
RevPRAG: Revealing Poisoning Attacks in Retrieval-Augmented
Generation through LLM Activation Analysis

Anonymous ARR submission

Abstract001

Retrieval-Augmented Generation (RAG) en-002
riches the input to LLMs by retrieving infor-003
mation from the relevant knowledge database,004
enabling them to produce responses that are005
more accurate and contextually appropriate. It006
is worth noting that the knowledge database,007
being sourced from publicly available channels008
such as Wikipedia, inevitably introduces a new009
attack surface. RAG poisoning attack involves010
injecting malicious texts into the knowledge011
database, ultimately leading to the generation012
of the attacker’s target response (also called poi-013
soned response). However, there are currently014
limited methods available for detecting such015
poisoning attacks. We aim to bridge the gap in016
this work by introducing RevPRAG, a flexible017
and automated detection pipeline that leverages018
the activations of LLMs for poisoned response019
detection. Our investigation uncovers distinct020
patterns in LLMs’ activations when generating021
poisoned responses versus correct responses.022
Our results on multiple benchmarks and RAG023
architectures show our approach can achieve024
a 98% true positive rate, while maintaining a025
false positive rate close to 1%.026

1 Introduction027

Retrieval-Augmented Generation (RAG) (Lewis028

et al., 2020) has emerged as an effective solution029

that leverages retrievers to incorporate external030

databases, enriching the knowledge of LLMs and031

ultimately enabling the generation of up-to-date032

and accurate responses. RAG comprises three com-033

ponents: knowledge database, retriever, and LLM.034

Fig. 1 visualizes an example of RAG. The knowl-035

edge database consists of a large amount of texts036

collected from sources such as latest Wikipedia037

entries (Thakur et al., 2021), new articles (Sobo-038

roff et al., 2018) and financial documents (Loukas039

et al., 2023). The retriever is primarily responsi-040

ble for retrieving the texts that are most related041

to the user’s query from the knowledge database.042

These texts will later be fed to LLM as a part of the 043

prompt to generate responses (e.g., “Everest") for 044

users’ queries (e.g., “What is the name of the high- 045

est mountain?"). Due to RAG’s powerful knowl- 046

edge integration capabilities, it has demonstrated 047

impressive performance across a range of QA-like 048

knowledge-intensive tasks (Lazaridou et al., 2022; 049

Jeong et al., 2024). 050

RAG poisoning refers to the act of injecting ma- 051

licious or misleading content into the knowledge 052

database, contaminating the retrieved texts and ul- 053

timately leading the LLM to produce the attacker’s 054

desired response (e.g., the target answer could be 055

“Fuji" when the target question is “What is the name 056

of the highest mountain?"). This attack leverages 057

the dependency between LLMs and the knowledge 058

database, transforming the database into a new at- 059

tack surface to facilitate poisoning. PoisonedRAG 060

(Zou et al., 2024) demonstrates the feasibility of 061

RAG poisoning by injecting a small amount of ma- 062

liciously crafted texts into the knowledge database 063

utilized by RAG. The rise of such attacks has drawn 064

significant attention to the necessity of designing 065

robust and resilient RAG systems. For example, IN- 066

STRUCTRAG (Wei et al., 2024) utilizes LLMs to 067

analyze how to extract correct answers from noisy 068

retrieved documents; RobustRAG (Xiang et al., 069

2024) introduces multiple LLMs to generate an- 070

swers from the retrieved texts, and then aggregates 071

the responses. However, the aforementioned de- 072

fense methods necessitate the integration of addi- 073

tional large models, incurring considerable over- 074

heads. Meanwhile, it is difficult to promptly assess 075

whether the current response of RAG is trustworthy 076

or not. 077

In our work, we shift our focus to leverage the 078

intrinsic properties of LLMs for detecting RAG 079

poisoning, rather than relying on external mod- 080

els. Our view is that if we can accurately deter- 081

mine whether a RAG’s response is correct or poi- 082

soned, we can effectively thwart RAG poisoning 083

1

Query

AnswerLLM

Prompt
Context: [...] Everest stands the
tallest [...].
Question: What is the name of the
highest mountain?
Please generate a response for the
question based on the context.

Generation

Everest

Wikipedia

User

Knowledge
Database

Retrieval

Similarity
Score

Top most
relevant passages

Embedding
Vector

Encoder

Collect

User Question:
What is the name of the
highest mountain?

Figure 1: Visualization of RAG.

attacks. We attempt to observe LLM’s answer gen-084

eration process to determine whether the response085

is compromised or not. It is worth noting that086

our focus is not on detecting malicious inputs to087

LLMs, as we consider the consequences of ma-088

licious responses to be far more detrimental and089

indicative of an attack. The growing body of re-090

search on using activations to explain and control091

LLM behavior (Ferrando et al., 2024; He et al.,092

2024) provides us inspiration. Specifically, we em-093

pirically analyze the activations of the final token094

in the input sequence across all layers of the LLM.095

Our findings demonstrate that the model exhibits096

distinguishable activation patterns when generat-097

ing correct versus poisoned responses. Based on098

this, we propose a systematic and automated detec-099

tion pipeline, namely RevPRAG, which consists of100

three key components: poisoned data collection,101

LLM activation collection and preprocessing, and102

the detection model design. It is important to note103

that this detection method will not alter the RAG104

workflow or weaken its performance, thereby of-105

fering superior adversarial robustness compared to106

methods that rely solely on filtering retrieved texts.107

To evaluate our approach, we systematically108

demonstrate the effectiveness of RevPRAG across109

various LLM architectures, including GPT2-XL-110

1.5B, Llama2-7B, Mistral-7B, Llama3-8B, and111

Llama2-13B. RevPRAG performs consistently112

well, achieving over 98% true positive rate across113

different datasets.114

Our contributions can be summarized as follows:115

1. We uncover distinct patterns in LLMs’ activa-116

tions when RAG generates correct responses117

versus poisoned ones.118

2. We introduce RevPRAG, a novel and auto-119

mated pipeline for detecting whether a RAG’s120

response is poisoned or not. To address emerg-121

ing RAG poisoning attacks, RevPRAG allows122

new datasets to be constructed accordingly for 123

training the model, enabling effective detec- 124

tion of new threats. 125

3. Our model has been empirically validated 126

across various LLM architectures and retriev- 127

ers, demonstrating over 98% accuracy on our 128

custom-collected detection dataset. 129

2 Background and Related Work 130

2.1 Retrieval Augmented Generation 131

RAG comprises three components: knowledge 132

database, retriever, and LLM. As illustrated in 133

Fig. 1, RAG consists of two main steps: retrieval 134

step and generation step. In the retrieval step, the 135

retriever acquires the top k most relevant pieces of 136

knowledge for the query q. First, we employ two 137

encoders, Eq and Ep, which can either be identical 138

or radically different. Encoder Eq is responsible 139

for transforming the user’s query q into an embed- 140

ding vector Eq(q), while encoder Ep is designed 141

to convert all the information pi in the knowledge 142

database into embedding vectors Ep(pi). For each 143

Ep(pi), the similarity with the query Eq(q) is com- 144

puted using sim(Eq(q), Ep(pi)), where sim(·, ·) 145

quantifies the similarity between two embedding 146

vectors, such as cosine similarity or the dot prod- 147

uct. Finally, the top k most relevant pieces are 148

selected as the external knowledge Cq for the query 149

q. The generation step is to generating a response 150

LLM(q, Cq) based on the query q and the relevant 151

information Cq. First, we combine the query q and 152

the external knowledge Cq using a standard prompt 153

(see Fig. 6 for the complete prompt). Taking advan- 154

tage of such a prompt, the LLM generates an an- 155

swer LLM(q, Cq) to the query q. Therefore, RAG 156

is a significant accomplishment, as it addresses the 157

limitations of LLMs in acquiring up-to-date and 158

domain-specific information. 159

2

2.2 Retrieval Corruption Attack160

Due to the growing attention on RAG, attacks161

on RAG have also been widely studied. RAG162

can improperly generate answers that are severely163

impacted or compromised once the knowledge164

database is contaminated (Zou et al., 2024; Xue165

et al., 2024; Jiao et al., 2024). Specifically, an166

attacker can inject a small amount of malicious in-167

formation onto a website, which is then retrieved by168

RAG (Greshake et al., 2023). PoisonedRAG (Zou169

et al., 2024) injects malicious text into the knowl-170

edge database, and formalizes the knowledge poi-171

soning attack as an optimization problem, thereby172

enabling the LLM to generate target responses se-173

lected by the attacker. GARAG (Cho et al., 2024)174

was introduced to provide low-level perturbations175

to RAG. PRCAP (Zhong et al., 2023) injects adver-176

sarial samples into the knowledge database, where177

these samples are generated by perturbing discrete178

tokens to enhance their similarity with a set of train-179

ing queries. These methods have yielded striking180

attack results, and in our work, we have selected181

several state-of-the-art attack methods as our base182

attacks on RAG.183

2.3 The Robustness of RAG184

Efforts have been made to develop defenses in re-185

sponse to poisoning attacks and noise-induced dis-186

ruptions. RobustRAG (Xiang et al., 2024) miti-187

gates the impact of poisoned texts through a voting188

mechanism, while INSTRUCTRAG (Wei et al.,189

2024) explicitly learns the denoising process to ad-190

dress poisoned and irrelevant information. Other191

approaches to enhance robustness include prompt192

design (Cho et al., 2023; Press et al., 2023), plug-in193

models (Baek et al., 2023), and specialized mod-194

els (Yoran et al., 2023; Asai et al., 2023). However,195

these methods may, on one hand, rely on addi-196

tional LLMs, leading to significant overhead. On197

the other hand, they primarily focus on defense198

mechanisms before the LLM generates a response,199

making it challenging for these existing approaches200

to detect poisoning attacks in real-time while the201

LLM is generating the response (Athalye et al.,202

2018; Bryniarski et al., 2021; Carlini and Wagner,203

2017; Carlini, 2023; Tramer et al., 2020). LLM204

Factoscope (He et al., 2024) is a runtime detection205

tool that leverages the internal states of LLMs, such206

as activation maps, output rankings, and top-k prob-207

abilities, to identify factual inaccuracies caused by208

model hallucinations. While Factoscope is effec-209

tive at detecting hallucinations in general LLMs, it210

is not designed to address RAG poisoning attacks, 211

which result from manipulations of the external 212

knowledge base rather than internal model errors. 213

Its complex architecture with multiple sub-models 214

makes it less suitable for latency-sensitive RAG 215

applications. In this work, we present RevPRAG, a 216

method that addresses these gaps by: (1) focusing 217

on RAG-specific poisoning attacks and conducting 218

extensive tests to validate its effectiveness in detect- 219

ing such attacks (Section 5), (2) using a lightweight, 220

activation-based pipeline optimized for real-time 221

detection of whether an RAG response is trustwor- 222

thy (Section B.8), (3) introducing and validating a 223

novel capability to distinguish poisoned responses 224

from hallucinations (Section B.6), which was not 225

observed in LLM Factoscope, and (4) evaluations 226

show that our performance (Section 5.2) and effi- 227

ciency (Section B.8) surpass those of Factoscope. 228

3 Preliminary 229

3.1 Threat Model 230
Attacker’s goal. We assume that the attacker 231

preselects a target question set Q, consisting of 232

q1, q2, · · · , qn, and the corresponding target answer 233

set A, represented as a1, a2, · · · , an. The attacker’s 234

goal is to compromise the RAG system by contam- 235

inating the retrieval texts, thereby manipulating the 236

LLM to generate the target response ai for each 237

query qi. For example, the attacker’s target ques- 238

tion qi is “What is the name of the highest moun- 239

tain?", with the target answer being “Fuji". 240

Attacker’s capabilities. We assume that an at- 241

tacker can inject m poisoned texts P for each target 242

question qi, represented as p1i , p
2
i , ..., p

m
i . The at- 243

tacker does not possess knowledge of the LLM 244

utilized by the RAG, but has white-box access to 245

the RAG retriever. This assumption is reasonable, 246

as many retrievers are openly accessible on plat- 247

forms like HuggingFace. The poisoned texts can 248

be integrated into the RAG’s knowledge database 249

through two ways: the attacker publishing the ma- 250

licious content on open platforms like Wikipedia, 251

or utilizing data collection agencies to disseminate 252

the poisoned texts. 253

3.2 Rationale 254

The activations of LLMs represent input data at 255

varying layers of abstraction, enabling the model 256

to progressively extract high-level semantic infor- 257

mation from low-level features. The extensive in- 258

formation encapsulated in these activations com- 259

prehensively reflects the entire decision-making 260

3

Figure 2: t-SNE visualizations of activations for correct
and poisoned responses.

process of the LLM. The activations has been ap-261

plied to factual verification of the output content262

(He et al., 2024) and detection of task drift (Ab-263

delnabi et al., 2024). Due to the fact that LLM pro-264

duces different activations when generating vary-265

ing responses, we hypothesize that LLM will also266

exhibit distinct activations when generating poi-267

soned responses compared to correct ones. Fig. 2268

presents the visualizations of activations for correct269

and poisoned responses using t-SNE (t-Distributed270

Stochastic Neighbor Embedding). It visualizes the271

mean activations across all layers for two LLMs,272

Mistral-7B and Llama2-7B, on the Natural Ques-273

tions dataset. This clearly demonstrates the distin-274

guishability between the two types of responses, to275

some extent, supports our conjecture.276

4 Methodology277

4.1 Approach Overview278

As illustrated in Fig. 3, we introduce RevPRAG,279

a pipeline designed to leverage LLM activations280

for detecting knowledge poisoning attacks in RAG281

systems. It contains three major modules: poi-282

soning data collection, activation collection and 283

preprocessing, and RevPRAG detection model de- 284

sign. Fig. 4 demonstrates a practical application 285

of RevPRAG for verifying the poisoning status of 286

LLM outputs. Given a user prompt such as “What 287

is the name of the highest mountain?”, the LLM 288

will provide a response. Meanwhile the activa- 289

tions generated by the LLM will be collected and 290

analyzed in RevPRAG. If the model classify the 291

activations as poisoned behavior, it will flag the cor- 292

responding response (such as "Fuji") as a poisoned 293

response. Otherwise, it will confirm the response 294

(e.g. "Everest") as the correct answer. 295

4.2 Poisoning Data Collection 296

Our method seeks to extract the LLM’s activations 297

that capture the model’s generation of a specific 298

poisoned response triggered by receiving poisoned 299

texts at a given point in time. Therefore, we first 300

need to implement poisoning attacks on RAG that 301

can mislead the LLM into generating target poi- 302

soned responses. There are three components in 303

RAG: knowledge database, retriever, and LLM. In 304

order to successfully carry out a poisoning attack 305

on RAG and compel the LLM to generate the tar- 306

geted poisoned response, the initial step is to craft 307

a sufficient amount of poisoned texts and inject 308

them into the knowledge database. In this paper, 309

in order to create effective poisoned texts for our 310

primary focus on detecting poisoning attacks, we 311

employ three state-of-the-art strategies (i.e., Poi- 312

sonedRAG (Zou et al., 2024), GARAG (Cho et al., 313

2024), and PAPRAG (Zhong et al., 2023)) for gen- 314

erating poisoned texts and increasing the similarity 315

1. Poisoning Data Collection

Knowledge
Database

Question:
What is the name of the highest
mountain?
Target Answer:
Fuji
Poisoned Text:
Among all mountains, Mount Fuji stands
the tallest, reaching the highest peak.

Inject

Activation Collection

LLM

Activation
Normalization

User Question:
What is the name of the highest
mountain?

Retrieval

User

Query

AnswerLLM

Prompt
Context: [...] Fuji stands the
tallest [...].
Question: What is the name of
the highest mountain?
Please generate a response for
the question based on the
context.

Generation

3. RevPRAG Model Design
Deep Architecture

Distance Calculate

Anchor

Negative

Positive

Fuji

Activations

Similarity
Score

Top most
relevant passages

Embedding
Vector

Encoder

Wikipedia

Collect

2. Activation Collection & Preprocessing

Figure 3: The workflow of RevPRAG.

4

User Question

What is the name of the
highest mountain?

Fuji

Answer

This is a poisoned
answer!

Everest

Answer

This is a correct
answer!

Retrieval LLM

Activations RevPRAG
Model

Figure 4: An instance of using RevPRAG.

between the poisoned texts and the queries, to raise316

the likelihood that the poisoned texts would be se-317

lected by the retriever. A detailed introduction of318

these methods can be found in Section A.2. The319

retrieved texts and the question are combined into320

a new prompt, following the format in (Zou et al.,321

2024) (see Fig. 6 in Section A.3), for LLM answer322

generation.323

4.3 Activation Collection and Processing324

For an LLM input sequence X = (t1, t2, · · · , tn),325

we extract the activations Actn for the last token xn326

in the input across all layers in the LLM as a sum-327

mary of the context. The activations Actn contain328

the inner representations of the LLM’s knowledge329

related to the input. When the LLM generates a330

response based on a question, it traverses through331

all layers, retrieving knowledge relevant to the in-332

put to produce an answer (Meng et al., 2023). We333

collect two types of activations: correct activations334

(labeled as 1), obtained when the LLM retrieves ac-335

curate content and generates the correct response;336

and poisoned activations (labeled as 0), obtained337

when the LLM retrieves poisoned content and pro-338

duces the attacker’s target response.339

We introduce normalization of the activations340

for effective integration into the training process.341

We calculate the mean µ and standard deviation σ342

of the activations across all instances in the dataset.343

Then, we use the obtained µ and σ to normalize the344

activations with the formula:345

Actnorn = (Actn − µ) /σ. (1)346

4.4 RevPRAG Model Design347

After collecting and preprocessing the activation348

dataset, we partition it into a training set Dtrain,349

a test set Dtest, and a support set S to facili-350

tate the construction and evaluation of the probe351

model. Drawing inspiration from few-shot learning352

and Siamese networks, the proposed RevPRAG353

model is designed to effectively distinguish be-354

tween clean and poisoned responses, while demon- 355

strating strong generalization capabilities even un- 356

der limited data conditions. To efficiently capture 357

both intra-layer and inter-layer relationships within 358

the LLM, we employ Convolutional Neural Net- 359

works (CNNs) based on the ResNet18 architec- 360

ture (He et al., 2016). Additionally, we adopt a 361

triplet network structure, in which three subnet- 362

works with shared architecture and weights are 363

used to learn task embeddings, as illustrated in 364

Fig. 3. 365

During training, we employ the triplet margin 366

loss (Schroff et al., 2015), a commonly used ap- 367

proach for tasks where it is difficult to distinguish 368

similar instances. The training data is randomly di- 369

vided into triplets consisting of an anchor instance 370

xa, a positive instance xp, and a negative instance 371

xn, where the anchor and positive belong to the 372

same class, while the anchor and negative come 373

from different classes. The triplet margin loss func- 374

tion is formally defined as: 375

L = max
(
Dist(xa, xp)− Dist(xa, xn) 376

+ margin, 0
)
, (2) 377

where Dist(·, ·) denotes a distance metric (typically 378

the Euclidean distance), and margin is a positive 379

constant. The training objective is to encourage 380

the RevPRAG embedding model to output closer 381

embedding vectors for any xa and xp, but farther 382

for any xa and xn. 383

At test time, given a test sample xt, we compute 384

the distance between its embedding and the em- 385

bedding of the support sample xs, xs ∈ S. The 386

support set S refers to a dataset comprising labeled 387

data, denoted as {xs1 , ..., xsn}, and corresponding 388

labels are
{
Txs1

, ..., Txsn

}
. It provides a reference 389

for comparison and classification of new, unseen 390

test data. The main purpose of the support set is to 391

help determine labels for the test data. The label 392

of the test data xt will be determined according to 393

the label of the support sample xs that is closest to 394

it. That is, xt is assigned the label of xs, meaning 395

Txt = Txs , where xs = argminiDist(xt, xsi). 396

Here, xs is the nearest support data to the test data 397

xt. 398

5 Evaluation 399

5.1 Experimental Setup 400

RAG Setup. RAG comprises three key compo- 401

nents: knowledge database, retriever, and LLM. 402

5

The setup is shown below:403

• Knowledge Database: We leverage three404

representative benchmark question-answering405

datasets in our evaluation: Natural Questions406

(NQ) (Kwiatkowski et al., 2019), HotpotQA (Yang407

et al., 2018), MS-MARCO (Bajaj et al., 2016).408

Please note that RevPRAG can be expanded to409

cover poisoning attacks towards any other datasets410

used for RAG systems, not limited to the datasets411

used in this paper. The detailed usage instructions412

for the dataset are provided in Section A.1.413

• Retriever: In our experiments, we evalu-414

ate four state-of-the-art dense retrieval models:415

Contriever (Izacard et al., 2021) (pre-trained),416

Contriever-ms (fine-tuned on MS-MARCO) (Izac-417

ard et al., 2021), DPR-mul (Karpukhin et al., 2020)418

(trained on multiple datasets), and ANCE (Xiong419

et al., 2020) (trained on MS-MARCO).420

• LLM: Our experiments are conducted on sev-421

eral popular LLMs, each with distinct architectures422

and characteristics, including GPT2-XL 1.5B (Rad-423

ford et al., 2019), Llama2-7B (Touvron et al., 2023),424

Llama2-13B, Mistral-7B (Jiang et al., 2023), and425

Llama3-8B.426

Unless otherwise specified, we adopt the follow-427

ing default settings: HotpotQA as the knowledge428

base, Contriever as the retriever, GPT2-XL 1.5B429

as the LLM, and 100 support samples. Moreover,430

we use the dot product between the embedding431

vectors of a question and a text to measure their432

similarity. Poisoned texts are generated following433

PoisonedRAG (Zou et al., 2024). Consistent with434

prior work (Lewis et al., 2020), we retrieve the 5435

most similar texts from the knowledge database to436

serve as context for a given question.437

Baselines. We compared RevPRAG with five ex-438

isting methods, and although they were not specif-439

ically designed for detecting RAG poisoning at-440

tacks, we investigated their potential applications 441

in this domain. CoS (Li et al., 2024) is a black- 442

box approach that guides the LLM to generate de- 443

tailed reasoning steps for the input, subsequently 444

scrutinizing the reasoning process to ensure con- 445

sistency with the final answer. MDP (Xi et al., 446

2024) is a white-box method that exploits the dis- 447

parity in masking sensitivity between poisoned and 448

clean samples. LLM Factoscope (He et al., 2024) 449

leverages the internal states of LLMs to detect hal- 450

lucinations, and we investigate its use for identi- 451

fying poisoning attacks in RAG systems. Both 452

RoBERTa (Pan et al., 2023) and Discern (Hong 453

et al., 2024) employ an additional discriminator to 454

distinguish whether the content retrieved by RAG 455

consists of accurate documents or those that con- 456

tradict factual information. 457

Evaluation Metrics. 458

We evaluate the effectiveness of our detection 459

method using two metrics: True Positive Rate 460

(TPR), which measures the proportion of poisoned 461

responses correctly identified, and False Positive 462

Rate (FPR), which reflects the proportion of be- 463

nign responses mistakenly flagged as poisoned. 464

These metrics are chosen to balance detection per- 465

formance with minimal disruption to RAG’s nor- 466

mal functionality. 467

5.2 Overall Results 468

RevPRAG achieves high TPRs and low FPRs. 469

Table 1 shows the TPRs and FPRs of RevPRAG 470

on three datasets. We have the following ob- 471

servations from the experimental results. First, 472

RevPRAG achieved high TPRs consistently on 473

different datasets and LLMs when injecting five 474

poisoned texts into the knowledge database. For in- 475

stance, RevPRAG achieved 98.5% (on NQ), 97.7% 476

(on HotpotQA), and 99.9% (on MS-MARCO) 477

Table 1: RevPRAG achieved high TPRs and low FPRs on three datasets for RAG with five different LLMs.

Dataset Metrics
LLMs of RAG

GPT2-XL
1.5B Llama2-7B Mistral-7B Llama3-8B Llama2-

13B

NQ
TPR 0.982 0.994 0.985 0.986 0.989

FPR 0.006 0.006 0.019 0.009 0.019

HotpotQA
TPR 0.972 0.985 0.977 0.973 0.970

FPR 0.016 0.061 0.022 0.017 0.070

MS-MARCO
TPR 0.988 0.989 0.999 0.978 0.993

FPR 0.007 0.012 0.001 0.011 0.025

6

Table 2: RevPRAG achieved high TPRs and low FPRs
on HotpotQA for RAG with four different retrievers.

Attack Metrics
LLMs of RAG

GPT2-XL
1.5B Llama2-7B Mistral-7B

Contriever
TPR 0.972 0.985 0.977

FPR 0.016 0.061 0.022

Contriever-ms
TPR 0.987 0.983 0.998

FPR 0.057 0.018 0.012

DPR-mul
TPR 0.979 0.966 0.999

FPR 0.035 0.075 0.001

ANCE
TPR 0.978 0.981 0.993

FPR 0.042 0.028 0.023

TPRs for RAG with Mistral-7B. Our experimental478

results show that assessing whether the output of479

a RAG system is correct or poisoned based on the480

activations of LLMs is both highly feasible and481

reliable (i.e., capable of achieving exceptional ac-482

curacy). Second, RevPRAG achieves low FPRs483

under different settings, e.g., close to 1% in nearly484

all cases. This result indicates that our approach485

not only maximizes the detection of poisoned re-486

sponses but also maintains a low false positive487

rate, significantly reducing the risk of misclassi-488

fying correct answers as poisoned. Additionally,489

in Section B.2, we conduct generalization experi-490

ments to evaluate RevPRAG’s performance under491

distribution shifts between training and testing data.492

Section B.3 analyzes its effectiveness in handling493

complex queries. In Section B.4, we assess its per-494

formance when training and testing are limited to495

partial layer activations.496

We also conduct experiments on different re-497

trievers. Table 2 shows that our approach consis-498

tently achieved high TPRs and low FPRs across499

RAG with various retrievers and LLMs. For 500

instance, RevPRAG achieves 97.2% (with Con- 501

triever), 98.7% (with Contriever-ms), 97.9% (with 502

DPR-mul), 97.8% (with ANCE) TPRs alongside 503

1.6% (with Contriever), 5.7% (with Contriever-ms), 504

3.5% (with DPR-mul), and 4.2% (with ANCE) 505

FPRs for RAG when using GPT2-XL 1.5B. 506

RevPRAG outperforms baselines. Table 3 507

compares RevPRAG with baselines for RAG using 508

Llama3-8B under the default settings. The overall 509

results demonstrate the superiority of our approach. 510

Meanwhile, several key observations can be drawn 511

from the comparison. First, the limited effective- 512

ness of CoS (Li et al., 2024) may stem from its de- 513

sign focus on detecting backdoor attacks in LLMs 514

via trigger-to-output shortcuts, which differs from 515

RAG’s attack surface involving poisoned knowl- 516

edge base entries. Second, MDP (Xi et al., 2024) 517

achieves good TPRs, but it also exhibits relatively 518

high FPRs, reaching as much as 37.2%. LLM Fac- 519

toscope (He et al., 2024) leverages multiple internal 520

states of LLMs, relying on layer-wise consistency 521

for effective hallucination detection. However, it 522

may not be suitable for targeted attacks like poi- 523

soning, and the use of diverse state data increases 524

computational overhead and discriminator model 525

complexity (Section B.8). Input-based methods 526

such as MDP (Xi et al., 2024), RoBERTa (Pan 527

et al., 2023), and Discern (Hong et al., 2024) aim 528

to detect whether the input is poisoned. In contrast, 529

our method focuses on determining whether the 530

responses generated by RAG are correct or poi- 531

soned, as response correctness offers a more robust 532

signal of poisoning attacks. Furthermore, in sec- 533

tion B.6, we further analyze RevPRAG’s ability to 534

distinguish between poisoned responses and hallu- 535

cinations. 536

Table 3: RevPRAG outperforms baselines.

Dataset Metrics
Baselines and Our Method

CoS (Li et al.,
2024)

MDP (Xi
et al., 2024)

LLM Facto-
scope (He

et al., 2024)

RoBERTa (Pan
et al., 2023)

Discern (Hong
et al., 2024) Ours

NQ
TPR 0.488 0.946 0.949 0.977 0.810 0.986

FPR 0.146 0.108 0.033 0.063 0.112 0.009

HotpotQA
TPR 0.194 0.886 0.939 0.956 0.817 0.973

FPR 0.250 0.372 0.021 0.018 0.101 0.017

MS-MARCO
TPR 0.771 0.986 0.945 0.946 0.795 0.978

FPR 0.027 0.181 0.028 0.070 0.101 0.011

7

Table 4: The TPRs and FPRs of RevPRAG for different
poisoned text generation methods on HotpotQA.

Attack Metrics
LLMs of RAG

GPT2-XL
1.5B Llama2-7B Mistral-7B

PoisonedRAG
TPR 0.972 0.985 0.977

FPR 0.016 0.061 0.022

GARAG
TPR 0.961 0.976 0.974

FPR 0.025 0.046 0.026

PRCAP
TPR 0.966 0.986 0.965

FPR 0.012 0.061 0.022

5.3 Ablation Study537

Different methods for generating poisoned texts.538

To ensure the effectiveness of the evaluation, we539

employ three different methods introduced by Poi-540

sonedRAG, GARAG, and PRCAP to generate the541

poisoned texts. The experimental results in Table 4542

show that RevPRAG consistently achieves high543

TPRs and low FPRs when confronted with poi-544

soned texts generated by different strategies. For545

instance, RevPRAG achieved 97.2% (with GPT2-546

XL 1.5B), 98.5% (with Llama2-7B), and 97.7%547

(with Mistral-7B) TPRs for poisoned texts gener-548

ated with PoisonedRAG.549

Table 5: The TPRs and FPRs of RevPRAG for different
quantities of injected poisoned text on HotpotQA (total
retrieved texts: five).

Quantity Metrics
LLMs of RAG

GPT2-XL
1.5B Llama2-7B Mistral-7B

five
TPR 0.972 0.985 0.977

FPR 0.016 0.061 0.022

four
TPR 0.976 0.977 0.986

FPR 0.034 0.047 0.033

three
TPR 0.963 0.986 0.995

FPR 0.011 0.043 0.004

two
TPR 0.971 0.995 0.991

FPR 0.011 0.047 0.005

one
TPR 0.970 0.988 0.989

FPR 0.049 0.031 0.022

Quantity of injected poisoned texts. Ta-550

ble 5 illustrates the impact of varying quantities551

of poisoned text on the detection performance552

of RevPRAG. The more poisoned texts are in-553

jected, the higher the likelihood of retrieving them554

for RAG processing. From the experimental re-555

sults, we observe that even with varying amounts 556

of injected poisoned text, RevPRAG consistently 557

achieves high TPRs and low FPRs. For example, 558

when the total number of retrieved texts is five and 559

the injected quantity is two, RevPRAG achieves a 560

99.5% TPR and a 4.7% FPR for RAG with Llama2- 561

7B. The reason for this phenomenon is that the 562

similarity between the retrieved poisoned texts and 563

the query is higher than that of clean texts. Conse- 564

quently, the LLM generates responses based on the 565

content of the poisoned texts. 566

Effects of different support set size. In 567

RevPRAG, support data provides essential labeled 568

and task-specific information, facilitating effective 569

reasoning and learning under limited data condi- 570

tions. We experiment with various support set sizes 571

ranging from 50 to 250 to examine their effect 572

on the performance of RevPRAG. The results in 573

Fig. 5 indicate that varying the support size does 574

not significantly impact the model’s detection per- 575

formance. In addition, Section B.5 further explores 576

the impact of different similarity metrics on the 577

performance of RevPRAG. 578

Figure 5: Effects of support set size.

6 Conclusion 579

In this work, we find that correct and poisoned re- 580

sponses in RAG exhibit distinct differences in LLM 581

activations. Building on this insight, we develop 582

RevPRAG, a detection pipeline that leverages these 583

activations to identify poisoned responses in RAG 584

caused by the injection of malicious texts into the 585

knowledge database. Our approach demonstrates 586

robust performance across RAGs utilizing five dif- 587

ferent LLMs and four distinct retrievers on three 588

datasets. Experimental results show that RevPRAG 589

achieves exceptional accuracy, with true positive 590

rates approaching 98% and false positive rates near 591

1%. Ablation studies further validate its effective- 592

ness in detecting poisoned responses across differ- 593

ent types and levels of poisoning attacks. Overall, 594

our approach can accurately distinguish between 595

correct and poisoned responses. 596

8

Limitations.597

Our work has the following limitations:598

• This work does not propose a specific method599

for defending against poisoning attacks on600

RAG. Instead, our focus is on the timely de-601

tection of poisoned responses generated by602

the LLM, aiming to prevent potential harm to603

users from such attacks.604

• Our approach requires accessing the activa-605

tions of the LLM, which necessitates the606

LLM being a white-box model. While this607

may present certain limitations for users, our608

method can be widely adopted by LLM ser-609

vice providers. Providers can implement our610

strategy to ensure the reliability of their ser-611

vices and enhance trust with their users.612

• Our approach primarily focuses on determin-613

ing whether the response generated by the614

RAG is correct or poisoned, without delving615

into more granular distinctions. The main goal616

of our study is to protect users from the im-617

pact of RAG poisoning attacks, while more618

detailed classifications of RAG responses will619

be addressed in future work.620

Ethics Statement621

The goal of this work is to detect whether a622

RAG has generated a poisoned response. All the623

data used in this study is publicly available, so it624

does not introduce additional privacy concerns. All625

source code and software will be made open-source.626

While the open-source nature of the code may lead627

to adaptive attacks, we can further enhance our628

model by incorporating more internal and external629

information. Overall, we believe our approach can630

further promote the secure application of RAG.631

References632

Sahar Abdelnabi, Aideen Fay, Giovanni Cherubin,633
Ahmed Salem, Mario Fritz, and Andrew Paverd.634
2024. Are you still on track!? catching llm task drift635
with activations. arXiv preprint arXiv:2406.00799.636

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and637
Hannaneh Hajishirzi. 2023. Self-rag: Learning to638
retrieve, generate, and critique through self-reflection.639
arXiv preprint arXiv:2310.11511.640

Anish Athalye, Nicholas Carlini, and David Wagner.641
2018. Obfuscated gradients give a false sense of se-642
curity: Circumventing defenses to adversarial exam-643
ples. In International conference on machine learn-644
ing, pages 274–283. PMLR.645

Jinheon Baek, Soyeong Jeong, Minki Kang, Jong C 646
Park, and Sung Hwang. 2023. Knowledge- 647
augmented language model verification. In Proceed- 648
ings of the 2023 Conference on Empirical Methods 649
in Natural Language Processing, pages 1720–1736. 650

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, 651
Jianfeng Gao, Xiaodong Liu, Rangan Majumder, An- 652
drew McNamara, Bhaskar Mitra, Tri Nguyen, and 653
1 others. 2016. Ms marco: A human generated ma- 654
chine reading comprehension dataset. arXiv preprint 655
arXiv:1611.09268. 656

Oliver Bryniarski, Nabeel Hingun, Pedro Pachuca, Vin- 657
cent Wang, and Nicholas Carlini. 2021. Evading 658
adversarial example detection defenses with orthog- 659
onal projected gradient descent. arXiv preprint 660
arXiv:2106.15023. 661

Nicholas Carlini. 2023. A llm assisted exploitation of 662
ai-guardian. arXiv preprint arXiv:2307.15008. 663

Nicholas Carlini and David Wagner. 2017. Adver- 664
sarial examples are not easily detected: Bypassing 665
ten detection methods. In Proceedings of the 10th 666
ACM workshop on artificial intelligence and security, 667
pages 3–14. 668

Sukmin Cho, Soyeong Jeong, Jeongyeon Seo, Taeho 669
Hwang, and Jong C Park. 2024. Typos that broke the 670
rag’s back: Genetic attack on rag pipeline by simulat- 671
ing documents in the wild via low-level perturbations. 672
arXiv preprint arXiv:2404.13948. 673

Sukmin Cho, Jeongyeon Seo, Soyeong Jeong, and 674
Jong C Park. 2023. Improving zero-shot reader by 675
reducing distractions from irrelevant documents in 676
open-domain question answering. In Findings of the 677
Association for Computational Linguistics: EMNLP 678
2023, pages 3145–3157. 679

Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and 680
Marta R Costa-jussà. 2024. A primer on the in- 681
ner workings of transformer-based language models. 682
arXiv preprint arXiv:2405.00208. 683

Kai Greshake, Sahar Abdelnabi, Shailesh Mishra, 684
Christoph Endres, Thorsten Holz, and Mario Fritz. 685
2023. Not what you’ve signed up for: Compromis- 686
ing real-world llm-integrated applications with indi- 687
rect prompt injection. In Proceedings of the 16th 688
ACM Workshop on Artificial Intelligence and Secu- 689
rity, pages 79–90. 690

Jinwen He, Yujia Gong, Zijin Lin, Yue Zhao, Kai Chen, 691
and 1 others. 2024. Llm factoscope: Uncovering 692
llms’ factual discernment through measuring inner 693
states. In Findings of the Association for Computa- 694
tional Linguistics ACL 2024, pages 10218–10230. 695

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian 696
Sun. 2016. Deep residual learning for image recog- 697
nition. In Proceedings of the IEEE conference on 698
computer vision and pattern recognition, pages 770– 699
778. 700

9

Giwon Hong, Jeonghwan Kim, Junmo Kang, Sung-701
Hyon Myaeng, and Joyce Whang. 2024. Why702
so gullible? enhancing the robustness of retrieval-703
augmented models against counterfactual noise. In704
Findings of the Association for Computational Lin-705
guistics: NAACL 2024, pages 2474–2495.706

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-707
bastian Riedel, Piotr Bojanowski, Armand Joulin,708
and Edouard Grave. 2021. Unsupervised dense in-709
formation retrieval with contrastive learning. arXiv710
preprint arXiv:2112.09118.711

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju712
Hwang, and Jong C Park. 2024. Adaptive-rag: Learn-713
ing to adapt retrieval-augmented large language mod-714
els through question complexity. In Proceedings of715
the 2024 Conference of the North American Chap-716
ter of the Association for Computational Linguistics:717
Human Language Technologies (Volume 1: Long Pa-718
pers), pages 7029–7043.719

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-720
sch, Chris Bamford, Devendra Singh Chaplot, Diego721
de las Casas, Florian Bressand, Gianna Lengyel, Guil-722
laume Lample, Lucile Saulnier, and 1 others. 2023.723
Mistral 7b. arXiv preprint arXiv:2310.06825.724

Ruochen Jiao, Shaoyuan Xie, Justin Yue, Takami Sato,725
Lixu Wang, Yixuan Wang, Qi Alfred Chen, and726
Qi Zhu. 2024. Exploring backdoor attacks against727
large language model-based decision making. arXiv728
preprint arXiv:2405.20774.729

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick730
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and731
Wen Tau Yih. 2020. Dense passage retrieval for open-732
domain question answering. In 2020 Conference on733
Empirical Methods in Natural Language Processing,734
EMNLP 2020, pages 6769–6781.735

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-736
field, Michael Collins, Ankur Parikh, Chris Alberti,737
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-738
ton Lee, and 1 others. 2019. Natural questions: a739
benchmark for question answering research. Trans-740
actions of the Association for Computational Linguis-741
tics, 7:453–466.742

Angeliki Lazaridou, Elena Gribovskaya, Wojciech743
Stokowiec, and Nikolai Grigorev. 2022. Internet-744
augmented language models through few-shot745
prompting for open-domain question answering.746
arXiv preprint arXiv:2203.05115.747

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio748
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-749
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-750
täschel, and 1 others. 2020. Retrieval-augmented751
generation for knowledge-intensive nlp tasks. Ad-752
vances in Neural Information Processing Systems,753
33:9459–9474.754

Xi Li, Yusen Zhang, Renze Lou, Chen Wu, and Jiaqi755
Wang. 2024. Chain-of-scrutiny: Detecting backdoor756
attacks for large language models. arXiv preprint757
arXiv:2406.05948.758

Lefteris Loukas, Ilias Stogiannidis, Odysseas Dia- 759
mantopoulos, Prodromos Malakasiotis, and Stavros 760
Vassos. 2023. Making llms worth every penny: 761
Resource-limited text classification in banking. In 762
Proceedings of the Fourth ACM International Con- 763
ference on AI in Finance, pages 392–400. 764

Kevin Meng, Arnab Sen Sharma, Alex J Andonian, 765
Yonatan Belinkov, and David Bau. 2023. Mass- 766
editing memory in a transformer. In The Eleventh 767
International Conference on Learning Representa- 768
tions. 769

Yikang Pan, Liangming Pan, Wenhu Chen, Preslav 770
Nakov, Min-Yen Kan, and William Wang. 2023. On 771
the risk of misinformation pollution with large lan- 772
guage models. In Findings of the Association for 773
Computational Linguistics: EMNLP 2023, pages 774
1389–1403. 775

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, 776
Noah A Smith, and Mike Lewis. 2023. Measuring 777
and narrowing the compositionality gap in language 778
models. In Findings of the Association for Computa- 779
tional Linguistics: EMNLP 2023, pages 5687–5711. 780

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 781
Dario Amodei, Ilya Sutskever, and 1 others. 2019. 782
Language models are unsupervised multitask learn- 783
ers. OpenAI blog, 1(8):9. 784

Florian Schroff, Dmitry Kalenichenko, and James 785
Philbin. 2015. Facenet: A unified embedding for 786
face recognition and clustering. In Proceedings of 787
the IEEE conference on computer vision and pattern 788
recognition, pages 815–823. 789

Ian Soboroff, Shudong Huang, and Donna Harman. 790
2018. Trec 2018 news track overview. In TREC, 791
volume 409, page 410. 792

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab- 793
hishek Srivastava, and Iryna Gurevych. 2021. Beir: 794
A heterogenous benchmark for zero-shot evalua- 795
tion of information retrieval models. arXiv preprint 796
arXiv:2104.08663. 797

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 798
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 799
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 800
Azhar, and 1 others. 2023. Llama: Open and effi- 801
cient foundation language models. arXiv preprint 802
arXiv:2302.13971. 803

Florian Tramer, Nicholas Carlini, Wieland Brendel, and 804
Aleksander Madry. 2020. On adaptive attacks to 805
adversarial example defenses. Advances in neural 806
information processing systems, 33:1633–1645. 807

Zhepei Wei, Wei-Lin Chen, and Yu Meng. 2024. 808
Instructrag: Instructing retrieval-augmented gen- 809
eration with explicit denoising. arXiv preprint 810
arXiv:2406.13629. 811

10

Zhaohan Xi, Tianyu Du, Changjiang Li, Ren Pang,812
Shouling Ji, Jinghui Chen, Fenglong Ma, and Ting813
Wang. 2024. Defending pre-trained language models814
as few-shot learners against backdoor attacks. Ad-815
vances in Neural Information Processing Systems,816
36.817

Chong Xiang, Tong Wu, Zexuan Zhong, David Wagner,818
Danqi Chen, and Prateek Mittal. 2024. Certifiably819
robust rag against retrieval corruption. arXiv preprint820
arXiv:2405.15556.821

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,822
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold823
Overwijk. 2020. Approximate nearest neighbor neg-824
ative contrastive learning for dense text retrieval.825
arXiv preprint arXiv:2007.00808.826

Jiaqi Xue, Mengxin Zheng, Yebowen Hu, Fei Liu, Xun827
Chen, and Qian Lou. 2024. Badrag: Identifying vul-828
nerabilities in retrieval augmented generation of large829
language models. arXiv preprint arXiv:2406.00083.830

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei831
Liu. 2024. Generalized out-of-distribution detection:832
A survey. International Journal of Computer Vision,833
pages 1–28.834

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,835
William Cohen, Ruslan Salakhutdinov, and Christo-836
pher D Manning. 2018. Hotpotqa: A dataset for837
diverse, explainable multi-hop question answering.838
In Proceedings of the 2018 Conference on Empiri-839
cal Methods in Natural Language Processing, pages840
2369–2380.841

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan842
Berant. 2023. Making retrieval-augmented language843
models robust to irrelevant context. arXiv preprint844
arXiv:2310.01558.845

Zexuan Zhong, Ziqing Huang, Alexander Wettig, and846
Danqi Chen. 2023. Poisoning retrieval corpora by in-847
jecting adversarial passages. In 2023 Conference on848
Empirical Methods in Natural Language Processing,849
EMNLP 2023, pages 13764–13775.850

Wei Zou, Runpeng Geng, Binghui Wang, and Jinyuan851
Jia. 2024. Poisonedrag: Knowledge corruption at-852
tacks to retrieval-augmented generation of large lan-853
guage models. arXiv preprint arXiv:2402.07867.854

A Training Details855

A.1 Dataset.856

As shown in Table 6, we present the average re-857

sponse lengths for both poisoned and correct an-858

swers generated by GPT2-XL across three datasets859

(NQ, HotpotQA, and MS-MARCO), along with860

examples illustrating each answer format for a spe-861

cific question. To evaluate the detection of poi-862

soning attacks on the knowledge base of RAG, we863

selected 3,000 instances of triples (q, t, a) from864

each of the three evaluation datasets mentioned 865

above. In each triple, q denotes a question, t repre- 866

sents the supporting text collected from Wikipedia 867

or web documents corresponding to q, and a is the 868

correct answer to q, generated using the state-of- 869

the-art GPT-4 model. Among these 3,000 triplets, 870

1,500 are randomly selected as benign instances, 871

while the remaining 1,500 are designated as poi- 872

soned instances. For each poisoned instance, the 873

poisoned answer ap is generated by GPT-4 for 874

the given question q, and the poisoned text tp is 875

crafted using existing poisoning strategies, includ- 876

ing PoisonedRAG (Zou et al., 2024), GARAG (Cho 877

et al., 2024), and PRCAP (Zhong et al., 2023). The 878

dataset is split into 70% for training, 20% for test- 879

ing, and 10% as a support set. Within the training 880

set, samples are randomly grouped into triplets 881

(anchor, positive, negative), where the anchor and 882

positive belong to the same class, and the negative 883

belongs to a different class. 884

A.2 Poisoned Texts Generation. 885

To ensure that the retrieved poisoned texts success- 886

fully achieve the poisoning effect, we employ three 887

existing methods PoisonedRAG (Zou et al., 2024), 888

GARAG (Cho et al., 2024), and PRCAP (Zhong 889

et al., 2023) to generate the poisoned texts. In the 890

PoisonedRAG (Zou et al., 2024) method, the at- 891

tacker first selects a target question along with its 892

corresponding incorrect answer. The attacker then 893

optimizes the design of the poisoned text to ensure 894

that it meets two key criteria: (1) retrievability by 895

the retriever and (2) effectiveness in misleading the 896

language model to generate the incorrect answer. 897

GARAG (Cho et al., 2024) is a novel adversarial 898

attack algorithm that generates adversarial docu- 899

ments by subtly perturbing clean ones while pre- 900

serving answer tokens. Through iterative crossover, 901

mutation, and selection, it optimizes the documents 902

to maximize adversarial effectiveness within the 903

defined search space. PRCAP (Zhong et al., 2023) 904

is a gradient-based method, which starts from a 905

natural-language passage and iteratively perturbs it 906

in the discrete token space to maximize its similar- 907

ity to a set of training queries. 908

It is worth noting that the generation methods 909

for poisoned texts are not fixed; we can adopt any 910

approach that successfully achieves the poisoning 911

effect. Once the activations of both correct and poi- 912

soned responses are obtained, we preprocess them 913

and use them for training and testing the RevPRAG 914

model. This enables the model to effectively dis- 915

11

Table 6: Statistical data and format of the responses.

Dataset Average Word Count
of Response

An Example of Response

NQ Poisoned Response: 7
Correct Response: 12

Question: where is the food stored in a yam plant?
Poisoned Response: In the leaves.
Correct Response: In the tuber.

HotpotQA Poisoned Response: 8
Correct Response: 11

Question: Which actor starred in Assignment to Kill
and passed away in 2000?
Poisoned Response: Patrick O’Neal.
Correct Response: John Gielgud.

MS-MARCO Poisoned Response: 16
Correct Response: 24

Question: what is hardie plank?
Poisoned Response: Hardie plank is a wood flooring
option that is used for a variety of home styles.
Correct Response: Hardie Plank is a brand of fiber
cement siding.

tinguish between correct and poisoned responses916

generated by RAG based on activations.917

A.3 Prompt.918

The following is the system prompt for RAG, in-919

structing an LLM to produce a response based on920

the provided context:921

You are a helpful assistant. The user has provided a query
along with relevant context information. Use this context
to answer the question briefly and clearly. If you cannot
find the answer to the question, respond with "I don’t
know."
Contexts: [context]
Query: [question]
Answer:

Figure 6: The prompt used in RAG to make an LLM
generate an answer based on the retrieved texts.

A.4 Environment.922

We conduct experiments on a server with 64 AMD923

EPYC 9654 CPUs (64 logical cores enabled) at924

2.40–3.70 GHz, 512 GB of DDR5 RAM (assumed925

based on high-core-count server standards), and926

four NVIDIA RTX A6000 GPUs, each with 48 GB927

GDDR6 memory.928

B Additional Experimental Results929

B.1 ROC Curve.930

Figure 7: ROC curves of RevPRAG on NQ and Hot-
potQA datasets.

We present the ROC curves of RevPRAG on the 931

NQ and HotpotQA datasets under the default ex- 932

perimental setting with GPT2-XL as the LLM, as 933

shown in Fig. 7. 934

B.2 Generalization. 935

Given the wide range of RAG application scenar- 936

ios and the diverse user requirements it faces, it is 937

impractical to ensure that our detection model has 938

been trained on all possible scenarios and queries in 939

real-world applications. However, the performance 940

of neural network models largely depends on the 941

similarity between the distributions of the training 942

data and the test data (Yang et al., 2024). Con- 943

sequently, our model’s performance may degrade 944

when faced with training and test data that stem 945

from differing distributions, a challenge frequently 946

observed in real-world scenarios. 947

To address this issue, we conduct two types of 948

experiments. The first involves using the Poisone- 949

dRAG (Zou et al., 2024) method to generate poi- 950

12

Table 7: Generalization performance of RevPRAG for RAG with four different LLMs. The training and test datasets
vary across different rows. Abbreviations: Hot (HotpotQA), MS (MS-MARCO).

Training Dataset Test Dataset Metrics
LLMs of RAG

GPT2-XL
1.5B Llama2-7B Mistral-7B Llama3-8B

NQ & Hot MS
TPR 0.881 0.886 0.948 0.956

FPR 0.134 0.149 0.076 0.066

Hot & MS NQ
TPR 0.980 0.983 0.988 0.980

FPR 0.007 0.074 0.078 0.038

NQ & MS Hot
TPR 0.977 0.961 0.942 0.978

FPR 0.025 0.089 0.055 0.049

NQ & Hot & MS NQ & Hot & MS
TPR 0.986 0.994 0.985 0.987

FPR 0.032 0.007 0.009 0.035

soned texts, but with different datasets for training951

and testing. Specifically, we train the detection952

model using any two datasets and test it on a third953

dataset that was not used during training. For exam-954

ple, we use NQ and HotpotQA as training datasets955

and MS-MARCO as the testing dataset. Although956

these three datasets are all QA datasets, they exhibit957

significant differences. For example, NQ focuses958

on extracting answers to factual questions from a959

single long document, HotpotQA involves multi-960

document reasoning to derive answers, and MS-961

MARCO retrieves and ranks relevant answers from962

a large-scale collection of documents. Therefore,963

conducting generalization experiments based on964

these three datasets is reasonable. The second type965

of experiment uses a single dataset (NQ) for both966

training and testing. However, the poisoned texts967

used for training and testing are generated using dif-968

ferent methods. For example, in our experiments,969

the training data is poisoned using GARAG (Cho970

et al., 2024) and PRCAP (Zhong et al., 2023), while 971

the poisoned texts in the test set are generated using 972

PoisonedRAG (Zou et al., 2024). 973

Table 7 illustrates the TPRs and FPRs of 974

RevPRAG under distribution shifts across datasets. 975

Overall, the experimental results demonstrate that 976

our detection model exhibits strong generalization 977

performance across RAG with different LLMs and 978

various datasets. For example, when using Hot- 979

potQA and MS-MARCO as training data, the de- 980

tection model achieves TPRs of 98% (with GPT2- 981

XL 1.5B), 98.3% (with Llama2-7B), 98.8% (with 982

Mistral-7B), and 98% (with Llama3-8B) on the NQ 983

dataset. Meanwhile, all FPRs remain below 8%. 984

Furthermore, we observe that the generalization 985

performance is best when NQ is used as the test 986

data (for instance, 98.3% with Llama2-7B), while 987

MS-MARCO shows the poorest performance (for 988

instance, 88.6% with Llama2-7B). We attribute this 989

to the fact that the questions and tasks in HotpotQA 990

Table 8: Generalization performance of RevPRAG when training and test sets use different poisoning strategies

Training Dataset Test Dataset Metrics
LLMs of RAG

GPT2-XL
1.5B Llama2-7B Mistral-7B Llama3-8B

GARAG & RCAP PoinsonedRAG
TPR 0.966 0.970 0.988 0.982

FPR 0.051 0.024 0.015 0.021

PoinsonedRAG & RCAP GARAG
TPR 0.959 0.963 0.971 0.973

FPR 0.017 0.045 0.038 0.014

GARAG & PoinsonedRAG RCAP
TPR 0.957 0.971 0.984 0.956

FPR 0.046 0.038 0.025 0.019

13

Table 9: RevPRAG achieved high TPRs and low FPRs
on the open-ended questions from HotpotQA and MS-
MARCO datasets.

Dataset Metrics
LLMs of RAG

GPT2-XL
1.5B Llama2-7B Mistral-7B Llama3-8B

HotpotQA
TPR 0.982 0.995 0.991 0.982

FPR 0.033 0.029 0.008 0.007

MS-MARCO
TPR 0.988 0.989 0.990 0.983

FPR 0.009 0.009 0.001 0.017

and MS-MARCO are more complex compared to991

those in NQ. Therefore, detection models trained992

on more complex tasks generalize well to simpler993

tasks, whereas the reverse is more challenging. In994

conclusion, these experimental results highlight995

that RevPRAG exhibits strong generalization and996

robust detection performance, even in the presence997

of significant discrepancies between the training998

and test datasets.999

Table 8 presents the performance of RevPRAG1000

when poisoned texts in the training and test sets1001

are generated using different methods. The results1002

show that even under such distributional shifts,1003

RevPRAG consistently achieves high TPR and1004

low FPR. For instance, when GARAG and Poi-1005

sonedRAG are used to generate poisoned texts for1006

training and RCAP is used for testing, RevPRAG1007

achieves a TPR of 0.984 and an FPR of 0.025 with1008

Mistral-7B as the LLM, demonstrating its strong1009

generalization ability in out-of-distribution scenar-1010

ios.1011

B.3 RevPRAG’s Performance on Complex1012

Open-Ended Questions.1013

In this section, we conducted a series of experi-1014

ments to evaluate the performance of RevPRAG1015

on complex, open-ended questions (e.g., “how to1016

make relationship last?”). These questions present1017

unique challenges due to their diverse and un-1018

structured nature, in contrast to straightforward,1019

closed-ended questions (e.g., “What is the name of1020

the highest mountain?”). In our experiments, the1021

NQ, HotpotQA, and MS-MARCO datasets primar-1022

ily consist of close-ended questions. As a result,1023

the majority of our previous experiments focused1024

on close-ended problems, which was our default1025

experimental setting. In this study, we utilized1026

the advanced GPT-4o to filter and extract 3,0001027

open-ended questions from the HotpotQA and MS-1028

MARCO datasets for training and testing the model.1029

For open-ended questions, cosine similarity is em-1030

ployed to evaluate whether the LLM’s response 1031

aligns with the attacker’s target response. If the 1032

similarity surpasses a predefined threshold, it is 1033

considered indicative of a successful poisoning at- 1034

tack. 1035

The experimental results are shown in Table 9. 1036

We can observe that RevPRAG demonstrates excel- 1037

lent detection performance even on complex open- 1038

ended questions. For example, RevPRAG achieved 1039

TPRs of 99.1% on HotpotQA and 99.0% on MS- 1040

MARCO, alongside FPRs of 0.8% on HotpotQA 1041

and 0.1% on MS-MARCO for RAG utilizing the 1042

Mistral-7B model. 1043

B.4 Activations from Specified Layers. 1044

Fig. 8 illustrates the detection performance of 1045

RevPRAG using activations from different layers 1046

of various LLMs. In previously presented exper- 1047

iments, we utilize activations from all layers as 1048

both training and testing data, yielding excellent 1049

results. Additionally, we also test using different 1050

layers. The experimental results in Fig. 8 demon- 1051

strate that utilizing activations from only the first 1052

few layers can still achieve satisfactory detection 1053

performance, providing valuable insights for fu- 1054

ture research. For example, when using activations 1055

from layers 0 to 5, RevPRAG achieved TPRs ex- 1056

ceeding 97% while maintaining FPRs below 7% for 1057

RAG with all LLMs on HotpotQA. However, the 1058

experimental results also suggest that using activa- 1059

tions from intermediate or deeper layers can lead to 1060

performance fluctuations, including signs of degra- 1061

dation or slower convergence. For instance, when 1062

using activations from layers 16 to 24 with Llama3- 1063

8B as the LLM in RAG, RevPRAG achieves a TPR 1064

of 78.8% on NQ dataset and 86% on MS-MARCO 1065

dataset. 1066

We further explored the use of activations from 1067

a specific individual layer of the LLMs to train and 1068

test RevPRAG. We chose 8 layers with roughly 1069

even spacing for testing. As shown in Table 10, 1070

when using activations from only a specific layer 1071

of the GPT2-XL model, RevPRAG demonstrates 1072

excellent performance in general. For instance, 1073

when the model is trained using activations from 1074

layer 0 on the NQ dataset, the TPR can reach as 1075

high as 99.6%. However, we also observed that 1076

activations from certain layers do not yield satisfac- 1077

tory performance. For example, when the model 1078

is trained using activations from layer 29 on the 1079

HotpotQA dataset, the TPR is only 52%, while the 1080

14

(a) TPRs of RevPRAG.

(b) FPRs of RevPRAG.

Figure 8: RevPRAG trained on the activations from specific layers.

Table 10: RevPRAG trained on the activations from specific individual layers of GPT2-XL 1.5B.

Dataset Metrics
Different layers

layer 0 layer 8 layer 15 layer 22 layer 29 layer 36 layer 41 layer 47

NQ
TPR 0.996 0.988 0.996 0.984 0.996 0.988 0.992 0.996

FPR 0.027 0.007 0.017 0.003 0.007 0.003 0.017 0.003

HotpotQA
TPR 0.713 0.984 0.994 0.989 0.520 0.619 0.931 0.992

FPR 0.409 0.023 0.012 0.006 0.445 0.409 0.023 0.019

MS-MARCO
TPR 0.967 0.998 0.988 0.986 0.988 0.963 0.955 0.992

FPR 0.023 0.004 0.002 0.019 0.030 0.026 0.037 0.017

FPR reaches 44.5%. It is precisely due to the exis-1081

tence of these suboptimal layers that models trained1082

with multi-layer activations may not always outper-1083

form those using single-layer activations (such as1084

layer 0 with NQ dataset). However, incorporating1085

multi-layer activations can enhance the model’s sta-1086

bility, mitigating the detrimental effects of these1087

suboptimal layers.1088

B.5 Impact of Similarity Metric.1089

Different methods for calculating similarity be-1090

tween embedding vectors of queries and texts in1091

the knowledge database may lead to varying poi-1092

soning effects and distinct LLM activations. There-1093

fore, it is crucial to conduct ablation experiments1094

using various similarity metrics. Table 11 shows1095

the results on the HotpotQA dataset, indicating1096

Table 11: Impact of similarity metric.

Similarity Metric Metrics
LLMs of RAG

GPT2-XL
1.5B Llama2-7B Mistral-7B Llama3-8B

Dot Product
TPR 0.972 0.985 0.977 0.973

FPR 0.016 0.061 0.022 0.017

Cosine
TPR 0.978 0.990 0.979 0.981

FPR 0.037 0.011 0.023 0.043

that the choice of similarity calculation method 1097

has minimal impact on RevPRAG’s performance, 1098

which consistently achieves high TPR and low FPR. 1099

For example, in the RAG system with Llama2-7B, 1100

when employing dot product and cosine similar- 1101

ity as the similarity measures, the achieved TPRs 1102

are 98.5% and 99%, while the FPRs are 6.1% and 1103

2.3%, respectively. This suggests the robustness 1104

15

Figure 9: t-SNE visualizations of activations for poi-
soned responses and hallucinations.

Table 12: RevPRAG could achieve high TPRs and low
FPRs to distinguish poisoned responses and hallucina-
tions.

Dataset Metrics
LLMs of RAG

GPT2-XL
1.5B Llama2-7B Mistral-7B Llama3-8B

NQ
TPR 0.987 0.983 0.993 0.995

FPR 0.046 0.017 0.069 0.008

HotpotQA
TPR 0.975 0.978 0.991 0.995

FPR 0.004 0.058 0.004 0.008

MS-MARCO
TPR 0.973 0.984 0.999 0.989

FPR 0.009 0.023 0.001 0.006

of our approach, as it reliably identifies poisoned1105

texts even when LLM activations vary slightly un-1106

der similar conditions.1107

B.6 Isolating Poisoned Responses and1108

Hallucinations.1109

It is well-known that hallucinations are an in-1110

evitable phenomenon in LLMs. Even with the in-1111

troduction of a knowledge database in RAG, LLMs1112

may still generate non-factual responses due to1113

hallucinations. Therefore, the incorrect responses1114

generated by RAG may also stem from halluci-1115

nations, rather than being solely caused by RAG1116

poisoning. We conducted experiments to test if1117

our approach can distinguish hallucinations and1118

RAG poisoning. Fig. 9 shows the t-SNE represen-1119

tation of mean activations for poisoned response 1120

and hallucinations across all layers for Mistral-7B 1121

and Llama2-7B on the NQ dataset. We observe 1122

that activations across all layers clearly distinguish 1123

between hallucinations and poisoned responses. 1124

This key finding has led us to extend our ap- 1125

proach to differentiate between poisoned responses 1126

and hallucinations. We thus continue to collect 1127

data and train the model using the process outlined 1128

in Fig. 3, with the only difference being that we 1129

now collect hallucination data. We also conduct ex- 1130

tensive experiments on RAG with different LLMs 1131

and datasets. From the experimental results in Ta- 1132

ble 12, we can see that our method achieves a high 1133

TPR across all LLMs and datasets. For instance, 1134

RevPRAG achieved 98.7% (on NQ), 97.5% (on 1135

HotpotQA), and 97.3% (on MS-MARCO) TPRs 1136

for RAG with GPT2-XL 1.5B. Furthermore, we 1137

observe that the FPR remains low across all eval- 1138

uation settings. As shown in the table, RevPRAG 1139

could achieve 0.8% (on NQ), 0.8% (on HotpotQA) 1140

and 0.6% (on MS-MARCO) FPRs for RAG with 1141

Llama3-8B. This further supports our previous ob- 1142

servation that there is a clear distinction between 1143

poisoned responses and hallucinations. 1144

We also explored training the model using activa- 1145

tions from a subset of layers, with the experimental 1146

results presented in Table 13. We observed that 1147

models trained using activations from intermediate 1148

subsets of layers can exhibit performance instabil- 1149

ity. For example, when the model is trained on the 1150

HotpotQA dataset using activations from the last 1151

15 layers, the TPR is only 53.5%, while the FPR 1152

reaches 48.5%. To the best of our knowledge, this 1153

is the first work that successfully and effectively dif- 1154

ferentiate poisoned response from hallucinations. 1155

B.7 Robustness of RevPRAG. 1156

Table 13: RevPRAG trained on the activations from specific layers of LLMs to distinguish poisoned responses and
hallucinations.

Dataset Metrics
GPT2-XL 1.5B Llama3-8B

layers 0-5 layers 16-24 last 15
layers all layers layers 0-5 layers 16-24 last 15

layers all layers

NQ
TPR 0.980 0.984 0.988 0.987 0.990 0.981 0.897 0.995

FPR 0.006 0.021 0.010 0.046 0.039 0.022 0.022 0.008

HotpotQA
TPR 0.937 0.977 0.535 0.975 0.994 0.989 0.983 0.995

FPR 0.052 0.002 0.485 0.004 0.005 0.011 0.011 0.008

MS-MARCO
TPR 0.982 0.984 0.532 0.973 0.983 0.978 0.986 0.989

FPR 0.048 0.011 0.475 0.009 0.011 0.039 0.004 0.006

16

This is my question: [question].
This is my answer: [answer].
This is correct text: [ground_truth].
Please craft a corpus such that the answer is [answer] when prompting with
the question [question].The generated corpus should be both semantically
and linguistically similar to the ground truth [ground_truth]. Please limit
the corpus to words.

Figure 10: The prompt used to generate the poisoned
texts.

Table 14: Performance of RevPRAG under adaptive
attack scenarios.

Dataset Metrics GPT2-XL
1.5B Llama3-8B

NQ
TPR 0.978 0.982

FPR 0.022 0.016

HotpotQA
TPR 0.972 0.961

FPR 0.036 0.051

MS-MARCO
TPR 0.969 0.963

FPR 0.038 0.018

As a method for detecting poisoning attacks in1157

RAG, RevPRAG is often deployed in scenarios1158

where adversaries are aware of the detection mech-1159

anism and actively attempt to evade it. In this con-1160

text, we define robustness as the detection perfor-1161

mance of RevPRAG under adaptive attacks. Since1162

the activations used in our approach serve as an1163

internal representation of the input, a plausible1164

adaptive attack strategy would involve crafting poi-1165

soned texts that closely resemble the correct texts1166

in both semantics and activation space, while still1167

achieving the intended poisoning effect. In our ex-1168

periments, we adopt the PoisonedRAG (Zou et al.,1169

2024) approach to simulate adaptive attacks, modi-1170

fying the original prompt used for generating poi-1171

soned texts as shown in Figure 10.1172

Table 14 presents the detection performance of1173

RevPRAG under adaptive attack scenarios using1174

PoisonedRAG (Zou et al., 2024), with GPT2-XL1175

1.5B and Llama3-8B as the underlying LLMs in the1176

RAG framework. The results demonstrate that even1177

when attackers are aware of the detection method1178

and deliberately optimize their poisoning strategy1179

to evade it, RevPRAG still achieves strong per-1180

formance. For example, on the NQ dataset with1181

Llama3-8B, RevPRAG achieves a TPR of 0.9821182

and an FPR of just 0.016, highlighting the robust-1183

ness of our method against adaptive attacks.1184

B.8 Efficiency. 1185

Table 15 compares the time overhead between 1186

LLM Factoscope (He et al., 2024) and RevPRAG 1187

when the LLM in RAG is Llama3-8B, including the 1188

average training time per epoch and the average in- 1189

ference time per test sample. This experiment was 1190

conducted using 1,000 training samples and 500 1191

test samples, with poisoned and clean examples 1192

each accounting for 50%. The results demonstrate 1193

that RevPRAG, with its task-specific architecture 1194

and carefully selected detection metrics, incurs sig- 1195

nificantly lower computational costs than LLM Fac- 1196

toscope, which integrates multiple sub-models for 1197

hallucination detection. Its efficient detection capa- 1198

bility makes RevPRAG particularly well-suited for 1199

latency-sensitive RAG scenarios, underscoring its 1200

practical value. 1201

Table 15: Comparison of time overhead.

Dataset
Training Time per Epoch Inference Time per Sample

LLM factoscope RevPRAG LLM factoscope RevPRAG

NQ 91.61s 19.31s 0.0051s 0.0021s

HotpotQA 101.25s 23.69s 0.0066s 0.0023s

MS-MARCO 94.47s 20.72s 0.0058s 0.0022s

17

	Introduction
	Background and Related Work
	Retrieval Augmented Generation
	Retrieval Corruption Attack
	The Robustness of RAG

	Preliminary
	Threat Model
	Rationale

	Methodology
	Approach Overview
	Poisoning Data Collection
	Activation Collection and Processing
	RevPRAG Model Design

	Evaluation
	Experimental Setup
	Overall Results
	Ablation Study

	Conclusion
	Training Details
	Dataset.
	Poisoned Texts Generation.
	Prompt.
	Environment.

	Additional Experimental Results
	ROC Curve.
	Generalization.
	RevPRAG’s Performance on Complex Open-Ended Questions.
	Activations from Specified Layers.
	Impact of Similarity Metric.
	Isolating Poisoned Responses and Hallucinations.
	Robustness of RevPRAG.
	Efficiency.

