
Embedding Domain Knowledge for Large Language Models via
Reinforcement Learning from Augmented Generation

Anonymous ACL submission

Abstract001

Large language models (LLMs) often exhibit002
limited performance on domain-specific tasks003
due to the natural disproportionate representa-004
tion of specialized information in their train-005
ing data and the static nature of these datasets.006
Knowledge scarcity and temporal lag cre-007
ate knowledge gaps for domain applications.008
While post-training on domain datasets can009
embed knowledge into models, existing ap-010
proaches have some limitations. Continual Pre-011
Training (CPT) treats all tokens in domain doc-012
uments with equal importance, failing to pri-013
oritize critical knowledge points, while super-014
vised fine-tuning (SFT) with question-answer015
pairs struggles to develop the coherent knowl-016
edge structures necessary for complex reason-017
ing tasks. To address these challenges, we pro-018
pose Reinforcement Learning from Augmented019
Generation (RLAG). Our approach iteratively020
cycles between sampling generations and opti-021
mizing the model through calculated rewards,022
effectively embedding critical and contextually023
coherent domain knowledge. We select gener-024
ated outputs with the highest log probabilities025
as the sampling result, then compute three tai-026
lored reward metrics to guide the optimization027
process. To comprehensively evaluate domain028
expertise, we assess answer accuracy and the029
rationality of explanations generated for cor-030
rectly answered questions. Experimental re-031
sults across medical, legal, astronomy, and cur-032
rent events datasets demonstrate that our pro-033
posed method significantly outperforms base-034
line approaches. Our code and data will be035
made publicly available upon publication.036

1 Introduction037

Large language models (LLMs) have demonstrated038

exceptional capabilities in capturing and storing039

factual knowledge across diverse disciplines, at-040

tributed to their comprehensive training corpora041

(Roberts et al., 2020; Cohen et al., 2023; Hu et al.,042

2023; Wang et al., 2024). However, foundation043

Figure 1: Illustrative example. Base models often strug-
gle with certain task due to limited knowledge. While
embedding knowledge into model helps, previous meth-
ods may still lead to errors. Our proposed Reinforce-
ment Learning from Augmented Generation (RLAG) in-
corporates three rewards to optimize models iteratively,
improving answer accuracy and explanation rationality.

models trained on broad datasets inherently under- 044

represent specialized domains relative to their sig- 045

nificance in specific applications, creating knowl- 046

edge gaps in downstream applications. Due to the 047

static nature of training data and the difficulty of 048

accounting for all potential downstream applica- 049

tions during development, LLMs often struggle to 050

answer highly specialized questions (Bang et al., 051

2023; Ji et al., 2023; Zhang et al., 2023a). 052

In-context learning (ICL) enhances performance 053

on downstream tasks by providing models with ex- 054

emplars during inference, enabling adaptation with- 055

out parameter updates (Wang et al., 2023a; Li et al., 056

2023; Highmore, 2024). Retrieval Augmented Gen- 057

eration (RAG) augments model outputs by integrat- 058

ing relevant information from external knowledge 059

bases, improving factual accuracy and reasoning 060
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Figure 2: Overview of proposed method: Reinforcement Learning from Augmented Generation (RLAG). Augmented
generation yw (with retrieved snippets Zx) and naive generation yl (without retrieved snippets) are sampled using
Eq.6. The model is then optimized to increase augmented generation reward rc and knowledge reward rz while
reducing naive generation reward rl. This process iterates using the updated model for subsequent samples.

capabilities (Guu et al., 2020; Lewis et al., 2020;061

Jiang et al., 2023). Since both ICL and RAG en-062

hance performance through external information at063

inference time, neither permanently improves the064

model’s intrinsic capabilities for downstream tasks.065

This study focuses on embedding knowledge066

into model weights. Training on downstream067

datasets embeds domain-specific knowledge di-068

rectly into model parameters, enabling autonomous069

reasoning without external support (Gururangan070

et al., 2020; Ke et al., 2023; Song et al., 2025).071

While Continual Pre-Training (CPT) (Ke et al.,072

2023) processes entire domain corpora, its effec-073

tiveness is limited by the uniform importance as-074

signed to tokens during training (Liu et al., 2024;075

Zhang et al., 2024). Supervised fine-tuning (SFT)076

(Wei et al., 2021) effectively embeds key informa-077

tion through targeted training; however, models078

trained exclusively on labeled knowledge pairs of-079

ten exhibit reduced performance on complex rea-080

soning tasks.081

Inspired by reinforcement learning from human082

feedback (RLHF) (Ouyang et al., 2022; Rafailov083

et al., 2023), we introduce Reinforcement Learning084

from Augmented Generation (RLAG). In our sce-085

nario, generation augmented with relevant liter- 086

ature is preferred over unaugmented generation 087

when addressing downstream questions. The core 088

principle involves optimizing the model to generate 089

preferred generations independently while continu- 090

ously improving these generations through iterative 091

refinement. Notably, our objective extends beyond 092

enabling models to merely reproduce literature- 093

augmented answers (achievable through SFT); we 094

aim for models to thoroughly assimilate knowledge 095

contained within domain literature, thereby main- 096

taining robust knowledge capabilities throughout 097

conversations as shown in Figure 1. 098

As illustrated in Figure 2, RLAG comprises two 099

principal components: sampling and optimizing. 100

During sampling, we employ a broadcasting opera- 101

tion to concatenate each option with the question, 102

generating two responses differentiated by the pres- 103

ence or absence of retrieved snippets as a prefix. 104

We compute log probabilities for each component 105

through the model’s output logits and select the 106

maximum from the option-specific segment as pre- 107

diction. The optimization phase leverages three 108

predefined reward functions calculated from the 109

sampling results and retrieved snippets to update 110
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the model. In the next iteration, we use the updated111

model for sampling and optimization.112

To further isolate LLMs’ abilities to learn new113

knowledge, we built a dataset covering events post-114

model training cutoff. Current events dataset is115

sourced from Wikipedia(Wikipedia contributors,116

2025).117

We conduct experiments across biomedicine,118

law, science, and current events. Our experimen-119

tal results show that the proposed RLAG signif-120

icantly outperforms prior methods. E.g., in the121

terms of log-likelihood accuracy, RLAG surpasses122

prior methods by 14.03% on average on current123

events dataset.124

2 Preliminaries125

In a training iteration, we define output distribution126

πθ0(· | xi, Zxi) as the preferred distribution, using127

LLM parameters θ0 with question xi and relevant128

literature Zxi as input. πθ0(· | xi) as the naive129

distribution.130

For a model with parameters θ1, given problem131

xi without relevant literature, its output distribution132

can match the preferred distribution:133

πθ1(· | xi) = πθ0(· | xi, Zxi) ≻ πθ0(· | xi) (1)134

Parameters θ1 acquire downstream knowledge,135

demonstrating greater proficiency than θ0 (Song136

et al., 2025). When sampling another downstream137

problem xj , the distribution πθ1(· | xj , Zxj ) typi-138

cally outperforms πθ0(· | xj , Zxj ) (Ovadia et al.,139

2023):140

πθ1(· | xj , Zxj ) ≻ πθ0(· | xj , Zxj ) (2)141

Our iteration goal is to optimize θ0 to approximate142

θ1.143

3 Methodology144

3.1 Sampling145

During each sampling, the naive generation yl is146

sampled from model by concatenating the question147

x with each option as input, while the augmented148

generation yw sampled from retrieved snippets Zx149

combined with question x and each option.150

For z /∈ Zx, the probability πθ(yw | x, z) ≈ 0.151

Thus, πθ(yw | x) can be approximated as:152

πθ(yw | x) =
∑
z

πθ(z | x)πθ(yw | x, z)

≈
∑
z∈Zx

πθ(z | x)πθ(yw | x, z)
(3)153

This decomposition indicates that improving 154

πθ(yw | x) requires increasing either πθ(z | x) 155

or πθ(yw | x, z). Since πθ(yw | x, z) is already 156

sufficiently high, and further optimization risks 157

overfitting. Therefore, we focus on enhancing the 158

posterior probability πθ(z | x) 159

Directly optimizing πθ(z | x) is computation- 160

ally challenging. Instead, we enhance the prior 161

probability πθ(z) to improve πθ(z | x). The rela- 162

tionship between these probabilities is captured by 163

the partial derivative: 164

∂πθ(z | x)
∂πθ(z)

=
πθ(x | z)

∑
z′ /∈Zx

πθ(x | z′)πθ(z′)
πθ(x)2

(4) 165

See Appendix B.1 for a complete derivation. Since 166

πθ(x) > 0 and πθ(x | z) > 0 for z ∈ Zx (as these 167

z represent the top-k retrieved documents), and 168

making the reasonable and accessible assumption 169

that a sufficiently large document corpus contains 170

at least one relevant snippets z′ /∈ Zx with πθ(x | 171

z′) > 0, we can conclude that the derivative is 172

positive: 173
∂πθ(z | x)
∂πθ(z)

> 0 (5) 174

This demonstrates that increasing the prior πθ(z) 175

effectively enhances the posterior πθ(z | x). 176

To eliminate prompt template bias, we concate- 177

nate each question x with its corresponding options 178

aln and input them into the model, then calculate 179

log probabilities only for the option segment. The 180

prediction is defined as Pθ(x) = cn, where: 181

cn = argmax
l

{Pθ(x||a1n), · · · ,Pθ(x||aLn)} (6) 182

and Pθ(x||aln) = log πθ(x||aln). 183

3.2 Reward 184

To approximate the target described in Section.2, 185

we define two reward functions, rw and rl, which 186

guide the model optimizing. rw is designed to em- 187

bed knowledge into model weights and is expressed 188

as: 189

rw(x, yw, Zx)

=
∑
z∈Zx

βz
|z|

log πθ(z) +
β

|yw|
log πθ(yw | x, Zx)

= rz(Zx) + rc(x, yw, Zx)

(7)

190

where Zx denotes retrieved snippets relevant to 191

question x, and yw represents the augmented gen- 192

eration. Parameter βz controls the weight of the 193

3



knowledge reward rz and β adjusts the augmented194

generation reward rc. Length normalization pre-195

vent the model from favoring excessively long out-196

puts. The naive generation reward rl is defined for197

naive generation yl generated without Zx:198

rl(x, yl) =
β

|yl|
log πθ(yl | x) (8)199

3.3 Reinforcement Learning from Augmented200

Generation201

We employ a Bradley-Terry(Bradley and Terry,202

1952) model with target reward margin γ (Meng203

et al., 2025). The preference probability is defined204

as:205

P (yw ≻ yl | x) = σ(rw − rl − γ) (9)206

where σ denotes the sigmoid function.207

Sampling-driven β adaption. Similar to RLHF,208

when sampling yields identical outputs (yw = yl),209

the generation signal becomes invalid, prompting210

us to set β = 0 to disable generation rewards while211

retaining the knowledge reward controlled by βz .212

When yw ̸= yl, optimization proceeds with all213

three rewards activated to optimize model. Full214

configurations appear in Appendix A.2.215

Clipping strategy. To mitigate overfitting, we216

introduce a clipping strategy. Probabilities πθ(yw |217

x, Zx) exceeding a threshold ϵ1 and πθ(yl | x)218

falling below a threshold ϵ2 are clipped. Substi-219

tuting rw(Eq.7),rl(Eq.8) into Eq.9. The resulting220

RLAG loss function is:221

LRLAG =

− E(x,yw,yl,Zx)∼D

[
log σ

( ∑
z∈Zx

βz
|z|

log πθ(z)

+ min

(
β

|yw|
log πθ(yw | x, Zx), ϵ1

)
−max

(
β

|yl|
log πθ(yl | x), ϵ2

)
− γ

)]
.

(10)

222

where ϵ1 and ϵ2 are adjustable hyperparameters.223

The complete derivation appears in the Appendix224

B.2. Specifically, ϵ1 caps the maximum probability225

for augmented generation to avoid overfitting to226

specific knowledge contexts, while ϵ2 sets a mini-227

mum probability for naive generation to ensure the228

model does not overly suppress naive generation in229

the absence of knowledge documents.230

Role of reward components. The knowledge 231

reward rz facilitates the embedding of down- 232

stream knowledge into the model by increasing 233

the prior probability of relevant knowledge docu- 234

ments. The augmented generation reward rw en- 235

sures that knowledge embedding aligns with the 236

target parameters, guiding the model toward pre- 237

ferred model. Meanwhile, naive generation reward 238

rl reduces the likelihood of yl, further reinforcing 239

knowledge integration. Notably, while the gen- 240

eration rewards themselves don’t directly embed 241

knowledge into the model, they serve as guides 242

in this optimizing process—architects of direction 243

rather than builders of content. 244

4 Knowledge Base Creation 245

4.1 Task Selection and Statistics of Data 246

Experiments were conducted across four distinct 247

downstream tasks. 248

Biomedicine: The USMLE task from MedQA 249

(Jin et al., 2021), drawn from U.S. National Med- 250

ical Licensing Examinations, represents a high- 251

difficulty challenge in medical reasoning. USMLE 252

comprises 10, 178 training instances, 1, 272 vali- 253

dation instances, 1, 273 testing instances, and 18 254

biomedicine books. 255

Law: The BarExamQA (Zheng et al., 2025) task 256

comprises legal questions from practical bar exams. 257

BarExamQA incorporates 954 training instances, 258

124 validation instances, 117 testing instances, and 259

legal documents. 260

Astronomy: Astronomy task from the MMLU 261

(Hendrycks et al., 2020) benchmark, with training 262

data generated using GPT-4 Turbo (Hurst et al., 263

2024) and DeepSeek-R1 (Guo et al., 2025). This 264

tested the model’s scientific knowledge. The astron- 265

omy task contains 2, 000 training instances, 134 266

validation instances, and 152 testing instances. 267

Current Events: We developed a dataset encom- 268

passing post-training temporal phenomena, con- 269

sisting of 1, 300 training instances, 169 validation 270

instances, and 162 testing instances. 271

The original developers released these research- 272

focused datasets, which have been extensively cited 273

in academic literature. We strictly comply with 274

each dataset’s usage terms, ensuring their applica- 275

tion remains limited to scholarly research. 276

4.2 Knowledge Base Creation 277

USMLE: For the USMLE task, we curated a 278

knowledge base from 18 biomedical textbooks pro- 279
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Table 1: Results for USMLE (Jin et al., 2021), BarExamQA (Zheng et al., 2025), and Astronomy (Hendrycks et al.,
2020). Accuracy quantified by Eq.6; explanation win rates at temperature 0.3 assessed by GPT-4 Turbo and Grok-3.

Method

Llama-3.1-8B-Instruct

USMLE BarExamQA Astronomy

ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%) ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%) ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%)

Base 27.6 26.2 27.2 39.3 38.5 39.3 46.7 45.4 46.7
SFT 32.2 26.9 29.9 37.6 26.5 29.1 49.3 37.5 42.8
CPT 29.2 25.3 28.5 35.0 27.4 32.5 48.7 46.1 47.4
CPT+SFT 33.3 25.0 30.7 36.8 26.5 23.9 48.0 38.2 42.1

RLAG 34.8 32.4 33.9 41.9 35.9 38.5 51.3 45.4 50.0

Method

Qwen2-7B-Instruct

USMLE BarExamQA Astronomy

ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%) ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%) ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%)

Base 25.8 21.4 24.9 34.2 32.5 32.5 50.7 50.0 50.7
SFT 27.7 15.0 23.2 31.6 19.7 30.8 53.9 50.7 50.7
CPT 26.4 21.3 25.5 35.0 32.5 35.0 48.7 46.7 46.7
CPT+SFT 27.0 15.9 23.3 34.2 21.4 17.9 52.0 47.4 49.3

RLAG 29.4 23.6 27.8 40.2 35.0 38.5 53.3 52.0 52.0

Method

Llama-3.2-3B-Instruct

USMLE BarExamQA Astronomy

ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%) ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%) ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%)

Base 26.2 22.8 24.8 34.2 25.6 29.1 49.3 44.1 47.4
SFT 30.2 25.6 27.9 33.3 21.4 24.8 50.0 46.1 48.0
CPT 27.4 22.8 25.5 28.2 16.2 22.2 47.4 40.1 44.7
CPT+SFT 29.3 22.3 27.2 29.9 19.7 17.1 46.7 40.8 42.1

RLAG 29.7 25.9 28.1 36.8 25.6 33.3 52.0 46.7 51.3

Table 2: Results for the Current Events in terms of log-likelihood accuracy (Eq.6)

Task Model Base SFT CPT CPT+SFT RLAG

Current Events
Qwen2-7B-Instruct 25.3 32.1 27.2 34.6 48.8
Llama-3.1-8B-Instruct 30.2 34.0 29.6 35.8 54.9
Llama-3.2-3B-Instruct 23.5 25.9 22.8 27.2 37.0

vided by the MedQA(Jin et al., 2021) through sys-280

tematic text cleaning and structural normalization.281

The USMLE knowledge base (KB) has 17.3M to-282

kens. All token counts use LlamaTokenizer.283

BarExamQA: For the BarExamQA(Zheng et al.,284

2025) task, we utilized gold passages provided with285

each sample as reference documents. The BarEx-286

amQA KB has 93.1M tokens.287

Astronomy: For the MMLU astronomy task288

(Hendrycks et al., 2020), we followed a struc-289

tured process: DeepSeek-R1 (Guo et al., 2025) ex-290

tracted keywords from astronomy questions. Then291

we collected text by searching keywords with the292

Wikipedia API 1 and generated samples using293

Deepseek-R1. The Astronomy KB has 3.1M to-294

kens. To prevent contamination, 3-gram matches to295

test data were removed (Guo et al., 2024). Curation296

was performed via the Claude-3.7-Sonnet API2297

and manual review eliminated ambiguous/incorrect298

questions.299

Current events: For the current events task, we300

collected relevant events after the model training301

1https://www.mediawiki.org/wiki/API:Main_page
2https://www.anthropic.com/claude/sonnet

data cutoff date from Wikipedia (Wikipedia con- 302

tributors, 2025), including: 2024-2025 U.S. events, 303

2025 German federal election, and 2024 Summer 304

Olympics. The text was segmented and cleaned 305

using spaCy (Honnibal et al., 2020). The Current 306

events KB has 51.5K tokens. GPT-4 Turbo (Hurst 307

et al., 2024) generated questions for each five-line 308

segment. Recognizing RLAG’s potential privacy 309

risks from personal information in training data, we 310

manually screened the dataset to eliminate ethical 311

concerns. This dataset is for academic research use 312

only. 313

5 Experiments and Results 314

5.1 Experimental Setup 315

Models and training settings. Knowledge em- 316

bedding experiments used two model families: 317

Qwen2 (Yang et al., 2024) and Llama3 (Grattafiori 318

et al., 2024). We selected both large and 319

small variants: Qwen2-7B-Instruct, Llama-3.1- 320

8B-Instruct, and Llama-3.2-3B-Instruct to analyze 321

knowledge embedding effects across different pa- 322

rameter scales. We used instruction-tuned models 323

off-the-shelf, as these are commonly deployed in 324
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Figure 3: Evaluate explanation of the answer across temperatures on USMLE datasets, which is conducted by
GPT-4 Turbo.

Figure 4: Performance comparison between RLAG and
baseline approaches on the USMLE dataset with tem-
perature set to 0.3. Results show answer accuracy and
explanation rationality, with explanations evaluated by
GPT-4 Turbo.

practice, making the embedding of downstream325

knowledge into these models practically signifi-326

cant. NV-Embed-v2(Lee et al., 2024) was selected327

as the embedding model, and used FAISS (Johnson328

et al., 2019) as its vector-store. We report the best329

performance obtained via a grid search of hyper-330

parameters, while ablation studies and evaluation331

of explanations were conducted with single experi-332

mental runs. Tokenizers configured with padding333

token to the end-of-sequence token and assigned334

Qwen2Tokenizer’s beginning-of-sequence token to335

< |im_start| >3. Details of training configurations336

and retrieval methods are provided in Appendix337

A.1 and Appendix A.8, respectively.338

Baselines. The SFT loss function is defined as:339

LSFT = −
B∑
i=1

1

|yi|

|yi|∑
j=1

πθ(yi,j | x, yi,<j) (11)340

where B is the batch size, yi is the answer sequence,341

and yi,j is its j-th token. We apply length normal-342

3https://huggingface.co/docs/transformers/
main/en/chat_templating

ization to prevent bias toward longer outputs. 343

The CPT loss function is: 344

LCPT = −
B∑
i=1

1

|zi|

|zi|∑
j=1

πθ(zi,j | zi,<j) (12) 345

where zi represents a knowledge document chunk, 346

and zi,j is its j-th token. To enhance knowledge em- 347

bedding effectiveness, we also explored a pipeline 348

combining CPT on knowledge documents followed 349

by SFT. 350

5.2 Evaluation Method 351

We employed a two-stage sequential evaluation: an- 352

swer accuracy followed by explanation assessment 353

for correctly answered questions. 354

Log-likelihood accuracy. We ensured prompt- 355

independent results by connecting each option to 356

the question, calculating generation probabilities, 357

and selecting the highest-probability option as the 358

prediction (Eq.6). 359

Explanation win rates. For correctly answered 360

questions, we evaluated knowledge embedding by 361

prompting models to explain their answers. Expla- 362

nations were assessed for logical clarity and factual 363

accuracy using GPT-4 Turbo (Hurst et al., 2024) 364

and Grok-3 (xAI, 2024), with win rates calculated 365

as percentages. Complete evaluation templates ap- 366

pear in Appendix A.3. 367

5.3 Main Results 368

Downstream tasks results. Table 1 demon- 369

strates RLAG’s superior performance across tasks. 370

On USMLE (Jin et al., 2021), RLAG achieves the 371

highest overall answer accuracy and surpasses all 372

baselines in explanation win rate by 2.2−5.5 points. 373

For BarExamQA (Zheng et al., 2025), RLAG out- 374

performs the best baseline by 3.5 − 5.2 points in 375

accuracy while maintaining superior explanation 376

rationality. This legal reasoning task reveals the 377
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Table 3: Ablation study on Llama-3.1-8B-Instruct. We ablate four keys of RLAG:(1) No Clipping in Eq.10 (i.e., w/o
Clip), (2) Fix β, βz in Eq.10 (i.e.,Fixed β, βz), (3) Set γ = 0 in Eq.10 (i.e.,w/o γ), (4) Replace sample yw with
standard answer in Eq.10 (i.e. Std. Ans. as yw)

Method

Llama-3.1-8B-Instruct

USMLE BarExamQA Astronomy

ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%) ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%) ACC(%) GPT-4 Turbo WR(%) Grok-3 WR(%)

CPT+SFT 33.3 25.0 30.7 36.8 26.5 23.9 48.0 38.2 42.1

RLAG 34.8 32.4 33.9 41.9 35.9 38.5 51.3 45.4 50.0

w/o Clip 30.5 24.1 24.6 35.0 27.4 29.1 52.0 48.0 48.7
Fixed β, βz 32.9 29.5 30.5 32.5 22.2 29.1 48.7 46.1 46.7
w/o γ 32.1 29.1 29.6 36.8 28.2 29.1 48.7 46.1 48.0
Std. Ans. as yw 31.0 4.24 5.34 35.0 29.1 31.6 49.3 46.7 49.3

(a) Effect of clipping on rl (b) Effect of clipping on rw (c) Effect of clipping on validation set

Figure 5: Ablation study on reward clipping effects: constraining naive reward rl inflation (a) while steadily
increasing rw (b) and preserving accuracy (c), demonstrating effective reward control.

limitations of baseline methods: SFT merely learns378

question-answer mappings without robust reason-379

ing, while CPT suffers from catastrophic forget-380

ting as vast legal documents. Even on Astronomy381

(Hendrycks et al., 2020), where injected knowl-382

edge is primarily factual and benefits SFT, RLAG383

still outperforms all baselines, whereas CPT on384

the Astronomy knowledge base degrades model385

performance.386

Explanation win rates across temperature. As387

shown in Figure 3, RLAG outperforms all base-388

lines by 5.0 − 7.2 points in explanation win rate389

across temperatures. While baseline training im-390

proves answer accuracy, it compromises explana-391

tion rationality, with unexplained portions rising392

from 5.1% to 13.4 − 23.2% (> 100% relative in-393

crease). RLAG enhances accuracy while preserv-394

ing explanation quality, with unexplained portions395

increasing marginally from 5.1% to 6.8% (Figure396

4). This demonstrates that RLAG embeds domain397

knowledge comprehensively into the model, en-398

suring logical coherence without requiring manual399

annotation.400

Current events results. Table 2 presents results401

on current events. Although CPT+SFT pipeline can402

effectively improve the performance of the model,403

RLAG demonstrates significant gains of 9.8− 19.1 404

points over optimal baselines. Larger 7B-8B mod- 405

els show more substantial improvements (14.2 and 406

19.1 points respectively), while the 3B model im- 407

proves by 9.8 points. As this task focuses on factual 408

questions, explanation rationality was not evalu- 409

ated.

Table 4: Computational Budget in terms of GPU hours

Task Model SFT CPT CPT+SFT RLAG

USMLE
Qwen2-7B-Instruct 4 4 8 32
Llama-3.1-8B-Instruct 6 4 10 34
Llama-3.2-3B-Instruct 3 2 5 18

BarExamQA
Qwen2-7B-Instruct 1 22 23 8
Llama-3.1-8B-Instruct 1 27 28 9
Llama-3.2-3B-Instruct 1 12 13 6

Astronomy
Qwen2-7B-Instruct 1 1 2 12
Llama-3.1-8B-Instruct 1 1 2 10
Llama-3.2-3B-Instruct 0.3 0.3 0.6 8

Current Events
Qwen2-7B-Instruct 1 0.3 1.3 8
Llama-3.1-8B-Instruct 0.8 0.3 1 8
Llama-3.2-3B-Instruct 0.3 0.3 0.6 4

410

5.4 Computational Budget 411

All experiments ran on a server with four NVIDIA 412

A800 GPUs (80GB each). Table 4 shows that 413

RLAG training requires approximately one order 414

of magnitude more GPU hours than the baseline 415

method due to its online sampling and optimization 416

processes. Despite this increased computational de- 417

7



mand, the significant performance improvements418

clearly justify the additional resource investment.419

5.5 Ablation Studies420

Four components were evaluated in RLAG via421

ablation studies with Llama-3.1-8B-Instruct: (1)422

Reward Clipping (w/o Clip), (2) Dynamic β, βz423

(Fixed β, βz), (3) reward margin γ (w/o γ), and424

(4) directly using the standard answer as the aug-425

mented generation in Eq.10 (Std. Ans. as yw).426

Table 3 shows all components are critical, with427

reward clipping having the strongest impact. Re-428

moving reward clipping significantly affects rea-429

soning tasks, reducing answer accuracy by 4.3%430

on USMLE and 7.9% on BarExamQA, with expla-431

nation rationality decreasing by 9% for both tasks.432

However, it minimally impacts factual knowledge433

tasks like Astronomy. Fixed β, βz and removing434

reward margin γ also decrease performance. Using435

standard answers as augmented generation (Eq.10)436

dramatically reduces performance, causing seri-437

ous hallucinations—USMLE explanation rational-438

ity drops by over 28 points. This indicates models439

may learn correct answers but fail to develop ro-440

bust reasoning when answers are directly provided441

rather than autonomously generated.442

The key role of reward clipping. Reward clip-443

ping is essential in our method. Figure 5a shows444

unconstrained naive generation reward rl rapidly445

increases as model divergence occurs, while Fig-446

ure 5b indicates minimal growth in rw, yielding447

negligible validation accuracy improvements (Fig-448

ure 5c). Conversely, RLAG with reward clipping449

effectively constrains rl while maintaining superior450

rw compared to the w/o clipping. This results in451

consistently higher validation accuracy, highlight-452

ing reward clipping’s critical contribution to model453

performance.454

Using standard answer weakens RLAG. Direct455

substitution of standard answers for augmented456

generation significantly degrades model perfor-457

mance and induces hallucinations (Table 3), partic-458

ularly in reasoning-intensive domains like USMLE.459

Our case study (Appendix C) demonstrates that460

this approach causes the model to contradict previ-461

ously answered questions and question the validity462

of given options. The effectiveness of knowledge463

embedding strategies ultimately depends on task464

complexity and reasoning requirements.465

6 Related Work 466

Knowledge injection. In order to enhance LLMs’ 467

capabilities in downstream tasks, knowledge injec- 468

tion is considered a promising research direction 469

(Chen et al., 2022; Ye et al., 2023). Knowledge 470

injection for LLMs can occur during pre-training, 471

fine-tuning, or inference stages. Methods include: 472

(1) RAG, which retrieves text (Guu et al., 2020; 473

Lewis et al., 2020) or graph-structured (Wang et al., 474

2023b; Zhang et al., 2023b; Li et al., 2024) informa- 475

tion during reasoning; (2) Modular adapters, which 476

incorporate domain knowledge through lightweight 477

additional parameters (Zhang et al., 2023c; Lo 478

et al., 2024); (3) Prompt optimization techniques 479

that leverage internal knowledge (Wei et al., 2022); 480

and (4) Direct weight embedding through CPT (Ke 481

et al., 2023) or SFT, which enhances domain ex- 482

pertise and stability (Gururangan et al., 2020; Song 483

et al., 2025). Recent advances focus on optimizing 484

knowledge structures (Zhang et al., 2024), imple- 485

menting gating mechanisms (Peinelt et al., 2021), 486

and developing structure-aware training strategies 487

(Liu et al., 2024) . 488

Reinforcement learning from human feedback 489

(RLHF). RLHF technology enhances LLMs’ per- 490

formance using reinforcement learning with pref- 491

erence data (Ouyang et al., 2022; Stiennon et al., 492

2020). The approach trains a reward model on pref- 493

erence data, then uses PPO to optimize the policy 494

model, significantly improving generation quality 495

(Shao et al., 2024; Guo et al., 2025). DPO (Rad- 496

ford et al., 2019) reparameterizes reward model 497

and directly using preference data to optimize the 498

policy model. RLHF does not focus on embedding 499

knowledge into the model, but improves the output 500

by aligning with humans. 501

7 Conclusion and Future Work 502

In this work, we propose RLAG for knowledge 503

embedding. Compared with traditional knowledge 504

embedding methods, RLAG can solve knowledge- 505

intensive tasks that require reasoning. The core 506

idea of RLAG is to enable the model to indepen- 507

dently generate augmented generation and optimize 508

these generation through a reward-based approach. 509

The training process is implemented iteratively by 510

sampling and optimization. Experiments show that 511

RLAG outperforms baseline methods. In future 512

work, we aim to dynamically embed knowledge 513

into LLMs, rather than performing offline training. 514

8



Limitations515

RLAG, while showing promising resuls in embed-516

ding knowledge into LLMs, has several limitations.517

(i)Although RLAG eliminates the need for manual518

annotation during training, it requires knowledge519

documents relevant to each question. These doc-520

ument fragments can be collected by searching521

knowledge bases through retrieval systems. How-522

ever, the quality of these retrieved fragments heav-523

ily depends on retriever performance and knowl-524

edge base structure, potentially affecting overall525

system effectiveness. (ii)The training process of526

RLAG encompasses two phases: sampling and527

optimization. While we have demonstrated the528

sampling process to be effective, it may require529

more computational time than training directly on530

existing datasets. (iii)Both sampling and training531

processes within RLAG require access to token532

probabilities, making our approach unsuitable for533

closed-source models that do not provide such ac-534

cess. (iv)Due to hardware constraints, our research535

primarily focuses on language models with 3B, 7B,536

and 8B parameters and does not extend to larger-537

scale models that might yield different performance538

characteristics. (v)This study employs two pow-539

erful commercial large language models—GPT-4540

Turbo and Grok-3—to evaluate explanation win541

rates. Although the results demonstrate reasonable542

reproducibility, the closed-source nature of these543

models may introduce variability in evaluation out-544

comes.545

Ethics Statement546

RLAG effectively embeds knowledge into mod-547

els, but this capability raises potential privacy con-548

cerns regarding individuals represented in training549

data. We recognize these inherent risks and have550

implemented stringent precautions in our data se-551

lection process to safeguard personal information.552

For our current events dataset, we exclusively col-553

lected information from public Wikipedia sources554

and conducted thorough manual screening during555

construction to ensure no personal privacy data556

was included. Additionally, the other datasets we557

use have also been utilized in previous studies and558

therefore do not pose any privacy risks. Through559

these careful data curation practices, we maintain560

the utility of knowledge embedding while protect-561

ing individual privacy.562
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A Hyperparameters811

A.1 Training Setups812

All our experiments were performed on 4 A800813

GPUs, using the AdamW optimizer, cosine learn-814

ing rate rise, and warm up ratio of 0.1. RLAG815

experimental Epochs set to 5, Learning Rate set816

to 1.0 × 10−5, Updates 2 per Iteration. We per-817

formed parallel experiments using three random818

seeds: 62512, 34, and 767. We wrapped docu-819

ments with the tokenizer’s beginning- and end-of-820

sequence tokens, segmented them into 256-token821

chunks, and normalized them by length for CPT.822

The number of splits in our training set is equal823

to the number of iterations in an epoch, and we824

divide it according to the number of training sets.825

We use FSDP4 for training, the Qwen2 model826

wraps Qwen2DecoderLayer for training, and the827

Llama3 model wraps LlamaDecoder for training.828

A.2 Dynamic β, βz Selection829

The parameters βz and β are chosen based on the830

sampling results, as follows:831 {
βz = 0.2, β = 0.5 if yw ̸= yl,

βz = 0.5, β = 0.0 if yw = yl.
832

A.3 Explanation Template833

"User question 1":{question}
"Assistant response 1":{answer}
"User question 2":Explain your answer. Why?

Table 5: Explanation Template

A.4 Sampling Template834

If the sampling is naive generation, no relevant835

literature will be added.836

A.5 RLAG Hyperparameters837

Table 7: RLAG Hyperparameters on USMLE

parameter Qwen2-7B-
Instruct

Llama-3.1-
8B-Instruct

Llama-3.2-
3B-Instruct

γ 0.8 8 8

Iterations per
Epoch 9 9 9

Batch Size 1024 1024 1024

Gradient Ac-
cumulation

256 256 256

Grad Norm 5.0 5.0 1.0

4https://pytorch.org/tutorials/intermediate/
FSDP_tutorial.html

You are an AI that answers single-choice questions by
selecting one of the provided options. Given the question
and options separated by semicolons (;), output only one
of the exact text of the correct option. Do not include any
additional text, explanations, or multiple options.
<Example>: Question: What is the capital of France?
Options: Berlin; Madrid; Paris; Rome Answer:
Paris.</Example>Now, answer the following question:
Related literature: {ctx}
Question: {question}
Options: {options}
Answer:

Table 6: Sampling Template

Table 8: RLAG Hyperparameters on BaeExamQA

parameter Qwen2-7B-
Instruct

Llama-3.1-
8B-Instruct

Llama-3.2-
3B-Instruct

γ 0.8 0.8 0.8

Iterations per
Epoch 7 7 7

Batch Size 128 128 128

Gradient Ac-
cumulation

32 32 23

Grad Norm 1.0 1.0 1.0

Table 9: RLAG Hyperparameters on Astronomy

parameter Qwen2-7B-
Instruct

Llama-3.1-
8B-Instruct

Llama-3.2-
3B-Instruct

γ 0.8 0.8 0.8

Iterations per
Epoch 8 8 8

Batch Size 256 256 256

Gradient Ac-
cumulation

64 64 64

Grad Norm 1.0 1.0 1.0

Table 10: RLAG Hyperparameters on CurrentEvents

parameter Qwen2-7B-
Instruct

Llama-3.1-
8B-Instruct

Llama-3.2-
3B-Instruct

γ 0.8 0.8 0.8

Iterations per
Epoch 6 6 6

Batch Size 246 246 246

Gradient Ac-
cumulation

61 61 61

Grad Norm 1.0 1.0 1.0
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A.6 SFT Hyperparameters838

Table 11: SFT Hyperparameters on USMLE

parameter Qwen2-7B-
Instruct

Llama-3.1-
8B-Instruct

Llama-3.2-
3B-Instruct

Learning Rate 1.0× 10−5 5.0× 10−6 5.0× 10−6

Epoch 5 5 5

Batch Size 128 128 128

Gradient Ac-
cumulation

8 8 8

Grad Norm 1.0 1.0 1.0

Table 12: SFT Hyperparameters on BarExamQA

parameter Qwen2-7B-
Instruct

Llama-3.1-
8B-Instruct

Llama-3.2-
3B-Instruct

Learning Rate 5.0× 10−6 5.0× 10−6 5.0× 10−6

Epoch 5 5 5

Batch Size 128 128 128

Gradient Ac-
cumulation

8 8 8

Grad Norm 1.0 1.0 1.0

Table 13: SFT Hyperparameters on Astronomy

parameter Qwen2-7B-
Instruct

Llama-3.1-
8B-Instruct

Llama-3.2-
3B-Instruct

Learning Rate 5.0× 10−6 5.0× 10−6 5.0× 10−6

Epoch 5 5 5

Batch Size 128 128 128

Gradient Ac-
cumulation

8 8 8

Grad Norm 1.0 1.0 1.0

Table 14: SFT Hyperparameters on Current Events

parameter Qwen2-7B-
Instruct

Llama-3.1-
8B-Instruct

Llama-3.2-
3B-Instruct

Learning Rate 1.0× 10−5 1.0× 10−5 1.0× 10−5

Epoch 5 5 5

Batch Size 128 128 128

Gradient Ac-
cumulation

8 8 8

Grad Norm 1.0 1.0 1.0

A.7 CPT Hyperparameters839

Table 15: CPT Hyperparameters on USMLE

parameter Qwen2-7B-
Instruct

Llama-3.1-
8B-Instruct

Llama-3.2-
3B-Instruct

Learning Rate 5.0× 10−6 5.0× 10−6 5.0× 10−6

Epoch 2 2 2

Batch Size 1024 1024 1024

Gradient Ac-
cumulation

16 16 16

Grad Norm 1.0 1.0 1.0

Table 16: CPT Hyperparameters on BarExamQA

parameter Qwen2-7B-
Instruct

Llama-3.1-
8B-Instruct

Llama-3.2-
3B-Instruct

Learning Rate 5.0× 10−6 5.0× 10−6 5.0× 10−6

Epoch 2 2 2

Batch Size 1024 1024 1024

Gradient Ac-
cumulation

16 16 16

Grad Norm 1.0 1.0 1.0

Table 17: CPT Hyperparameters on Astronomy

parameter Qwen2-7B-
Instruct

Llama-3.1-
8B-Instruct

Llama-3.2-
3B-Instruct

Learning Rate 5.0× 10−6 5.0× 10−6 5.0× 10−6

Epoch 2 2 2

Batch Size 1024 1024 1024

Gradient Ac-
cumulation

16 16 16

Grad Norm 1.0 1.0 1.0

Table 18: CPT Hyperparameters on Current Events

parameter Qwen2-7B-
Instruct

Llama-3.1-
8B-Instruct

Llama-3.2-
3B-Instruct

Learning Rate 1.0× 10−5 1.0× 10−5 1.0× 10−5

Epoch 5 5 5

Batch Size 128 128 128

Gradient Ac-
cumulation

2 2 2

Grad Norm 1.0 1.0 1.0

A.8 Retrieval Method 840

We tailored retrieval strategies to each task’s spe- 841

cific characteristics: 842

USMLE retrieval. We merged keyword (Elas- 843

ticsearch, BM25) and embedding searches. For 844

each question-option pair, 200 document snippets 845

were retrieved, vectorized, and filtered for semantic 846

relevance. 847

Astronomy and current events retrieval. Doc- 848

uments were segmented (spaCy), embedded, and 849

stored in FAISS. Questions were embedded to re- 850

trieve top matches via vector similarity, retaining 851

≤ 1,000 tokens per query. 852
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B Formula Derivation853

B.1 Equation.5 Derivation854

We need to simplified:855

∂πθ(z | x)
∂πθ(z)

=
d πθ(z | x)

d θ
· 1

d πθ(z)
d θ

(13)856

Given that:857

πθ(z | x) = πθ(x | z)πθ(z)
πθ(x)

(14)858

859
πθ(x) =

∑
z′

πθ(x | z′)πθ(z′) (15)860

Substitute Eq.13,Eq.14 in d πθ(z|x)
d θ :861

d πθ(z | x)
d θ

=
1

πθ(x)2
· (πθ(x)

d
dθ

[πθ(z)πθ(x | z)]− πθ(x | z)πθ(z)
∑
z′

d
dθ
[
πθ(z

′)πθ(x | z′)
]
) (16)862

Here we only do sensitivity analysis. We assume that changing θ only increases the distribution of πθ(z)863

and does not change other distributions. Therefore, we can get:864

dπθ(z | x)
dθ

=
πθ(x | z)dπθ(z)

dθ
∑

z′ ̸=z πθ(x | z′)πθ(z′)
πθ(x)2

(17)865

Finally, substitute Eq.16 into Eq.13, we can get:866

∂πθ(z | x)
∂πθ(z)

=
πθ(x | z)

∑
z′ ̸=z πθ(x | z′)πθ(z′)
πθ(x)2

(18)867

B.2 RLAG Loss Function Derivation868

Consider Bradly-Terry Model with reward margin γ:869

P (yw ≻ yl | x) = σ(rw − rl − γ) (19)870

Substitute rw, rl into Eq.19 we can get per-instance loss:871

P (yw ≻ yl | x) = σ(
∑
z∈Zx

βz
|z|

log πθ(z) +
β

|yw|
log πθ(yw | x, Zx)−

β

|yl|
log πθ(yl | x)− γ) (20)872

Conduct Maximum Likelihood Estimation, we can get RLAG Loss function Eq.10.873
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C Case Study 874

Table 19: Case Study with Std. Ans. as yw

Question Std. Ans. as yw Explanation

A 29-year-old woman comes to the physician with high-grade fever, headache,
and muscle pain. A week ago, she returned from India, where she was working
with an NGO to build houses in rural areas. The patient took one dose of
chloroquine one week before her trip. She also took a further dose during her
trip. She has no history of a serious illness. Her temperature is 39.3°C (102.7°F),
pulse is 102/min, respirations are 22/min, and blood pressure is 112/78 mm
Hg. Physical examination shows jaundice. The abdomen is soft and nontender.
The remainder of the examination shows no abnormalities. Her hemoglobin
concentration is 10 g/dL and a blood smear shows fragmented erythrocytes
and occasional ring-shaped inclusion bodies within erythrocytes. Which of the
following is the most likely cause of infection in this patient?
Options:
Plasmodium ovale;
Plasmodium falciparum;
Dengue virus;
Chikungunya virus;
Hepatitis A virus

I cannot provide a diagnosis. Is there any-
thing else I can help you with?

A 28-year-old primigravid woman at 39 weeks gestation is admitted to the
hospital in active labor. On examination, the cervix is 100% effaced and 10 cm
dilated. After 5 minutes of pushing, there is a prolonged deceleration of the fetal
heart rate to 90/min. A decision to perform an episiotomy is made to expedite
vaginal delivery. The anesthesiologist locates the ischial spines by palpating the
posterolateral vaginal sidewall and administers an anesthetic. Three minutes
later, pinching the posterior vulva does not provoke pain. The anesthetized nerve
most likely also supplies which of the following structures?
Options:
Obturator externus muscle;
Skin of the lateral thigh;
External anal sphincter;
Skin of the mons pubis;
Detrusor muscle

That’s not correct. It was a wrong answer.
The correct answer is not provided in the
options.
The correct answer is actually not requested
but the question asks which anesthetized
nerve is likely supplied. The correct answer
is the question itself was about confirmation
of successful nerve block which is the nerve
to the perineal muscles which is S3 S4 S5
but the block described is a block of the pu-
dendal nerve.
The question about which anesthetic area is
not requested but the options are to find out
which one is not likely to be anesthetized.

A 59-year-old man is evaluated for progressive joint pain. There is swelling and
tenderness over the first, second, and third metacarpophalangeal joints of both
hands. His hand radiograph is shown. He has had diabetes mellitus for 2 years
which is not well controlled with medications. Lab studies show a transferrin
saturation of 88% and serum ferritin of 1,200 ng/mL. Which of the following
best represents the etiology of this patient condition?
Options:
Deposition of urate crystals;
Deposition of calcium pyrophosphate (CPP) crystals;
Degenerative joint disorder;
Inflammatory rheumatological syndrome;
Pathogenic inoculation of microbes

That was incorrect. Deposition does not de-
scribe for the question choices provided.
The most likely answer does not exist in the
choices provided. The symptoms are most
likely rheumatoid arthritis.
However, the transferrin answer suggests
looking for hemochromatoses which is cor-
rect.", "answer": "Deposition of calcium py-
rophosphate (CPP) crystals

Table 19 presents selected explanations from Std. Ans. as yw. We highlight three representative error 875

types. 876

1. The model correctly identifies the answer but fails to explain its reasoning. This indicates that the 877

model struggles to articulate logical reasoning to support that answer. 878

2. The model contradicts its initial answer during the explanation phase. Recalling our prediction 879

method: we use Eq.6 to calculate the highest probability option becoming the model’s predicted 880

answer. This contradiction suggests that the model lacks a coherent understanding of the underlying 881

concepts. Consequently, when elaborating on its reasoning, the model contradicts its initial answer 882

despite that answer having the highest output probability. 883

3. The model explicitly rejects its own answer, insisting that none of the provided options is correct. 884

This self-contradiction appears frequently in explanation outputs, which indicates the mode is lack of 885

foundational knowledge leads to inconsistent reasoning when required to justify its responses. 886
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Table 20: Case Study with RLAG

Question RLAG Explanation

A 29-year-old woman comes to the physician
with high-grade fever, headache, and muscle
pain. A week ago, she returned from India,
where she was working with an NGO to build
houses in rural areas. The patient took one dose
of chloroquine one week before her trip. She
also took a further dose during her trip. She has
no history of a serious illness. Her temperature
is 39.3°C (102.7°F), pulse is 102/min, respira-
tions are 22/min, and blood pressure is 112/78
mm Hg. Physical examination shows jaundice.
The abdomen is soft and nontender. The remain-
der of the examination shows no abnormalities.
Her hemoglobin concentration is 10 g/dL and a
blood smear shows fragmented erythrocytes and
occasional ring-shaped inclusion bodies within
erythrocytes. Which of the following is the most
likely cause of infection in this patient?
Options:
Plasmodium ovale;
Plasmodium falciparum;
Dengue virus;
Chikungunya virus;
Hepatitis A virus

I chose Plasmodium falciparum as the most likely cause of infection in
this patient for several reasons:
1. **Symptoms**: The patient presents with high-grade fever, headache,
muscle pain, and jaundice, which are typical symptoms of malaria caused
by Plasmodium species.
2. **Travel history**: The patient recently returned from India, where
malaria is endemic. Plasmodium falciparum is prevalent in many parts
of India.
3. **Chloroquine prophylaxis**: Although the patient took chloroquine
prophylaxis, which is effective against Plasmodium ovale and Plasmod-
ium vivax, it is not effective against Plasmodium falciparum. However,
chloroquine resistance is a concern in many areas where P. falciparum is
prevalent, including India.
4. **Blood smear findings**: The blood smear shows fragmented ery-
throcytes (schistocytes) and occasional ring-shaped inclusion bodies
within erythrocytes, which are characteristic of malaria caused by Plas-
modium species.
5. **Hemoglobin concentration**: The patient has mild anemia
(hemoglobin concentration of 10 g/dL), which is consistent with malaria
infection.
Considering these factors, while Plasmodium ovale is also a possibility
given the patient’s chloroquine prophylaxis, Plasmodium falciparum is
a more likely cause of infection due to its prevalence in India and the
severity of the patient’s symptoms.

A 28-year-old primigravid woman at 39 weeks
gestation is admitted to the hospital in active la-
bor. On examination, the cervix is 100% effaced
and 10 cm dilated. After 5 minutes of push-
ing, there is a prolonged deceleration of the fetal
heart rate to 90/min. A decision to perform an
episiotomy is made to expedite vaginal delivery.
The anesthesiologist locates the ischial spines by
palpating the posterolateral vaginal sidewall and
administers an anesthetic. Three minutes later,
pinching the posterior vulva does not provoke
pain. The anesthetized nerve most likely also
supplies which of the following structures?
Options:
Obturator externus muscle;
Skin of the lateral thigh;
External anal sphincter;
Skin of the mons pubis;
Detrusor muscle

The anesthetized nerve is the pudendal nerve, which is responsible for
providing sensory and motor innervation to the perineal region. The
pudendal nerve is located in the lateral wall of the ischiorectal fossa and
can be palpated by feeling the posterolateral vaginal sidewall.
The question states that pinching the posterior vulva does not provoke
pain after administration of the anesthetic, indicating that the pudendal
nerve has been successfully blocked.
The correct answer is the External anal sphincter. This is because the
pudendal nerve provides motor innervation to the external anal sphincter
muscle, which is responsible for voluntary control of anal sphincter tone.
The other options are incorrect because:
The Obturator externus muscle is innervated by the obturator nerve, not
the pudendal nerve.
The Skin of the lateral thigh is innervated by the lateral cutaneous nerve
of the thigh, not the pudendal nerve.
The Skin of the mons pubis is innervated by the ilioinguinal nerve, not
the pudendal nerve.
The Detrusor muscle is innervated by the pelvic splanchnic nerves (S2-
S4), not the pudendal nerve.

A 44-year-old African-American woman comes
to the physician for a routine examination. She is
concerned about cancer because her uncle died
of metastatic melanoma 1 year ago. She has no
history of serious illness and does not take any
medication. She has been working in a law firm
for the past 20 years and travels to the Carribean
regularly with her husband. Examination of her
skin shows no abnormal moles or warts. This
woman is at greatest risk of which of the follow-
ing types of melanoma?
options:
Desmoplastic;
Nodular;
Acral lentiginous;
Lentigo maligna;
Superficial spreading

I chose Acral lentiginous melanoma as the most likely type because of
the patient’s characteristics.
Acral lentiginous melanoma is a subtype of melanoma that occurs on
the palms, soles, and under the nails. This patient’s occupation as a
lawyer is not particularly relevant to her risk, but her regular travel to the
Caribbean is. However, the most important factor is her ethnicity.
Acral lentiginous melanoma is more common in individuals of African
descent. Given that the patient is an African-American woman, she is at
higher risk for this subtype of melanoma.
The other options are less likely:
- Desmoplastic melanoma is a rare subtype that typically occurs on sun-
damaged skin and is not associated with African-American patients.
- Nodular melanoma is a fast-growing subtype that can occur anywhere
on the body but is not more common in African-American patients.
- Lentigo maligna melanoma occurs on chronically sun-damaged skin
and is rare in African-American patients.
- Superficial spreading melanoma is the most common subtype but is not
more common in African-American patients.
Therefore, given the patient’s ethnicity, Acral lentiginous melanoma is
the most likely type of melanoma she is at risk for.

16


	Introduction
	Preliminaries
	Methodology
	Sampling
	Reward
	Reinforcement Learning from Augmented Generation

	Knowledge Base Creation
	Task Selection and Statistics of Data
	Knowledge Base Creation

	Experiments and Results
	Experimental Setup
	Evaluation Method
	Main Results
	Computational Budget
	Ablation Studies

	Related Work
	Conclusion and Future Work
	Hyperparameters
	Training Setups
	Dynamic beta,beta z Selection
	Explanation Template
	Sampling Template
	RLAG Hyperparameters
	SFT Hyperparameters
	CPT Hyperparameters
	Retrieval Method

	Formula Derivation
	Equation.5 Derivation
	RLAG Loss Function Derivation

	Case Study

