensable role in endowing large
language models (LLMs) with complex reasoning capabilities. However, CoT
currently faces two fundamental challenges: (1) Sufficiency, which ensures that
the generated intermediate inference steps comprehensively cover and substantiate
the final conclusion; and (2) Necessity, which identifies the inference steps that
are truly indispensable for the soundness of the resulting answer. We propose a
causal framework that characterizes CoT reasoning through the dual lenses of suffi-
ciency and necessity. Incorporating causal Probability of Sufficiency and Necessity
allows us not only to determine which steps are logically sufficient or necessary
to the prediction outcome, but also to quantify their actual influence on the final
reasoning outcome under different intervention scenarios, thereby enabling the
automated addition of missing steps and the pruning of redundant ones. Exten-
sive experimental results on various mathematical and commonsense reasoning
benchmarks confirm substantial improvements in reasoning efficiency and reduced
token usage without sacrificing accuracy. Our work provides a promising direction
for improving LLM reasoning performance and cost-effectiveness. The code is
available at: https://github.com/yxn9191/causalmath,

1 Introduction

Large Language Models (LLMs) have demonstrated impressive advancements in complex reasoning
tasks, significantly attributed to the adoption of Chain-of-Thought (CoT). CoT prompting guides
models to generate intermediate reasoning steps, thereby enhancing performance in areas such as
arithmetic problem-solving and commonsense reasoning [43 17, 18]. Despite these improvements,
CoT reasoning faces two fundamental challenges: (i) Sufficiency: ensuring that the generated
intermediate steps comprehensively support the conclusion [50,3}133]], and (ii) Necessity: identifying
which steps are indispensable for the soundness of the final answer [[7, [54]]. Figure Ta]illustrates three
common reasoning patterns frequently observed in LLMs, exemplified here using a GSM-8k [10]
question: (1) Sufficient but Unnecessary, where redundant steps reduce reasoning efficiency; (2)
Necessary but Insufficient, in which incomplete reasoning fails to reach the correct answer; and (3)
Sufficient and Necessary, the ideal case that balances correctness and conciseness. These examples
highlight the impact of reasoning inefficiencies—especially “overthinking”, where unnecessary steps
may hinder rather than help model performance.
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Figure 1: (a) Illustration of three reasoning types—Sufficient but Unnecessary, Necessary but
Insufficient, and Sufficient and Necessary—based on actual model-generated responses to a GSM-8k
question: “Compute 992 + 99 + 1 in your head.” (b) Path selection process using our method. Purple
nodes denote CoT steps obtained through causal intervention (rollout), while green nodes indicate
the minimal steps satisfying both sufficiency and necessity.

Recent research on Chain-of-Thought (CoT) reasoning has addressed Sufficiency by introducing
strategies such as self-consistency decoding [59] and iterative refinement methods like Self-Refine
[40], aiming to ensure intermediate steps comprehensively support final answers [27, 48, [17]. Con-
currently, efforts targeting Necessity have developed pruning techniques, such as addressing the
“overthinking” by reducing the token length [7, 136]. Chain-of-Draft prompting [67] and identify
critical reasoning steps [[13]], to reduce redundancy in reasoning paths [42} 162} 52} 45]. However, none
have utilized rigorous mathematical analyses based on sufficient and necessary conditions [46] to
evaluate and prune reasoning paths. These methods predominantly rely on correlation-based metrics
(e.g., attention weights, likelihood scores, or ablation accuracy), which may misleadingly associate
frequent or prominent steps with correctness without verifying true causal impact [4]. Consequently,
correlation alone is insufficient for reliably distinguishing genuinely necessary or sufficient reasoning
steps, highlighting the need for causal frameworks to rigorously assess their logical contributions.

To jointly address the sufficiency and necessity of reasoning steps while ensuring logical and causal
soundness, we introduce the concept of causal Probability of Necessity and Sufficiency (PNS) and
redefine it for CoT reasoning framework. We theoretically analyse the identifiability of PNS in CoT.
Based on the identifiability results, we develop a PNS-based evaluation algorithm to systematically
reconstruct reasoning sequences by causal intervention (rollout) (shown in Figure [Ib). Using this
algorithm, we effectively reconstruct CoT responses from training data that explicitly meet causal
sufficiency and necessity criteria, thus eliminating redundant steps without compromising—and
potentially enhancing—answer accuracy. The reconstructed reasoning CoT then serve as causally-
informed demonstrations, enabling LLMs to acquire causal reasoning capabilities via in-context
learning and fine-tuning to improve the efficiency without sacrificing the accuracy. Empirical
evaluations on mathematical reasoning benchmarks—including GSM-8k [10], MATH-500 [235]], and
AIME [44]], as well as the CommonsenseQA [53]] dataset—confirm that our approach significantly
reduces reasoning redundancy while maintaining or improving prediction accuracy.

Our main contributions are as follows:

1. We propose a conceptual integration of Probability of Necessary and Sufficient causation
(PNS) into CoT reasoning.

2. We introduce a novel bi-level optimization framework based on PNS for systematically
constructing efficient and accurate CoT reasoning sequences.

3. We empirically validate our approach across diverse reasoning tasks, demonstrating substan-
tial improvements in both efficiency and accuracy through optimized CoT traces used for
in-context learning and supervised fine-tuning.



2 Related Work

Reasoning Sufficiency Enhancement via CoT Optimization. CoT reasoning [[61] has significantly
improved LLM performance on complex tasks, inspiring variants such as Tree-of-Thought [76]],
Graph-of-Thought [6], and DOTS [78]]. Further developments include multimodal extensions [63],
latent variable formulations [64]], and dynamic memory usage [73]]. Others enhance reasoning via self-
correction [47], counterfactual fine-tuning [26], or prompt design [[18]]. Despite strong performance,
many methods suffer from unnecessary verbosity, inefficient computation, or overthinking [62, [7]].
Beyond textual reasoning, task-grounded reasoning frameworks such as ChessGPT [20] bridge
policy learning and language modeling, revealing that reasoning sufficiency can also be optimized in
structured decision domains.

Reasoning CoT Redundancy. Recent work targets CoT redundancy by compressing reasoning
traces (e.g., C30T [32]], CoT-Valve [39]], CCoT [9]), pruning superfluous steps [36l], or using token-
budget-aware reasoning [22]]. Training-free approaches such as Kimi [54] and external thought
injection [35]] further optimize reasoning cost. SPIRIT [[13] leverages perplexity to identify key
reasoning steps, balancing accuracy and efficiency in both few-shot and fine-tuned CoT settings,
while also generalizing well across models. Ton et al. [57]] use conditional mutual information to
quantify each step’s contribution to the final answer, revealing failure patterns without requiring
intermediate supervision. However, existing methods often prioritize brevity or representational
efficiency, without explicitly enforcing causal sufficiency or necessity.

PNS Theory in CoT Reasoning. Extending Pearl [46]], we introduce the Probability of Necessary
and Sufficient causes (PNS) framework to CoT reasoning, applying PN and PS at the step level rather
than the model level as in Hiiyiik et al. [26]. This enables causal pruning of redundant steps, yielding
minimal yet faithful CoTs. Relatedly, Yang et al. [[72] formalize invariant learning through PNS
estimation, offering a principled view of causal sufficiency and necessity in representation learning.
Building on this foundation, recent work on LLM causal reasoning [29]] extends similar principles
to in-context learning. Our approach generalizes these insights to step-level reasoning dynamics,
providing a model-agnostic and theoretically grounded alternative to heuristic compression methods.

Causal Necessity and Sufficiency in XAl Prior studies have leveraged causal necessity and suffi-
ciency to explain model behavior. LENS [60] identifies necessary and sufficient output conditions;
Darwiche and Hirth [[14] compute sufficient reasons via Decision-DNNF circuits; Mothilal et al. [41]
generate diverse counterfactuals; Beckers [S)] formalize sufficiency-based explanations for fairness;
and Galhotra et al. [21] propose LEWIS, a probabilistic counterfactual method. Recent progress in
causal representation learning [71} [70] further explores disentanglement and invariance through struc-
tural causal models and counterfactual reasoning, demonstrating how causal principles enable robust
and interpretable representations. Building on these ideas, our PNS evaluation extends necessity
and sufficiency analysis to LLM reasoning chains, using counterfactual rollouts to assess the causal
faithfulness of CoT traces and mitigate overthinking.

3 Defining Causal Necessary and Sufficiency in CoT

3.1 Chain-of-Thought (CoT) Reasoning

Definition 1 (Chain-of-Thought (CoT) Reasoning [61]]) Given an input Q = q, the Chain-of-
Thought (CoT) reasoning process generates the final answer A = a by sequentially deriving inter-
mediate reasoning steps S = {s1,8a,...,8p}. The probability of generating the answer given the
question is defined as:

n

P(A=a|Q=q) oc/P(a|sl,...,sn,q) xHP(si | s<i,q) dS. (1)
i=1

Answer Generation

CoT Generation

Explanation: P(A = a | Q = q) is the final answer probability. P(a | s1,..., Sy, q) corresponds
to the conditional probability of generating the final answer from the full reasoning trace. [}, P(s; |
S<i,q) models the sequential reasoning process. The integral marginalizes over all possible reasoning
traces S.
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Figure 2: Causal Optimization Framework for CoT Reasoning. Our method identifies and retains only
causally essential reasoning steps to form a compact CoT. (1) A base model generates the initial CoT
trace, possibly containing redundant steps. (2) Sufficiency is estimated by checking if the full CoT
leads to a correct answer. (3) For each step s;, necessity is evaluated via counterfactual substitution
S¢ using a rollout model, followed by answer scoring from the base model. (4) The Probability of
Necessity and Sufficiency (PNS) is computed to measure causal contribution. (5) Non-essential steps
are pruned to obtain a compact CoT, which is then used for fine-tuning or in-context learning.

3.2 Causal Necessary and Sufficiency in CoT

To rigorously characterize the causal significance of individual reasoning steps in Chain-of-Thought
(CoT) reasoning, we propose formal definitions of causal sufficiency and causal necessity tailored to
the structure and properties of CoT.

Definition 2 (Sufficiency, PS) Sufficiency measures whether the reasoning chain S = (s1,...,s,)
is sufficient to produce the correct answery. Following the counterfactual definition in Pearl [46]],
the probability of sufficiency is defined as:

PS(Sa q) =P (AdO(S) =y ‘ A 7& Yy, S7q) ’ 2

where do(S) means the intervention which set the value of chain variable as S, A 44(s) denotes the
counterfactual answer had the reasoning chain S been used, and A 4, ) denotes the actual answer
under the original reasoning S (which could be null or incorrect). This captures the likelihood that
inserting S would have changed an incorrect answer to a correct one.

Definition 3 (Necessity, PN) Necessity quantifies whether a specific reasoning step sy is required
for producing the correct answer a ='y. Inspired by the counterfactual definition of necessity [46]],
we define the probability of necessity as:

PN(Sagtaq) =P (Ado(s<t,§t,s’>t) 7& y | A=y, S,q) ’ (3)

where s, denotes the set of all correct reasoning steps before position ¢, S; represents an incorrect
or corrupted variant of the original step s;. The counterfactual outcome Ay, s,) is defined as the
model’s predicted answer when s; is replaced by §;, and the subsequent steps s’ are generated
conditioned on this modified reasoning trajectory.

Definition 4 (Probability of Necessary and Sufficient Cause (PNS) in CoT) Given a reasoning
chain S = (s1,...,Sy) that produces the correct answer A =y, and an alternative reasoning step
Sy at position t, let the counterfactual chain be defined as:

S" = (s<t,5¢,8'54),
where s denotes the preceding steps, and s'~; are subsequent steps possibly adapted to's;.

Inspired by the counterfactual definition [46)], we define the Probability of Necessary and Sufficient
Cause (PNS) for the step sy as:



PNS(S,s:,q) ;== P(As =y,As #Y). “)

This quantifies the probability that step s, is sufficient and necessary for the correct answer under a
counterfactual. Identifiability results are in Appendix [A]

4 Methodology - PNS Estimation for Improving Chain-of-Thought
Reasoning

In practice, directly maximizing the full-chain Probability of Necessity and Sufficiency (PNS) for
reconstructed CoTs is computationally intractable. To address this, we adopt a two-stage causal
optimization strategy: we first enhance the chain-level Probability of Sufficiency (PS), followed by
step-wise refinement via the node-level Probability of Necessity (PN). Guided by these criteria, we
propose an iterative pruning framework—Algorithm [T} —that removes and reorders steps to preserve
only those that are both causally sufficient and necessary for producing the correct answer. The
overall process is illustrated in Figure 2} which shows how initial CoTs are evaluated, intervened upon,
and refined to produce minimal causal traces. These optimized CoTs are then used as high-quality
exemplars for subsequent in-context learning and fine-tuning, enabling the base model to internalize
which reasoning paths are truly essential.

4.1 PNS Estimation and Algorithm for Reconstructing CoT

Algorithm 1: Sufficient and Necessary Optimization of CoT

Input: Initial CoT chain S;,;, ground truth answer y, query q, threshold «
Output: Optimized CoT chain Sgyy

Vinit < Rollout(Siyit, q);

PS « 1y = yI:

if PS = 1 then

Let Scurrent <= Sinit;

foreach step s; € S yrens (processed in order) do

§; < GenerateAlternative(s&}™™ s, );

Vicores <— empty list;

forj«1...kdo

s + RolloutContinuation(s&y*",s;, B) ; // B is the rollout model;

t 5 /()
Forms (s&77°"%,5;,s85% )

Ensure semantic disjointness of (5, s/>(]t')) from original (s;, s<7™);

Add V(g(j)) to V;cores ; // V is the validation model
PNsva1<St> < 1 - %Z'Ue‘/scorcs vs
if PNS,(s¢) > « then

LAppend S¢ t0 Sfinal 3 // If s; is deemed necessary, keep it
else
| Skips; ; // Drop unnecessary step
else
| Shinal < Sinit ; // Original chain not sufficient

return Sgp.;

Estimating PS (Chain-Level). We approximate CoT trace sufficiency as binary: PS = 1 if chain
S yields the correct answer (equivalent to P(A =y | do(S),q) = 1; Appendix [A), else PS = 0. To
improve PS, we repeatedly execute Algorithm1 under the same question context. In each execution,
the model samples an alternative CoT, and its PS is re-evaluated. This repeated sampling increases
the likelihood of obtaining a CoT with higher PS. Lemma [I](proof in Appendix[A]) establishes PNS
identifiability (Definition[3.2) when PS = 1:

Lemma 1 (Identifiability of PNS under P(A =y | do(S),q) = 1) Assume:



1. Perfect intervention with correct CoT S = (S<t, St,S>t) yields P(A =y | do(S),q) = 1.

2. Replaiing step s; with incorrect 8y and performing rollout s, (from §;) yields intervened
chain S = (s<,S¢,85,).

Then, PNS(S,5:,q) = P(Aq4o(s) = y,Ado(g) # vy | q) simplifiesto 1 — P(A =y | do(S),q),
assuming perfect intervention and the nature of S from Definition

When PS = 1, PNS validity depends on P(A =y | do(S), q), reflecting PN’s magnitude.

Estimating PN (Node-Level). If S is sufficient (PS(S, q) = 1), Lemma guides PN estimation
for each node s; to evaluate PNS(S,'s;, q). We construct S; by removing s;’s content and descendants.
A rollout model B generates a revised downstream segment (S, s’ ), forming intervened chain
§(Z) = (S<t, St, si?) for the i-th rollout, ensuring S, s’>(? are semantically disjoint from original
components rooted at s;. Each §(1) is assessed by validation model V' for coherence and logical
integrity (beyond just final answer correctness). PNS is then computed via Monte-Carlo estimation
over k rollouts:

k
_ - 1 —(i)
PNS(S,s;,q) = 1 — Z ;:1 V(S). 5)

Nodes with PNS score below threshold « (and their downstream nodes) are pruned iteratively until
all retained nodes satisfy necessity.

Iterative Optimization. Algorithm |1|details the iterative optimization procedure. Starting from
the initial CoT trace, we extract its chain and compute PNS. If the chain is sufficient, we perform
necessity estimation for each node and prune the chain accordingly. The final optimized trace Sgpy
consists only of reasoning steps that are both sufficient to produce the correct answer and necessary
to preserve logical coherence.

Rollout Strategies for Intervention Chain §(i). We use three strategies (details/prompts in Ap-

pendix [B)) for generating semantically modified steps for §(l): (1) Direct Rollout: base model
generates replacement from preceding context. (2) Prompt-Based Rollout: structured prompts guide
base model substitutions. (3) External Rollout: a separate, stronger model generates replacements.
Base/rollout models are consistent for (1)-(2); external rollouts use a more capable auxiliary.

4.2 PNS-Guided Reasoning Enhancement for In-Context Learning and Fine-Tuning

We use causally filtered CoT traces to improve LLMs under two paradigms: In-Context Learning
(ICL) and Supervised Fine-Tuning (SFT). In ICL, optimized CoTs are directly inserted into prompts
to guide non-reasoning models. In SFT, we fine-tune reasoning-capable models using 1,229 high-
quality CoTs. Results for both settings are reported in §[5.2]

5 Experiments

Our experiments are structured around two core questions:
RQ1: Can our method construct CoT datasets that enhance causal sufficiency and necessity? (§[5.2.1)

RQ2: Can the causally optimized CoT data improve the performance of non-reasoning models via
ICL, and further enhance reasoning-capable models through SFT? (§ 5.2.2)

5.1 Experimental Setup

Datasets. We evaluate on diverse reasoning benchmarks to ensure robustness across domains and
difficulty levels. For mathematical reasoning, we use: (1) GSM-8k [10], with grade-school problems;
(2) MATH-500 [25]], covering intermediate-level topics; and (3) AIME, with advanced competition
problems up to 2025 [44, [11]. For commonsense reasoning, we use CommonsenseQA [53], a
multiple-choice dataset requiring everyday inference.



Table 1: Experimental results for RQ1. Comparison of CoT reasoning performance before and after
PNS-based optimization across QWEN and DEEPSEEK variants.

\ GSM-8k CommonsenseQA MATH-500 AIME
Method Tokens Steps Acc. Tokens Steps Acc. Tokens Steps Acc. Tokens Steps Acc.
(Initial/Final) (Initial/Final) (Initial/Final) (Initial/Final) (Initial/Final) 1a ( (] ia (Initial/Final) (Initial/Final) (Initial/Final) (Initial/Final)
| Qwen Variant (QwQ-32B-Preview & Qwen-2.5-72B-Instruct)
PromptBased | 1138 8.1 90.0% 109.2 37 69.7% | 281.8 9.2 82.6% 531.3 125 16.7%
rompl-Based | 1339 523 —958% | —904 =30  —75.6% | —178.8 =55  —86.6% | —5119  —123  —267%
Direct 1138 8.1 90.0% 109.2 37 69.7% | 281.8 9.2 82.6% 531.3 125 16.7%
irec 266 =20  —97.0% | —904 =30 —745% | —»1694 =51  —874% | —5227 —123  —233%
External 356.4 239 933% | 4742 17.8 83.2% | 7432 50.3 87.6% 1719.4 1087  433%
Xlema 589 3.0  —97.9% | —2159 74  —88.0% | —200.7 —11.0 —943% | —14794 767  —56.7%
| DeepSeek Variant (DeepSeek-R1 & DeepSeek-V3)
PromptBased | 1373 5.4 95.0% 191.0 6.2 83.0% | 3876 16.2 85.9% | 24388 1203 25.0%
romptbased | 096 14 5973% | —70.9 527 —853% | —1634  —62  —92.0% | 21954 —100.9 —25.0%
Direct 137.3 5.4 95.0% 191.0 6.2 83.0% | 387.6 16.2 85.9% | 24388 1203  25.0%
irec 292 =13 —97.0% | —69.8 =25 —853% | »161.2 =59  —91.6% | —2082.6 —96.9 —250%
External 451.6 6.7 99.0% | 3682 7.6 87.1% | 828.8 29.7 932% | 30525 1578 79.2%
xterna —135.1 =32 —99.9% | 1679 3.1  —949% | —2145 6.1  —97.6% | —16393 —683  —92.6%

Evaluation Metrics.

We assess (i) reasoning efficiency—measured by token length and step

length—and (ii) accuracy, comprising PS(chain) and final-answer accuracy. Token length is com-
puted via space-delimited tokenization; step length counts steps separated by a double newline for
consistency. Accuracy is the average fraction of correctly answered instances on the test set, i.e.,

__ # correctly answered instances
Accuracy - # instances in the test set
Baselines. For RQI1, we compare unoptimized CoT traces from the base model with PNS-optimized

versions (via § {f.T) in terms of reasoning efficiency, accuracy, and average PNS. A representative
example is shown in Figure 3] with full results in Appendix

For RQ2, ICL baselines include:(1) Standard, few-shot with original (often redundant) CoTs; (2)
Fast-Solve, concise yet complete reasoning; (3) Reduction [19]], shortcut conclusions; (4) CoD [67],
minimal key phrases; and (5) Ours-ICL, few-shot with PNS-optimized, causally essential steps.
Details and prompts are in Appendix|[C} For SFT, we compare: Original, the base model; Noncausal,
fine-tuned on raw CoTs; and Causal, fine-tuned on the same CoTs after PNS-based pruning.

Models. For RQI, we use Qwen-2.5-72B-Instruct [55] as both the base and rollout model. In
the External variant, QwQ-32B-Preview [56] is used as base, with rollout unchanged. For DeepSeek,
DeepSeek-V3 [16] serves as both base and rollout in standard settings, while the external variant
uses DeepSeek-R1 [17] as base and V3 as rollout. PNS evaluations share the same configuration.

RQ2 ICL experiments primarily use Qwen-2.5-72B-Instruct, with additional results from
Qwen-2.5-7B-Instruct [55)], Llama-3.1-8B-Instruct [1]], and DeepSeek-V3. SFT exper-
iments fine-tune DeepSeek-R1-Distill-Qwen-1.5B, DeepScaleR-1.5B-Preview [37], and
Phi-4-mini-reasoning [66]. Training details are in Appendix [D]

5.2 Main Results
5.2.1 PNS Optimization on CoT Trajectories

We apply our method to CoT traces from Qwen and DeepSeek variants. As shown in Table|l} our
PNS-based algorithm reduces both token and step lengths while improving accuracy [’} indicating
effective removal of redundant reasoning.

We compare average PNS values before and after optimization across tasks (AIME and Common-
senseQA) and models (Qwen-2.5-72B-Instruct, DeepSeek-R1). As shown in Figure [3] PNS
values consistently increase after optimization, confirming that the retained steps are more causally
sufficient and necessary. The figure illustrates results on 15 sampled questions per setting; more
comprehensive results across larger test sets are provided in Appendix

*Inference for reasoning models was performed using VLLM. The max-tokens is 16,384.
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Figure 3: Average PNS values before and after optimization across different models and datasets. Each
subfigure displays PNS improvements across 15 sampled problems: (a) Qwen-2.5-72B-Instruct
evaluated on AIME, (b) Qwen-2.5-72B-Instruct on CommonsenseQA, (¢) DeepSeek-R1 evalu-
ated on AIME, and (d) DeepSeek-R1 on CommonsenseQA. PNS-optimization CoTs exhibit consis-
tently higher PNS values, indicating an increased necessity for retained steps.

We conducted a human quality evaluation of 50 CoTs: 84% were judged both sufficient and necessary
(S&N), and only 6% insufficient (NbI); see Appendixfor details.

These findings indicate that our optimized CoTs are not only more concise and accurate, but also
demonstrate enhanced causal sufficiency and necessity. Notably, the average PNS per step increases
after optimization, suggesting that the retained reasoning steps are more integral to producing correct
answers—each step contributes more critically to the final outcome than before.

5.2.2 Enhancing LLMs via ICL and SFT with Optimized CoT

We investigate enhancing LLM performance with optimized CoT data via in-context learning (ICL)
and supervised fine-tuning (SFT).

In-Context Learning with Optimized CoT. Using optimized CoT traces for ICL with non-fine-
tuned LLMs (Table[2), Ours-ICL balances reasoning efficiency and accuracy. Compared to Standard
CoT, it consistently reduces token/step usage (often >50%) with minimal/no accuracy loss. For
instance, on GSM-8k with DeepSeek-V3, Ours-ICL improves accuracy (97.6% to 99.9%) while
cutting tokens by 67%; with Llama-3.1-8B-Instruct on MATH-500, accuracy increases by
7.1 points (to 54.8%) with more concise reasoning. Ours-ICL also surpasses baselines like Fast-
Solve and Reduction [19] in accuracy with comparable or better efficiency. On GSM-8k with
Qwen-2.5-72B-Instruct, our method (99.5%, 65.3 tokens) outperforms Fast-Solve (91.7%, 72.8
tokens) and Reduction (84.7%, 114.1 tokens). Unlike aggressive pruning (e.g., CoD [67]), Ours-ICL

maintains substantially higher accuracy, especially on complex tasks (e.g., MATH-500: 96.2% vs.
55.6% with DeepSeek-V3).

Limitations for ICL. Despite its effectiveness with non-reasoning models, ICL using optimized
CoT is sensitive to prompt/example selection. Its benefits diminish on complex tasks (e.g., MATH-
500), and performance is constrained by the fixed parameters of such models. In contrast, SFT is
more impactful for reasoning-capable models, allowing deeper integration of reasoning patterns.



Table 2: Experimental results for RQ2 (ICL on Non-Reasoning Models). Lower is better (J) for
Tokens/Steps, higher is better (1) for Acc. Change rates (%) relative to the average of methods for
that metric/dataset/model are in parentheses. Cells significantly better than average are colored blue
(deeper for greater improvement).

Method | CommonsenseQA | GSM-8k | MATH-500

| Tokens| Steps| Ace.t | Tokens) Steps] Ace.t | Tokens) Steps] Ace.t

| DeepSeek-V3
Standard 177.5 +909%) 5.7 (+54.1%)  83.8% (+1.5%) | 157.3 +83.3%) 7.4 (+51.0%) 97.6% (+3.0%) | 598.6 (+90.4%) 26.7 (+88.0%) 93.2% (+9.9%)
Fast-Solve 120.1 +29.1%) 4.7 +27.0%)  82.0% (-0.7%) 86.3 (+0.6%) 4.9 0.0%) 95.1% (+0.3%) 329.2 (+4.7%) 13.6 (42%)  87.2% (+2.8%)
Reduction [19] | 103.4 ¢+112%) 3.6 (-27%) 83.1% (+0.6%) | 104.4 +21.7%) 6.0 +224%) 97.3% (+2.6%) | 476.3 +515%) 22.0 (+549%) 91.6% (+8.0%)
CoD [67 19.3 (792%) 2.0 (459%)  80.7% (-2.3%) 28.7 (-66.5%) 1.8 -633%)  84.0% (-11.4%) 31.2 (-90.1%) 2.1 (-85.2%) 55.6% (-34.4%)
Ours-ICL 44.7 51.9%) 2.7 (270%)  83.6% (+1.2%) 52.2 (392%) 4.3 ¢122%)  99.9% (+54%) | 136.7 (-565%) 6.4 (549%)  96.2% (+13.4%)

| Qwen-2.5-72B-Instruct
Standard CoT | 109.1 ¢43.0%) 3.7 27.6%)  78.2% 11%) | 113.8 447.8%) 8.0 +818%)  93.6% (+46%) | 281.8 451.9%) 9.2 s27.8%)  84.0% (+16.8%)

Fast-Solve 59.7 (-21.7%) 2.0 (31.0%) 67.0% (-153%) 72.8 (-5.5%) 2.7 386%)  91.7% (+2.5%) 192.4 (+3.7%) 7.3 (+1.4%) 69.8% (-2.9%)
Reduction [[19] \ 116.6 +528%) 3.5 (+207%) 84.9% (+73%) | 114.1 (+482%) 4.8 (-9.1%) 84.7% (-54%) | 233.3 (+258%) 9.4 (+30.6%) 72.4% +0.7%)
CoD [67 14.4 (81.1%) 2.1 27.6%) 82.3% (+4.0%) 18.8 (-75.6%) 1.1 7149%)  78.1% (-12.7%) 23.0 (-87.6%) 1.2 (-833%) 52.0% (-27.6%)
Ours-ICL \ 81.6 (+7.0%) 34 +172%) 83.0% (+4.9%) 65.3 -152%) 5.3 +205%) 99.5% +112%) | 196.9 (+6.1%) 8.9 +236%)  81.2% (+13.0%)

| Qwen-2.5-7B-Instruct

Standard CoT 209.8 +68.0%) 7.2 (+46.9%) 70.4% (-6.5%) | 149.7 +488%) 7.2 +333%)  85.1% (+0.6%) | 263.5 +43.0%) 9.7 +198%)  71.0% (+12.9%)
Fast-Solve 120.1 (38%) 5.0 ¢20%)  76.5% (+16%) | 108.4 +7.8%) 5.5 +1.9%)  83.6% (-12%) 200.6 (+8.8%) 8.4 (+3.7%) 64.6% (+2.7%)
Reduction [19] | 178.5 +429%) 6.8 +388%)  74.4% (-12%) | 131.1 +303%) 6.4 +185%)  84.3% (-04%) | 232.2 +260%) 9.1 «123%)  T71.8% (+14.1%)
CoD [67 16.8 (865%) 1.9 607%) 77.4% +28%) | 30.3 699%) = 2.9 463%)  75.7% (-105%) | 50.3 (-72.7%) 5.8 (283%)  34.6% (-45.0%)
Ours-ICL 99.1 (-20.7%) 3.8 (24%) T77.6% (+3.1%) 83.4 17.1%) 4.8 111%)  941% (+11.2%) 174.7 -5.2%) 7.7 (-4.9%) 72.6% (+15.4%)

| Llama-3.1-8B-Instruct

Standard CoT 169.3 #133.5%) 7.3 +159%) 72.2% (+28%) | 182.8 +292%) 7.9 (-1.2%) 79.2% 01%) | 741.3 +552%) 46.0 +39.8%)  47.6% (+6.1%)
Fast-Solve 140.7 +109%) 7.9 (+254%)  69.0% (-1.7%) | 170.6 (+20.6%) 9.5 +182%)  72.0% (-9.2%) 453.1 5.1%) 30.9 -6.1%) 46.4% (+4.0%)
Reduction [19] | 143.2 +130%) 5.8 (-79%)  69.9% (-0.4%) 129.1 (88%) 6.2 (224%) 82.8% (+44%) | 515.6 +8.0%)  34.0 +33%)  46.2% (+3.6%)
CoD [67 60.6 (-52.2%) 3.5 (443%)  67.6% (-3.7%) 96.7 (-31.6%) 8.5 #62%)  69.2% -127%) | 312.5 (346%) 29.2 -112%)  28.0% (-37.2%)
Ours-ICL \ 1203 (51%) 7.1 +127%)  72.1% (+2.7%) 128.3 (-93%) 8.1 +12% 931% (+174%) | 365.9 (234%) 24.2 (264%) = 54.8% (+22.9%)

Supervised Fine-Tuning with Optimized CoT. We fine-tune reasoning models on 1,229 PNS-
selected CoT traces from MATH [25], MMLU [24], ZebraLogicBench [34], CommonsenseQA [33]],
and AIME (pre-2024) [44]. All traces were manually checked for causal sufficiency, necessity,
concision, and quality; CoTs selected by our method were not edited—only verified. Table
demonstrates Causal-CoT’s consistent outperformance over baselines. On CommonsenseQA, it
improves accuracy to 47.2% (from 37.6% on DeepSeek-R1-Distill-Qwen-1.5B, and from 41.3%
on DeepScaleR-1.5B-Preview) while halving reasoning steps. On MATH-500, it achieves 78.2%
accuracy (33.1 steps) versus the Original model’s 76.4% (77.2 steps). Even on difficult tasks
like AIME25 (low absolute performanceE]), Causal-CoT significantly cuts reasoning length (e.g.,
DeepSeek-R1-Distill-Qwen-1.5B: 212.4 to 95.4 tokens). The Causal variant also matches/ex-
ceeds Noncausal fine-tuning with substantially fewer steps/tokens. For GSM-8Kk, it reaches 86.2%
accuracy (11.6 steps), while Noncausal needs 15 steps for 86.1% (DeepScaleR-1.5B-Preview).

Implications of SFT Results. SFT on PNS-selected traces yields consistent gains in accuracy and
reasoning efficiency, even with small Causal-CoT datasets, confirming the high supervision value
of enforcing causal sufficiency and necessity. The token overhead from PNS filtering is a one-time
curation cost; after fine-tuning, inference becomes cheaper because the model generates concise,
accurate CoTs without stepwise rollouts or post-hoc pruning. The strength of our approach lies
in reshaping the training distribution toward high-PNS evidence, enabling the model to internalize
causally meaningful, non-redundant reasoning patterns. At test time, this manifests as streamlined,
interpretable CoTs that improve both efficiency and reliability.

6 Conclusion

This work successfully incorporates PNS into CoT reasoning. The developed method systematically
prunes unnecessary reasoning steps, leading to significant improvements in reasoning efficiency,
while maintaining or even enhancing the accuracy of the outcomes. The effectiveness of the method
has been verified across both in-context learning and supervised fine-tuing scenarios.

Limitation and Future Work. Limitations include potential performance decreases on highly
complex tasks. Key challenges involve selecting optimal pruning thresholds, managing PNS esti-

SInference performed via VLLM; The max-tokens is 16,384.



Table 3: Experimental results for RQ2 (SFT on Reasoning Models). For Noncausal and Causal
methods, change rates (%) are reported relative to the “Original” for each model/dataset. Cells with
notable improvements over the original are highlighted.

| CommonsenseQA | GSM-8k | MATH-500 | AIME25
Method
‘ Tokens| Steps| Acc.t ‘ Tokens) Steps| Acc.t ‘ Tokens) Steps| Acc. ‘ Tokens| Steps| Acc.
DeepSeek-R1-Distill-Qwen-1.5B
Original 751.3 21.4 37.6% 332.1 14.4 77.9% 1441.8 77.2 76.4% | 4002.3 2124 233%
rgina (baseline)  (baseline) (baseline) | (baseline) (baseline) (baseline) | (baseline) (baseline) (baseline) | (baseline) (baseline) (baseline)
Noncausal 1271.3 279 432% | 6214 16.5 83.4% | 1456.6 54.7 81.6% | 37963 1164 20.0%
us (+69.2%)  (+30.4%)  (+149%) | (+87.1%) (+14.6%) (+7.1%) | (+1.0%) (29.1%) (+6.8%) | (-5.1%)  (452%) (-14.2%)
Causal (Ours) 740.0 10.3  47.2% | 327.8 128  842% | 9119 331 782% | 2948.3 954 233%
U urs (-1.5%) (-51.9%)  (+25.5%) (-1.3%) (-11.1%) ~ (+8.1%) (-36.7%)  (-57.1%) (+2.4%) (-26.3%)  (-55.1%) (0.0%)
DeepScaleR-1.5B-Preview
Original 646.7 22.1 41.3% 716.3 27.5 87.5% 1325.0 77.4 84.6% | 4897.2 356.0 20.0%
rgimna (baseline)  (baseline) (baseline) | (baseline) (baseline) (baseline) | (baseline) (baseline) (baseline) | (baseline) (baseline) (baseline)
N 1 611.5 21.7 40.8% 604.8 15.0 86.1% 1445.5 524 82.8% | 5709.8 2432  16.7%
oncausa (54%)  (18%)  (12%) | (156%) (455%) (1.6%) | (+9.1%) (-323%) (2.1%) | (+16.6%) (31.7%) (-16.5%)
Causal (Ours) 601.2 112 472% | 394.6 11.6  86.2% | 1041.4 36.3 91.7% | 20154 53.6 20.0%
AU (0% (493%)  (H143%) | (449%)  (578%) (15%) | (214%) (531%) (84%) | (S8.8%) (850%)  (0.0%)
Phi-4-mini-reasoning
Original 935.7 186 724% | 7833 186  92.6% | 1743.5 62.1 85.8% | 6544.0 2743 30.0%
g (baseline)  (baseline) (baseline) | (baseline) (baseline) (baseline) | (baseline) (baseline) (baseline) | (baseline) (baseline) (baseline)
Noncausal 949.6 149 66.4% | 566.9 143  89.8% | 2042.8 658  59.8% | 8297.8 3593 233%
(+1.5%) (-19.9%)  (-8.3%) (-27.6%)  (-23.1%)  (-3.0%) +17.2%)  (#5.9%) (-30.3%) | (+26.8%) (+31.0%) (-22.3%)
I | (Ours) 920.3 141  729% | 517.2 14.0  92.4% | 1031.0 28.7 86.7% | 4140.0 112.0 30.0%
SO (o%)  (242%)  (07%) | (340%) (247%)  (02%) | (409%) (538%) (+1.0%) | (367%) (592%)  (0.0%)

mation costs, and ensuring counterfactual generation quality. Future work will aim to address these
limitations, focusing on improving the causal fidelity and overall performance of LLM reasoning.
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list"',
o Keep the checklist subsection headings, questions/answers and guidelines below.

e Do not modify the questions and only use the provided macros for your answers.

15



1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims presented in the abstract and introduction accurately reflect
the scope and contributions of our work. Specifically, we claim that our proposed PNS-based
CoT optimization improves reasoning efficiency and accuracy, which is supported by both
theoretical formulation and empirical results discussed in §[Z_f] and §E}

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

o The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

e The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

e It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We explicitly discuss limitations in § [] noting reduced effectiveness on high-
complexity tasks like AIME. This is attributed to the use of a fixed pruning threshold «,
which may be suboptimal across diverse reasoning domains.

Guidelines:

e The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

e The authors are encouraged to create a separate "Limitations" section in their paper.

e The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

o The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

e If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

e While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide a formal definition of the Probability of Necessity and Sufficiency
(PNS) and clearly state the assumptions required for its estimation within the CoT framework.
Key theoretical formulations and pruning criteria are detailed in § @] with all assumptions
explicitly stated. Formal justifications and derivations are included in the appendix to
support our main results.

Guidelines:

e The answer NA means that the paper does not include theoretical results.

o All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

o All assumptions should be clearly stated or referenced in the statement of any theorems.

e The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

o Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experimental settings—including datasets, model variants, training config-
urations, evaluation metrics, and optimization parameters—are described in detail in §[5]and
Appendix D} A public GitHub repository including code and processed data will be released
upon acceptance to further support reproducibility.

Guidelines:

e The answer NA means that the paper does not include experiments.

o If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

o [f the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

e Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

o While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use publicly available datasets and will release code and processed data
upon acceptance.

Guidelines:

e The answer NA means that paper does not include experiments requiring code.

e Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

e While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

o The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

e The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

e The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

e At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

e Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide full experimental details in § [5]and the appendix, including dataset
splits, prompt formatting, model variants, inference settings (e.g., max tokens, temperature).

Guidelines:

e The answer NA means that the paper does not include experiments.

e The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

o The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We clearly specify our datasets and rollout methodology; all parameters are
publicly disclosed, and results are obtained through repeated testing across multiple datasets.

Guidelines:
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8.

10.

e The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

e The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

e The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

e The assumptions made should be given (e.g., Normally distributed errors).

o It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e [t is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

e For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide detailed descriptions of the compute resources in Appendix 2?.
Guidelines:

e The answer NA means that the paper does not include experiments.

e The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

e The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

e The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Our research adheres fully to the NeurIPS Code of Ethics. All datasets used are
publicly available, no private or sensitive data is involved, and we have considered potential
social impacts in our discussion.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

o The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:|NA |
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Justification: This work is fundamental research on reasoning optimization and does not
directly involve applications with immediate societal impact.

Guidelines:

e The answer NA means that there is no societal impact of the work performed.

o [f the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

e Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

o The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

o The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

o If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA|

Justification: Our work does not involve the release of new pretrained models or scraped
datasets that pose a high risk of misuse. We evaluate existing public models and operate on
curated, publicly available datasets with no sensitive content.

Guidelines:

e The answer NA means that the paper poses no such risks.

e Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

e Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

e We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used in this work, including datasets, code, and models, are publicly
available. We have properly credited the original creators and ensured that all licenses and
terms of use are respected.

Guidelines:
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15.

e The answer NA means that the paper does not use existing assets.
o The authors should cite the original paper that produced the code package or dataset.

e The authors should state which version of the asset is used and, if possible, include a
URL.

e The name of the license (e.g., CC-BY 4.0) should be included for each asset.

e For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

e If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

e For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

o If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release accompanying code. All assets are documented with details on
format, usage, and limitations, and are provided via an anonymized GitHub repository
during review, with public release planned upon publication.

Guidelines:

o The answer NA means that the paper does not release new assets.

e Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

o The paper should discuss whether and how consent was obtained from people whose
asset is used.

e At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA|
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
e The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

o Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

e According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
o The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

e Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

e We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

e For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs are used in this paper solely for text polishing.
Guidelines:

e The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

e Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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RECEQOERTORE

A Theoretical Analysis

A.1 Exogeneity and Monotonicity Conditions

For the calculation of the Probability of Necessary and Sufficient (PNS) conditions, it is essential that
the exogeneity and monotonicity conditions are satisfied.

Definition 5 (CoT Exogeneity) When generating each reasoning step sy, the generation of the
current step depends only on the previous reasoning steps sy and the question q, and not on any
external variables. Formally:

P(s¢|do(s<t),q) = P(st|s<t,q) (A1)

Where s is the current reasoning step, s« denotes all previous reasoning steps, and q is the input
question. According to the definition of exogeneity, the intervention probability can be evaluated by
the conditional probability.

Assumption 1 (Monotonicity for CoT) Inspired by the monotonicity assumption in causal in-
ference [40], we define monotonicity for Chain-of-Thought (CoT) reasoning as follows. Let
S = (s1,...,8n) be a reasoning chain leading to the correct answer A =y, and let S =
(S1,...,5¢-1,5¢,8t 1, -.,8y) denote a modified reasoning chain where only step t is altered
1o an incorrect step Sy, and subsequent steps s’ ¢ are rolled out. CoT reasoning satisfies monotonicity

if and only if, for every reasoning step t and for every possible alteration S, the following holds:
P(As#y,Ag=y)=0.

This condition states that altering a reasoning step to an incorrect version cannot result in correcting a
previously incorrect final answer. Equivalently, whenever the modified chain S yields a correct answer,
the original unaltered chain S must also yield a correct answer, ensuring monotonic progression
toward correctness.

A.2 Identifiability of PNS in CoT Under Monotonicity Assumption

Lemma 2 (Identifiability of PNS under downstream-adaptive reasoning) Assume that the
Chain-of-Thought (CoT) reasoning process satisfies both the Exogeneity (Definition [A1) and
Monotonicity (Assumption [I) assumptions. Let the correct reasoning chain be denoted by
S = (S<t,St,S>¢), and let an alternative corrupted step S, induce a modified future reasoning
sequence s' <., resulting in the altered chain S’ = (S<¢,8t,8" ). Then the Probability of Necessary
and Sufficient Cause (PNS) for the reasoning chain is identifiable and satisfies:

PNS(S,8;) = P(As =y) — P(As: =y) = P(A =y | do(S)) - P(A =y [ do(S')).

Note: do(S’) is equivalent to do(S<¢,St, 8" >¢).
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We begin with the definition of PNS as a counterfactual joint:
PNS(Sagt) =P (AS =Y, AS' 7é Y) .
Using the fact that Ag = y implies either Ags =y or Ag/ # y, we can rewrite:
P(As=y)=P(As =y,Ag =y)+ P(As =y,As #Y).
Thus:
PNS(S,s;) = P(As =y) — P(As =y, As =Y).

Under the Monotonicity assumption (Assumption[I), Ags = y = Ag = y. This implies that the
event (Ag =y and Ag/ = y) is equivalent to the event (Ag/ = y). Therefore:

P(As =y,Ag =y) = P(Ag =Y).
Hence:
PNS(S,5;) = P(As =y) — P(As = y).
Finally, under the Exogeneity assumption (Definition [A.T), these counterfactual probabilities can be
identified with interventional probabilities:

PNS(S,s:) = P(A =y | do(S)) — P(A =y | do(S")).

A.3 Identifiability of PNS without Monotonicity Assumption

Lemma 3 (Identifiability of PNS under P(A =y | do(S)) = 1 without Monotonicity)
Assume:

1. Under the perfect intervention of the correct CoT chain S = (S<¢, St, Ss¢), the model
always produces the correct answer:

P(A=y|do(S)) = 1.

2. Replacing step t with an incorrect step S, and allowing arbitrary rollout continuation s,
yields the intervened chain S" = (s<, 5, s%,).

3. We do not assume Monotonicity (Assumption [I)), i.e., we make no assumption that
P(Ado(s) 7Y, Adosy = y) = 0. (Note: original text had Ay,(s;) which seems
less precise here than A sy for the full chain).

Then the counterfactual joint defining PNS,
PNS(S,5;) = P(Ados) =¥, Ados) Z )
is identifiable and simplifies to:
PNS(S,s¢) =1 — P(A =y| do(S’)).

Start from the definition:
PNS(S,5;) = P(Aaos) =¥, Ados) ZY)-
Apply the law of total probability to the event A 4o(5) = ¥:
P(Agos) =y) = P(Ados) = ¥s Ados’) #Y) + P(Ados) = ¥: Ado(s) =)-
Since P(A =y | do(S)) = 1 by assumption 1, the left side equals 1, so
1 =PNS(S,5;) + P(Ado(s’) =¥, Ado(s) =Y)-

Under Exogeneity (Definition implying no hidden confounding between the choice of interven-
tion and its outcome), observing the original chain S does not influence the outcome of intervening
with S’. Thus:

P(Ados) =¥, Ados) =¥) = P(Adosy =y) = P(A =y | do(S)).
Substitute back to obtain
1 =PNS(S,s;) + P(A =y | do(S")),

and therefore
PNS(S,s¢) =1 — P(A =y| do(S’)).
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A.4 Equivalence of Perfect Intervention and Full Sufficiency

Theorem 1 (Equivalence of Perfect Intervention and Full Sufficiency) Under the standard Exo-
geneity assumption (Definition , and assuming there exists at least one alternative chain S (which
could be the original chain before applying the correct steps S, or any other relevant baseline) such
that it has a nonzero probability of leading to failure, i.e., P(A vy, S, q) > 0, the following two
statements are equivalent:

1. P(A =y |do(S),q) = 1 (Perfect Intervention with S guarantees y).
2. PS(S,q) =1, where PS(S, q) := P(Ado(s) =y|A#y,S, q) (Full Sufficiency).

(=) Assume P(A =y | do(S),q) = 1. This means the intervention do(S) guarantees A =y
in all worlds compatible with q. Consider the definition of PS(S, q):

PS(S,q) = P(Ages) =y | A #Y, S, ).
Given the condition A # y, S, q, we evaluate the probability of Agos) = y. Since
P(A =y | do(S),q) = 1, it follows that Agos) = y holds universally under do(S),
including in those specific circumstances where A # y would have occurred with S.
Therefore, P(Aqos) =y | A#y, S, q) =1,50PS(S,q) = 1.
(<) Assume PS(S, q) = 1. By definition, this means:
P(Agis) =y | A#y, S, q) =1

This implies that for any world compatible with q where A # y would occur with S,
applying do(S) results in A = y. We want to show P(A =y | do(S),q) = 1, which is
P(Ag4os) =y | q) = 1. Consider the outcome Ag,(s) given q. The intervention do(S)
sets the chain of thought to S and determines the outcome A. This outcome A y4(s) is
determined solely by S and q (due to exogeneity of S with respect to other factors once
do(S) is applied). If PS(S, q) = 1, it means do(S) corrects all instances where S would
lead to failure. What about instances where S might lead to success (A = y)? Since S is
the “correct” chain of thought designed to produce y, the intervention do(S) is assumed to
robustly produce y. If it produces y when S would have failed, and it (by its nature as a
correct CoT) produces y when S might have succeeded, then A 4o(s) = y holds across all

situations defined by q and any alternative S. Therefore, P(Aqos) =y | q) = 1.

B Intervention Prompts

System Message for LLM Intervention

You are a helpful assistant. Continue solving the problem using mathematical expressions
only, without repeating previous steps. Provide the final answer once, directly linked to the
preceding reasoning, without additional summaries or explanations. Avoid using summarizing
words such as ’so’ or ’thus,” and refrain from repeating the final result when the calculation is
already clear. Don’t say something like “Let’s continue with the previous reasoning” or other
nonsense, just output the following reasoning directly.

Direct and External Intervention Prompt

Question:

{query}
Current reasoning steps:

{context_steps}

Prompt-Based Intervention Prompt
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Ensure the next output node does not match the meaning of:

{current_step}

Avoid repeating the final result directly when the calculation is already clear.
Question:

{query}

Current reasoning steps:

{context_steps}

C In-Context Learning Prompts

ICL Baselines. The ICL baselines consist of the following variants:

1.

Standard: This baseline uses verbose Chain-of-Thought (CoT) exemplars that include all
intermediate reasoning steps, regardless of redundancy. It reflects the default strategy often
employed in prompting LLMs for step-by-step reasoning.

. Fast-Solve: This baseline encourages the model to produce concise reasoning chains that

contain only the minimal steps necessary to reach the correct answer, avoiding verbose or
redundant elaboration.

. Reduction [19]: This method emphasizes rapid completion by prompting models to directly

output shortcut solutions, often skipping step-by-step logical progression. It reflects a
minimalistic strategy that favors brevity over transparency.

. Chain-of-Draft (CoD) [67]]: This variant uses prompts composed of minimally informa-

tive intermediate phrases—enough to scaffold the reasoning process but without detailed
elaboration—simulating a rough-draft-style reasoning chain.

. Ours-ICL: Our method, which leverages traces optimized using the Probability of Necessity

and Sufficiency (PNS), presents only causally essential reasoning steps. These exemplars are
pruned to retain only those steps that significantly contribute to correct outcomes, ensuring
both efficiency and fidelity in reasoning.

System Message (Common for All Prompts)

You are a helpful assistant who is good at reasoning. Whenever doing multistep reasoning,
please use two newline characters to split multiple steps (\n\n).

Ours-ICL Prompt (Sufficient and Necessary Reasoning)

User Message:
Instructions

When solving the following questions, your reasoning should: - Be Accurate: Ensure your
chain of thought leads to the correct answer without skipping any necessary logical steps.

- Be Efficient: Avoid unnecessary or redundant steps. Each step should be necessary to
progress toward the solution.

- Aim for Sufficient and Necessary Reasoning: Only include steps that are both sufficient
to reach the correct answer and necessary to avoid gaps or confusion. If a step can be removed
without affecting correctness, remove it.

- Notice the Pattern: In the following examples, compare the original, verbose solution with
the optimized solution. Learn to identify and eliminate redundant reasoning steps while
preserving logical soundness.

Example 1: {examplel }

Example 2: {example2}
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Example 3: {example3}

Now Solve This:

Question: {question}

Your Simplified and Optimized Answer:

Fast-Solve Prompt

User Message:

You are a math assistant that solves problems step by step. Please reason in a clear and
structured manner, but keep your explanation as concise as possible. Avoid unnecessary
repetition or redundant steps. The goal is to solve the problem accurately with the fewest
necessary steps.

Now Solve This:

Question: {question}

Your Simplified and Optimized Answer:

CoD Prompt

User Message:

Think step by step, but only keep a minimum draft for each thinking step, with 5 words at
most. Return the answer at the end of the response after a separator

Now Solve This:

Question: {question}

Your Simplified and Optimized Answer:

Reduction Prompt

User Message:

Let’s quickly conclude the answer with shortcut reasoning.
Now Solve This:

Question: {question}

Your Simplified and Optimized Answer:

D Supervised Fine-Tuning (SFT) Hyperparameter Settings

Table [] details the general hyperparameter configuration used for supervised fine-tuning (SFT) in
our experiments. All SFT training was conducted on 8 NVIDIA RTX 3090 GPUs using the ZeRO-3
optimizer for efficient memory distribution. To accelerate training and reduce memory usage, we
employed bf 16 mixed-precision computation.

The training used the flash_attention_2 implementation for efficient attention computation,
combined with a cosine learning rate scheduler that decays to a minimum learning rate. Each GPU
was assigned a batch size of 1 due to the large context length of 16,384 tokens. The model was
trained for 3 epochs, and max_steps was left as -1 to allow epoch-based termination. These settings
balance computational feasibility and performance under long-context, reasoning-intensive tasks.

The same configuration was applied across all target models, including DeepSeek-R1-Qwen-1. 5B,
DeepScaleR-1.5B-Preview, and Phi-4-mini-reasoning, unless otherwise specified.
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Table 4: General SFT Hyperparameters. Hardware: 8§ x NVIDIA RTX 3090 GPUs, ZeRO-3
optimizer, bf16 mixed precision.

Parameter Value
attn_implementation flash_attention_2
bf16 true

learning_rate 5.0e-05
Ir_scheduler_type cosine_with_min_Ir
per_device_train_batch_size 1

max_steps -1

max_length 16384
num_train_epochs 3

E In-Context Learning: Case study

To further illustrate the effectiveness of our optimized CoT examples in in-context learning (ICL), we
provide a case study using the Qwen-2.5-72B-Instruct model on a representative problem from
the MATH-500 dataset.

Figure [d compares two responses: one directly generated by the Qwen-2.5-72B-Instruct model
without any in-context examples (blue background), and the other generated under ICL using our
optimized CoT example (pink background).

Question:
3241
5247

Direct response @
3741
5247
into the expression for w. /n/n2. Simplify the expression for w. /n/n3. Find the magnitude |w]| .
/n/nStep 1: Substitute z =1 +i. /n/nFirst, substitute z = 1+1 into the expression for w: w

4+3i
T12 + 5i

denominator separately: 3(1+1)+13 +3i+1=4+3i/n/n... (Skip 12 steps) ... Final Answer: %

Letz = 1+iandw =

Find |w|.

To find |w| wherew =

and z =1 +1, we will follow these steps: /n/n1. Substitute z=1+1

. /n/nStep 2: Simplify the expression for w. /n/nSimplify the numerator and the

b . .
7.@;‘ Response after in-context learning @

z=1+i/n/n3z+1=3(1+1)+1=3+3i+1=4+3i/n/n52+7=5(1+1)+7=5+51+7=12+
4+ 3i lal

5i/n/nw e =;/n/nTo find |w|, we use the property I%I =E:/n/n|4 +3i| = V42 +32= V16 + 9
= V25=5/n/n|12 + 5i| =V122 + 52= =v169=13/n/n|w| = |I{42++3;| =%/n/n Final Answer: %

Figure 4: Case Study: Comparison of direct response from Qwen-2.5-72B-Instruct (blue back-
ground) and response under ICL with optimized CoT examples (pink background) on a MATH-500
problem. The optimized CoT enables more sufficient and necessary reasoning.

The direct response exhibits a lengthy reasoning process with several redundant or unnecessary
steps and expressions. In contrast, the ICL-guided response is more concise and logically structured,
reflecting a clearer and more efficient problem-solving strategy.

This comparison demonstrates how our optimized CoT exemplars help guide the model toward more
focused and causally sufficient and necessary reasoning.

F Full Version of Related Work

F.1 Reasoning Sufficiency Enhancement via CoT Optimization.

Recent efforts have focused on improving the reasoning capabilities of large language models (LLMs)
through the development of Chain-of-Thought (CoT) reasoning and its variants. CoT [61]] introduced
intermediate reasoning steps to enable LLMs to perform structured, multi-step reasoning. This
foundational idea has since evolved into more sophisticated frameworks such as Tree-of-Thought
(ToT)[76] and Graph-of-Thought (GoT)[6l], which organize reasoning structures into tree and graph
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forms, respectively. Yue et al. [[78] introduce DOTS, a method enabling dynamic reasoning trajectory
planning via optimal reasoning strategy search, resulting in more adaptive and efficient problem-
solving. Jin et al. [28] introduce a CoT framework using graph structures for iterative reasoning
in LLMs and builds the GRBench dataset for graph-based reasoning evaluation. Yang et al. [69]
explores how CoT prompts affect LLM mechanisms, enhancing knowledge retrieval by activating
more neurons.

Several recent innovations further expand the reasoning capacity of LLMs. LLaVA-CoT [65]
combines CoT with a multimodal visual-language model to enhance reasoning in vision-language
tasks. Meta-CoT [64] formulates reasoning as a latent variable process, improving flexibility and
generalization. Markov Chain of Thought [73]] introduces Markovian transitions across reasoning
steps by clearing the context KV cache to extend reasoning depth. Additionally, Puerto et al.
[47] propose a self-correction mechanism using multiple reasoning paths, significantly improving
performance on knowledge-intensive benchmarks. Hiiyiik et al. [26] propose fine-tuning strategies
using counterfactual feedback to enhance LLMs’ causal reasoning capabilities. Ma et al. [3§]]
demonstrate that explicit thinking processes are not always necessary and propose a simplified
“NoThinking” method achieving competitive reasoning performance with reduced computational
costs. Diao et al. [18]] present Active-Prompt, a method that enhances LLM reasoning by selectively
annotating task-specific prompts for automatic adaptation. ECHO [31]] unifies diverse reasoning
paths to improve the consistency and accuracy of LLM reasoning.

Additional recent studies have explored novel dimensions in CoT reasoning. Ding et al. [19] propose
"Break the Chain" strategies, integrating heuristic shortcuts to streamline CoT reasoning, significantly
enhancing efficiency. Stolfo et al. [51] identify entropy and token frequency neurons, elucidating
internal mechanisms by which LLMs manage uncertainty and confidence. Ali et al. [2]] mitigate copy
biases in in-context learning through targeted neuron pruning, improving generalization. De Sabbata
et al. [15] use rational metareasoning to selectively invoke intermediate steps, reducing inference cost
while preserving accuracy. Turpin et al. [58] question CoT’s faithfulness by systematically evaluating
model-generated rationales. Jin et al. [30] demonstrate that artificially lengthening reasoning can
superficially boost performance, highlighting potential pitfalls in CoT evaluation. Simhi et al. [49]
reveal that LLMs can exhibit high-certainty hallucinations, producing incorrect answers with strong
confidence, thereby challenging the reliability of CoT-based outputs.

Despite their benefits, these structured reasoning methods often introduce excessive token length,
which becomes problematic in cost-sensitive or latency-constrained scenarios [62]. Moreover,
models frequently fail to assess task complexity, leading to over-reasoning on simple problems—an
issue known as overthinking [[12| [7, [36]]. Our proposed approach addresses these limitations by
simultaneously ensuring reasoning efficiency and maintaining high accuracy.

F.2 Reasoning CoT Redundancy.

Recent studies on CoT redundancy have sought to mitigate redundancy in CoT reasoning. Token-
budget-aware methods, such as Han et al. [22]], dynamically allocate reasoning budgets based on
task complexity. C30T [32] leverages GPT-4 as a compressor to retain only essential reasoning
content. CCoT [9]] and COCONUT [23]] adopt continuous representations to encode reasoning traces
more compactly, while CoT-Valve [39] introduces variable-length CoTs. Training-free approaches,
including Kimi K1.5 [54] and O1-Pruner [36], use prompt ensembles or reinforcement learning to
discard unnecessary reasoning steps.

Recent efforts also investigate finer-grained control over CoT reasoning. Wu et al. [63]] introduces
the Thinking Intervention paradigm, allowing targeted interventions on reasoning tokens. Yang et al.
[74] highlight the impact of excessive CoT length on model performance, proposing adaptive token
scaling strategies. Liu et al. [35]] demonstrate external thoughts from smaller models can effectively
streamline reasoning in larger models, reducing redundancy.

However, most of these methods focus primarily on sequence length reduction or representation
compression, without explicitly addressing causal logical redundancy. In contrast, our approach
identifies and preserves only those reasoning steps that are both causally sufficient and necessary,
grounded in a formal intervention-based framework. This results in CoT traces that are not only more
compact but also more causally meaningful.
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F.3 PNS Theory in CoT Reasoning.

Our work is grounded in the causal inference framework proposed by Pearl [46]], which defines the
Probability of Sufficiency (PS) and the Probability of Necessity (PN) to quantify whether a cause
is sufficient or necessary for a given effect. For instance, in image classification, PS measures how
likely adding a feature (e.g., “pointy ears”) leads to a positive label (e.g., “cat”), while PN measures
how likely removing that feature would change the outcome.

While Hiiyiik et al. [26] introduced PN and PS as evaluation metrics to enhance model-level causal
reasoning via counterfactual fine-tuning, our approach advances this direction by applying these
metrics to the internal reasoning traces of Chain-of-Thought (CoT) prompting. Specifically, we
formalize and operationalize the Probability of Necessary and Sufficient Causes (PNS) for individual
reasoning steps, enabling a structured intervention-based analysis that identifies steps that are both
causally essential and logically minimal.

Unlike prior work that emphasizes model-wide causal consistency, our framework targets step-level
causal minimality within CoT, yielding concise, interpretable, and causally grounded reasoning
sequences. This design allows us to optimize CoTs not merely for brevity or accuracy, but for causal
soundness. Crucially, our method is model-agnostic and applies to any LLM capable of generating
CoT outputs, representing a significant advancement over heuristic or model-specific compression
strategies.

Our approach is essentially a causal analysis method for multi-step systems. In fact, it is not only
applicable to Chain-of-Thought (CoT) reasoning, but can also inspire causal thinking in computational
experiments [68 [77] and other complex systems.

G Additional PNS Comparison Results

This appendix provides comprehensive visualizations of average PNS values before and after applying
our optimization algorithm across multiple models and datasets. Each figure presents results over 30
sampled problems, highlighting the increased causal necessity of the retained reasoning steps after
optimization. See Figures [5]to 8] for detailed comparisons.
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Figure 5: Average PNS comparison for Qwen-2.5-72B-Instruct on the AIME dataset.

PNS Comparison - 30 CommonsenseQA Qs (Qwen-2.5-72B-Instruct)
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Figure 6: Average PNS comparison for Qwen-2.5-72B-Instruct on the CommonsenseQA dataset.
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PNS Comparison - 30 AIME 2025 Qs (DeepSeek-R1)
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Figure 7: Average PNS comparison for DeepSeek-R1 on the AIME dataset.
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Figure 8: Average PNS comparison for DeepSeek-R1 on the CommonsenseQA dataset.

H Computational Complexity Analysis

Let us denote the following quantities:

e n: the number of reasoning steps in the chain-of-thought (CoT);
k: the number of rollouts per step;

lsep: the average number of tokens generated per step;

lou: the number of tokens in each verification output (assumed constant);

tioken: the time required to generate a single token (assumed constant).

We analyze the computational cost of our PNS-based intervention method by separately evaluating
the rollout and evaluation stages.

H.1 Rollout Time Complexity

At each reasoning step i € {1,...,n}, the model performs k rollouts, where each rollout generates
the remaining (n — 4) steps. Each step contains on average ., tokens. Thus, the total rollout time is
given by:

Trollout = Z k- (TL - 7/) : lstep “ tioken = O(k : lstep * Lroken n2> (6)

H.2 Evaluation Time Complexity

Each rollout must also be evaluated to determine its validity. This involves generating both the

full continuation of the chain and a final answer output of length /,,,. The total evaluation time is
therefore:

Teval = Z k- [(n - 'L) . lstep + lout] * tioken = O(k * Tioken * (lstcp . TL2 + lou - n)) @)

Since typically loy < Isep - 2, the second term is asymptotically negligible, yielding:
Teva = O(k ' lstcp * Tioken * n2) ®)
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H.3 Total Complexity

Combining the rollout and evaluation phases, the total computational cost becomes:

Ttotal = Trollout + Teval = O(k . lstep . ttoken . n2) (9)

Assuming that both I, and #ien are constants (or near-constants) in practice, the overall time
complexity simplifies to:
Tons = O(k - n?) (10)

This quadratic dependence on n highlights the computational cost of deeper reasoning chains, while
the linear dependence on k reflects the tradeoff between rollout breadth and computation time.

I Qualitative Analysis of Whether the Final Reasoning Is Sufficient and
Necessary

We conducted a human evaluation of 50 chain-of-thought (CoT) samples generated by a model
fine-tuned on data curated with our PNS-based algorithm. Five mathematics experts independently
judged each sample under three labels:

e S&N: reasoning is both sufficient and necessary to support the final answer;

e SbU: reasoning is sufficient but contains unnecessary (redundant) steps;

o NbI: reasoning is insufficient (missing critical steps).

Table 5: Human evaluation of reasoning quality. “Fully Sufficient” = S&N + SbU. “Redundant” flags
any chain containing redundant steps and may co-occur with Nbl.

Dataset # Samples Fully Sufficient Redundant S&N SbU NbI
GSMB8K 20 19 3 17 2 1
Commonsense QA 15 15 1 14 1 0
MATHS500 15 13 4 11 2 2
Total 50 47 (94.0%) 8(16.0%) 42 (84.0%) 5(10.0%) 3 (6.0%)

Most outputs are logically sound under the sufficiency/necessity criterion: 84% of CoTs are both
sufficient and necessary, and only 6% (3/50) are insufficient. MATHS500 exhibits a higher incidence
of redundancy and incompleteness, consistent with the greater difficulty of mathematical reasoning
in this benchmark.

J Validator Accuracy and Robustness

To assess the reliability of the PNS validator V', we evaluate its performance across different LLMs
and rollout sizes k. Specifically, we report the mean absolute error (MAE) between the estimated
PNS values and ground-truth labels, where ground-truth PNS is defined as 1 for reasoning chains
judged by experts to be both necessary and sufficient.

Metric. The evaluation computes the mean absolute difference |[PNS — PNS| across annotated
samples. Lower values indicate better alignment with ground truth.

Table 6: Validator MAE Across LLMs and

We compare validator accuracy across rollout sizes k Rollout Sizes. Lower is better

and model strengths. Increasing £ and using stronger

LLMs both reduce MAE, yielding more stable and ac-
curate PNS estimates. GPT-40 achieves the lowest error

Validator k=1 k=3 k=5 k=10

across all settings, underscoring that validator quality Qwen-72B  0.315 0.187 0.142 0.116
and model strength are key to reliable counterfactual Qwen-7B 0411 0395 0315 0.293

analysis. GPT-40 0.137 0.114 0.090 0.050
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K Supplementary Experimental Results

To further assess the robustness and generality of our proposed method, we compare it with three
representative reasoning baselines: SPIRIT, ReAct, and Tree-of-Thoughts (ToT). These methods
represent distinct paradigms for enhancing large language model reasoning:

o SPIRIT [13]] uses perplexity to identify key reasoning steps and prune redundant tokens.

e ReAct [75] integrates reasoning and acting by alternating between thought and action steps,
improving interpretability and interactive decision-making.

e Tree-of-Thoughts (ToT) [76] introduces a tree-structured reasoning process, maintaining
multiple reasoning trajectories to perform deliberate exploration and self-evaluation. We
implement this process using a simple prompt-based approach.

Table[7] summarizes the results across three benchmarks—CommonsenseQA, GSM-8K, and MATH-
500. Each metric is reported as Tokens|/ Steps|/ Acc.t, where fewer tokens and steps indicate
greater reasoning efficiency.

Table 7: Comparison of SPIRIT, ReAct, ToT, and Ours-ICL across models and datasets. Each metric
is reported as Tokens|/ Steps] / Acc.?.

CommonsenseQA GSM-8k MATH-500
Tokens| Steps| Acc.t Tokens| Steps| Acc.t Tokens| Steps| Acc.T

SPIRIT 142.3 44 83.9 73.1 2.0 95.5 250.5 7.7 89.6
ReAct 181.2 5.4 83.8 179.5 6.9 92.3 412.3 190 912
ToT 271.8 8.2 80.1 198.9 7.7 91.7 349.1 139 728
Ours-ICL  44.7 2.7 83.6 52.2 43 99.9 136.7 6.4 96.2

Model Method

DeepSeek-V3

SPIRIT 214.2 7.6 76.3 98.3 4.0 94.2 239.3 10.3 81.4
ReAct 175.0 4.1 83.7 171.7 4.1 92.5 241.6 79 77.6
ToT 269.2 79 80.0 273.5 104 751 345.1 14.1 70.6
Ours-ICL  81.6 34 83.0 65.3 5.3 99.5 196.9 8.9 81.2

Qwen-2.5-72B-Instruct

SPIRIT 188.6 6.5 59.3 113.7 5.1 86.7 238.8 9.4 729
ReAct 192.9 52 79.4 181.6 72 84.5 263.0 105 708
ToT 335.4 10.1 78.0 212.3 8.9 70.5 302.6 123 50.0
Ours-ICL 991 3.8 77.6 83.4 4.8 9.1 174.7 7.7 72.6

Qwen-2.5-7B-Instruct

SPIRIT 170.1 7.4 63.2 179.7 7.8 80.9  1218.1 673 428
ReAct 382.1 179  79.0 521.5 206 825 11769 53.6  46.0
ToT 559.9 194 753 711.7 27.1 69.0 996.7 458 302
Ours-ICL  120.3 7.1 72.1 128.3 8.1 93.1 365.9 242 548

LLaMA-3.1-8B-Instruct

Across all models and datasets, our proposed Ours-ICL consistently achieves a superior balance
between reasoning accuracy and efficiency. While ReAct and ToT obtain competitive accuracy
on commonsense reasoning tasks, they dramatically increase reasoning cost in both tokens and
steps. SPIRIT improves efficiency via perplexity-based step selection but can underperform on
complex mathematical reasoning. In contrast, Qurs-ICL yields the best overall trade-off, reducing
reasoning cost by up to 60—-80% while maintaining or improving accuracy, especially on GSM-8K
and MATH-500.
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