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Abstract

Large language models (LLMs) often exhibit
limited performance on domain-specific tasks
due to the natural disproportionate representa-
tion of specialized information in their train-
ing data and the static nature of these datasets.
Knowledge scarcity and temporal lag cre-
ate knowledge gaps for domain applications.
While post-training on domain datasets can
embed knowledge into models, existing ap-
proaches have some limitations. Continual Pre-
Training (CPT) treats all tokens in domain doc-
uments with equal importance, failing to pri-
oritize critical knowledge points, while super-
vised fine-tuning (SFT) with question-answer
pairs struggles to develop the coherent knowl-
edge structures necessary for complex reason-
ing tasks. To address these challenges, we pro-
pose Reinforcement Learning from Augmented
Generation (RLAG). Our approach iteratively
cycles between sampling generations and opti-
mizing the model through calculated rewards,
effectively embedding critical and contextually
coherent domain knowledge. We select gener-
ated outputs with the highest log probabilities
as the sampling result, then compute three tai-
lored reward metrics to guide the optimization
process. To comprehensively evaluate domain
expertise, we assess answer accuracy and the
rationality of explanations generated for cor-
rectly answered questions. Experimental re-
sults across medical, legal, astronomy, and cur-
rent events datasets demonstrate that our pro-
posed method significantly outperforms base-
line approaches. Our code and data will be
made publicly available upon publication.

1 Introduction

Large language models (LLMs) have demonstrated
exceptional capabilities in capturing and storing
factual knowledge across diverse disciplines, at-
tributed to their comprehensive training corpora
(Roberts et al., 2020; Cohen et al., 2023; Hu et al.,
2023; Wang et al., 2024). However, foundation

Question: A 34-year-old male suffers from inherited hemophilia A. He
and his wife have three unaffected daughters. What is the probability that
the second daughter is a carrier of the disease?

Ground Truth: 100%

50%. This is based on the fact that each child, regardless

of gender, has a 50% chance of inheriting the carrier

status from their father when he is a carrier of the X-
linked recessive trait.
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Figure 1: Illustrative example. Base models often strug-
gle with certain task due to limited knowledge. While
embedding knowledge into model helps, previous meth-
ods may still lead to errors. Our proposed Reinforce-
ment Learning from Augmented Generation (RLAG) in-
corporates three rewards to optimize models iteratively,
improving answer accuracy and explanation rationality.

models trained on broad datasets inherently under-
represent specialized domains relative to their sig-
nificance in specific applications, creating knowl-
edge gaps in downstream applications. Due to the
static nature of training data and the difficulty of
accounting for all potential downstream applica-
tions during development, LLMs often struggle to
answer highly specialized questions (Bang et al.,
2023; Ji et al., 2023; Zhang et al., 2023a).
In-context learning (ICL) enhances performance
on downstream tasks by providing models with ex-
emplars during inference, enabling adaptation with-
out parameter updates (Wang et al., 2023a; Li et al.,
2023; Highmore, 2024). Retrieval Augmented Gen-
eration (RAG) augments model outputs by integrat-
ing relevant information from external knowledge
bases, improving factual accuracy and reasoning



Question: Which organization developed AlphaFold 3?

Retrieved Snippets:

biggest drop for a single company in U.S. stock market history;

1. Researchers at Google DeepMind announce the development of AlphaFold 3, an AT model that call biological molecules and model the interactions between them;
2. OpenAl announces a new model of their generative pretrained transformer (GPT) named GPT-4o0, capable of visual and video speech recognition and translation;
3. 2025 January 27 The Nasdaq falls sharply in response to DeepSeek, a Chinese competitor to OpenAl's ChatGPT. Chip giant Nvidia loses $600bn of its value, the

Options: A. Google DeepMind; B. MIT Research; C. Stanford University; D. OpenAl; E. IBM
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Figure 2: Overview of proposed method: Reinforcement Learning from Augmented Generation (RLAG). Augmented
generation y,, (with retrieved snippets Z,) and naive generation ¥; (without retrieved snippets) are sampled using
Eq.6. The model is then optimized to increase augmented generation reward r. and knowledge reward r, while
reducing naive generation reward r;. This process iterates using the updated model for subsequent samples.

capabilities (Guu et al., 2020; Lewis et al., 2020;
Jiang et al., 2023). Since both ICL and RAG en-
hance performance through external information at
inference time, neither permanently improves the
model’s intrinsic capabilities for downstream tasks.

This study focuses on embedding knowledge
into model weights. Training on downstream
datasets embeds domain-specific knowledge di-
rectly into model parameters, enabling autonomous
reasoning without external support (Gururangan
et al., 2020; Ke et al., 2023; Song et al., 2025).

While Continual Pre-Training (CPT) (Ke et al.,
2023) processes entire domain corpora, its effec-
tiveness is limited by the uniform importance as-
signed to tokens during training (Liu et al., 2024;
Zhang et al., 2024). Supervised fine-tuning (SFT)
(Wei et al., 2021) effectively embeds key informa-
tion through targeted training; however, models
trained exclusively on labeled knowledge pairs of-
ten exhibit reduced performance on complex rea-
soning tasks.

Inspired by reinforcement learning from human
feedback (RLHF) (Ouyang et al., 2022; Rafailov
etal., 2023), we introduce Reinforcement Learning
from Augmented Generation (RLAG). In our sce-

nario, generation augmented with relevant liter-
ature is preferred over unaugmented generation
when addressing downstream questions. The core
principle involves optimizing the model to generate
preferred generations independently while continu-
ously improving these generations through iterative
refinement. Notably, our objective extends beyond
enabling models to merely reproduce literature-
augmented answers (achievable through SFT); we
aim for models to thoroughly assimilate knowledge
contained within domain literature, thereby main-
taining robust knowledge capabilities throughout
conversations as shown in Figure 1.

As illustrated in Figure 2, RLAG comprises two
principal components: sampling and optimizing.
During sampling, we employ a broadcasting opera-
tion to concatenate each option with the question,
generating two responses differentiated by the pres-
ence or absence of retrieved snippets as a prefix.
We compute log probabilities for each component
through the model’s output logits and select the
maximum from the option-specific segment as pre-
diction. The optimization phase leverages three
predefined reward functions calculated from the
sampling results and retrieved snippets to update



the model. In the next iteration, we use the updated
model for sampling and optimization.

To further isolate LLMs’ abilities to learn new
knowledge, we built a dataset covering events post-
model training cutoff. Current events dataset is
sourced from Wikipedia(Wikipedia contributors,
2025).

We conduct experiments across biomedicine,
law, science, and current events. Our experimen-
tal results show that the proposed RLAG signif-
icantly outperforms prior methods. E.g., in the
terms of log-likelihood accuracy, RLAG surpasses
prior methods by 14.03% on average on current
events dataset.

2 Preliminaries

In a training iteration, we define output distribution
7o, (- | i, Zz,;) as the preferred distribution, using
LLM parameters 6y with question x; and relevant
literature Z,, as input. mp,(- | x;) as the naive
distribution.

For a model with parameters 61, given problem
x; without relevant literature, its output distribution
can match the preferred distribution:

7I‘91(~ ‘ ml) = 7790(' | xi?ZIi) >~ 7T90(' | :El) (1

Parameters 0 acquire downstream knowledge,
demonstrating greater proficiency than 6y (Song
et al., 2025). When sampling another downstream
problem z;, the distribution g, (- | 2, Zy;) typi-
cally outperforms 7y, (- | ;, Z;;) (Ovadia et al.,
2023):

71‘91(' ‘ Z’j,ij) - 7'[‘90(' | xj7ij) (2)

Our iteration goal is to optimize fy to approximate
0.

3 Methodology
3.1 Sampling

During each sampling, the naive generation y; is
sampled from model by concatenating the question
x with each option as input, while the augmented
generation y,, sampled from retrieved snippets Z,
combined with question x and each option.

For z ¢ Z,, the probability my(y., | x,2) =~ 0.
Thus, 79(yy | ) can be approximated as:

ro(yw | 2) = 3 mo(z | 2ol | 2,2)
~ Z 7o(2 | 2)mg(yw | x, 2)

2€EL,

3

This decomposition indicates that improving
7o(yw | x) requires increasing either my(z | x)
or m9(yw | =,2). Since mp(yw | x, 2) is already
sufficiently high, and further optimization risks
overfitting. Therefore, we focus on enhancing the
posterior probability 7y (z | x)

Directly optimizing 7y(z | x) is computation-
ally challenging. Instead, we enhance the prior
probability mg(z) to improve my(z | x). The rela-
tionship between these probabilities is captured by
the partial derivative:

Omg(z | @)
Ome(2)

(@ | 2) gy, mo(@ | 2)me(2)
o (x)?

“)

See Appendix B.1 for a complete derivation. Since

mp(x) > 0and my(x | z) > 0 for z € Z,, (as these

z represent the top-k retrieved documents), and

making the reasonable and accessible assumption

that a sufficiently large document corpus contains

at least one relevant snippets 2’ ¢ Z, with mg(z |

z') > 0, we can conclude that the derivative is
positive:

Omg(z | z)

Oma(2)

This demonstrates that increasing the prior 7y(z)
effectively enhances the posterior 7y (2 | x).

To eliminate prompt template bias, we concate-
nate each question x with its corresponding options
al, and input them into the model, then calculate
log probabilities only for the option segment. The
prediction is defined as Py(z) = ¢, where:

>0 5)

Cn = argmlax{Pg(xHa}]), -+ Py(xllal)} (6)

and Py(z||a},) = log mp(x|las, ).

3.2 Reward

To approximate the target described in Section.2,
we define two reward functions, r,, and r;, which
guide the model optimizing. r,, is designed to em-
bed knowledge into model weights and is expressed
as:

7’w<377yw7Zx)
_\ B B
= Z —logmy(z) + log 7o (Y | T, Z2)
2] o]

= Tz(Zz) + T'C(.f, Yw, Z:v)
@)
where Z, denotes retrieved snippets relevant to

question z, and ¥,, represents the augmented gen-
eration. Parameter 3, controls the weight of the



knowledge reward r, and (8 adjusts the augmented
generation reward r.. Length normalization pre-
vent the model from favoring excessively long out-
puts. The naive generation reward 7; is defined for
naive generation y; generated without Z:

r(,y1) = ,fl logmo(y [2) (8

3.3 Reinforcement Learning from Augmented
Generation

We employ a Bradley-Terry(Bradley and Terry,
1952) model with target reward margin v (Meng
et al., 2025). The preference probability is defined
as:

Plyw =y l2)=0c(rv—ri—=7) )
where o denotes the sigmoid function.

Sampling-driven J adaption. Similar to RLHF,
when sampling yields identical outputs (v, = y;),
the generation signal becomes invalid, prompting
us to set 8 = 0 to disable generation rewards while
retaining the knowledge reward controlled by 3,.
When y,, # y;, optimization proceeds with all
three rewards activated to optimize model. Full
configurations appear in Appendix A.2.

Clipping strategy. To mitigate overfitting, we
introduce a clipping strategy. Probabilities 7 (yy, |
x, Z,) exceeding a threshold €; and my(y; | )
falling below a threshold ey are clipped. Substi-
tuting r,,(Eq.7),r;(Eq.8) into Eq.9. The resulting
RLAG loss function is:

LriAG =

B
~ By, 20)~D [10g0< Z 72’ log 7p(2)

ZGZZ

+ min (5log Wg(yw | z, Z:c)761>
Y

Y

— max (,Z,logﬂe(yz | $)>62> - 7)]

(10)

where €; and ey are adjustable hyperparameters.
The complete derivation appears in the Appendix
B.2. Specifically, €; caps the maximum probability
for augmented generation to avoid overfitting to
specific knowledge contexts, while €3 sets a mini-
mum probability for naive generation to ensure the
model does not overly suppress naive generation in
the absence of knowledge documents.

Role of reward components. The knowledge
reward r, facilitates the embedding of down-
stream knowledge into the model by increasing
the prior probability of relevant knowledge docu-
ments. The augmented generation reward r,, en-
sures that knowledge embedding aligns with the
target parameters, guiding the model toward pre-
ferred model. Meanwhile, naive generation reward
r; reduces the likelihood of y;, further reinforcing
knowledge integration. Notably, while the gen-
eration rewards themselves don’t directly embed
knowledge into the model, they serve as guides
in this optimizing process—architects of direction
rather than builders of content.

4 Knowledge Base Creation

4.1 Task Selection and Statistics of Data

Experiments were conducted across four distinct
downstream tasks.

Biomedicine: The USMLE task from MedQA
(Jin et al., 2021), drawn from U.S. National Med-
ical Licensing Examinations, represents a high-
difficulty challenge in medical reasoning. USMLE
comprises 10, 178 training instances, 1,272 vali-
dation instances, 1,273 testing instances, and 18
biomedicine books.

Law: The BarExamQA (Zheng et al., 2025) task
comprises legal questions from practical bar exams.
BarExamQA incorporates 954 training instances,
124 validation instances, 117 testing instances, and
legal documents.

Astronomy: Astronomy task from the MMLU
(Hendrycks et al., 2020) benchmark, with training
data generated using GPT-4 Turbo (Hurst et al.,
2024) and DeepSeek-R1 (Guo et al., 2025). This
tested the model’s scientific knowledge. The astron-
omy task contains 2,000 training instances, 134
validation instances, and 152 testing instances.

Current Events: We developed a dataset encom-
passing post-training temporal phenomena, con-
sisting of 1, 300 training instances, 169 validation
instances, and 162 testing instances.

The original developers released these research-
focused datasets, which have been extensively cited
in academic literature. We strictly comply with
each dataset’s usage terms, ensuring their applica-
tion remains limited to scholarly research.

4.2 Knowledge Base Creation

USMLE: For the USMLE task, we curated a
knowledge base from 18 biomedical textbooks pro-



Table 1: Results for USMLE (Jin et al., 2021), BarExamQA (Zheng et al., 2025), and Astronomy (Hendrycks et al.,
2020). Accuracy quantified by Eq.6; explanation win rates at temperature 0.3 assessed by GPT-4 Turbo and Grok-3.

Llama-3.1-8B-Instruct

Method USMLE BarExamQA Astronomy

ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%) ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%) ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%)
Base 27.6 26.2 272 39.3 38.5 39.3 46.7 454 46.7
SFT 322 26.9 29.9 37.6 26.5 29.1 49.3 375 42.8
CPT 29.2 25.3 28.5 35.0 27.4 32.5 48.7 46.1 47.4
CPT+SFT 333 25.0 30.7 36.8 26.5 239 48.0 382 42.1
RLAG 34.8 324 339 41.9 359 38.5 51.3 454 50.0

Qwen2-7B-Instruct

Method USMLE BarExamQA Astronomy

ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%) ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%) ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%)
Base 25.8 21.4 24.9 342 325 32.5 50.7 50.0 50.7
SFT 27.7 15.0 232 31.6 19.7 30.8 53.9 50.7 50.7
CPT 26.4 21.3 25.5 35.0 325 35.0 48.7 46.7 46.7
CPT+SFT 27.0 159 233 342 21.4 17.9 52.0 47.4 49.3
RLAG 294 23.6 27.8 40.2 35.0 38.5 53.3 52.0 52.0

Llama-3.2-3B-Instruct

Method USMLE BarExamQA Astronomy

ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%) ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%) ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%)
Base 26.2 22.8 24.8 342 25.6 29.1 49.3 44.1 474
SET 30.2 25.6 279 333 21.4 24.8 50.0 46.1 48.0
CPT 274 22.8 25.5 28.2 16.2 222 474 40.1 44.7
CPT+SFT 29.3 22.3 272 29.9 19.7 17.1 46.7 40.8 42.1
RLAG 29.7 259 28.1 36.8 25.6 333 52.0 46.7 51.3

Table 2: Results for the Current Events in terms of log-likelihood accuracy (Eq.6)

Task Model Base SFT CPT CPT+SFT RLAG
Qwen2-7B-Instruct 253 321 272 34.6 48.8

Current Events  Llama-3.1-8B-Instruct  30.2 34.0 29.6 35.8 54.9
Llama-3.2-3B-Instruct  23.5 259 228 27.2 37.0

vided by the MedQA(Jin et al., 2021) through sys-
tematic text cleaning and structural normalization.
The USMLE knowledge base (KB) has 17.3M to-
kens. All token counts use LlamaTokenizer.

BarExamQA: For the BarExamQA(Zheng et al.,
2025) task, we utilized gold passages provided with
each sample as reference documents. The BarEx-
amQA KB has 93.1M tokens.

Astronomy: For the MMLU astronomy task
(Hendrycks et al., 2020), we followed a struc-
tured process: DeepSeek-R1 (Guo et al., 2025) ex-
tracted keywords from astronomy questions. Then
we collected text by searching keywords with the
Wikipedia API ' and generated samples using
Deepseek-R1. The Astronomy KB has 3.1M to-
kens. To prevent contamination, 3-gram matches to
test data were removed (Guo et al., 2024). Curation
was performed via the Claude-3.7-Sonnet API?
and manual review eliminated ambiguous/incorrect
questions.

Current events: For the current events task, we
collected relevant events after the model training

"https://www.mediawiki.org/wiki/API:Main_page
2https ://www.anthropic.com/claude/sonnet

data cutoff date from Wikipedia (Wikipedia con-
tributors, 2025), including: 2024-2025 U.S. events,
2025 German federal election, and 2024 Summer
Olympics. The text was segmented and cleaned
using spaCy (Honnibal et al., 2020). The Current
events KB has 51.5K tokens. GPT-4 Turbo (Hurst
et al., 2024) generated questions for each five-line
segment. Recognizing RLAG’s potential privacy
risks from personal information in training data, we
manually screened the dataset to eliminate ethical
concerns. This dataset is for academic research use
only.

S Experiments and Results

5.1 Experimental Setup

Models and training settings. Knowledge em-
bedding experiments used two model families:
Qwen2 (Yang et al., 2024) and Llama3 (Grattafiori
et al., 2024). We selected both large and
small variants: Qwen2-7B-Instruct, Llama-3.1-
8B-Instruct, and Llama-3.2-3B-Instruct to analyze
knowledge embedding effects across different pa-
rameter scales. We used instruction-tuned models
off-the-shelf, as these are commonly deployed in
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Figure 4: Performance comparison between RLAG and
baseline approaches on the USMLE dataset with tem-
perature set to 0.3. Results show answer accuracy and
explanation rationality, with explanations evaluated by
GPT-4 Turbo.

practice, making the embedding of downstream
knowledge into these models practically signifi-
cant. NV-Embed-v2(Lee et al., 2024) was selected
as the embedding model, and used FAISS (Johnson
et al., 2019) as its vector-store. We report the best
performance obtained via a grid search of hyper-
parameters, while ablation studies and evaluation
of explanations were conducted with single experi-
mental runs. Tokenizers configured with padding
token to the end-of-sequence token and assigned
Qwen2Tokenizer’s beginning-of-sequence token to
< |im_start| >3. Details of training configurations
and retrieval methods are provided in Appendix
A.1 and Appendix A.8, respectively.

Baselines. The SFT loss function is defined as:
B il
Lsrr=—) il > wo(yig | w,vi<) (A1)
i=1 7t =1

where B is the batch size, y; is the answer sequence,
and y; ; is its j-th token. We apply length normal-

3h'ctps ://huggingface.co/docs/transformers/
main/en/chat_templating

ization to prevent bias toward longer outputs.

The CPT loss function is:
B 1 A
Lorr=—) ol > mo(zig | zies)  (12)
i=1 7" =1

where z; represents a knowledge document chunk,
and z; ; isits j-th token. To enhance knowledge em-
bedding effectiveness, we also explored a pipeline
combining CPT on knowledge documents followed
by SFT.

5.2 Evaluation Method

We employed a two-stage sequential evaluation: an-
swer accuracy followed by explanation assessment
for correctly answered questions.

Log-likelihood accuracy. We ensured prompt-
independent results by connecting each option to
the question, calculating generation probabilities,
and selecting the highest-probability option as the
prediction (Eq.6).

Explanation win rates. For correctly answered
questions, we evaluated knowledge embedding by
prompting models to explain their answers. Expla-
nations were assessed for logical clarity and factual
accuracy using GPT-4 Turbo (Hurst et al., 2024)
and Grok-3 (xAl, 2024), with win rates calculated
as percentages. Complete evaluation templates ap-
pear in Appendix A.3.

5.3 Main Results

Downstream tasks results. Table 1 demon-
strates RLAG’s superior performance across tasks.
On USMLE (Jin et al., 2021), RLAG achieves the
highest overall answer accuracy and surpasses all
baselines in explanation win rate by 2.2—5.5 points.
For BarExamQA (Zheng et al., 2025), RLAG out-
performs the best baseline by 3.5 — 5.2 points in
accuracy while maintaining superior explanation
rationality. This legal reasoning task reveals the
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Table 3: Ablation study on Llama-3.1-8B-Instruct. We ablate four keys of RLAG:(1) No Clipping in Eq.10 (i.e.,w/o
Clip), (2) Fix 3, 5, in Eq.10 (i.e., Fixed §, 3.), (3) Set v = 0 in Eq.10 (i.e., w/o y), (4) Replace sample y,, with

standard answer in Eq.10 (z.e. Std. Ans. as y,,)

Llama-3.1-8B-Instruct

Method USMLE BarExamQA Astronomy
ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%) ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%) ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%)

CPT+SFT 333 25.0 30.7 36.8 26.5 239 48.0 382 42.1
RLAG 34.8 324 339 41.9 359 38.5 513 454 50.0
w/o Clip 30.5 24.1 24.6 35.0 274 29.1 52.0 48.0 48.7
Fixed 3, 5, 329 29.5 30.5 325 222 29.1 48.7 46.1 46.7
w/o vy 32.1 29.1 29.6 36.8 28.2 29.1 48.7 46.1 48.0
Std. Ans. as y,, 31.0 4.24 534 35.0 29.1 31.6 49.3 46.7 49.3
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Figure 5: Ablation study on reward clipping effects: constraining naive reward r; inflation (a) while steadily
increasing r,, (b) and preserving accuracy (c), demonstrating effective reward control.

limitations of baseline methods: SFT merely learns
question-answer mappings without robust reason-
ing, while CPT suffers from catastrophic forget-
ting as vast legal documents. Even on Astronomy
(Hendrycks et al., 2020), where injected knowl-
edge is primarily factual and benefits SFT, RLAG
still outperforms all baselines, whereas CPT on
the Astronomy knowledge base degrades model
performance.

Explanation win rates across temperature. As
shown in Figure 3, RLAG outperforms all base-
lines by 5.0 — 7.2 points in explanation win rate
across temperatures. While baseline training im-
proves answer accuracy, it compromises explana-
tion rationality, with unexplained portions rising
from 5.1% to 13.4 — 23.2% (> 100% relative in-
crease). RLAG enhances accuracy while preserv-
ing explanation quality, with unexplained portions
increasing marginally from 5.1% to 6.8% (Figure
4). This demonstrates that RLAG embeds domain
knowledge comprehensively into the model, en-
suring logical coherence without requiring manual
annotation.

Current events results. Table 2 presents results
on current events. Although CPT+SFT pipeline can
effectively improve the performance of the model,

RLAG demonstrates significant gains of 9.8 — 19.1
points over optimal baselines. Larger 7B-8B mod-
els show more substantial improvements (14.2 and
19.1 points respectively), while the 3B model im-
proves by 9.8 points. As this task focuses on factual
questions, explanation rationality was not evalu-
ated.

Table 4: Computational Budget in terms of GPU hours

Task Model SFT CPT CPT+SFT RLAG
Qwen2-7B-Instruct 4 4 8 32
USMLE Llama-3.1-8B-Instruct 6 4 10 34
Llama-3.2-3B-Instruct 3 2 5 18
Qwen2-7B-Instruct 1 22 23 8
BarExamQA Llama-3.1-8B-Instruct 1 27 28 9
Llama-3.2-3B-Instruct 1 12 13 6
Qwen2-7B-Instruct 1 1 2 12
Astronomy Llama-3.1-8B-Instruct 1 1 2 10
Llama-3.2-3B-Instruct 0.3 0.3 0.6 8
Qwen2-7B-Instruct 1 0.3 1.3 8
Current Events  Llama-3.1-8B-Instruct 0.8 0.3 1 8
Llama-3.2-3B-Instruct 0.3 0.3 0.6 4

5.4 Computational Budget

All experiments ran on a server with four NVIDIA
A800 GPUs (80GB each). Table 4 shows that
RLAG training requires approximately one order
of magnitude more GPU hours than the baseline
method due to its online sampling and optimization
processes. Despite this increased computational de-



mand, the significant performance improvements
clearly justify the additional resource investment.

5.5 Ablation Studies

Four components were evaluated in RLAG via
ablation studies with Llama-3.1-8B-Instruct: (1)
Reward Clipping (w/o Clip), (2) Dynamic g, 3,
(Fixed 3, 8,), (3) reward margin v (w/o ), and
(4) directly using the standard answer as the aug-
mented generation in Eq.10 (Std. Ans. as y,,).

Table 3 shows all components are critical, with
reward clipping having the strongest impact. Re-
moving reward clipping significantly affects rea-
soning tasks, reducing answer accuracy by 4.3%
on USMLE and 7.9% on BarExamQA, with expla-
nation rationality decreasing by 9% for both tasks.
However, it minimally impacts factual knowledge
tasks like Astronomy. Fixed 3, 3, and removing
reward margin -y also decrease performance. Using
standard answers as augmented generation (Eq.10)
dramatically reduces performance, causing seri-
ous hallucinations—USMLE explanation rational-
ity drops by over 28 points. This indicates models
may learn correct answers but fail to develop ro-
bust reasoning when answers are directly provided
rather than autonomously generated.

The key role of reward clipping. Reward clip-
ping is essential in our method. Figure 5a shows
unconstrained naive generation reward r; rapidly
increases as model divergence occurs, while Fig-
ure 5b indicates minimal growth in r,,, yielding
negligible validation accuracy improvements (Fig-
ure 5c). Conversely, RLAG with reward clipping
effectively constrains r; while maintaining superior
ryw compared to the w/o clipping. This results in
consistently higher validation accuracy, highlight-
ing reward clipping’s critical contribution to model
performance.

Using standard answer weakens RLAG. Direct
substitution of standard answers for augmented
generation significantly degrades model perfor-
mance and induces hallucinations (Table 3), partic-
ularly in reasoning-intensive domains like USMLE.
Our case study (Appendix C) demonstrates that
this approach causes the model to contradict previ-
ously answered questions and question the validity
of given options. The effectiveness of knowledge
embedding strategies ultimately depends on task
complexity and reasoning requirements.

6 Related Work

Knowledge injection. In order to enhance LLMs’
capabilities in downstream tasks, knowledge injec-
tion is considered a promising research direction
(Chen et al., 2022; Ye et al., 2023). Knowledge
injection for LLMs can occur during pre-training,
fine-tuning, or inference stages. Methods include:
(1) RAG, which retrieves text (Guu et al., 2020;
Lewis et al., 2020) or graph-structured (Wang et al.,
2023b; Zhang et al., 2023b; Li et al., 2024) informa-
tion during reasoning; (2) Modular adapters, which
incorporate domain knowledge through lightweight
additional parameters (Zhang et al., 2023c; Lo
et al., 2024); (3) Prompt optimization techniques
that leverage internal knowledge (Wei et al., 2022);
and (4) Direct weight embedding through CPT (Ke
et al., 2023) or SFT, which enhances domain ex-
pertise and stability (Gururangan et al., 2020; Song
et al., 2025). Recent advances focus on optimizing
knowledge structures (Zhang et al., 2024), imple-
menting gating mechanisms (Peinelt et al., 2021),
and developing structure-aware training strategies
(Liu et al., 2024) .

Reinforcement learning from human feedback
(RLHF). RLHF technology enhances LLMs’ per-
formance using reinforcement learning with pref-
erence data (Ouyang et al., 2022; Stiennon et al.,
2020). The approach trains a reward model on pref-
erence data, then uses PPO to optimize the policy
model, significantly improving generation quality
(Shao et al., 2024; Guo et al., 2025). DPO (Rad-
ford et al., 2019) reparameterizes reward model
and directly using preference data to optimize the
policy model. RLHF does not focus on embedding
knowledge into the model, but improves the output
by aligning with humans.

7 Conclusion and Future Work

In this work, we propose RLAG for knowledge
embedding. Compared with traditional knowledge
embedding methods, RLAG can solve knowledge-
intensive tasks that require reasoning. The core
idea of RLAG is to enable the model to indepen-
dently generate augmented generation and optimize
these generation through a reward-based approach.
The training process is implemented iteratively by
sampling and optimization. Experiments show that
RLAG outperforms baseline methods. In future
work, we aim to dynamically embed knowledge
into LLMs, rather than performing offline training.



Limitations

RLAG, while showing promising resuls in embed-
ding knowledge into LL.Ms, has several limitations.
(i)Although RLLAG eliminates the need for manual
annotation during training, it requires knowledge
documents relevant to each question. These doc-
ument fragments can be collected by searching
knowledge bases through retrieval systems. How-
ever, the quality of these retrieved fragments heav-
ily depends on retriever performance and knowl-
edge base structure, potentially affecting overall
system effectiveness. (ii)The training process of
RLAG encompasses two phases: sampling and
optimization. While we have demonstrated the
sampling process to be effective, it may require
more computational time than training directly on
existing datasets. (iii)Both sampling and training
processes within RLAG require access to token
probabilities, making our approach unsuitable for
closed-source models that do not provide such ac-
cess. (iv)Due to hardware constraints, our research
primarily focuses on language models with 3B, 7B,
and 8B parameters and does not extend to larger-
scale models that might yield different performance
characteristics. (v)This study employs two pow-
erful commercial large language models—GPT-4
Turbo and Grok-3—to evaluate explanation win
rates. Although the results demonstrate reasonable
reproducibility, the closed-source nature of these
models may introduce variability in evaluation out-
comes.

Ethics Statement

RLAG effectively embeds knowledge into mod-
els, but this capability raises potential privacy con-
cerns regarding individuals represented in training
data. We recognize these inherent risks and have
implemented stringent precautions in our data se-
lection process to safeguard personal information.
For our current events dataset, we exclusively col-
lected information from public Wikipedia sources
and conducted thorough manual screening during
construction to ensure no personal privacy data
was included. Additionally, the other datasets we
use have also been utilized in previous studies and
therefore do not pose any privacy risks. Through
these careful data curation practices, we maintain
the utility of knowledge embedding while protect-
ing individual privacy.
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A Hyperparameters

A.1 Training Setups

All our experiments were performed on 4 A800
GPUs, using the AdamW optimizer, cosine learn-
ing rate rise, and warm up ratio of 0.1. RLAG
experimental Epochs set to 5, Learning Rate set
to 1.0 x 1075, Updates 2 per Iteration. We per-
formed parallel experiments using three random
seeds: 62512, 34, and 767. We wrapped docu-
ments with the tokenizer’s beginning- and end-of-
sequence tokens, segmented them into 256-token
chunks, and normalized them by length for CPT.
The number of splits in our training set is equal
to the number of iterations in an epoch, and we
divide it according to the number of training sets.
We use FSDP* for training, the Qwen2 model
wraps Qwen2DecoderLayer for training, and the
Llama3 model wraps LlamaDecoder for training.

A.2 Dynamic (3, 5, Selection

The parameters 3, and 3 are chosen based on the

sampling results, as follows:
B.=0.2,8=0.5
B, =0.5,5=0.0

if v, # Y1,
ifyw =Y.

A.3 Explanation Template

"User question 1":{question}
"Assistant response 1":{answer}
"User question 2":Explain your answer. Why?

Table 5: Explanation Template

A.4 Sampling Template

If the sampling is naive generation, no relevant
literature will be added.

A.5 RLAG Hyperparameters

Table 7: RLAG Hyperparameters on USMLE

parameter Qwen2-7B- Llama-3.1- Llama-3.2-
Instruct 8B-Instruct 3B-Instruct

ol 0.8 8 8

Iterations per

Epoch K ? ?

Batch Size 1024 1024 1024

Gradient Ac- 256 256 256

cumulation

Grad Norm 5.0 5.0 1.0

4https ://pytorch.org/tutorials/intermediate/
FSDP_tutorial.html
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You are an Al that answers single-choice questions by
selecting one of the provided options. Given the question
and options separated by semicolons (;), output only one
of the exact text of the correct option. Do not include any
additional text, explanations, or multiple options.
<Example>: Question: What is the capital of France?
Options:  Berlin; Madrid; Paris; Rome Answer:
Paris.</Example>Now, answer the following question:
Related literature: {ctx}

Question: {question}

Options: {options}

Answer:

Table 6: Sampling Template

Table 8: RLAG Hyperparameters on BaeExamQA

parameter Qwen2-7B- Llama-3.1- Llama-3.2-
Instruct 8B-Instruct 3B-Instruct

o4 0.8 0.8 0.8

Iterations per

Epoch 7 7 7

Batch Size 128 128 128

Gradien_t Ac- 3 3 23

cumulation

Grad Norm 1.0 1.0 1.0

Table 9: RLAG Hyperparameters on Astronomy

parameter Qwen2-7B- Llama-3.1- Llama-3.2-
Instruct 8B-Instruct 3B-Instruct

¥ 0.8 0.8 0.8

Iterations per

Epoch 8 8 8

Batch Size 256 256 256

Gradien_t Ac- 64 64 64

cumulation

Grad Norm 1.0 1.0 1.0

Table 10: RLAG Hyperparameters on CurrentEvents

parameter Qwen2-7B- Llama-3.1- Llama-3.2-
Instruct 8B-Instruct 3B-Instruct

o4 0.8 0.8 0.8

Iterations per

Epoch 6 6 6

Batch Size 246 246 246

Gradien_t Ac- 61 61 61

cumulation

Grad Norm 1.0 1.0 1.0
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A.6 SFT Hyperparameters Table 16: CPT Hyperparameters on BarExamQA

Qwen2-7B- Llama-3.1- Llama-3.2-

. Instruct 8B-Instruct 3B-Instruct
Learning Rate 5.0 x 107° 5.0 x 1076 5.0 x 1076

parameter

Table 11: SFT Hyperparameters on USMLE

purameir Q2T Luma 3l L 32 . : -
nstruc -Instruc -Instruct :

Leamning Rate 1.0 x 10>  50x10°  50x 10 Batch Size 1024 1024 1024

Gradient Ac-

Epoch 3 5 5 cumulation 16 16 16

Batch Size 128 128 128 Grad Norm 1.0 1.0 1.0

Gradien't Ac- 8 3 8

cumulation

Grad Norm 1.0 1.0 1.0

Table 17: CPT Hyperparameters on Astronomy

parameter Qwen2-7B- Llama-3.1- Llama-3.2-
. Instruct 8B-Instruct 3B-Instruct
Table 12: SFT Hyperparameters on BarExamQA Leaming Rate 5.0 % 10-¢ B jnstruct o D onsuuet s
parameter Qwen2-7B- Llama-3.1- Llama-3.2- Epoch 2 2 2
Instruct 8B-Instruct . 3B-Instruct Batch Size 1024 1024 1024
Learning Rate 5.0 x 107° 5.0 x 1076 5.0 x 1076
Gradient Ac- 16 16 16
Epoch 5 5 5 cumulation
Batch Size 128 128 128 Grad Norm 1.0 1.0 1.0
Gradien't Ac- 8 3 8
cumulation
Grad Norm 1.0 1.0 1.0

Table 18: CPT Hyperparameters on Current Events

parameter Qwen2-7B- Llama-3.1- Llama-3.2-
. Instruct 8B-Instruct 3B-Instruct
Table 13: SFT Hyperparameters on Astronomy Learning Rate 1.0 x 107 Lo i0ts 1T0% 105
Epoch 5 5 5
parameter Qwen2-7B- Llama-3.1- Llama-3.2-
Instruct ) 8B-Instruct 3B-Instruct _ Batch Size 128 128 128
Learning Rate 5.0 x 107° 5.0 x 1076 5.0 x 1076 -
Gradient Ac- ) ) 2
Epoch 5 5 5 cumulation
Batch Size 128 128 128 Grad Norm 1.0 1.0 1.0
cumulation® s s
Grad Norm 10 10 0 A.8 Retrieval Method

We tailored retrieval strategies to each task’s spe-
cific characteristics:

Table 14: SFT Hyperparameters on Current Events .
USMLE retrieval. We merged keyword (Elas-

parameter glvsvgsczt-ﬂa- é}l_)’arlx:lztfulct g}lgaﬁzéuit ticsearch, .BM25). and e.mbedding searches.. For
Learning Rate 1.0 x 10™° 1.0x10°° 10x 10 each question-option pair, 200 document snippets
Epoch 5 5 5 were retrieved, vectorized, and filtered for semantic
Batch Size 128 128 128 relevance.
comalation 8 8 8 Astronomy and current events retrieval. Doc-
Grad Norm 1.0 1.0 1.0 uments were segmented (spaCy), embedded, and
stored in FAISS. Questions were embedded to re-
A.7 CPT Hyperparameters trieve top matches via vector similarity, retaining

< 1,000 tokens per query.
Table 15: CPT Hyperparameters on USMLE

parameter Qwen2-7B- Llama-3.1- Llama-3.2-
Instruct 8B-Instruct 3B-Instruct
Learning Rate 5.0 x 107° 5.0 x 1076 5.0 x 1076
Epoch 2 2 2
Batch Size 1024 1024 1024
Gradien't Ac- 16 16 16
cumulation
Grad Norm 1.0 1.0 1.0
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B Formula Derivation

B.1 Equation.5 Derivation

We need to simplified:

Omp(z |x) _dmp(z|x) 1

87-‘-9(2) - de d7(r196(z) (13)
Given that: (2 | 2)mo(2)
_ mo(x | 2)me(2
WH(Z | 1") - 7T9($) (14)
mo(x) =Y ol | 2')me(2) (15)
Substitute Eq.13,Eq.14 in ”3(9'2'93) :
d 1 d d / /
ML) (o) g (eIl | 9] - ma(e | () Y [ 1 ) (16

z

Here we only do sensitivity analysis. We assume that changing # only increases the distribution of 7y (2)
and does not change other distributions. Therefore, we can get:

drg(z |z)  molx | 2) 2 Y mo(x | #')mo(2)

= (7
de mo(x)?
Finally, substitute Eq.16 into Eq.13, we can get:
ome(z | )  mo(w|2) X .., mola | 2)mo(2)
= (18)
on 0 (2’ ) T (IL’)2
B.2 RLAG Loss Function Derivation
Consider Bradly-Terry Model with reward margin ~:
Plyw =y | 2) = 0(rw — 1 —7) (19)

Substitute r,,, ; into Eq.19 we can get per-instance loss:
_ B g p
Plyw =y | 2) =0 () QIOgﬂe(Z) + mlogm(yu} |2, Zy) — Tl logmo(y | ©) =) (20)
2E€ELy w

Conduct Maximum Likelihood Estimation, we can get RLAG Loss function Eq.10.
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C Case Study

Table 19: Case Study with Std. Ans. as y,,

Question

Std. Ans. as y,, Explanation

A 29-year-old woman comes to the physician with high-grade fever, headache,
and muscle pain. A week ago, she returned from India, where she was working
with an NGO to build houses in rural areas. The patient took one dose of
chloroquine one week before her trip. She also took a further dose during her
trip. She has no history of a serious illness. Her temperature is 39.3°C (102.7°F),
pulse is 102/min, respirations are 22/min, and blood pressure is 112/78 mm
Hg. Physical examination shows jaundice. The abdomen is soft and nontender.
The remainder of the examination shows no abnormalities. Her hemoglobin
concentration is 10 g/dL and a blood smear shows fragmented erythrocytes
and occasional ring-shaped inclusion bodies within erythrocytes. Which of the
following is the most likely cause of infection in this patient?

Options:

Plasmodium ovale;

Plasmodium falciparum;

Dengue virus;

Chikungunya virus;

Hepatitis A virus

I cannot provide a diagnosis. Is there any-
thing else I can help you with?

A 28-year-old primigravid woman at 39 weeks gestation is admitted to the
hospital in active labor. On examination, the cervix is 100% effaced and 10 cm
dilated. After 5 minutes of pushing, there is a prolonged deceleration of the fetal
heart rate to 90/min. A decision to perform an episiotomy is made to expedite
vaginal delivery. The anesthesiologist locates the ischial spines by palpating the
posterolateral vaginal sidewall and administers an anesthetic. Three minutes
later, pinching the posterior vulva does not provoke pain. The anesthetized nerve
most likely also supplies which of the following structures?

Options:

Obturator externus muscle;

Skin of the lateral thigh;

External anal sphincter;

Skin of the mons pubis;

Detrusor muscle

That’s not correct. It was a wrong answer.
The correct answer is not provided in the
options.

The correct answer is actually not requested
but the question asks which anesthetized
nerve is likely supplied. The correct answer
is the question itself was about confirmation
of successful nerve block which is the nerve
to the perineal muscles which is S3 S4 S5
but the block described is a block of the pu-
dendal nerve.

The question about which anesthetic area is
not requested but the options are to find out
which one is not likely to be anesthetized.

A 59-year-old man is evaluated for progressive joint pain. There is swelling and
tenderness over the first, second, and third metacarpophalangeal joints of both
hands. His hand radiograph is shown. He has had diabetes mellitus for 2 years
which is not well controlled with medications. Lab studies show a transferrin
saturation of 88% and serum ferritin of 1,200 ng/mL. Which of the following
best represents the etiology of this patient condition?

Options:

Deposition of urate crystals;

Deposition of calcium pyrophosphate (CPP) crystals;

Degenerative joint disorder;

Inflammatory rheumatological syndrome;

Pathogenic inoculation of microbes

That was incorrect. Deposition does not de-
scribe for the question choices provided.
The most likely answer does not exist in the
choices provided. The symptoms are most
likely rheumatoid arthritis.

However, the transferrin answer suggests
looking for hemochromatoses which is cor-
rect.", "answer": "Deposition of calcium py-
rophosphate (CPP) crystals

Table 19 presents selected explanations from Std. Ans. as y,,. We highlight three representative error

types.

1. The model correctly identifies the answer but fails to explain its reasoning. This indicates that the
model struggles to articulate logical reasoning to support that answer.

2. The model contradicts its initial answer during the explanation phase. Recalling our prediction
method: we use Eq.6 to calculate the highest probability option becoming the model’s predicted
answer. This contradiction suggests that the model lacks a coherent understanding of the underlying
concepts. Consequently, when elaborating on its reasoning, the model contradicts its initial answer

despite that answer having the highest output probability.

3. The model explicitly rejects its own answer, insisting that none of the provided options is correct.
This self-contradiction appears frequently in explanation outputs, which indicates the mode is lack of
foundational knowledge leads to inconsistent reasoning when required to justify its responses.
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Table 20: Case Study with RLAG

Question

RLAG Explanation

A 29-year-old woman comes to the physician
with high-grade fever, headache, and muscle
pain. A week ago, she returned from India,
where she was working with an NGO to build
houses in rural areas. The patient took one dose
of chloroquine one week before her trip. She
also took a further dose during her trip. She has
no history of a serious illness. Her temperature
is 39.3°C (102.7°F), pulse is 102/min, respira-
tions are 22/min, and blood pressure is 112/78
mm Hg. Physical examination shows jaundice.
The abdomen is soft and nontender. The remain-
der of the examination shows no abnormalities.
Her hemoglobin concentration is 10 g/dL and a
blood smear shows fragmented erythrocytes and
occasional ring-shaped inclusion bodies within
erythrocytes. Which of the following is the most
likely cause of infection in this patient?
Options:

Plasmodium ovale;

Plasmodium falciparum;

Dengue virus;

Chikungunya virus;

Hepatitis A virus

I chose Plasmodium falciparum as the most likely cause of infection in
this patient for several reasons:

1. **Symptoms**: The patient presents with high-grade fever, headache,
muscle pain, and jaundice, which are typical symptoms of malaria caused
by Plasmodium species.

2. **Travel history**: The patient recently returned from India, where
malaria is endemic. Plasmodium falciparum is prevalent in many parts
of India.

3. **Chloroquine prophylaxis**: Although the patient took chloroquine
prophylaxis, which is effective against Plasmodium ovale and Plasmod-
ium vivax, it is not effective against Plasmodium falciparum. However,
chloroquine resistance is a concern in many areas where P. falciparum is
prevalent, including India.

4. **Blood smear findings**: The blood smear shows fragmented ery-
throcytes (schistocytes) and occasional ring-shaped inclusion bodies
within erythrocytes, which are characteristic of malaria caused by Plas-
modium species.

5. **Hemoglobin concentration**: The patient has mild anemia
(hemoglobin concentration of 10 g/dL), which is consistent with malaria
infection.

Considering these factors, while Plasmodium ovale is also a possibility
given the patient’s chloroquine prophylaxis, Plasmodium falciparum is
a more likely cause of infection due to its prevalence in India and the
severity of the patient’s symptoms.

A 28-year-old primigravid woman at 39 weeks
gestation is admitted to the hospital in active la-
bor. On examination, the cervix is 100% effaced
and 10 cm dilated. After 5 minutes of push-
ing, there is a prolonged deceleration of the fetal
heart rate to 90/min. A decision to perform an
episiotomy is made to expedite vaginal delivery.
The anesthesiologist locates the ischial spines by
palpating the posterolateral vaginal sidewall and
administers an anesthetic. Three minutes later,
pinching the posterior vulva does not provoke
pain. The anesthetized nerve most likely also
supplies which of the following structures?
Options:

Obturator externus muscle;

Skin of the lateral thigh;

External anal sphincter;

Skin of the mons pubis;

Detrusor muscle

The anesthetized nerve is the pudendal nerve, which is responsible for
providing sensory and motor innervation to the perineal region. The
pudendal nerve is located in the lateral wall of the ischiorectal fossa and
can be palpated by feeling the posterolateral vaginal sidewall.

The question states that pinching the posterior vulva does not provoke
pain after administration of the anesthetic, indicating that the pudendal
nerve has been successfully blocked.

The correct answer is the External anal sphincter. This is because the
pudendal nerve provides motor innervation to the external anal sphincter
muscle, which is responsible for voluntary control of anal sphincter tone.
The other options are incorrect because:

The Obturator externus muscle is innervated by the obturator nerve, not
the pudendal nerve.

The Skin of the lateral thigh is innervated by the lateral cutaneous nerve
of the thigh, not the pudendal nerve.

The Skin of the mons pubis is innervated by the ilioinguinal nerve, not
the pudendal nerve.

The Detrusor muscle is innervated by the pelvic splanchnic nerves (S2-
S4), not the pudendal nerve.

A 44-year-old African-American woman comes
to the physician for a routine examination. She is
concerned about cancer because her uncle died
of metastatic melanoma 1 year ago. She has no
history of serious illness and does not take any
medication. She has been working in a law firm
for the past 20 years and travels to the Carribean
regularly with her husband. Examination of her
skin shows no abnormal moles or warts. This
woman is at greatest risk of which of the follow-
ing types of melanoma?

options:

Desmoplastic;

Nodular;

Acral lentiginous;

Lentigo maligna;

Superficial spreading

I chose Acral lentiginous melanoma as the most likely type because of
the patient’s characteristics.

Acral lentiginous melanoma is a subtype of melanoma that occurs on
the palms, soles, and under the nails. This patient’s occupation as a
lawyer is not particularly relevant to her risk, but her regular travel to the
Caribbean is. However, the most important factor is her ethnicity.
Acral lentiginous melanoma is more common in individuals of African
descent. Given that the patient is an African-American woman, she is at
higher risk for this subtype of melanoma.

The other options are less likely:

- Desmoplastic melanoma is a rare subtype that typically occurs on sun-
damaged skin and is not associated with African-American patients.

- Nodular melanoma is a fast-growing subtype that can occur anywhere
on the body but is not more common in African-American patients.

- Lentigo maligna melanoma occurs on chronically sun-damaged skin
and is rare in African-American patients.

- Superficial spreading melanoma is the most common subtype but is not
more common in African-American patients.

Therefore, given the patient’s ethnicity, Acral lentiginous melanoma is
the most likely type of melanoma she is at risk for.
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