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Abstract

Optimizing strategic decisions (a.k.a. computing
equilibrium) is key to the success of many non-
cooperative multi-agent applications. However, in
many real-world situations, we may face the exact
opposite of this game-theoretic problem — in-
stead of prescribing equilibrium of a given game,
we may directly observe the agents’ equilibrium
behaviors but want to infer the underlying param-
eters of an unknown game. This research ques-
tion, also known as inverse game theory, has been
studied in multiple recent works in the context of
Stackelberg games. Unfortunately, existing works
exhibit quite negative results, showing statisti-
cal hardness (Letchford et al., 2009; Peng et al.,
2019) and computational hardness (Kalyanara-
man & Umans, 2008; 2009; Kuleshov & Schri-
jvers, 2015), assuming follower’s perfectly ratio-
nal behaviors. Our work relaxes the perfect ra-
tionality agent assumption to the classic quantal
response model, a more realistic behavior model
of bounded rationality. Interestingly, we show that
the smooth property brought by such bounded ra-
tionality model actually leads to provably more
efficient learning of the follower utility param-
eters in general Stackelberg games. Systematic
empirical experiments on synthesized games con-
firm our theoretical results and further suggest
its robustness beyond the strict quantal response
model.
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1. Introduction

One primary objective of game theory is to predict the be-
haviors of agents through equilibrium concepts in a given
game. In practice, however, we may observe some equilib-
rium behaviors of agents, but the game itself turns out to be
unknown. For example, an online shopping platform can
observe the shoppers’ purchase decisions on different sale
prices, but the platform has limited knowledge of the exact
utilities of the shoppers. Similarly, while the policymaker
could observe the market reactions to its policy announce-
ment, the exact motives behind traders’ reactions are usually
unclear. In various security domains, the defender may want
to understand the intentions or incentives of the attackers
from their responses to different defense strategies so as to
improve her future defense strategy. As such, recovering
the underlying game parameters would not only lead us to
better strategic decisions, but also improve our explications
of the motives and rationale in the dark.

These potentials and prospects motivate a class of research
problems known as the inverse game theory (Kuleshov &
Schrijvers, 2015): given the agents’ equilibrium behaviors,
what are possible utilities that induce these behaviors? In
this paper, we specifically target the sequential game set-
ting from the perspective of the first-moving agent (e.g.,
Internet platform, policymaker, or defender) whose differ-
ent strategies (e.g., price, regulation, or defense scheme)
would induce different equilibrium behaviors of the follow-
ing agent (e.g., Internet users, traders, or attacker). Studies
of such game settings have seen broad impacts and extensive
applications ranging from the principal-agent problems in
contract design (Holmstrém, 1979; Grossman & Hart, 1992),
the Al Economist (Zheng et al., 2020) to security games
modeled for social good (Fang et al., 2015). We formal-
ize our problem under the normal form Stackelberg game,
where a leader has the commitment power of a randomized
strategy, and a follower accordingly decides his response.
It is known that the optimal commitment of the leader can
be efficiently computed in a single linear program, given
full knowledge of the game (Conitzer, 2016). However, the
inverse learning problem to determine the underlying game
from the follower’s responses is more challenging: Letch-
ford et al. (2009); Peng et al. (2019) show that learning
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optimal leader strategy from the follower’s best responses
requires number of samples that is a high-degree polynomial
in the game size and may be exponential in the worst cases.
This significantly limits the practicality of these algorithms,
as the leader usually cannot afford the time or cost to gather
feedback from so many interactions.

More concerning is the inconvenient reality that we can
hardly expect the agents’ optimal equilibrium responses as-
sumed in existing work. In fact, these shoppers, traders, or
attackers themselves hardly know their exact utilities and are
naturally unable to determine the expected-utility maximiz-
ing strategy. Extensive studies of behavioral economics and
psychology (Kahneman, 1979; Aumann, 1997; McKelvey
& Palfrey, 1995; Camerer et al., 2004; Camerer, 2011) have
pinpointed the cognitive limitations that make human deci-
sions prone to the noisy perception of their utilities. Among
various models for quantifying irrational agent behaviors,
one of the most popular ones is perhaps the quantal response
(QR) model (McKelvey & Palfrey, 1995), which adopts the
well-known logit choice model to capture agents’ proba-
bilistic selection of actions. This will also be the bounded
rationality model of our focus in this paper.

The Blessing of Bounded Rationality. The key insight
revealed from this paper is that the extra layer of behavioral
complexity due to bounded rationality, while complicating
the modeling and computation, provides a more informative
source for us to learn the underlying utility of agents. To
understand the intuitions and motivations behind our results,
consider a case where the follower has a dominated action 71
as shown in Table 1, where the leader’s and follower’s utility
of action profile (i, ) is specified by u; ;, v; ; respectively.
Conventionally, such an instance is treated as a degenerated
instance, because the leader could ignore the action j; that
a perfectly rational follower would never play. Then, the
optimal leader strategy is clearly to always play the action
io. However, when facing a boundedly rational follower, it

Us j, Vi j J1 J2
" 100,09 | 0.9, 1
i | —99.09 | L.I,1

Table 1. An example of dangerously “degenerated” game.

becomes possible to observe the response j; and estimate
the utilities regarding this dominated action. For example,
if the follower plays his action j; and j» at almost the same
frequency, the follower’s expected utility on the two actions
should be close. Although such dominated action has no
effect on the leader’s optimal strategy against a perfectly
rational follower, it could be a potentially damaging (or
beneficial) action that leader want to avoid (or encourage) a
bounded rational follower to play. That is, in the above game
instance, if a somewhat irrational follower plays action j,
it would be dangerous for the leader to play action iy yet

rewarding to play action #1; therefore, a more robust leader
strategy should randomize by assigning some probability
to play action ¢;. We remark that in general, even without
such extreme case of dominated actions, the extra payoff
information is now available on how much worse (or better)
it is to use the empirical frequency of the boundedly rational
action responses (as long as some smoothness properties are
exhibited), which are overlooked under the assumption of
perfectly rational followers.

Our Results. We present a set of tight analysis on the
number of strategies and sample complexity sufficient and
necessary to learn the follower’s utility, for both situations in
which the leader can observe the follower’s full mixed strate-
gies or only the follower’s sampled pure strategies. In the
former situation of observing follower’s mixed strategies,
our algorithm can recover the follower utility parameters
using m follower mixed strategy responses in any general
Stackelberg game where m is the number of leader actions.
Surprisingly, the required number of queries is independent
of follower actions! This is due to the fact that the random-
ness introduced by bounded rationality carries much more
information about follower payoffs, compared to the perfect
best response. In the later (more realistic) situation of only
observing follower’s sampled pure strategy, our algorithm
learns the follower utility parameters within precision e with
probability at least § using G)(mlogp(#/é)) carefully cho-
sen queries, where n is the number of follower actions and
p depends on agent’s bounded rationality level and is of
order ©(1/n) for typical boundedly rational agents. Inter-
estingly, the additional challenge of only observing sampled
actions only deteriorates the sample complexity by a factor
of log(mn)/p." These sample completexity results should
be compared with that of (Peng et al., 2019; Letchford et al.,
2009), which study similar learning questions but from per-
fectly rational follower responses. The m log(mn)/p order
in our sample complexity is in sharp contrast to their com-
plexity with exponential dependence in m or n in the worst
case. Our experimental results empirically confirm the tight-
ness of our sample complexity analysis.

At the conceptual level, our work illustrates that noises due
to bounded rational behaviors could be leveraged as addi-
tional information sources to learn the follower utility. This
intuition also drives the design of our analytical tools to
explain how efficient and effective learning of the follower’s
utility is possible in real situations, in complementing the
previous negative results developed under the idealized per-
fect rational behavior models (Letchford et al., 2009; Peng
etal., 2019).

"Note that the lof# term comes from concentration bound
and is natural when observations (i.e., observed follower actions)
have randomness.
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2. Problem Formulation

Game Setup We consider the Stackelberg game between
a single leader (she) and follower (he). We let U € R™*™
(resp. V' € R™*"™) be the leader (resp. follower’s) util-
ity matrix, where m, n are the number of actions for the
leader (resp. follower). We use G(U, V') to denote the game
instance. Each entry u; ; (resp. v; ;) of the utility matrix
denotes the leader’s utility (resp. follower’s utility) when
leader plays action ¢ and follower plays action j. Without
loss of generality, let u; j,v; ; € [0,1]. Let V; € R™ be
the jth column of the matrix V. We denote the set of the
leader’s (resp. follower’s) action set by [m] := {1,...,m}
(resp. [n] :={1,...,n}).

In this sequential game, the leader moves first by committing
to a (possibly randomized) strategy, € = (z1, - ,Tm) €
A,,, where the simplex A,, = {x Zie[m] T, =
land 0 < z; < 1} and each x; represents the probabil-
ity the leader playing action i. Similarly, let A,, denote
the follower’s strategy space. Under perfect rationality,
given the leader’s committed strategy, the follower would
in turns chooses the best response action j* that maximizes
his utility, i.e., j* = argmaxje[n]{chVj}. In our prob-
lem, we use the QR model instead to capture the follower’s
bounded rational behavior. That is, the follower would re-
spond to the leader’s committed strategy by choosing an
strategy y* that maximizes his utility up to a Gibbs entropic
regularizer, i.e., y* = argmax, ., {\e'Vy —ylny}.
This is shown to be equivalent to the setting where the
follower is best responding according to the payoff per-
turbed by noises from a Gumbel distribution (Jang et al.,
2016). And we know the close form solution of follower’s
optimal strategy for this convex optimization program is
exactly the logit choice model on the true payoff, i.e., for

T .
% (Mertikopoulo s &

Sandholm, 2016). We refer to A as the bounded rational-
ity constant that is given in each specific problem, as sev-
eral existing work have already determined its empirical
value in practice: the human behavior experiments in (Pita
et al., 2010; Yang et al., 2011) compute A = 7.6; the ex-
periments (Lieberman, 1960; O’Neill, 1987; McKelvey &
Palfrey, 1995) show A\ is in the range of 4 to 16.2

each j € [n], yj =

Learning Problem We consider the inverse game theory
problem in sequential game with unknown follower utility
and seek to quantify how much the leader can learn about
a bounded rational follower’s utility. We frame this prob-
lem under an active and strategic learning setup, where the
leader can interactively choose a randomized strategy and
observe follower’s strategic responses. Specifically, at each
round ¢ € [T, the leader commits to a strategy (). The
follower observes the committed «(t) and responds based

The )\ estimations are normalized to the utility scale in [0, 1].

on the QR strategy y(¢). Below we will consider both feed-
back settings based on whether the leader is able to observe
the exact distribution y(¢) or merely its samples.

We set our primary learning objective as to recover a full
characterization of the follower’s utility; our results below
shall explain how it is unnecessary and almost unrealistic
to expect an exact recovery of the follower’s utility. And
we show in Observation 1 and Theorem 1 that such util-
ity characterization can be used to compute the optimal
leader strategy under both perfect rationality, known as the
strong Stackelberg equilibrium (SSE), and bounded ratio-
nality, known as the quantal Stackelberg equilibrium (QSE).
And besides developing the optimal (or robust) leader strate-
gies, we believe the recovered utilities are generally useful
for our better understanding and reasoning of the followers’
motives. However, given the limited scope of the paper,
we focus on the inverse game theory problems and defer
the problems regarding how to strategize using the knowl-
edge of game (i.e., the typical game-theoretical problems)
to related and future work.

Such learning problem has been considered in (Haghtalab
et al., 2016) specifically for Stackelberg security games,
where the payoff is a strictly simplified single-dimensional
linear utility function. Our paper overcomes the curse of
dimensionality and answers the open question in recover-
ing payoffs in the general Stackelberg game. On the other
hand, Sinha et al. (2015) showed a case of learning the non-
parametric Lipschitz function (which includes the payoff
function in the general Stackelberg game as a special case)
in PAC-learning setup and they obtained a sample com-
plexity exponential to the number of actions. Notably, the
PAC-learning problem is fundamentally different from our
active learning problem, as its learning guarantee is tied to
the given data distribution and is not guaranteed to recover
the follower’s payoff.

3. Theoretical Results
3.1. Warm-up: Learning from Mixed Strategies

As a warm-up, we first consider a rather ideal case where
the leader can directly observe the follower’s mixed strategy
y(t). In this case, it turns out that the leader would be able
to perfectly recover the follower’s payoff matrix from his
responses to m different strategies and thereby determine
the her optimal strategy. Despite a seemingly intuitive result,
its underlying rationale is actually not as straightforward.
Specifically, many would raise the following doubt: the logit
transformation is not bijective and thus its inverse mapping
is not injective; in particular, it only gives us a system of at
most n — 1 different linear equations w.r.t. the follower’s
utility; one can check that if we add a constant to all entries
of the utility matrix, the resulting probability distribution
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stays the same after the logit transformation. Thus, it should
require more than m such linear equation systems to recover
a utility matrix with m X n unknown parameters. However,
thanks to Observation 1, it happens that the follower’s utility
matrix can be fully characterized by m x (n — 1) parame-
ters that is essentially the difference of each column in the
utility matrix. This somewhat coincidentally compensates
the missing information on follower utility due to the logit
transformation.

Knowing that m strategies is the lower bound of this learn-
ing problem in general, below we will explicitly construct
a learning algorithm that have the matching upper bound.
To begin, a useful game-theoretic property of Stackelberg
games is the following observation about the class of fol-
lower utilities that will induce the same leader and follower
policies. While similar observation has been made in (Hagh-
talab et al., 2016; Sinha et al., 2015), we also provide a
formal proof in Appendix B for completeness.

Observation 1 (Equilibrium Invariance under Payoff Trans-
formation). ForanyV € {V+c®1,|c € R™}, i.e., arow-
wise shifted matrix of V, the follower’s quantal response
(resp. best response) policy to leader’s committed strategy
remains the same, and thus the optimal leader strategy in
SSE or QSE remains the same.

Observation 1 suggests that the row-wise shifted payoff
matrix is just as good as the ground-truth payoff matrix in
our setting. This essentially means that only the difference
between action payoffs matters for the follower’s policy. As
such, we introduce a row-wise distance metric that accom-
modates such policy-invariant transformation to empirically
measure the quality of the recovered follower utility.

Definition 1 (Logit Distance). We define a dis-
tance berween the ground truth follower utility V
and the recovered follower utility V, ®(V,V) =

L5 min, |[V; = Vi — 2 .If<I>(V,1~/):O,wesay
mn 1€[m] 1
that the recovered follower utility is perfect.

We next present a result that generalizes the well-known
result, three strategies to success in security games, by
Haghtalab et al. (2016). Notably, we identify a simple
but fundamental condition (in terms of rank) necessary to
recover the game payoffs, rather than the special distance
conditions tailored to the structure of the security game as
in (Haghtalab et al., 2016). The notion of rank has a clear
physical meaning and we would later follow this theoretical
insights to design learning algorithm to actively select leader
strategies to query.

Proposition 1 (m Strategies to Success). There exists a
learning algorithm that can always perfectly recover the
follower strategy from m queries of the follower’s mixed
strategies.

Proof Sketch. We pick m linearly independent basis vectors

for each «(t) in m rounds and argue that the following
optimization program can perfectly recover the follower’s
utility matrix V.

minimize  } ;¢ () [log > et exp 25 (t) — y(t) - z(t)}
2(t) = e(t)TV,  Vie[m)]

3.1
We can see that the objective of the optimization program is
a log-sum-exp function w.r.t. variables {2(t)}¢c[»,, which
is convex. This means we can determine its minimizer set
of {2(t)}+c[m). Meanwhile, the constraints of the optimiza-
tion program gives a system of linear equation between
{z(t), z(t) }1[m) and the variable V. But the solution of
V is not unique, as the minimizer set of {z(t) }+e[m) con-
tains infinitely many elements. But it turns out that when
{x(t) }te[m) forms an linearly independent basis of R, any

solution V' to the linear system given by any minimizer
{z(t) }+e[m) are guaranteed to have ®(V, V) = 0. We defer
the full proof to Appendix C. O

3.2. More Realistic Situations: Learning from Realized
Actions

In this section, we consider the more challenging yet real-
istic scenario, where the leader is able to observe a single
action from follower at each round, i.e., the best response
w.r.t. his perceived utility under the Gumbel noise, or equiv-
alently the realized action of the follower’s quantal response
strategy. It turns out that the intuitions from Section 3.1 still
apply, and we are able to prove a strict generalization of
these results. In particular, Theorem 1 strengthens Observa-
tion 1 in that learning the follower’s utility up to some logit
distance could also lead to an approximation of the optimal
leader strategy under some mild condition given by Defini-
tion 2 in general Stackelberg games. Theorem 2 generalizes
Proposition 1, as we showcase the sample complexity of our
learning framework to recover the follower’s utility in face
of the follower’s stochastic responses.

Definition 2 (Inducibility Gap). For any follower utility V,
we define its inducibility gap as
o(V) := min max minz' Ve, — e;/].
V) JE[] 2€ A j12] S
That is, the maximum constant o (V') such that for any fol-
lower actions j € [n), there exists a leader strategy x’ that

makes j dominate any other action j " by a margin of at least
o(V), ie, x?Ve; >x?Vejy +0(V),Vj #j€ nl

If a game has small inducibility gap o, then there must exsit
two follower actions 7, 7’ such that the follower’s utility for
action j can never be ¢ better than his utility for action j’,
regardless of what strategies the leader play. In such cases,
action j is essentially dominated by ;' (up to at most ). It
is not difficult to see that in such case with small § it will be
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difficult to recover all the payoffs in such cases since action
7 is expected to be played very rarely. This intuition is also
reflected in our following two results.

Theorem 1. Given a follower utility V with _inducibility
gap o(V) > 5e, we can construct an O(e/o(V))-optimal
leader strategy for any game G(U, V') with logit distance
o(V,V) < -5

Proof Sketch. We prove through an explicit construction.
That is, given the estimate of the follower’s utility V, we

construct a e-robust strategy x=(1- m)w +
based on the SSE (z*

(BJ

U(V)
7 of G(U, V) and the strategy zl

such that (wj*)TVe} > () Vey + o(V), V5 # j*.
We show this strategy is guaranteed to be an (U (‘76)6_ 2E)-

SSE of the Stackelberg game G(U, V). The proof then
relies on two key observations stated in Lemma 1.1 and 1.2:
First, given that ®(V,V) < -& and o(V) > 3e, the best
response of a robust strategy « in game G (U, V') remains the
same as that of a game G(U, V), and so is the leader utility.
This means x gets at least (1 — U?‘E,)) portion of SSE utility

inG(U, ‘N/) Second, the difference between the SSE utility
in G(U, V) and G(U, V) are bounded by (V)
even though V' is unknown to us, Lemma 1.3 shows that we
can bound (V) > o(V') — 2¢, so we can use o (V') — 2¢ to
substitute (V). And this requires o(V) > 5e. O

Meanwhile,

Due to the space limit, we defer the full statement of the lem-
mas and proofs to the Appendix D. After restoring the con-
nections between the logit distance and the leader’s optimal
equilibrium utility, we now show the relationship between
the logit distance and sample complexity in the learning
problem. We remark that by satisfying our full rank con-
dition, this sample complexity result does not depend on
any additional parameter on the distance of queried leader
strategies, such as A, v in (Haghtalab et al., 2016), both of
which are only guaranteed to affect the sample complex-
ity by polynomial (not necessarily linear) factors w.r.t. the
number of targets.

Theorem 2. It takes @(%) queries of the fol-

lower’s quantal response to recover the follower’s utility 1%
within the logit distance ®(V, V') = < with probability at
least 1 — 0, where p is the least non-zero measure among
all of the follower’s mixed strategies induced by leader’s
strategy queries during learning.

This theorem is a strict generalization of Proposition 1 and
we defer the full proof to Appendix E due to space limit.
The high level intuition comes from the fact that (1 — ¢)-
multiplicative approximation guarantee is translated to e
additive error after the logarithmic transformation using
the approximation that for small positive e close to zero,

we have In(71-) = O(e). And to obtain such (1 — ¢)-
multiplicative approximation of an mixed strategy, we use
standard concentration results for a tight sample complexity

bound. We formalize these statements and proofs in Lemma

2.1,2.2.

Lemma 2.1. There exists a learning algorithm that can

recover the follower’s utility V within distance ®(V, V)
O(%) from m queries of the (1 — €)-multiplicative approxi-

mation of the follower’s mixed strategies.

Lemma 2.2. For any discrete distribution y with support
size n and the least non-zero measure min;e(p) ., >0{Yi} >

p, with @(log;%) samples, the corresponding empirical
distribution y is an (1 — €)-multiplicative approximation to
y, with probability at least 1 — 6.

3.3. A Learning Framework of Practicality

PURE, Less is More The above results lead to a simple
but provably effective method, PURE; the name comes from
the fact that it only uses the m different pure strategies in
A, {x(t)}tcim)- As specified in the proof of Theorem
2, it gathers the follower’s sampled quantal responses of
these pure strategies to estimate the corresponding empirical
distributions {y(t) }+e[m) and solves for the V' through the
optimization program 3.1. While it is a seemingly naive
learning algorithm, we would like to make a few crucial
points on its unique advantages from both theoretical and
practical perspectives.

Theoretically, we know PURE is guaranteed to perfectly re-
cover the follower utility in the setting of Section 3.1. More
importantly, when randomness is present, PURE guarantees
that the estimation error measured by the logit distance is
always bounded as O(%); the Equation (E.1) in the proof
of Theorem 2 suggests that the inverse of a general row-
stochastic matrix X and the error matrix 8 could otherwise
lead to possibly unbounded estimation error.

Meanwhile, we anticipate that the simplicity of PURE would
be especially valuable to its applicability in practice. First,
the randomized leader strategies in many applications are
difficult to be implemented precisely, because the followers
may not have the perfect estimation of the leader’s distri-
butions of randomization. This means that observing the
follower’s responses to randomized leader strategies could
be more noisy in nature. Second, it might be inappropriate
and possibly forbidden for the learner (e.g., an Internet plat-
form or policy marker) to frequently change its strategies
(e.g., prices or policies). Instead, the deployment of PURE
only requires the learner to observe the responses of only a
small number of pure strategies at the population level.

PURE for Structured Games We remark that the learn-
ing framework of PURE could be tailored to the special
structures in Stackelberg game. For example, let us con-
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sider a celebrated variant, known as the Stackelberg se-
curity game.> Namely, a leader (defender) commits to a
randomized allocation of security resource to defend a set
of n(= m) targets from a follower (attacker). In turn, the
follower observes this randomized allocation and picks a
target to attack. Both the leader and the follower receive
payoffs depending on the target that was attacked and the
probability that it was defended. So in this case the follower
utility can be expressed as linear functions, where each entry
in vector w,b € R™ denotes, respectively, the attacker’s
cost and reward on each target. When the leader defends
each target with the randomized strategy © € A,,, if the
follower attacks the target j, he receives utility based on the
cost w.r.t. the chance target j is defended, and the reward for
the attack, i.e., V(, j) = w;x; + b;. Then, we can use the
learning framework of PURE that only solves for the linear
utility function parameters using the optimization program
3.2. This not only reduces the number of parameters to be
learnt but also directly gives the reward and cost parameters
of each targets. Our empirical experiments below suggest a
significantly faster error convergence rate once the structure
insights is brought into the learning framework.

minimize -,y {log 2 jerm &P zi(t) — y(t) -z(t)}
zj(t) = AMw;z;(t) +bs), Vi€ [nl;t %[g)]

PURE-Exp for the Worst Cases In certain situations,
however, the followers could be more rational and the pa-
rameter A is larger than the standard estimation. Then, the
follower’s stochastic quantal response becomes rather de-
terministic, and the least non-zero measure p decreases.
Lemma 2.2 suggests that querying through simple pure
strategies could become much less inefficient in obtaining
the (1 — €)-multiplicative approximation of the actual strat-
egy. Nevertheless, it turns out that we can introduce the
“exploration and exploitation” principle here for the rem-
edy, and we thus name such variant of PURE algorithm
as PURE-Exp. Specifically, we introduce an exploration
procedure to search for better strategies if an empirical es-
timation of the follower strategy tends to concentrate on a
single action. We knew such strategy would contain more
noise than information, as the error introduced by its multi-
plicative approximation ratio can be significant; reversing
a one-hot distribution from logit transformation provides
no information about the follower utility. In this case, we
carefully replace it by a perturbed strategy from the original
strategy. This ensures that the resulting strategy set after

3For simplicity, we here present a standard simplification of
Stackelberg security game, where the resources allocation and
scheduling constraints are ignored and the defender’s strategy
space is simply the simplex A,,. Our method can be extended to
security games under the general definition by carefully picking
strategies on the vertices of the constrained strategy space.

replacement still forms a full-rank matrix that ensures the
invertibility necessary for a provably more effective recov-
ery of V in Theorem 2. Otherwise, the algorithm would
continue to exploit the leader strategies to better estimate
the follower responses. Our empirical experiments in Ap-
pendix F show substantial performance improvement by
PURE-Exp in those extreme cases.

Algorithm 1 PURE-Exp
Input: Game parameters m, n, A, QR oracle O : A,, —
[n] and optimization program Q based on the game struc-
ture.
Initialization: X', a list of leader strategies where the
i-th strategy x(*) « [es]iems V- a list of empirical esti-
mation of follower strategies w.r.t. sc(i); set i < 0.
fort=0,1,...,7 do
Use leader strategy =) from X to query for follower
response j < O(z").
Update empirical estimation y(*) of the follower’s QR
strategy to & (9.
if Probability mass of y(¥) concentrates on a single
action then
Sample @ from simplex A,,,.
Replace (¥ in list X by the new strategy x(*) «
%i + %ei.
Reset the empirical estimator y(i) in ).
end if
Update i < (i +1) mod m.
end for
Solve the optimization program Q for the best game pa-
rameters using X', ).

4. Conclusion

Two common assumptions of a typical game theory prob-
lem are: (1) the agents know the game parameters; (2) the
agents are perfectly rational. Though these assumptions
have enabled elegant mathematical models and fundamental
theoretical insights, they could be limiting in some real-
world scenarios. Our paper tackles the particular problem in
sequential game-theoretical interactions without these two
common assumptions. While similar inverse game theory
problems under perfect rationality are shown to be statisti-
cally or computationally intractable, we made an intriguing
finding in which relaxing us from these idealistic settings
in turns lead us to a provably efficient learning guarantee.
Therefore, we proposed the learning framework of PURE
intended for fewer usage restrictions in real-world applica-
tions. In future work, we wish to extend our analysis and
insights to more general game settings and other models of
bounded rationality.
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A. Related Work

Learning in Stackelberg Game. The learning problem in
sequential games has been studied in several different se-
tups. Marecki et al. (2012); Balcan et al. (2015) consider the
online learning problem in the Stackelberg security game
with adversarially chosen follower types. Bai et al. (2021)
consider a bandit learning setting where one could query any
entry of the followers’ utility under noise and use the esti-
mation of utility to approximate the optimal leader strategy;
however, this learning process assumes centralization, that
is, the learner can control both leader’s and follower’s ac-
tions. More similar to ours is the strategic learning setup in
Stackelberg games studied by (Letchford et al., 2009; Peng
et al., 2019; Blum et al., 2014), where the leader adaptively
chooses her strategies based on the observation of the fol-
lower’s best response and eventually recovers the follower’s
utility up to some precision level.

Bounded Rationality. McKelvey & Palfrey (1995) intro-
duced the quantal response equilibrium (QRE) by adopting
the logit choice model (Debreu, 1960; McFadden, 1976).
QRE serves as a strict generalization of Nash equilibrium
(NE) — when the agents become perfectly rational, QRE
converges to the NE. The modeling success of QR model at-
tributes to the nice mathematical and statistical properties of
the logit function that can capture a variety of boundedly ra-
tional behaviors under different parameter A. QRE is widely
adopted especially in Stackelberg (security) games (Yang
et al., 2012; Nguyen et al., 2013; Sinha et al., 2015; Fang
et al., 2015; Haghtalab et al., 2016; éerny etal., 2021) and
zero-sum games (Ling et al., 2018) and notably has been
deployed in various real world application (An et al., 2013;
Fang et al., 2017). Moreover, the model structure of QR has
been also used in various other contexts, such as the soft-
max activation in neural network (Goodfellow et al., 2016),
multinomial logistic regression (Bishop & Nasrabadi, 2006)
and the multiplicative weight update algorithm for no-regret
learning (Arora et al., 2012).

As an initial attempt to our general learning problem, we
also adopt the QR model to capture our agent’s bounded
rational behavior, for its modeling success in practice and
being the most common choice of prior work (Yang et al.,
2012; Nguyen et al., 2013; Fang et al., 2015; Haghtalab
et al., 2016; Cerny etal.,, 2021; Ling et al., 2018; An et al.,
2013; Fang et al., 2017). We acknowledge that there ex-
ist other models of bounded rational behaviors beyond the
QR model. For example, Kahneman (1979) introduced the
prospect theory to model the bounded rationality of agents
in games under risk; Camerer et al. (2004) proposed the
cognitive hierarchy theory that classifies the agents accord-
ing to their degree of reasoning in forming expectations
of others. We anticipate that the message of our paper —
i.e., the observation of suboptimal responses could provide

additional information to learn the follower’s preferences —
would apply to many of these bounded rationality models.

Inverse Game Theory. Vorobeychik et al. (2007) consid-
ered the payoff function learning problem using the strategy
profiles and the corresponding utilities through regression.
Kuleshov & Schrijvers (2015) introduced the concept of in-
verse game theory, and the authors showed that the problem
of computing the agents’ utilities from a set of correlated
equilibrium is NP-Hard, unless the game is known to have
special structures. More recently, the inverse game theory
problem is studied under the QR model and leads to a few
positive results: Sinha et al. (2015) considers the offline
PAC-learning setup where the follower responses can be
predicted with small error for a fixed leader strategy distri-
bution; Haghtalab et al. (2016) proves only three strategies
are sufficient to recover linear follower payoff functions in
security games; Ling et al. (2018) presents an end-to-end
learning framework that learns the zero-sum game payoff
from its QRE. Following their success, our paper is the first
work that provides theoretical guarantee of payoff recov-
ery in general Stackelberg game. Finally, inverse problems
have received significantly more attention in single-agent
decision making problems; The most notable problem is
the inverse reinforcement learning pioneered by Ng et al.
(2000); Abbeel & Ng (2004).

B. Proof of Observation 1

Proof. First, pick any leader strategy , we show with any
utility matrix V', the follower has the same action probability
under quantal response model for any of its row-shifted
utility matrices V := V + ¢ ® 1,,*. To verify this claim, we
pick any of follower’s action j € [n],

o exp()\w—rf/j)
b= > kel exp(AzT V)
B exp(A\z " [V} + ¢])
Ve epe " [Vi +¢])
B exp(z'Vj)ex c)
B > ke EP(AT TV )ex c)

where the first and second equality is by definition; the last
equality is by separating and canceling out the same terms.

)

Second, we show the follower’s best response remains the
same for any of its row-shifted utility matrices V' := V +¢c®
1,,. Specifically, for any x, forany V and V :=V +c®1,,
we have,Vj, k € [n], 2"V, > 2"V, < 2 [V, +¢] >
' Vit <= 2"V, >z2"V,

Finally, since the follower’s quantal response (resp. best
response) policy to leader’s committed strategy remains the

*1, = (1,1,--- , 1) denotes the 1-vector of size n
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same under any of its row-shifted utility matrices Vo=
V + ¢ ® 1, pick any strategy x, the leader utility in face
of quantal response (resp. best response) must remain the
same. This means the leader’s equilibrium strategy in SSE
or QSE also remains the same for any follower utility V' :=
V4+e®l,. O

C. Proof of Proposition 1

Proof. Pick m linearly independent basis vectors for each
x(t) in m rounds. To recover the follower’s utility, we
formulate an optimization program by minimizing the cross
entropy loss L(P; Q) = —Plog @, where P is the observed
strategy y(t) and @ is the predicted strategy with each entry

exp(Az(t) V)
p;i(t) = ey PO V)

minimize -, cp,) [log > jem &P zi(t) —y(t) - z(t)]
2(t) = x()TV, tem]
(C.1)

We now argue that the above optimization program can
perfectly recover the follower’s utility matrix V. Here in this
program V' is the only unknown variable, and z(¢) serves
as a proxy variable of V. And we start by determining z(t).
Observe that the objective of the optimization program is a
log-sum-exp function w.r.t. variables {2(t)};[;,), which is
convex. We can compute its derivative is zero at {z;(t) =
Ing; (t) + c:|Vi € [n],Ver € R, Yt € [m]}, which forms the
set of minimizers of this function.

Now we fix any ¢; € R for each ¢ € [m], and denote the vec-
tor ¢ := [Ctliem)- Let X = [2(t)]tepm]> Y = [Y()]teim)-
Then, replacing each z;(t) by Ing;(t) + ¢; in the opti-
mization constraint, we can formulate the linear equation
AXTV =InY + e ® 1, denoted as £(c). Since X7 is a
full rank matrix in R™*™, £(¢) has a unique solution for
V=A1YX"HThY +c®1,].

LetV:i={A"HXHTInY + c®1,]|Ve € R™} denote
the solutions to £(c) for all ¢. Let V* be the ground truth
follower utility. Following from the Observation 1, if V C
{V*+ ¢ ® 1,|Vc’ € R™}, then the solution to £(¢) of
arbitrary c recovers the follower’s utility to the level that the
optimal leader strategy can be exactly determined.

To see this, let c* be the vector such that the unique solution
to L£(c*) is the ground-truth follower’s utility V*. Since
V* €V, such c* exists. Now for any ¢, we can derive that

V=XxHx1HT
T’
=V +AN(X

Y 4+ c® 1,]
MY +c* @1,] + 21X~
1)T[c* _ C] ® 171

LX 1) T[e* — ] forms a vector in R™. Hence,

D"~

where A\~

there exists some ¢/ € R™, V = V* + ¢/ ® 1,,. This proves
that any minimizer of the above convex program, i.e., the
solution to £(¢) for any ¢, would allow us to solve the
optimal leader strategy exactly. O

D. Proofs of Theorem 1

Theorem 1. Given a follower utility 1% with_inducibility
gap o(V') > B¢, we can construct an O(e/o(V'))-optimal
leader strategy for any game G(U, V) with ®(V, V) < =

Proof. We prove through an explicit construction. Specif-
ically, given the estimation of the follower’s utility V, we

construct a e-robust strategy x=(1- m)m + U(V)

based on the SSE (Z*, j*) of G(U, V) and the strategy @/ "

such that (27" ) "Ve; > (277 ) Ve + a(V ) Vj # 5. We
show this strategy is guaranteed to be an ( (V) ) SSE of
the Stackelberg game G(U, V). The proof then rehes on two
key observations stated in Lemma 1.1 and 1.2: First, given
that ®(V, V) < - and o (V') > 3e, the best response of
an robust strategy « in game G(U, V') remain the same from
that in a game G(U, 17), and so is the leader utility. This
means x gets at least (1 — U?‘i)) portion of SSE utility in

G(U,V). Second, the difference between the SSE utility
in G(U, V) and G(U, V) are bounded by <2 5007
despite V' is unknown to us, Lemma 1.3 shows that we can
bound o(V) > o(V) — 2e, so we can use o(V) — 2 to
substitute o/(V). And this requires o/(V) > 5e.

Let U* and U* be the SSE utility of G(U, V) and G(U, V)
respectively Let (x*,j*) be the SSE of G(U,V), and
(z*,7*) be the SSE of g (U, V). The leader utility strat-
egy x in G(U, V') can be bounded as

3€ 3€

T = e i*T e~ -
Ve =1 U(\7)—2e)( ) Uj*—’_O’(V)—QE
3e ~.

Z(l—m)(]
2[7*,~L
(V) — 2¢
. 3e 3
U T S o)
S Ut ~66
o(V) —2¢
— U~ O(—=
(U(V))
® 1y

10

where the first equality is by the construction of @; The
first inequality uses the fact that (a7~ )TUe} > 0 and the

definition of U*. The second inequality uses the fact that

(=)'

Ue~
i
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U* < 1. The third 1nequal1ty follows from Lemma 1.2. The

last inequality uses 0 < U(V) < m

O

Lemma 1.1 (Invariance of Best Response under e-Robust
Strategy). Let j be the follower’s best response against
the leader strategy x in G(U, V) and there exists x’ such
that x'Ve; > x'Vej + o,Vj' # j. If o > 3¢ then
follower’s best response against the e-robust strategy © =
(1- %)w + %w-j remains j, and the leader’s utility of
strategy x remains the same in any game G(U, 17) with
@(V V)<
Proof. To show j is the follower’s best response to the
leader strategy @ in G(U, V'), we directly show through the

definition, fo/(ej —ej) > 0,Vj" # j. Pick any j' # 7,

j )
_7TV(6J ejr) + wT(v = V)(e; —¢€))
>T Vi(ej —ej) — 2
3e 3e

=(1- ;)mTV(ej —ejy) + = (a) V(e ) —2€
> 2 @) TV (e~ ey) 2

o
2%0 —2e=¢€

o

The first inequality is by Lemma 1.4. The equality is by
construction of T and linearity of D. The second inequality
is by the fact that z " V'(e; — e;/) > 0 since j is the best
response to x under follower utility V. The last inequality

is by using the fact that ijV(ej —ej) > 0. 0O

Lemma 1.2 (Bounded SSE Utility Difference). Let U™ and
U* be the SSE uttllty of G(U,V) and G(U, V) respectively.

Iffl)(V V) < =, then we have U*>U*— g(f/).

Proof. Let (x*,j*) be the SSE of G(U,V), and (Z*, j*)
be the SSE of G(U, V). We construct an e-robust strategy
(1 — 2¢)z* + 3¢27” from SSE of G(U, V) and the
strategy a:j*Vej* > wj*Vej/ + 0,Vj" # j. Hence, by
Lemma 1.1, we know the follower’s best response to T
remains j* under utility V or V, and so the leader utility of
strategy @ remains the same in G(U, V') and G(U, V). Then,
we show the following inequalities hold:

xr

U = (&) Ue.
2 ET Uej*

(27) " Ue;-

a(V)

11

where the first inequality is by the fact that (Z*, j*) is the
SSE of G(U, V) whose leader utility must be no smaller
than strategy profile (Z, 7*). The second inequality is by
construction of  and linearity of D. The last inequality is
by the fact that (z*) "Ue;« = U* < 1 and (z7*) "Ue;~ >
0

O

Lemma 1.3 (Bounded Inducibility Gap Difference). For
any V.,V such that ®(V,V) < <, we have o(V) >
o(V) — 2e.

Proof. We prove directly by definition of the inducibility
gap,

o(V) = min max minx V( i —€jr)
JEM] xE€EAM j'#£]
> min max minz ' V(e; —ej) — 2¢

jEM] xEA N J'#]
=o(V)— 2

The first and last equalities are by definition, the inequality
is by Lemma 1.4. O

Lemma 1.4 (Bounded Utility Gap Difference). Given
OV, V) < -5, forany x € Ap,y1,y2 € Ay,
2TV = V) — )| < 2

Proof. Let V=V+4+c® 1,, + = for constant vector ¢ €
R,, and ||Z||; < e. By linearity, we decompose = ' (V —

Vi(yr —y2)asz' (c®1,)(y1 — y2) + & E(y1 — y2).

We have already seen in Observation 1 that for any

© € Apmy,Y2 € Ap, ' (c® 1 )(y1 —y2) =
Z]‘e[n] z'e(y] —y3) = chZje[ (yl y3) = 0.
So it only remains to argue that ’wTE(yl - yg)’ < 2¢. By

triangle inequality, we have |¢ TE(y; — y2)| < |2 Zy | +
|mTEy2|. Meanwhile, given ||z||; = 1 and ||y||1 = 1, by
Holder’s inequality, we have |z " Zy| < ||Z]| < [|E[|, =
€. O

E. Proofs of Theorem 2

Theorem 2. It takes @(%) queries of the fol-

lower’s quantal response to recover the follower’s utility 1%
within the logit distance ®(V, V') = { with probability at
least 1 — 0, where p is the least non-zero measure in the
induced follower’s strategies.

Proof. We prove by combining the results of Lemma 2.1
and Lemma 2.2. Following from Lemma 2.2, we can obtain
m queries of the (1 — €)-multiplicative approximation of the

m log(mn/d) ) samples

follower’s mixed strategies with ©(=—2
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with probability at least 1 — ¢. Using Lemma 2.1, these m
queries can recover the follower utility of distance V' within
the logit distance ®(V, V') = 1. O

Lemma 2.1. There exists a learning algorithm that can
recover the follower’s utility V' within the logit dis-
tance ®(V,V) = O(X) from m queries of the (1 — ¢)-
multiplicative approximation of the follower’s mixed strate-
gies.

Proof. Pick m linearly independent basis vectors for
each x(t) in m rounds. We can observe the data
{(=(t), y(t)) }tcjm]» where e-multiplicative approximation

y;i(t)
o <
[1—¢ 1=],Vj € [n],t € [T] w.rt. the ground—tmth strat-

egy Y(t).

To recover the follower’s utility, we formulate an opti-
mization program by minimizing the cross entropy loss

guarantee ensures that the observed distribution

L(P;Q) = —Plog(Q, where P is the observed strat-

egy y; and @ is the predicted strategy with each entry
( ) exp(Az(t) T V;)

P e o) Vi)’

minimize Y, ¢ [log > et exp 2 (t) — y(t) - z(t)}
2(t) = x()TV, tem

We now argue that the above optimization program can
recover the follower’s utility matrix V' such that &(V, V') =

o(%)-

Here in this program V is the only unknown variable, and
z(t) serves as a proxy variable of V. And we start by
determining z(t). Observe that the objective of the opti-
mization program is a log-sum-exp function w.r.t. variables
{z(t) }+[m)> Which is convex. We can compute its deriva-
tive is zero at {z;(t) = Iny; (t) + ct|Vi € [n], Ve, € R, VE €
[m]}, which forms the set of minimizers of this function.

Now we fix any ¢; € R for each ¢ € [m], and denote the vec-
tor ¢ := [Ciliem)- Let X = [2(t)]iepm]> Y = [Y()]teim)-
Then, replacing each z;(t) by Ing;(t) + ¢; in the opti-
mization constraint, we can formulate the linear equation
AXTV =InY + ¢ ® 1, denoted as £(c). Since X7 is a
full rank matrix in R™*™, £(c) has a unique solution for
V=A1X"HTY +c®1,]

Let c¢* be the vector such that the unique solution to £(c Y)
is the ground-truth follower’s ut111ty V.LetY =Yo B,

where each entry in $ is in [1 — ¢, t--]. By construction,

12

such ¢* must exist. Now for any c, }7 we can derive that

V=2A"'X"HTY +c® 1,
AN X Y TIY + L]+ A (X YT [e*
= AT XH Y +InB+c @1, + A (X
= VA X H T+ A X H e -1,

(X~1)T[c¢* — c] forms a vector in R™. Hence,
1 (X—I)T [C* _

where \ 7!
by definition, we can normalize out the A~
¢] ® 1, in the logit distance, and thus,

~ 1 _ ST _ €
eV, V) < A X A}y = O(5),

where we use the approximation that for small positive e
close to zero, we have In(2-) = O(e), and we pick X to
be an identity matrix such that || X 1 1In 3||; < mne.

(E.1)

O

Lemma 2.2. For any discrete distribution y with support
size n and the least non-zero measure min;gn) ,>0{Yi} >
p, with @)(logp%) samples, the corresponding empirical
distribution y is an (1 — €)-multiplicative approximation to
y, with probability at least 1 — 6.

Proof. We start with the sample complexity upper bound:
Given T' = O(bg”:f%l/é) number of i.i.d. samples
{y(t) € [n]}tem from distribution y, we use the stan-
dard mean estimator to construct the empirical distribution

Zeer WO gy definition, if
——], then g is a (1 — e)-multiplicative

y with each entry 7; =
Vi € [n], g— el-
approximation of y.

71(-:

We know for any y; = 0, the empirical estimation of ¥;
must be perfect. Otherwise, for all y; > 0, we can use the
Chernoff multiplicative bound (Chernoff, 1952), as E[y;] =
y; taking expectation over randomness of the samples. That

is, with probability at least 1 — §/n, with O(log"ﬁ%w)

number of samples, we get Z— €ll—el+e Cl—e =]
Therefore, by union bound, ¥ is an (1 — €)-multiplicative
approximation to y, with probability at least 1 — 6.

We now show the sample complexity lower bound: there
exists some distribution y with support size n and the least
non-zero measure p that requires at least Q(k’g;%)
learn an (1—e)-multiplicative approximation of y. We prove
by constructing n — 1 probability distributions that are hard
to distinguish and reducing the estimation error into such a
testing problem. In the lower bound instance, we let n > 3
and p = o(1/n). Specifically, consider the following n — 1
distributions, where for each ¢ € [n — 1], we let the jth entry

p+38i=7j
ps i FJ
l-(n=1)p-3¢ j=n

to

of distribution y* be y} =

—®1,

1)T[C* _

del,
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with £ < p < 1_71735 By such construction, each y?
have support size n and the least non-zero measure p, and
the TV distance between any two of these distributions,
drv(y',y’) = 3¢.

If we let £ = €p, we can reduce the learning problem
of (1 — €)-multiplicative approximation of y to the test
problem of distinguishing the n — 1 probability distribu-
tions. That is, pick any y* , if we have enough samples
to learn (1 — ¢)-multiplicative approximation of y* , we
obtain an empirical estimation g that has TV distance
drv(9,y") < ep = & With such g, we can tell
apart y* from gy’ according to the triangle inequality that
Vi 7é i*v dTV(gv yj) > dTV(yl* ’ yj) - dTV(:,y\v yl*) > 25

So we now determine the lower bound of the testing prob-
lem using the Assouad’s Lemma (Assouad, 1983): it takes
Q(%) samples to distinguish any two distribution
y', y’ with probability at least 1 — §/n. In this case, the
squared Hellinger distance of dy (y*, 4’ ) can be computed

as & < p,

du(y',y’) =0((Vp— Vp+38)3)

_ a8y
=0(p(1—(1 p)))
_ o8
—@(p)
= 0(pe’)

By union bound, using at least £2(pe?) samples, we can
distinguish any two distributions y*, y’ with probability at
least 1 — 4. Then, the reduction implies it requires at least
Q(logé#) to learn an (1 — ¢)-multiplicative approximation
ofy. O

F. Experiment

In this section, we seek to further understand the empirical
implications of our learnability results. A major challenge
when evaluating the learning performance is that the mea-
sures rely on the underlying ground truth utility. While
there are several real world data collected in particular to
understand the human behaviors and QR model (McKelvey
& Palfrey, 1995; Pita et al., 2010; Yang et al., 2011; Nguyen
et al., 2013), they are sensitive, proprietary datasets in se-
curity domains that we are unfortunately unable to access.
Moreover, these offline dataset only offer limited number
of offline samples that can hardly be used in our active
learning setup. Therefore, our experiments have to rely on
synthesized game instances, from which we can construct
oracles to respond to the active learning queries and accu-
rately evaluate for the learning performance. As motivated
in the previous section, we will use the logit distance in
Definition 1 to empirically measure the quality of recovered
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follower utilities.> We start by investigating the empirical
performance of PURE in games synthesized using several
sets of different parameters below.

e The number of leader and follower actions m,n: We
compare the learning performance in game of varying
sizes, while fixing the number of query 7' = 107. In the
left plot of Figure 1, the first trend to notice is that the error
grows almost linear to m, exactly as Theorem 2 predicts.
Meanwhile, the error also grows as n increases, as the
error bound depends on 1/p > n. In Appendix, we shows
that 1/p in average among those randomized generated
game instances grows linearly with n, which justifies the
almost linear relation between the logit distance and n.

* The level of bounded rationality A\: We consider differ-
ent A ranging from 0.5 to 16 estimated in prior human
behavior experiments (McKelvey & Palfrey, 1995; Pita
etal., 2010; Yang et al., 2011). In the middle plot of Fig-
ure 1, we display the convergence trend of logit distance
in the number of queries. The PURE algorithm shows
consistently good performance among these different \.
On one hand, in games with the smaller )\, the error tends
to converge slower, as bounded by the /\1/% convergence

rate implied by Theorem 2. On the other hand, the vari-

ance of error increases especially in the initial half of the
timeline in games with larger A. This is explained by the
fact that sample complexity of learning distribution up to

(1 — e)-multiplicative factor increases as the distribution

concentrates when A increase.

* The payoff margin a: We generate the follower’s utility
matrix, V = af + (1 — «)Z, as a convex combination of
diagonal matrix I € R™*™ and Gaussian random noise
E normalized to [0,1]™*™ such that the larger «, the
follower are likely to have higher margin for his best re-
sponse against each of the leader’s action. In the right
plot of Figure 1, we can see a consistent trend of improv-
ing estimation of the follower’s utility as query number
increases across different level of «. Interestingly, as
the utility matrix becomes closer to the simple diagonal
matrix, and the follower easily becomes less irrational,
the convergence rate slows down; this again suggests our
message on the blessing of bounded rationality that pro-
vides the stochasticity in follower’s responses used as our
additional information source.

We also compare the performance of PURE and its variants
introduced in Section 3.3, and the results closely match
with our theoretical insights. In the left plot of Figure 2,

Except the varying parameters, we control the parameters as
m =n = 10,a = 0.2, A = 8 by default, and plot their average
performance across 5 different randomly generated instances with
the standard deviation illustrated in the error bars or the lightly
shaded regions.
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Figure 1. Recovering payoffs under varying parameters m X n
(left), A (middle), o (right)
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Figure 2. Comparision of PURE v.s. offline data (left), PURE with
or without structure insights (middle), PURE v.s. PURE-Exp
(right).

we compare PURE using only 10 leader strategies with the
standard offline learning setup using 102, 10 or 10* leader
strategies with less samples in average and less accurate
estimation of follower response for each leader strategy.
We can see that the PURE significantly outperforms these
offline learning setups, especially when A is smaller such
that the response of follower tends to be more irrational and
thus “noisy”. In the middle plot of Figure 2, we study the
learning performance of PURE in various security games
with or without using the optimization program specialized
for the game structure (in dotted or straight lines). The re-
sult suggests that the structure insights can be used for fast
recovery of follower utility. In the right plot of Figure 2,
we found that PURE-Exp, with the principle of exploration
and exploitation, are able to improve the learning perfor-
mance in the case when the follower appears to be more
rational. However, its performance also degrades as A fur-
ther increases and the problem becomes almost the perfect
rationality setting that are proved to be statistically hard to
learn (Letchford et al., 2009; Peng et al., 2019).
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