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Abstract

Logistic regression training over encrypted data has been an attractive idea to1

security concerns for years. In this paper, we propose a faster gradient variant2

called quadratic gradient to implement logistic regression training in a ho-3

momorphic encryption domain, the core of which can be seen as an extension4

of the simplified fixed Hessian [5]. We enhance Nesterov’s accelerated gradient5

(NAG) and Adaptive Gradient Algorithm (Adagrad) respectively with this gradient6

variant and evaluate the enhanced algorithms on several datasets. Experimental7

results show that the enhanced methods have a state-of-the-art performance in8

convergence speed compared to the naive first-order gradient methods. We then9

adopt the enhanced NAG method to implement homomorphic logistic regression10

training and obtain a comparable result by only 3 iterations.11

1 Introduction12

Logistic regression (LR) is a widely used classification technology especially in medical risk assess-13

ment due to its simplicity but powerful performance. Given a person’s healthcare data related to a14

certain disease, we can train an LR model capable of telling whether or not this person is likely to15

develop this disease. However, such personal health information is highly private to individuals. The16

privacy concern, therefore, becomes a major obstacle for individuals to share their biomedical data.17

The most secure solution is to encrypt the data into ciphertexts first by Homomorphic Encryption18

(HE) and then securely outsource the ciphertexts to the cloud, without allowing the cloud to access19

the data directly. iDASH is an annual competition that aims to call for implementing interesting cryp-20

tographic schemes in a biological context. Since 2014, iDASH has included the theme of genomics21

and biomedical privacy. The third track of the 2017 iDASH competition and the second track of22

the 2018 iDASH competition were both to develop homomorphic-encryption-based solutions for23

building an LR model over encrypted data.24

Several studies on logistic regression models are based on homomorphic encryption. Aono et al. [2]25

only used an additive HE scheme and left some of the challenging HE computations to a trusted26

client. Kim et al. [14] discussed the problem of performing LR training in an encrypted environment.27

They used the full batch gradient descent in the training process and the least square method to get the28

approximation of the sigmoid function. In the iDASH 2017 competition, Bonte and Vercauteren [5],29

Kim et al. [12], Chen et al. [6], and Crawford et al. [8] all investigated the same problem that Kim et30

al. [14] studied. In the iDASH competition of 2018, Kim et al. [13] and Blatt et al. [3] further worked31

on it for an efficient packing and semi-parallel algorithm. The papers most relevant to this work32

are [5] and [12]. Bonte and Vercauteren [5] developed a practical algorithm called the simplified33

fixed Hessian (SFH) method. Our study complements their work and adopts the ciphertext packing34

technique proposed by Kim et al. [12] for efficient homomorphic computation.35
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Our specific contributions in this paper are as follows:36

1. We propose a new gradient variant, quadratic gradient, which can unite the first-order37

gradient method and the second-order Newton’s method as one.38

2. We develop two enhanced gradient methods by equipping the original methods with39

quadratic gradient. The resulting methods show a better performance in the con-40

vergence speed.41

3. We adopt the enhanced Nesterov’s accelerated gradient to implement privacy-preserving42

logistical regression training, to our best knowledge, which seems to be the best candidate43

without compromising much on computation and storage.44

2 Preliminaries45

We adopt the square brackets “[ ]” to denote the index of a vector or matrix element in what follows.46

For example, for a vector v ∈ R(n) and a matrix M ∈ Rm×n, v[i] or v[i] means the i-th element of47

vector v and M [i][j] or M[i][j] the j-th element in the i-th row of M .48

2.1 Fully Homomorphic Encryption49

Fully Homomorphic Encryption (FHE) is a type of cryptographic scheme that can be used to compute50

an arbitrary number of additions and multiplications directly on the encrypted data. It was not until51

2009 that Gentry constructed the first FHE scheme via a bootstrapping operation [9]. FHE schemes52

themselves are computationally time-consuming; the choice of dataset encoding matters likewise53

to the efficiency. In addition to these two limits, how to manage the magnitude of plaintext [11]54

also contributes to the slowdown. Cheon et al. [7] proposed a method to construct an HE scheme55

with a rescaling procedure which could eliminate this technical bottleneck effectively. We adopt56

their open-source implementation HEAAN while implementing our homomorphic LR algorithms. It57

is inevitable to pack a vector of multiple plaintexts into a single ciphertext for yielding a better58

amortized time of homomorphic computation. HEAAN supports a parallel technique (aka SIMD) to59

pack multiple numbers in a single polynomial by virtue of the Chinese Remainder Theorem and60

provides rotation operation on plaintext slots. The underlying HE scheme in HEAAN is well described61

in [12, 14, 10].62

2.2 Database Encoding Method63

Kim et al. [12] devised an efficient and promising database-encoding method by using SIMD technique,64

which could make full use of the computation and storage resources. Suppose that a database has a65

training dataset consisting of n samples with (1 + d) covariates, they packed the training dataset Z66

into a single ciphertext in a row-by-row manner:67

Training Dataset: Matrix Z

z[1][0] z[1][1] . . . z[1][d]

z[2][0] z[2][1] . . . z[2][d]

...
...

. . .
...

z[n][0] z[n][1] . . . z[n][d]

Database Encoding Method [12]7−−−−−−−−−−−−−−−−−→ Enc


z[1][0] z[1][1] . . . z[1][d]

z[2][0] z[2][1] . . . z[2][d]

...
...

. . .
...

z[n][0] z[n][1] . . . z[n][d]

68

69 yEncoding
x70

71 [
z[1][0] . . . z[1][d] z[2][0] . . . z[2][d] . . . z[n][0] . . . z[n][d]

] x
72 yEncrypt

x73

Enc
[
z[1][0] . . . z[1][d] z[2][0] . . . z[2][d] . . . z[n][0] . . . z[n][d]

]
74

Using this encoding scheme, we can manipulate the data matrixZ by performing HE operations on the75

ciphertext Enc[Z], with the help of only three HE operations - rotation, addition and multiplication.76

For example, if we want the first column of Enc[Z] alone and filter out the other columns, we can77
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design a constant matrix F consisting of ones in the first column and zeros in the rest columns and78

then multiply Enc[Z] by Enc[F ], obtaining the resulting ciphertext Enc[Zp]:79

Enc[F ]⊗ Enc[Z] = Enc[Zp] (where “⊗” means the component-wise HE multiplication)

= Enc


1 0 . . . 0
1 0 . . . 0
...

...
. . .

...
1 0 . . . 0

⊗ Enc

z[1][0] z[1][1] . . . z[1][d]

z[2][0] z[2][1] . . . z[2][d]

...
...

. . .
...

z[n][0] z[n][1] . . . z[n][d]

 = Enc


z[1][0] 0 . . . 0
z[2][0] 0 . . . 0

...
...

. . .
...

z[n][0] 0 . . . 0

 .
Han et al. [10] introduced several operations to manipulate the ciphertexts, such as a procedure named80

“SumColVec” to compute the summation of the columns of a matrix. By dint of these basic operations,81

more complex calculations such as computing the gradients in logistic regression models are feasible.82

2.3 Logistic Regression83

Logistic regression is widely used in binary classification tasks to infer whether a binary-valued84

variable belongs to a certain class or not. LR can be generalized from linear regression [15] by85

mapping the whole real line (βTx) to (0, 1) via the sigmoid function σ(z) = 1/(1+exp(−z)), where86

the vector β ∈ R(1+d) is the main parameter of LR and the vector x = (1, x1, . . . , xd) ∈ R(1+d) the87

input covariate. Thus logistic regression can be formulated with the class label y ∈ {±1} as follows:88

Pr(y = +1|x,β) = σ(βTx) =
1

1 + e−β
Tx
,

Pr(y = −1|x,β) = 1− σ(βTx) =
1

1 + e+βTx
.

LR sets a threshold (usually 0.5) and compares its output with it to decide the resulting class label.89

The logistic regression problem can be transformed into an optimization problem that seeks a param-90

eter β to maximize L(β) =
∏n
i=1 Pr(yi|xi,β) or its log-likelihood function l(β) for convenience in91

the calculation:92

l(β) = lnL(β) = −
n∑
i=1

ln(1 + e−yiβ
Txi),

where n is the number of examples in the training dataset. LR does not have a closed form of93

maximizing l(β) and two main methods are adopted to estimate the parameters of an LR model:94

(a) gradient descent method via the gradient; and (b) Newton’s method by the Hessian matrix. The95

gradient and Hessian of the log-likelihood function l(β) are given by, respectively:96

∇βl(β) =
∑
i

(1− σ(yiβ
Txi))yixi,

∇2
βl(β) =

∑
i

(yixi)(σ(yiβ
Txi)− 1)σ(yiβ

Txi)(yixi)

= XTSX

where S is a diagonal matrix with entries Sii = (σ(yiβ
Txi)− 1)σ(yiβ

Txi) and X the dataset.97

The log-likelihood function l(β) of LR has at most a unique global maximum [1], where its gradient98

is zero. Newton’s method is a second-order technique to numerically find the roots of a real-valued99

differentiable function, and thus can be used to solve the β in∇βl(β) = 0 for LR.100

3 Technical Details101

It is quite time-consuming to compute the Hessian matrix and its inverse in Newton’s method for
each iteration. One way to limit this downside is to replace the varying Hessian with a fixed matrix
H̄ . This novel technique is called the fixed Hessian Newton’s method. Böhning and Lindsay [4] have
shown that the convergence of Newton’s method is guaranteed as long as H̄ ≤ ∇2

βl(β), where H̄ is
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a symmetric negative-definite matrix independent of β and “≤” denotes the Loewner ordering in the
sense that the difference ∇2

βl(β)− H̄ is non-negative definite. With such a fixed Hessian matrix H̄ ,
the iteration for Newton’s method can be simplified to:

βt+1 = βt − H̄−1∇βl(β).

Böhning and Lindsay also suggest the fixed matrix H̄ = − 1
4X

TX is a good lower bound for the102

Hessian of the log-likelihood function l(β) in LR.103

3.1 the Simplified Fixed Hessian method104

Bonte and Vercauteren [5] simplify this lower bound H̄ further due to the need for inverting the
fixed Hessian in the encrypted domain. They replace the matrix H̄ with a diagonal matrix B whose
diagonal elements are simply the sums of each row in H̄ . They also suggest a specific order of
calculation to get B more efficiently. Their new approximation B of the fixed Hessian is:

B =


∑d
i=0 h̄0i 0 . . . 0

0
∑d
i=0 h̄1i . . . 0

...
...

. . .
...

0 0 . . .
∑d
i=0 h̄di

 ,
where h̄ki is the element of H̄ . This diagonal matrix B is in a very simple form and can be obtained105

from H̄ without much difficulty. The inverse of B can be approximated in the encrypted form by106

means of computing the inverse of every diagonal element of B via the iterative of Newton’s method107

with an appropriate start value. Their simplified fixed Hessian method can be formulated as follows:108

βt+1 = βt −B−1 · ∇βl(β),

= βt −


b00 0 . . . 0
0 b11 . . . 0
...

...
. . .

...
0 0 . . . bdd

 ·

∇0

∇1

...
∇d

 = βt −


b00 · ∇0

b11 · ∇1

...
bdd · ∇d

 ,
where bii is the reciprocal of

∑d
i=0 h̄0i and ∇i is the element of∇βl(β).109

Consider a special situation: if b00, . . . , bdd are all the same value−η with η > 0, the iterative formula110

of the SFH method can be given as:111

βt+1 = βt − (−η) ·


∇0

∇1

...
∇d

 = βt + η · ∇βl(β),

which is the same as the formula of the naive gradient ascent method. Such coincident is just what112

the idea behind this work comes from: there is some relation between the Hessian matrix and the113

learning rate of the gradient (descent) method. We consider bii · ∇i as a new enhanced gradient114

variant’s element and assign a new learning rate to it. As long as we ensure that this new learning115

rate decreases from a positive floating-point number greater than 1 (such as 2) to 1 in a bounded116

number of iteration steps, the fixed Hessian Newton’s method guarantees the algorithm will converge117

eventually.118

The SFH method proposed by Bonte and Vercauteren [5] has two limitations: (a) in the construction119

of the simplified fixed Hessian matrix, all entries in the symmetric matrix H̄ need to be non-positive.120

For machine learning applications the datasets will be in advance normalized into the range [0,1],121

meeting the convergence condition of the SFH method. However, for other cases such as numerical122

optimization, it doesn’t always hold; and (b) the simplified fixed Hessian matrix B that Bonte and123

Vercauteren [5] constructed can still be singular, especially when the dataset is a high-dimensional124

sparse matrix, such as the datasets from the MNIST database. We complement their work by removing125

these limitations so as to generalize this simplified fixed Hessian to be invertible in any case and126

propose a faster gradient variant, which we term quadratic gradient.127
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3.2 Quadratic Gradient128

Suppose that a differentiable scalar-valued function F (x) has its gradient g and Hessian matrix H ,129

with any matrix H̄ ≤ H in the Loewner ordering as follows:130

g =


g0

g1

...
gd

 , H =


∇2

00 ∇2
01 . . . ∇2

0d
∇2

10 ∇2
11 . . . ∇2

1d
...

...
. . .

...
∇2
d0 ∇2

d1 . . . ∇2
dd

 , H̄ =


h̄00 h̄01 . . . h̄0d

h̄10 h̄11 . . . h̄1d

...
...

. . .
...

h̄d0 h̄d1 . . . h̄dd

 ,
where ∇2

ij = ∇2
ji = ∂2F

∂xi∂xj
. We construct a new Hessian matrix B̃ as follows:131

B̃ =


−ε−

∑d
i=0 |h̄0i| 0 . . . 0

0 −ε−
∑d
i=0 |h̄1i| . . . 0

...
...

. . .
...

0 0 . . . −ε−
∑d
i=0 |h̄di|

 ,
where ε is a small positive constant to avoid division by zero (usually set to 1e− 8).132

As long as B̃ satisfies the convergence condition of the above fixed Hessian method, B̃ ≤ H , we133

can use this approximation B̃ of the Hessian matrix as a lower bound. Since we already assume that134

H̄ ≤ H , it will suffice to show that B̃ ≤ H̄ . We prove B̃ ≤ H̄ in a similar way that [5] did.135

Lemma 1. Let A ∈ Rn×n be a symmetric matrix, and let B be the diagonal matrix whose diagonal136

entries Bkk = −ε−
∑
i |Aki| for k = 1, . . . , n, then B ≤ A.137

Proof. By definition of the Loewner ordering, we have to prove the difference matrix C = A−B138

is non-negative definite, which means that all the eigenvalues of C need to be non-negative. By139

construction of C we have that Cij = Aij + ε +
∑n
k=1 |Aik| for i = j and Cij = Aij for i 6= j.140

By means of Gerschgorin’s circle theorem, we can bound every eigenvalue λ of C in the sense that141

|λ− Cii| ≤
∑
i 6=j |Cij | for some index i ∈ {1, 2, . . . , n}. We conclude that λ ≥ Aii + ε+ |Aii| ≥142

ε > 0 for all eigenvalues λ and thus that B ≤ A.143

Definition 3.1 (Quadratic Gradient). Given such a B̃ above, we define the quadratic gradient144

as G = B̄ · g with a new learning rate η, where B̄ is a diagonal matrix with diagonal entries145

B̄kk = 1/|B̃kk|, and η should be always no less than 1 and decrease to 1 in a limited number146

of iteration steps. Note that G is still a column vector of the same size as the gradient g. To147

maximize or minimize the function F (x), we can use the iterative formulas: xk+1 = xk + η ·G or148

xk+1 = xk − η ·G, just like the naive gradient.149

We point out here that H̄ could be the Hessian matrix H itself and B̃ further optimized to: B̃kk =150

h̄kk + |h̄kk|+ ε−
∑d
i=0 |h̄ki|. In our experiments, we use H̄ = − 1

4X
TX to construct our B̃.151

3.3 Two Enhanced Methods152

Quadratic Gradient can be used to enhance NAG and Adagrad.153

NAG is a different variant of the momentum method to give the momentum term much more154

prescience. The iterative formulas of the gradient ascent method for NAG are as follows:155

Vt+1 = βt + αt · ∇J(βt), (3)
βt+1 = (1− γt) · Vt+1 + γt · Vt, (4)

where Vt+1 is the intermediate variable used for updating the final weight βt+1 and γt ∈ (0, 1) is a156

smoothing parameter of moving average to evaluate the gradient at an approximate future position157

[12]. The enhanced NAG is to replace (3) with Vt+1 = βt + (1 + αt) · G. Our enhanced NAG158

method is described in Algorithm 1 .159

Adagrad is a gradient-based algorithm suitable for dealing with sparse data. The updated operations160

of Adagrad and its quadratic-gradient version, for every parameter β[i] at each iteration step t, are as161
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Algorithm 1 The enhanced Nesterov’s accelerated gradient method

Input: training dataset X ∈ Rn×(1+d); training label Y ∈ Rn×1; and the number κ of iterations;
Output: the parameter vector V ∈ R(1+d)

1: Set H̄ ← − 1
4X

TX . H̄ ∈ R(1+d)×(1+d)

2: Set V ← 0, W ← 0, B̄ ← 0 . V ∈ R(1+d), W ∈ R(1+d), B̄ ∈ R(1+d)×(1+d)

3: for i := 0 to d do
4: B̄[i][i]← ε . ε is a small positive constant such as 1e− 8
5: for j := 0 to d do
6: B̄[i][i]← B̄[i][i] + |H̄[i][j]|
7: end for
8: end for
9: Set α0 ← 0.01, α1 ← 0.5× (1 +

√
1 + 4× α2

0)
10: for count := 1 to κ do
11: Set Z ← 0 . Z ∈ Rn is the inputs for sigmoid function
12: for i := 1 to n do
13: for j := 0 to d do
14: Z[i]← Z[i] + Y [i]× V [j]×X[i][j]
15: end for
16: end for
17: Set σ ← 0 . σ ∈ Rn is to store the outputs of the sigmoid function
18: for i := 1 to n do
19: σ[i]← 1/(1 + exp(−Z[i]))
20: end for
21: Set g ← 0
22: for j := 0 to d do
23: for i := 1 to n do
24: g[j]← g[j] + (1− σ[i])× Y [i]×X[i][j]
25: end for
26: end for
27: Set G← 0
28: for j := 0 to d do
29: G[j]← B̄[j][j]× g[j]
30: end for
31: Set η ← (1− α0)/α1, γ ← 1/(n× count) . n is the size of training data
32: for j := 0 to d do
33: wtemp ← V [j] + (1 + γ)×G[j]
34: V [j]← (1− η)× wtemp + η ×W [j]
35: W [j]← wtemp
36: end for
37: α0 ← α1, α1 ← 0.5× (1 +

√
1 + 4× α2

0)
38: end for
39: return V
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follows, respectively:162

β
(t+1)
[i] = β

(t)
[i] −

η

ε+
√∑t

k=1 g
(t)
[i] · g

(t)
[i]

· g(t)
[i] ,

β
(t+1)
[i] = β

(t)
[i] −

1 + η

ε+
√∑t

k=1G
(t)
[i] ·G

(t)
[i]

·G(t)
[i] .

Performance Evaluation We evaluate the performance of various algorithms in the clear using the163

Python programming language on the same desktop computer with an Intel Core CPU G640 at164

1.60 GHz and 7.3 GB RAM. Since our focus is on how fast the algorithms converge in the training165

phase, the loss function, maximum likelihood estimation (MLE), is selected as the only indicator. We166

evaluate four algorithms, NAG, Adagrad, and their quadratic-gradient versions (denoted as Enhanced167

NAG and Enhanced Adagrad, respectively) on the datasets that Kim et al. [12] adopted: the iDASH168

genomic dataset (iDASH), the Myocardial Infarction dataset from Edinburgh (Edinburgh), Low Birth169

weight Study (lbw), Nhanes III (nhanes3), Prostate Cancer study (pcs), and Umaru Impact Study170

datasets (uis). The genomic dataset is provided by the third task in the iDASH competition of 2017,171

which consists of 1579 records. Each record has 103 binary genotypes and a binary phenotype172

indicating if the patient has cancer. The other five datasets all have a single binary dependent variable.173

Figures 1 and 2 show that except for the enhanced Adagrad method on the iDASH genomic dataset174

our enhanced methods all converge faster than their original ones in other cases.
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Figure 1: Training results in the clear for Adagrad and Enhanced Adagrad
175

In all the Python experiments, the time to calculate the B̄ in quadratic gradient G before running the176

iterations and the time to run each iteration for various algorithms are negligible (few seconds).177

4 Privacy-preserving Logistic Regression Training178

Adagrad method is not a practical solution for homomorphic LR due to its frequent inversion179

operations. It seems plausible that the enhanced NAG is probably the best choice for privacy-180

preserving LR training. We adopt the enhanced NAG method to implement privacy-preserving181

logistic regression training. The difficulty in applying the quadratic gradient is to invert the diagonal182
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Figure 2: Training results in the clear for NAG and Enhanced NAG

matrix B̃ in order to obtain B̄. We leave the computation of matrix B̄ to data owner and let the183

data owner upload the ciphertext encrypting the B̄ to the cloud. Since data owner has to prepare the184

dataset and normalize it, it would also be practicable for the data owner to calculate the B̄ owing to185

no leaking of sensitive data information.186

Privacy-preserving logistic regression training via homomorphic encryption technique faces a difficult187

dilemma that no homomorphic schemes are capable of directly calculating the sigmoid function in the188

LR model. A common solution is to replace the sigmoid function with a polynomial approximation189

by using the widely adopted least square method. We can call a function named “ polyfit(·) ”190

in the Python package Numpy to fit the polynomial in a least-square sense. We adopt the degree191

5 polynomial approximation g(x) by which Kim et al. [12] used the least square approach to192

approximate the sigmoid function over the domain [−8, 8]: g(x) = 0.5 + 0.19131 · x− 0.0045963 ·193

x3 + 0.0000412332 · x5 .194

Given the training dataset X ∈ Rn×(1+d) and training label Y ∈ Rn×1, we adopt the same method195

that Kim et al. [12] used to encrypt the data matrix consisting of the training data combined with196

training-label information into a single ciphertext ctZ . The weight vector β(0) consisting of zeros and197

the diagnoal elements of B̄ are copied n times to form two matrices. The data owner then encrypt the198

two matrices into two ciphertexts ct(0)
β and ctB̄ , respectively. The ciphertexts ctZ , ct(0)

β and ctB̄ are199

as follows:200

X =


1 x11 . . . x1d

1 x21 . . . x2d

...
...

. . .
...

1 xn1 . . . xnd

 ,Y =


y1

y2

...
yn

 , ctZ = Enc


y1 y1x11 . . . y1x1d

y2 y2x21 . . . y2x2d

...
...

. . .
...

yn ynxn1 . . . ynxnd

 ,

ct(0)
β = Enc


β

(0)
0 β

(0)
1 . . . β

(0)
d

β
(0)
0 β

(0)
1 . . . β

(0)
d

...
...

. . .
...

β
(0)
0 β

(0)
1 . . . β

(0)
d

 , ctB̄ = Enc


B̄[0][0] B̄[1][1] . . . B̄[d][d]

B̄[0][0] B̄[1][1] . . . B̄[d][d]

...
...

. . .
...

B̄[0][0] B̄[1][1] . . . B̄[d][d]

 ,
where B̄[i][i] is the diagonal element of B̄ that is built from − 1

4X
TX .201
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The pulbic cloud takes the three ciphertexts ctZ , ct(0)
β and ctB̄ and evaluates the enhanced NAG202

algorithm to find a decent weight vector by updating the vector ct(0)
β . Refer to [12] for a detailed203

description about how to calculate the gradient by HE programming.204

Implementation We implement the enhanced NAG based on HE with the library HEAAN. The C++205

source code is publicly available at https://anonymous.4open.science/r/IDASH2017-245B .206

All the experiments on the ciphertexts were conducted on a public cloud with 32 vCPUs and 64 GB207

RAM.208

For a fair comparison with [12], we utilized the same 10-fold cross-validation (CV) technique on the209

same iDASH dataset consisting of 1579 samples with 18 features and the same 5-fold CV technique210

on the other five datasets. Like [12], We consider the average accuracy and the Area Under the Curve211

(AUC) as the main indicators. Tables 1 and 2 show the two experiment results, respectively. The two212

tables also provide the average evaluation running time for each iteration. We adopt the same packing213

method that Kim et al. [12] proposed and hence our solution has similar storage of ciphertexts to [12]214

with some extra ciphertexts to encrypt the B̄.215

The parameters of HEAAN we set are same to [12]: logN = 16, logQ = 1200, logp = 30, slots =216

32768, which ensure the security level λ = 80. Refer [12] for the details of these parameters. Since217

our enhanced NAG method need to consume more modulus to preserve the precision of B̄, we use218

logp = 60 to encrypt the matrix B̄ and thus only can perform 3 iterations of the enhanced NAG219

method. Yet despite only 3 iterations, our enhanced NAG method still produces a comparable result.220

Table 1: Implementation Results for iDASH datasets with 10-fold CV

Dataset Sample
Num

Feature
Num Method deg g Iter

Num

Learn
Time
(min)

Accuracy
(%) AUC

iDASH 1579 18 Ours 5 3 5.53 53.69 0.678
[12] 5 7 6.07 62.87 0.689

Table 2: Implementation Results for other datasets with 5-fold CV

Dataset Sample
Num

Feature
Num Method deg g Iter

Num

Learn
Time
(min)

Accuracy
(%) AUC

Edinburgh 1253 9 Ours 5 3 0.6 84.4 0.853
[12] 5 7 3.6 91.04 0.958

lbw 189 9 Ours 5 3 0.5 69.19 0.619
[12] 5 7 3.3 69.19 0.689

nhanes3 15649 15 Ours 5 3 5.5 79.23 0.490
[12] 5 7 7.3 79.22 0.717

pcs 379 9 Ours 5 3 0.6 65.33 0.721
[12] 5 7 3.5 68.27 0.740

uis 575 8 Ours 5 3 0.6 74.43 0.598
[12] 5 7 3.5 74.44 0.603

5 Conclusion221

In this paper, we proposed a faster gradient variant called quadratic gradient, and implemented222

the quadratic-gradient version of NAG in the encrypted domain to train the logistic regression model.223

The quadratic gradient presented in this work can be constructed from the Hessian matrix directly,224

and thus somehow integrates the second-order Newton’s method and the first-order gradient (descent)225

method together. There is a good chance that quadratic gradient could accelerate other gradient226

methods such as RMSprop and Adam, which is an open future work.227
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