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ABSTRACT

Greedy-GQ is a value-based reinforcement learning (RL) algorithm for optimal
control. Recently, the finite-time analysis of Greedy-GQ has been developed un-
der linear function approximation and Markovian sampling, and the algorithm is
shown to achieve an e-stationary point with a sample complexity in the order of
O(e=3). Such a high sample complexity is due to the large variance induced by
the Markovian samples. In this paper, we propose a variance-reduced Greedy-GQ
(VR-Greedy-GQ) algorithm for off-policy optimal control. In particular, the algo-
rithm applies the SVRG-based variance reduction scheme to reduce the stochas-
tic variance of the two time-scale updates. We study the finite-time convergence
of VR-Greedy-GQ under linear function approximation and Markovian sampling
and show that the algorithm achieves a much smaller bias and variance error than
the original Greedy-GQ. In particular, we prove that VR-Greedy-GQ achieves an
improved sample complexity that is in the order of O(e~2). We further compare
the performance of VR-Greedy-GQ with that of Greedy-GQ in various RL exper-
iments to corroborate our theoretical findings.

1 INTRODUCTION

In reinforcement learning (RL), an agent interacts with a stochastic environment following a certain
policy and receives some reward, and it aims to learn an optimal policy that yields the maximum ac-
cumulated reward Sutton & Barto (2018). In particular, many RL algorithms have been developed to
learn the optimal control policy, and they have been widely applied to various practical applications
such as finance, robotics, computer games and recommendation systems Mnih et al. (2015; 2016);
Silver et al. (2016); Kober et al. (2013).

Conventional RL algorithms such as Q-learning Watkins & Dayan (1992) and SARSA Rummery &
Niranjan (1994) have been well studied and their convergence is guaranteed in the tabular setting.
However, it is known that these algorithms may diverge in the popular off-policy setting under lin-
ear function approximation Baird (1995); Gordon (1996). To address this issue, the two time-scale
Greedy-GQ algorithm was developed in Maei et al. (2010) for learning the optimal policy. This
algorithm extends the efficient gradient temporal difference (GTD) algorithms for policy evaluation
Sutton et al. (2009b) to policy optimization. In particular, the asymptotic convergence of Greedy-
GQ to a stationary point has been established in Maei et al. (2010). More recently, Wang & Zou
(2020) studied the finite-time convergence of Greedy-GQ under linear function approximation and
Markovian sampling, and it is shown that the algorithm achieves an e-stationary point of the objec-
tive function with a sample complexity in the order of O(¢~3). Such an undesirable high sample
complexity is caused by the large variance induced by the Markovian samples queried from the
dynamic environment. Therefore, we want to ask the following question.

o (QI: Can we develop a variance reduction scheme for the two time-scale Greedy-GQ algorithm?
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In fact, in the existing literature, many recent work proposed to apply the variance reduction tech-
niques developed in the stochastic optimization literature to reduce the variance of various TD learn-
ing algorithms for policy evaluation, e.g., Du et al. (2017); Peng et al. (2019); Korda & La (2015);
Xu et al. (2020). Some other work applied variance reduction techniques to Q-learning algorithms,
e.g., Wainwright (2019); Jia et al. (2020). Hence, it is much desired to develop a variance-reduced
Greedy-GQ algorithm for optimal control. In particular, as many of the existing variance-reduced
RL algorithms have been shown to achieve an improved sample complexity under variance reduc-
tion, it is natural to ask the following fundamental question.

o (2: Can variance-reduced Greedy-GQ achieve an improved sample complexity under Markovian
sampling?

In this paper, we provide affirmative answers to these fundamental questions. Specifically, we
develop a two time-scale variance reduction scheme for the Greedy-GQ algorithm by leveraging
the SVRG scheme Johnson & Zhang (2013). Moreover, under linear function approximation and
Markovian sampling, we prove that the proposed variance-reduced Greedy-GQ algorithm achieves
an e-stationary point with an improved sample complexity O(¢~2). We summarize our technical
contributions as follows.

1.1 OUR CONTRIBUTIONS

We develop a variance-reduced Greedy-GQ (VR-Greedy-GQ) algorithm for optimal control in re-
inforcement learning. Specifically, the algorithm leverages the SVRG variance reduction scheme
Johnson & Zhang (2013) to construct variance-reduced stochastic updates for updating the parame-
ters in both time-scales.

We study the finite-time convergence of VR-Greedy-GQ under linear function approximation and
Markovian sampling in the off-policy setting. Specifically, we show that VR-Greedy-GQ achieves
an e-stationary point of the objective function J (i.e., ||[VJ(8)||*> < €) with a sample complexity
in the order of O(e~2). Such a complexity result improves that of the original Greedy-GQ by a
significant factor of O(e~!) Wang & Zou (2020). In particular, our analysis shows that the bias
error caused by the Markovian sampling and the variance error of the stochastic updates are in the
order of O(M 1), O(ng M ~1), respectively, where 7y is the learning rate and M corresponds to the
batch size of the SVRG reference batch update. This shows that the proposed variance reduction
scheme can significantly reduce the bias and variance errors of the original Greedy-GQ update (by
a factor of M) and lead to an improved overall sample complexity.

The analysis logic of VR-Greedy-GQ partly follows that of the conventional SVRG, but requires
substantial new technical developments. Specifically, we must address the following challenges.
First, VR-Greedy-GQ involves two time-scale variance-reduced updates that are correlated with
each other. Such an extension of the SVRG scheme to the two time-scale updates is novel and re-
quires new technical developments. Specifically, we need to develop tight variance bounds for the
two time-scale updates under Markovian sampling. Second, unlike the convex objective functions
of the conventional GTD type of algorithms, the objective function of VR-Greedy-GQ is generally
non-convex due to the non-stationary target policy. Hence, we need to develop new techniques to
characterize the per-iteration optimization progress towards a stationary point under nonconvexity.
In particular, to analyze the two time-scale variance reduction updates of the algorithm, we intro-

duce a ‘fine-tuned’ Lyapunov function of the form R = J (9§m)) + ||0§m) — 6(m)|2, where the

parameter ¢; is fine-tuned to cancel other additional quadratic terms ||9t(m) —6(™)||2 that are implic-
itly involved in the tracking error terms. The design of this special Lyapunov function is critical to
establish the formal convergence of the algorithm. With these technical developments, we are able
to establish an improved finite-time convergence rate and sample complexity for VR-Greedy-GQ.

1.2 RELATED WORK

Q-learning and SARSA with function approximation. The asymptotic convergence of Q-learning
and SARSA under linear function approximation were established in Melo et al. (2008); Perkins &
Precup (2003), and their finite-time analysis were developed in Zou et al. (2019); Chen et al. (2019).
However, these algorithms may diverge in off-policy training Baird (1995). Also, recent works
focused on the Markovian setting. Various analysis techniques have been developed to analyze
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the finite-time convergence of TD/Q-learning under Markovian samples. Specifically, Wang et al.
(2020) developed a multi-step Lyapunov analysis for addressing the biasedness of the stochastic
approximation in Q-learning. Srikant & Ying (2019) developed a drift analysis to the linear stochas-
tic approximation problem. Besides the linear function approximation, the finite-time analysis of
Q-learning under neural network function approximation is developed in Xu & Gu (2019).

GTD algorithms. The GTD2 and TDC algorithms were developed for off-policy TD learning.
Their asymptotic convergence was proved in Sutton et al. (2009a;b); Yu (2017), and their finite-time
analysis were developed recently in Dalal et al. (2018); Wang et al. (2017); Liu et al. (2015); Gupta
et al. (2019); Xu et al. (2019). The Greedy-GQ algorithm is an extension of these algorithms to
optimal control and involves nonlinear updates.

RL with variance reduction: Variance reduction techniques have been applied to various RL al-
gorithms. In TD learning, Du et al. (2017) reformulate the MSPBE problem as a convex-concave
saddle-point optimization problem and applied SVRG Johnson & Zhang (2013) and SAGA Defazio
et al. (2014) to primal-dual batch gradient algorithm. In Korda & La (2015), the variance-reduced
TD algorithm was introduced for solving the MSPBE problem, and later Xu et al. (2020) provided
a correct non-asymptotic analysis for this algorithm over Markovian samples. Recently, some other
works applied the SVRG , SARAH Nguyen et al. (2017) and SPIDER Fang et al. (2018) variance
reduction techniques to develop variance-reduced Q-learning algorithms, e.g., Wainwright (2019);
Jia et al. (2020). In these works, TD or TDC algorithms are in the form of linear stochastic approx-
imation, and Q-learning has only a single time-scale update. As a comparison, our VR-Greedy-GQ
takes nonlinear two time-scale updates to optimization a nonconvex MSPBE.

2 PRELIMINARIES: POLICY OPTIMIZATION AND GREEDY-GQ

In this section, we review some preliminaries of reinforcement learning and recap the Greedy-GQ
algorithm under linear function approximation.

2.1 PoLICY OPTIMIZATION IN REINFORCEMENT LEARNING

In reinforcement learning, an agent takes actions to interact with the environment via a Markov
Decision Process (MDP). Specifically, an MDP is specified by the tuple (S, A, P, r,~), where S and
A respectively correspond to the state and action spaces that include finite elements, 7 : Sx AXxS —
[0, +00) denotes a reward function and v € (0, 1) is the associated reward discount factor.

At any time ¢, assume that the agent is in the state s; € S and takes a certain action a; € A
following a stationary policy m, i.e., a; ~ 7(+|s¢). Then, at the subsequent time ¢ + 1, the current
state of the agent transfers to a new state s;41 according to the transition kernel P(+|s;, a;). At the
same time, the agent receives areward r; = (8¢, at, $¢+1) from the environment for this action-state
transition. To evaluate the quality of a given policy 7, we often use the action-state value function
Q™ : S x A — R that accumulates the discounted rewards as follows:

Qﬂ(su a) = ]Es/~P(‘\S,a) [7‘(87 a, S/) + 'VVW(S/)] )

where V™ (s) is the state value function defined as V™ (s) = E[Zfi 0V Telso = s} In particu-

lar, define the Bellman operator 7™ such that 77 Q(s,a) = Ey o/[r(s,a,s’) + vQ(s’, a’)] for any
Q(s,a), where a’ ~ 7(+|s"). Then, Q™ (s, a) is a fixed point of T, i.e.,

T7Q7 (s,a) = Q" (s,a), Vs, a. (D

The goal of policy optimization is to learn the optimal policy 7* that maximizes the expected total
reward E[Y . v'r|so = s] for any initial state s € S, and this is equivalent to learn the optimal
value function Q*(s,a) = sup, Q™ (s,a), Vs, a. In particular, Q* is a fixed point of the Bellman
operator T that is defined as TQ(s,a) = Ey wp(.|s,a)[7(5, a, 8") + v maxpe4 Q(s',D)].

2.2  GREEDY-GQ WITH LINEAR FUNCTION APPROXIMATION

The Greedy-GQ algorithm is inspired by the fixed point characterization in eq. (1), and in the tabular

setting it aims to minimize the Bellman error |[77Q™ — Q™ ||” . Here, | - |7 is induced by
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the state-action stationary distribution p , (induced by the behavior policy 7p), and is defined as
HQl is,a = E(Sya)""l"s,a [Q(& a)Q]'

In practice, the state and action spaces may include a large number of elements that makes tabular
approach infeasible. To address this issue, function approximation technique is widely applied. In
this paper, we consider approximating the state-action value function (s, a) by a linear function.
Specifically, consider a set of basis functions {¢(*) : S x A — R, i = 1,2,...,d}, each of which
maps a given state-action pair to a certain value. Define ¢5, = [0V (s,a);...; ¥ (s,a)] as the
feature vector for (s, a). Then, under linear function approximation, the value function Q(s, a) is
approximated by Qp(s,a) = Iaﬁ, where § € R? denotes the parameter of the linear approxi-
mation. Consequently, Greedy-GQ aims to find the optimal 6* that minimizes the following mean
squared projected Bellman error (MSPBE).

1
(MSPBE):  J(0) := 3|17 Qo — Qo .. 2)

where p , is the stationary distribution induced by the behavior policy 7, IT is a projection operator
that maps an action-value function @ to the space Q spanned by the feature vectors, i.e., IIQ) =
argming o ||[U —Q||,, .. Moreover, the policy 7y is parameterized by 6. In this paper, we consider
the class of Lipschitz and smooth policies (see Assumption 4.2).

Next, we introduce the Greedy-GQ algorithm. Define Vo (0) = > ... mo(a'|s") ;r’,a’o’
00,5 (0) = r(s,a,5") + 7V (0) — ¢] .0 and denote &(9) = VV4(6). Then, the gradient of
the objective function J () in eq. (2) is expressed as

VJ(0) = *E[és,a,S’(a)Q&S,a] + ’YE[‘ZS/(@)QZ’IAW*(Q%
where w*(0) = E[¢s 00, o] 'E[0s,a,5'(8)¢s.q]- To address the double-sampling issue when esti-

mating the product of expectations involved in E[¢, ()¢ Jw*(6), Sutton et al. (2009a) applies a

s,a

weight doubling trick and constructs the following two time-scale update rule for the Greedy-GQ
algorithm: for every t = 0, 1,2, ..., sample (s, at, ¢, St+1) using the behavior policy 7, and do

Orr1 = 0p — g (— Se11(00) bt + v (wy G4)Drs1(0)),

(Greedy-GQ): W41 = Wi — Ny (¢;rwt - 5t+1(9t))¢t» (3)
T 1 = ,P((bTet-‘rl)'
where 19,7, > 0 are the learning rates and we denote 0;41(6) = 0s,,a,,5,.,(0), 0t = Gs,.a;>

bi41(0:) == ¢s,,, (0;) for simplicity. To elaborate, the first two steps correspond to the two time-
scale updates for updating the value function )y, whereas the last step is a policy improvement
operation that exploits the updated value function to improve the target policy, e.g., greedy, e-greedy,
softmax and mellowmax Asadi & Littman (2017).

The above Greedy-GQ algorithm uses a single Markovian sample to perform the two time-scale
updates in each iteration. Such a stochastic Markovian sampling often induces a large variance that
significantly slows down the overall convergence. This motivates us to develop variance reduction
schemes for the two time-scale Greedy-GQ in the next section.

3 GREEDY-GQ WITH VARIANCE REDUCTION

In this section, we propose a variance-reduced Greedy-GQ (VR-Greedy-GQ) algorithm under
Markovian sampling by leveraging the SVRG variance reduction scheme Johnson & Zhang (2013).
To simplify notations, we define the stochastic updates regarding a sample x; = (s, at, Tt, St+1)
used in the Greedy-GQ as follows:

G, (0,0) = —6,11(0) e +v(w 64)des1(6),
Hwt(9,w) = (qﬁ:w — 5t+1(9))¢t-

Next, consider a single MDP trajectory {z;};>¢ obtained by the behavior policy m,. In partic-
ular, we divide the entire trajectory into multiple batches of samples {8,,},,>1 so that B,, =
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{Z(m-1)M> s Zmrr—1}, and our proposed VR-Greedy-GQ uses one batch of samples in every
epoch. To elaborate, in the m-th epoch, we first initialize this epoch with a pair of reference points

(m) 9(’” (()m) = (™), where (") 5("™) are set to be the output points G(m 1),0.)5\7;_1) of
the previous epoch, respectively. Then, we compute a pair of reference batch updates using the

reference points and the batch of samples as follows

am _ 1 mZM ' Gy (8 )y, o — L mZM ' H,, (00 &), 4
M M
k=(m—1)M k=(m—-1)M

In the ¢-th iteration of the m-th epoch, we first query a random sample z¢ from the batch
B, uniformly with replacement (i.e., sample & from {(m — 1)M,...,mM — 1} uniformly).
Then, we use this sample to compute the stochastic updates G“/’ﬁfm , ngm at both of the points

(08 w{™), (60, H™). After that, we use these stochastic updates and the reference batch
updates to construct the variance-reduced updates in Algorithm 1 via the SVRG scheme, where for
simplicity we denote the stochastic updates G, e H, o respectively as Ggm), H t(m). In particular,

we project the two time-scale updates onto the Euclidean ball with radius R to stabilize the algo-
rithm updates, and we assume that R is large enough to include at least one stationary point of J.
Lastly, we further update the policy via the policy improvement operation P.

Algorithm 1: Variance-Reduced Greedy-GQ
Input: learning rates 7y, 7)., batch size M. N
Initialize: 1) = 0y, 0™ = wy, 75, + P(p "W).
form=1,2,... do
o™ = 60m) ,u{™ = Zm) Compute G(™ | H(™ according to eq. (4).
fort =0,1,...,M — 1do
Query a sample from B,,, with replacement.
et(+1) =1y [9(7’”) 9 (G(m)(g(m) (m)) _ Ggm) (G(m),a(m)) 4 G(m))} .

2gi:l) —TIx |:w§7n) (H(’rn) (a(nb) (m)) Ht(m) (é(m) 7 (:}(m)) + ﬁ(m))] )

Policy improvement: 7. < P(qu@t +1)
t+1

end
Set §0m+1) = g™ gm+1) = ylm)
end

Output: parameter 6 chosen among {9§m)}t,m uniformly at random.

The above VR-Greedy-GQ algorithm has several advantages and uniqueness. First, it takes incre-
mental updates that use a single Markovian sample per-iteration. This makes the algorithm sample
efficient. Second, VR-Greedy-GQ applies variance reduction to both of the two time-scale updates.
As we show later in the analysis, such a two time-scale variance reduction scheme significantly
reduces the variance error of both of the stochastic updates.

We want to further clarify the incrementalism and online property of VR-Greedy-GQ. Our VR-
Greedy-GQ is based on the online-SVRG and can be viewed as an incremental algorithm with regard
to the batches of samples used in the outer-loops, i.e., in every outer-loop the algorithm samples a
new batch of samples and use them to perform variance reduction in the corresponding inner-loops.
Therefore, VR-Greedy-GQ can be viewed as an online batch-incremental algorithm. In general,
there is a trade-off between incrementalism and variance reduction for SVRG-type algorithms: a
larger batch size in the outer-loops enhances the effect of variance reduction, while a smaller batch
size makes the algorithm more incremental.

4 FINITE-TIME ANALYSIS OF VR-GREEDY-GQ

In this section, we analyze the finite-time convergence rate of VR-Greedy-GQ. We adopt the follow-
ing standard technical assumptions from Wang & Zou (2020); Xu et al. (2020).
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Assumption 4.1 (Feature boundedness). The feature vectors are uniformly bounded, i.e., ||¢s o] <
1forall (s,a) € S x A

Assumption 4.2 (Policy smoothness). The mapping 6 — 7y is k1-Lipschitz and ks-smooth.

We note that the above class of smooth policies covers a variety of practical policies, including
softmax and mellowmax policies Asadi & Littman (2017); Wang & Zou (2020).

Assumption 4.3 (Problem solvability). The matrix C := ]E[qbsﬁagbla] is non-singular.

Assumption 4.4 (Geometric uniform ergodicity). There exists A > 0 and p € (0, 1) such that
sup dry (P(s¢|so = s), 1) < Ap’,
seS

for any t > 0, where dry is the total-variation distance.

Based on the above assumptions, we obtain the following finite-time convergence rate result.

Theorem 4.5 (Finite-time convergence). Let Assumptions 4.1— 4.4 hold and consider the VR-
Greedy-GQ algorithm. Choose learning rates ng, 1, and the batch size M that satisfy the conditions
specified in egs. (15) to (19). Then, after T epochs, the output of the algorithm satisfies

1 1 s "

2 1

B[V (62 < of

where &, are random indexes that are sampled from {0,..., M — 1} and {1, ..., T} uniformly at
random, respectively.

Theorem 4.5 shows that VR-Greedy-GQ asymptotically converges to a neighborhood of a stationary
point at a sublinear rate. In particular, the size of the neighborhood is in the order of O(M~! +
77317; 4 4+ n2), which can be driven arbitrarily close to zero by choosing a large batch size and
sufficiently small learning rates that satisfy the two time-scale condition 79 /7,, — 0. Moreover, the
convergence error terms implicitly include a bias error O(ﬁ) caused by the Markovian sampling
and a variance error O(%) caused by the stochastic updates, both of which are substantially reduced
by the large batch size M. This shows that the SVRG scheme can effectively reduce the bias and

variance error of the two time-scale stochastic updates.

By further optimizing the choice of hyper-parameters, we obtain the following characterization of
sample complexity of VR-Greedy-GQ.

Corollary 4.6 (Sample complexity). Under the same conditions as those of Theorem 4.5, choose
learning rates so that g = O(55), N = (’)(773/3), and set T,M = O(e1)). Then, the required
VJ(QEO)H2 < € is in the order of TM = O(e™?).

sample complexity for achieving E|

Such a complexity result is orderwise lower than the complexity O(e~?) of the original Greedy-GQ
Wang & Zou (2020). Therefore, this demonstrates the advantage of applying variance reduction to
the two time-scale updates of VR-Greedy-GQ. We also note that for online stochastic non-convex
optimization, the sample complexity of the SVRG algorithm is in the order of O(¢~°/3) Li & Li
(2018), which is slightly better than our result. This is reasonable as the SVRG in stochastic opti-
mization is unbiased due to the i.i.d. sampling. In comparison, VR-Greedy-GQ works on a single
MBDP trajectory that induces Markovian noise, and the two-timescale updates of the algorithm also
introduces additional tracking error.

5 SKETCH OF THE TECHNICAL PROOF

In this section, we provide an outline of the technical proof of the main Theorem 4.5 and highlight
the main technical contributions. The details of the proof can be found in the appendix.

We note that our proof logic partly follows the that of the conventional SVRG, i.e., exploiting the
objective function smoothness and introducing a Lyapunov function. However, our analysis requires
substantial new developments to address the challenges of off-policy control, two time-scale updates
of VR-Greedy-GQ and correlation of Markovian samples.
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The key step of the proof is to develop a proper Lyapunov function that drives the parameter to a
stationary point along the iterations. In addition, we also need to develop tight bounds for the bias
error, variance error and tracking error. We elaborate the key steps of the proof below.

Step 1: We first define the following Lyapunov function with certain c¢; > 0 to be determined later.
R™ = J(0™) + ]| 0™ — 6™, (5)

To explain the motivation, note that unlike the analysis of variance-reduced TD learning Xu et al.
(2020) where the term HQt(m) — 6(™)||2 can be decomposed into ||0t(m) — 0% + |00 — %% to
get the desired upper bound, here we do not have 6* due to the non-convexity of .J(#). Hence, we
need to properly merge this term into the Lyapunov function 2}". By leveraging the smoothness of
J(0) and the algorithm update rule, we obtain the following bound for the Lyapunov function R}"
(see eq. (10) in the appendix for the details).

E[R}:,] < E[J(0™)] + O(E[[|6{™ — 8|2 + E[| V(6™ )]||> + MY
+ O(E[@™ — w*(8")|12] + E[flw™ — w*(8)]12). ©6)

In particular, the error term % is due to the noise of Markovian sampling and the variance of the
stochastic updates, and the last two terms correspond to tracking errors.

Step 2: To telescope the Lyapunov function over ¢ based on eq. (6), one may want to define
J(O™)] + O(E[|6™ — 00 2]) = Ry by choosing a proper c; of R". However, note that

eq. (6) involves the last two tracking error terms, which also implicitly depend on E\\Hﬁm) — gm) |2
as we show later in the Step 3. Therefore, we need to carefully define the c; of R} so that after
applying the tracking error bounds developed in the Step 3, the right hand side of eq. (6) can yield

an R} without involving the term EH@t(m) — 6("™)||2. It turns out that we need to define ¢, via the
recursion specified in eq. (11) in the appendix. We rigorously show that the sequence {c; }; is uni-
formly bounded by a small constant ¢ = %. Then, plugging these bounds into eq. (6) and summing
over one epoch, we obtain the following bound (see eq. (13) in the appendix for the details).

7792 E[[|VJ(6™)|%] < B[R] — B[R] + O (ns + g ME[[&™ — w*(80™)]12])

M-1

+0(n 3 B - w6 - moe (s + —) E[llo™ — 8|1%)).
t=0 t=0

Step 3: We derive bounds for the tracking error terms Zi\ial EHwt(m) —w* (Gt(m))|\2 and E[|&™) —
w*(6("™)||? in the above bound in Lemma D.7 and Lemma D.8.

Step 4: Lastly, by substituting the tracking error bounds obtained in Step 3 into the bound obtained
in Step 2, the resulting bound does not involve the term ZM ! E||9,£m) — 0™ |2, Then, summing

this bound over the epochs m = 1, ..., T, we obtain the desired finite-time convergence rate result.

6 EXPERIMENTS

In this section, we conduct two reinforcement learning experiments, namely, Garnet problem
Archibald et al. (1995) and Frozen Lake game Brockman et al. (2016), to test the performance of
VR-Greedy-GQ in the off-policy setting, and compare it with Greedy-GQ in the Markovian setting.

6.1 GARNET PROBLEM

For the Garnet problem, we refer to Appendix F for the details of the problem setup. In Figure 1
(left), we plot the minimum gradient norm v.s. the number of pseudo stochastic gradient com-
putations for both algorithms using 40 Garnet MDP trajectories, and each trajectory contains 10k
samples. The upper and lower envelopes of the curves correspond to the 95% and 5% percentiles
of the 40 curves, respectively. It can be seen that VR-Greedy-GQ outperforms Greedy-GQ and
achieves a significantly smaller asymptotic gradient norm.
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Figure 1: Comparison of Greedy-GQ and VR-Greedy-GQ in solving the Garnet problem.

In Figure 1 (middle), we track the estimated variance of the stochastic update for both algorithms
along the iterations. Specifically, we query 500 Monte Carlo samples per iteration to estimate the

pseudo gradient variance E[|G{™ (0™, w{™) — w.J(6{"™)||2. It can be seen from the figure that
the stochastic updates of VR-Greedy-GQ induce a much smaller variance than Greedy-GQ. This
demonstrates the effectiveness of the two time-scale variance reduction scheme of VR-Greedy-GQ.

We further study the asymptotic convergence error of VR-Greedy-GQ under different batch sizes M.
We use the default learning rate setting that is mentioned previously and run 100k iterations for one
Garnet trajectories. We use the mean of the convergence error of the last 10k iterations as an estimate
of the asymptotic convergence error (the training curves are already saturated and flattened). Figure
1 (right) shows the asymptotic convergence error of VR-Greedy-GQ under different batch sizes M.
It can be seen that VR-Greedy-GQ achieves a smaller asymptotic convergence error with a larger
batch size, which matches our theoretical result.
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Figure 2: Comparison of MSPBE and reward obtained by Greedy-GQ, VR-Greedy-GQ and PG.

In Figure 2 (Left), we plot the MSPBE J(0) v.s. number of gradient computations for both Greedy-
GQ and VR-Greedy-GQ, where one can see that VR-Greedy-GQ achieves a much smaller MSPBE
than Greedy-GQ. In Figure 2 (Middle), we plot the estimated expected maximum reward (see Ap-
pendix F for details) v.s. number of gradient computations for Greedy-GQ, VR-Greedy-GQ and
actor-critic, where for actor-critic we set learning rate 79 = 0.02 for the actor update and 7,, = 0.01
for the critic update. One can see that VR-Greedy-GQ achieves a higher reward than the other two
algorithms, demonstrating the high quality of its learned policy. In addition, we also plot the es-
timated expected maximum reward v.s. number of iterations for Greedy-GQ, VR-Greedy-GQ and
policy gradient in Figure 2 (Right). For the policy gradient, we apply the standard off-policy policy
gradient algorithm. For each update, we sample 30 independent trajectories with a fixed length 60
to estimate the expected discounted return. The learning rate of policy gradient is set as 1y9. We note
that each iteration of policy gradient consumes 1800 samples and hence it is very sample inefficient.
Hence we set the z-axis to be number of iterations for a clear presentation (otherwise it becomes
a flat curve). One can see that VR-Greedy-GQ achieves a much higher expected reward than both
Greedy-GQ and policy gradient.

6.2 FROZEN LAKE GAME

We further test these algorithms in solving the more complex frozen lake game. we refer to Ap-
pendix F for the details of the problem setup. Figure 3 shows the comparison between VR-Greedy-
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GQ and Greedy-GQ, and one can make consistent observations with those made in the Garnet ex-
periment. Specifically, Figure 3 (left) shows that VR-Greedy-GQ achieves a much more stationary
policy than Greedy-GQ. Figure 3 (middle) shows that the stochastic updates of VR-Greedy-GQ
induce a much smaller variance than those of Greedy-GQ. Moreover, Figure 3 (right) verifies our
theoretical result that VR-Greedy achieves a smaller asymptotic convergence error with a larger
batch size.

0] T Greeayco Le3 Convergence Error of VR-Greedy-GQ
M= 3.5 Greedy-GQ under Different Batch Sizes
0] | [T VR-Greedy-GQ: M=3000 g —— VR-Greedy-GQ: M=3000 1.0
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Figure 3: Comparison of Greedy-GQ and VR-Greedy-GQ in solving the Frozen Lake problem.

We further plot the MSPBE v.s. number of gradient computations for both Greedy-GQ and VR-
Greedy-GQ in Figure 4 (Left), where one can see that VR-Greedy-GQ outperforms Greedy-GQ.
In Figure 2 (Middle), we plot the estimated expected maximum reward v.s. number of gradient
computations for Greedy-GQ, VR-Greedy-GQ and actor-critic, where for actor-critic we set learning
rate 19 = 0.2 for the actor update and 7n,, = 0.1 for the critic update. It can be seen that VR-
Greedy-GQ achieves a higher reward than the other two algorithms. In Figure 2 (Right), we plot the
estimated expected maximum reward v.s. number of iterations for Greedy-GQ, VR-Greedy-GQ and
policy gradient. For policy gradient, we use the same parameter settings as before. One can see that
VR-Greedy-GQ achieves a much higher expected reward than both Greedy-GQ and policy gradient.

—— Actor-Critic
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Figure 4: Comparison of MSPBE and reward obtained by Greedy-GQ, VR-Greedy-GQ and PG.

7 CONCLUSION

In this paper, we develop a variance-reduced two time-scale Greedy-GQ algorithm for optimal con-
trol by leveraging the SVRG variance reduction scheme. Under linear function approximation and
Markovian sampling, we establish the sublinear finite-time convergence rate of the algorithm to a
stationary point and prove an improved sample complexity bound over that of the original Greedy-
GQ. The RL experiments well demonstrated the effectiveness of the proposed two time-scale vari-
ance reduction scheme. Our algorithm design may inspire new developments of variance reduction
for two time-scale RL algorithms. In the future, we will explore Greedy-GQ with other nonconvex
variance reduction schemes to possibly further improve the sample complexity.
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A FILTRATION AND LIST OF CONSTANTS

Filtration We follow the definition of filtration in VRTD (Appendix D, Xu et al. (2020)). Recall
that B,,, denotes the set of Markovian samples used in the m-th epoch, and we also abuse the notation

here by letting xgm) be the sample picked in the ¢-th iteration of the m-th epoch. Then, we define

the filtration for Markovian samples as follows

Fio=0(ByUa(0©, &), F 1 =0(FoUa({),....,Fiy=o(F 1 Uo) )
F270 = O’(Bl @] Fl,M U 0(9(1),1D(1))),F271 = 0(F2,0 @] O'(x(()Q))), Ceey F27]\4 = O'(F271w_1 U 0(1'5\3)71

Fm,O = U(Bm—l U Fm—l,]% U O’(é(mil), w(mil))),qul = U(Fm,O U a(xém))), ey
Fov=0(Fp -1 U U(xgvr?zﬂ)

Moreover, we define E, ,,, as the conditional expectation with respect to the o-field F} ,.

List of Constants We summarize all the constants that are used in the proof as follows.

o G =rpax+ (1+v)R+~(ARk +1)R.
H = (24+7)R + mmax-

o O = (142A7%)(G + Cyy)*.

o Oy =H?(1+AL).

2 A

o Ci= Z(R2+7) +rma)?(1+ £5).

B PROOF OF THEOREM 4.5

We first define the following Lyapunov function

R i= JO7) + a0 =0,

13

)
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where ¢; > 0 is to be determined later. Our strategy is to characterize the per-iteration progress of
R7*. In particular, we use Lemma E.9 to bound the first term of R}"* and use Lemma E.10 to bound
the second term of R}". Note that Lemma E.9 implies that

T < T~ no(FTO™), 0™ = 9I0)) — mal| VIO + Znio™ P
Let &™) = (VJ(0{™), g™ — V.J(6{"™)). Then, we obtain that
T < TO) — o™ — ol TIOIP + S o™ )
Substituting eq. (7) and eq. (30) into the definition of R{"} ;, we obtain that
Ry = J(0N])) + cop 057 — 0072
< IO~ o™ — ST + Cnplol™ )

e | mallg™ |12+ 16 — 60|12 — 23e¢™

1 m
[ VIO + Billof™ —6)?)]

_ ) + Ct+1(7705t + 1o — 62
L m
(= e ) IVIONP + (G + evvnn) lof™ I

— np&™ — 20t+1770Ct
Next, we bound the two inner product terms 5,5’“"’ and Ct(m).
Bounding the term §§m)
(m) <VJ(0(m)) (m) VJ(G(m))>
Recall the variance-reduced stochastic update
gt(m) _ Ggm)(eim))wt(m)) _ Ggm)(g(m)’ &™) 4 Ggm
Then, the term &, (m) can be decomposed as
g™ = (V™). g™ - vIo™))
= (V™). Gim’wﬁm%w (6") = V.7(6;™)
H(VTE™). G O W) — GO w0t (60))
(VIO =G (00, 5™ + GOy

In the last equality, the first inner product term is the bias caused by Markovian samples, and by
Lemma D.3 we have that

E(VJ(0;™), G<m><e<m>,w*<e£m>>> - vI6™))
=E(VJ(0™), G 0™ W (0,™) = VI(0™))
=BV + E\|G<m><9§m>,w*<9§’”>>> = V6"
G
U
The second inner product term is the bias caused by tracking error, and we further obtain that

(VIO™), GO ™) = GO w0 (0))
IO )P + La[lwf™ — w* (012,

1 m
<ZEIVIE™)I? +

1
4

14
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The third inner product term is unbiased. Combining all of these bounds, we finally obtain that

[BE™| < 57+ SIVTO)P + Lllwf™ —wr (071 ®)

Bounding the term ¢
G = (g™ = VO™, 6™ — 6m).
Similar to the previous proof for bounding §tm , we can decompose Ct(m) as
7= (O 60, g™ — v I(6™))
= (0" =8, G 6™, W (0) = VI (6™)
+ (0" = 60, G (O wi™) = G O, W (0))
(™ — gt~ (g Hmy 4 Gy

In the last equality, the first inner product term is the bias caused by Markovian samples. We obtain
that

E(O™ — 6™, ™ (0™ wr (60™)) — vI(6™))

1 m a(m 1 m m * m m
<5EI6™ — 007 + ZEIGE™ (07w (0™)) = V(0™ )]
1 (m) "’(m) 2 101
<= — -—.
<SEI™ — 8P+ 5

The second inner product term is the bias caused by tracking error. We obtain that

(6 = 6, G (O wf™) — G 0w (0))

L

1 m n(m m * m
<105 = 0P+ T ™ — w0t (0.

The third inner product term is unbiased. Combining all of these bounds, we finally obtain that

m 101 m Am Ll m * m
[BG™I < 577 H1IE™ =8P+ SHwf™ — (6™ ©)

Next, we continue to bound the Lyapunov function. Recall we have shown that

R, < J(6)" >+ct+1<neﬂt+1>||e<m> im||2
L m
(= e ) IVIONP + (G + eovnn) lof™ I

- Ueft(m) - 2Ct+1779§}

Taking expectation on both sides of the above inequality and applying eq. (8), eq. (9), and Lemma
D.1, we obtain that

E[R7,] <E[J(6™) + cfﬂwﬂt +1)6™ — 60|12

(= e 5 JBIVIE)P

+ (o + o) [6L1E|\w<m> — W (O7")I? + OLLE& ™ — w6
+9LE)0™ — 902 + — - 9Cy + 9E|[ V(6]

e[ 1||w<t9£’”>>u2 + L™ — o (6]

+2c170 g% 10— TR 4 S k™ - 6], (10)
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We note that the tracking error term [|w™ — w*(6."™)| has dependence on [|6{™ — §(™)||2. Here
we use a trick to merge this dependence to the coefficient ¢, ;. Specifically, we add and subtract the
same term in the above bound and obtain that

L m n(m
B[R} < E[J0/™) + [err1 (108 + 1+ 2n0) + 9Ly (505 + coernf) 0™ — 60 2]

L
+ 957 + cram) | EIVI (0 2

L Cy
B 779 + Ct+1"79>} i

1
+ [ 2779+Ct+16

+ [770 + 219+ 9(5

L ~(m */pn(m
+9L1(577§+Ct+1775)]E||W( ) — w(0™))?

L m x/p(m
+ [6131(5773 + o) +moLln + 779Llct+l}E||wt( ) —w (9§ )>||2

L 4 9 m
- [6131(5773 + cey1m) +moLa + U@L10t+1} e [12L?,77w + ()\ +2L3)9L3 29 }EHQ )

4 9
[6L1( g + Ct+17)9) +nel1 + 779L10t+1} o [12L§7]w + (7

2 2779 m) _
Lo 2LA)9L3 b ]Eue

w

Then, we define R := J(0!™) + ¢,]|0\™ — 6(™)||2 with ¢, being specified via the following
recursion.

L
ct = cy1(noBe + 1+ 2mg) + 9L1( Mg + Cer1mp)
6L L 4 2 9 2779
1( ng + Ct+1779) +n9L1 +noLicit1] - o 12L3n,, + ()\ + 2L3)9L 2 . (1D

Based on this definition, the previous inequality reduces to

1 m
EIRfL] < EIRPT+ [~ 2o + o T2 +9(ond + covnnd) [EIVI0F)I?

2 B
- L 4
+ K + 2¢i41m0 + 9(5773 + Ct+177§)] §Vi
L . ~
+ 9L (578 + e EE™ - w (@)

r L
+ 6L1( 5 + o) +nela + 779L16t+1]E||w(m) W (02

(12)

Assume that ¢; < ¢ for some universal constant ¢ > 0 (we will formally prove it later). Then, we
sum the above inequality over one epoch and obtain that

(200 e —o( i +anp)] AfEHw(eﬁm))n?
2 B 2 pard

" L, L .
B[R] — EIR}] + [no + 2800 + 9 (55 +20f) | C1 + 9La (G + G0 MEJ&™) — o (6|1

M-1

L ~ ~ m * m
+ 6L (57 +@nf) +moLs +meLi?] Y Ellwf™ — (6™
t=0
L 4 9 n21 N ~
_ [6L1 (5% + @) + oL + nng’c\} v {12L§nw + (E n 2L§)9L§n—g} S B[00 - g2,

W™ t=0

13)

16

- L 4 9 2 m nim
= |6L1 (55 + copamg) +moLa + n9L1Ct+1] o [12L§77w + (% + 2L§)9L§Z—§]EH9§ —

-2

(m)||2_

|12,
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By Lemma D.7, we have that

M-—1
Z Ellw{™ — w* (6™

471 ) m m
< T[ +M[(—+2L2)9L2n9 +18L4an1E||w< N

Nw AC W
4 .9 n2 4 9 02 36
= 2L\ 90y + L, 120, + (—— 2L2 £ E(|V.J(6™))?
+)\C()\C+ 3)773 1+)\C77 2+()\C+ )\ ; H )”
M—
i[mL% (<L +212)9L3 "9} Z E[|6™ — g™ |12
Ao g Ao 2 =

+ 7(03 + 04).
Ac

For simplicity, we define D := 6L, (é + E) + L; + Lyc. Substituting the above bound into the
previous inequality and simplifying, we obtain that

(200 e —o(Zup +anp)] AfEwaém))n?
2 B 2 pard

. L, L .
< ERI* — ER}, + [779 + 281 + 9(5773 - cng)}cl + 9L1(2n9 +Eng) ME[@™) — w* (80|12

471 9 2var2' ~(m) _, % (G(m)y |2
+Dn9[)\c [m +M{()\ +2L2)9L? 77 +18L4nw”EHw W ()|
4.9 02 4 9 2 36 ' 8
— (= +2L2)2 .9C - 12C — +2L3 Ny 90 EIV.J (00|12 Ot O,
T30 Og T25) 5z 9G + om 2+ (5 +2L8) 0 5 t§0 IVIE)P + 5 (Cs + )

One can see that the above bound is independent of ZM ! E||9t(m+1) — 6(m)||2, and this is what
we desire. After simplification, the above inequality further implies that

1 e L, 9 36 737 (m)
|57 25, — (57 + @) = D(5 +2L) | S BNV
E[Rg"] — E[R}}]

L 8 4,9 3 4
221y +9(5 1 + )| C1 + 1 (Cs + Co) D + Digg | = (5 +2L3) "2 - 9C1 + ., 125
+[779+ che + (2779+C779) 1+/\c( 5+ Ca)Dng + Drjg Ac(/\c—i— 3)715 1+)\CTI 2

9

471 N .
+ o [ + M[(— +212)9L2 ;"’ + 18L4nwm E||5™ — w* (6|2,
C

L
9L1(2779 + @ng) M + Dy

Ac 2

(14)

Choose optimal learning rates: Here, we provide the omitted proof of our earlier claim made

after eq. (12), that is, the upper bound of {c;} is a small constant. We first present the following
fundamental simple lemma, and the proof is omitted.

Lemma B.1. Let {cq;}izowM be a finite sequence with cp; = 0 and satisfies the following relation
for certain a > 1:

Ct §a~ct+1 + b.
Then, {c;}i=o,....m is a deceasing sequence and
aM —1

C()Sab' a_1 .

17
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Next, we derive the upper bound ¢ of ¢;. Set 3; = 1 for all t. Then we have that
L
¢t < cey1(no + 1+ 2n0) + 9L1(§77(3 + Cop173)

L 4 9
[61/1( ng + Ct+1’79) +neLq + 770L1Ct+1} e {12[/%% ()\7 + 2L2)9L2 29}

w

= A Cr41 + b
where
a=1+(34+16L1)ny
and )
15 4 2 9 2 2"y
b= S Laluy + Lum - - [1203ms + (5~ + 2L3)9L2%].
Note that here we require
4 [ 2 9 2 2770
= l2r2, +212)9L2 } <1 (15)
C 31l (A ) nw
and
max{ny,ns} < 1. (16)
Moreover, let
1
(3+16L1)ng < (17)
Based on the above conditions, we obtain that
15 414 9 " 441614 ,
LiL [12L2w 212)9L2 9}}-7-[1 34 16L1)5)M — 1
co < [ ?79+)\ 57 +()\ +2L3) sy | T, (1+(3+16L1)ne)
L,L [12L2 . 212 9L2—9H Bl et SO SR N
<3 o + 5 [1288m. =+ (5 + 20598205 || 37, (e~ Y
Lastly, we choose
15 AL, 9 n211 4+ 16L, 1
L —[12L2w 212)9L2 f’Hi <= s
5 thg + 0 [12Leme + (5 +20L0)902 5 || 5o qer o e— D <5 (8)

Therefore co < 4. Since {c;}¢ is decreasing, we obtain that ¢ = £. Now, substituting 8, = 1 and

¢ = 1 into the coefﬁ01ent of the term Z 'E|VJ ( )H2 in eq. (14), the coefficient reduces to
the following, and we choose an appropnate (19, M., such that the coefficient is greater than %779.

3 L, 9 36 5 _ 1
Sng—9(5 —D(— +2L > 1
gt = 9(5m + @) = D(5—+ 3)/\0 - (19)

Deriving the final bound: Exploiting the above conditions on the learning rates, eq. (14) further
implies that

M—-1

1 (m)y 12
7 D EIVIE™)

t=0
<E[J(67™)] — E[J(§"+1)]

L 4 .9 n2
%ing + 9(Zn2 ”‘}0 Cs + Cy)Dnp + D [ 2 or2)le
+[Tle+ cng + (27le+0779) 1+ ( 3 + C4)Dng + Dy Ac()\ + )?75 o

L R 4
9L1(§n§+cn§)M+Dn9 S ln

Ac

w

(20)

18

4
901 + 7775) 1202

[i +M [(i + 2L2)9L2n + 18L4nwm E[|o(™ — w*(00m)||2.

}
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On the other hand, by Lemma D.8 we have that

E[@™ —w*(@™)|* < (1 - fA ona) " MEE - w* (6))”
4 U
—(C5+ Cy)— + —H?n,, 2L3G? D)l
+Ac(3+ 4)M+AC ’7+A( v >77w
Substituting the above bound into eq. (20) and summing over m, we obtain that

T M-1

T S AT

m=1 t=0

1 (0
< BIE)

1 L 4,9 e 4
= 2 9—2A2}C’ —C Cu)D D[ ) ) LA Yo
+ M{[UQ-F cno + (2779+C770) 1+ +—(C3 + C4)Dng + D )\c<>\ +2 )773 v

1 L
+ =[O (5 + enf) M

™
+ Dy {% [ni + M[(Ai 2oLt Ui 187n.]]]] - EIBO - wr GO — = 11Acn =
o A
+ % [9L1(§n3 +En2) M + Dy [%{ + M{(Ai + 2L§)9L2 L 18L2 ‘*’m
[Ac (Cs + 04)— + /\iHan + g (21367 + 002)%”.

Rearranging the above inequality, we obtain the following final bound, where &, ¢ are random in-
dexes that are sampled from {0, ..., M — 1} and {1, ..., T'} uniformly at random, respectively.

E[VJ(0)]?

ST AE[J ()]
+ %{ {1 o 9(%779 +En9)}01 + —(Cs +Ci)D+ D{/\t (Ag +2L )% 9IC1 + %nw ' 1202”
+ T‘lM 9L1(L779 + i) M + D ;lc [% + M{(% + 2L§)9L277 T 18L477“m
BIE - GO =Ty
e B (R e e )|
[ o (G +C4) + THQ g 2 (203G2 + EG2) "fﬂ

Next, we simplify the above inequality into an asymptotic form. Note that the first term is in the order
of O(,—737)- The second term is of order O(+). The third term is of order O(nﬁ + 4 (Nw+ Z—g ))s
and the last term is the product of a term of order (’)( + 10 + o M) and another term of order
O(&+ Z—% +1.,), which leads to the overall order (9((2—% +1w)?+ 7). Combining these asymptotic
orders together, we obtain the following asymptotic convergence rate result.

1 11 5
EIVI(6)]* = O (nTM+( +1.)° +M+T(nw+;7—§)).

w

19
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C PROOF OF COROLLARY 4.6

Regarding the convergence rate result of Theorem 4.5, we choose the optimized learning rates such
that ng = (9(172/ %), and we obtain that

E|VJ(69)] 0( =+ 2.
IVIEO)? = O(—par + 1+ 7 + 2
Then, we set 179 = O(4;) such that eq. (17) is satisfied, and moreover 1, = O(=475 W ). Under
this learning rate setting, the learning rate conditions in eq. (15), eq. (16), eq. (18), eq. (19) are
all satisfied for a sufficiently large constant-level M. Then, the overall convergence rate further

becomes

1 1
EIVI(0)2 =07+ 1) 21
VIO Tt 2D
By choosing T,M = O(e™!), we conclude that the sample complexity for achieving

E[VJ(0)]? < eis in the order of TM = O(e2).

D TECHNICAL LEMMAS

In this section, we present all the technical lemmas that are used in the proof of the main theorem.

Bounding E||g{"™||2 and E||n{"™ ||:
Lemma D.1. Under the same assumptions as those of Theorem 4.5, the square norm of the one-step
update of 9,5’”) in Algorithm 1 is bounded as

Ellg\™|? < 6L2E||w<’"> — W (O™)1P + 9L2EE™ — w* (60|12 + 9L2E[ 6™ — g™ |2
+—901+9EHVJ( )||2

where the constant C is specified in Lemma D.3.

Proof. For convenience, define
Z™ = e O w™) - G e &),

and ~ ~
A = GO W (07)) = G O, w0 (00)).

Then, we obtain that
H ”2 ||G(m)(9(m) (m)) _ Ggm) (a(m) ~(m)) + é(m) ”2

— |7 + GO — GO @) W (BU))) 4 G (0w (™))
_ fjﬂt(m) + jﬁt(m)HQ

< 3|7, — F2 4 3]G — G (9, w* (60 |2
+ 3175 4 GG, wr (0|2

< 6L2|w™ — W (0|1 + 9L &™) — w*(§™)|?
+ 3™+ GO (9|2,

where G(™) (™) * (§(™))) is obtained by substituting the arguments (™), w* (§(™)) into the def-
inition in eq. (4). Moreover, we have that

1™+ GO w* (90|12

= 1A + G (G w* (00)) — VIO + VI (O™

<3 = B o |2+ 3IGU (00 w (05™)) — VI (0)™))2
+3]|v.J (6 >||2

20
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which further implies that
E|#™ + G (00w (™))
< 3E[.#™ )2 + 3E| G (0™, w* (0™))) — VI (O™ + 3E[ V.62
m Y 1 m
< BL3E||6;™ — 60| + 57 - 3C1 + 3E[VI(0"))] .
Combining all the above bounds, we finally obtain that
Ellg™|? < 6 L3E||wi™ — w* (™) + 9LIE|&™) — w*(80™)||2
m Y 1 m
+9L2E||o{™ — glm) |12 4 a7 9C1 + IE(|V.J(0™)|2.

Lemma D.2. Under the same assumptions as those of Theorem 4.5, we have that

6Cy

5™ 17 < 6L3lwy™ — w* (6, + 9LFIE™ —wr (@) + 6L 6™ — 0 |* + 57

Proof. For convenience, define
K= O ™) — B, ),
and
w4 = H O w0 (07) = B, (00)).
Then, we obtain that
BE™ 1 = 1™ (05 wi™) = H™ (60, &™) + B
_ ||4//t(m) + ﬁ(m) _ ﬁ(m) (5(7'L)7w*(§(77l))) + ﬁ(m)(g(m)’w*(g(m))) _ gz/t(m) + gz/t(m)HQ
<3| — )+ 3| B — B (00w (9)))12
+ 3|2 + HW (60w (60)) |12
< 6L2||w™ — w* (B2 + 9LZ||@™ — w* (80|12
+ 3|2+ H (00w (60)))12.
Moreover, note that

1% + H™ (@0, (0)) 12 < 2|2 |2 + 2 B (0, w (00)]12
~ 2Cy
< 2L2||90™ — glm)|2 4 =22,
— 5” t H + M
Combining the above bounds, we finally obtain that

A2 < 6L2wi™ — w*(8™)1 + 9L2 |5 ™ — w* (6|2

m Am 602
+6L2|™ — 60|12 4 =

Bounding pseudo-gradient variance:

Lemma D.3. Under the same assumptions as those of Theorem 4.5, we have that

~(m m * m m C
BIGT(0;™,w*(6,"™)) = VI(O™)” < 17
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Proof. Note that the variance can be expanded as

E[G0 (0™, w* (0™)) - V.I(0™))?
M-1
=B D IGI 0w (05™)) = V(0™
s=0

3G O, W (0™)) — VI0), G (0, W (0)) — VI(05™))]

i#]
| M-l o
SW[ (G+Cvj)2 +ZAp|Z_]|(G+CvJ)2]
5=0 2]
1

P 2
<= £ .
<47 2A1_p)(G+CVJ)

+

Then, we define the constant Cy := (1 +2A2)(G + Cyg)?.

Lemma D.4. Under the same assumptions as those of Theorem 4.5, we have that
~ ~ ~ C

E||H™ (60 w*(00™))[? < =2.
| @0t (G0 |2 < 22

Proof. Note that this second moment term can be expanded as

M—1
B[ A0, (0] = ML S B @, 3]

=0
1 SOR(H @, o @), B, w0 @)
i#]
H 2 li—j|
<37t WH AZ pli=7
i#]
1
<H*(1+A
(1+ 1-— p) M’
Lastly, we define the constant Co := H?(1 + Aﬁ).
Bounding Markovian Noise:
Lemma D.5. Let the same assumptions as those of Theorem 4.5 hold and define
" = (™ =Wt (0™), (8 (6T = C) (W™ =Wt (6™)).
Then, it holds that
1 " C3
Elq™] < gAclw™ —w @) + 57,
where Cg = %(1 + %).
Proof. By definition of gt(m), we obtain that
Elwf™ —w (0™), (6™ (6t™)" = O) (™ —w"(6;™)))
=E(w{™ = w* (0™, B -1 (6™ (6™ - c)( “’” Wt (07™)))
L ACp (m) _ eqgm 1 4R?
<5 T Ele™ —wr 0+ 5 )T =)

22
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For the last term, note that

M-1
Bl Y (@™ o

-E Z ||¢(m) (m) 0”2 + EZ (m) —C, (b;m)(ébg'm))—r

i#]

<AM 44> Apli]
i

A
< 4M+4M1p—

Combining the above bounds, we finally obtain that

Elw™ —w (™), (6™ (6{™) T = O) (w™ — w*(8{™)))

2
8R (1+ pA )7

AC 1™ _ r (0™ 12 4
<2¢ _

Lemma D.6. Let the same assumptions as those of Theorem 4.5 hold and define

™ = (™ = w0 (0™, (™) Tw (05™) — 8 (0] ot ™).

Then, we obtain that
m 1 m * m C(4
Ese, ) < gx\c||w§ ) _w (9; ))H2+M'

Proof. Similar to the proof of Lemma D.6, we have that

E(w™ —w*(0™), [(6™) T w* (6™ — 6.7 (6] ™)
1 )\C * m
<5 T Ellw™ —wr )

M—-1

(m) T % (plm) (m) (p(m)\] L (m)y 12
+2 o Mg ||Z (0:™) = ;57 (0. )] ™) 1%

1=0

For the last term, we can bound it as

EHZ o™ Tw (0™) — 61 (05™)] 6™ |12

A

S(R(2 +7) + Tma)2M + (R(2+7) + Fmax )22 M

I—-p
Combining all the above bounds, we finally obtain that

Elw™ —w* (™), [(67™) Tw* (0™) — 670 (0™)] 04™)

<2CRw™ — W ()12 + = (R(2 + ) + Fmax)? (1+—p_
8 )\C 1 P

We then define Cy := 2 (R(2 + ) + Tmax)*(1 + 1"%\[))

Bounding Tracking Error:

23
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Lemma D.7. Under the same assumptions as those of Theorem 4.5, the tracking error can be
bounded as

M-—1
> Elle™ — w0
t=0
471 9 2
< —|—+ M|(~ +2L3)9L3 % + 18L3n. | |E[@™ — 2
< sl + MG + 2280918 + 18 |EIS™) — w60
4.9 il 4 9
(5 +2L5) -2 - 12 D or2) ™ 30 N g el 2
+AC(AC+ 3)3 9C1 + 3—n Cng(A + p Z 1V.7(0™)|
M-—1
# o[22+ (2 +203)903 8] 3 el - 50
Ac Ao 2 &
8
+7(03+C4)
Ac

Proof. Recall the one-step update at wt(Tl):

W) = T (™ — k™).

Then, we obtain the following upper bound of the tracking error ||wt(_T1) —w (9§T1)) |2
(m)

o't — w* (O < Hlewt™ — w*(0™) — nuh™ + w*(6™) — w* (0711
< ™ — w* (0™ )1 — 2 (wf™ — w (0™, B™)
+2(w™ — wH (0™, w0 (6™) — w (07]))
+ 202 [h{™ |2 + 2w (6;™) — w* (BT
Substituting the bound of Lemma D.2 into the above bound, we obtain that

Hwt+1 W*( t+1)H2

< oo™ = w* (0™ )12 = 200 (™ — w* (6™, h{™)
F A llwi™ — w (6|12

9
+ ()\—+2L2) L [GLQEHw(m) w* (0|12 + 9IL2E @™ — w* (80™)||?

+9LZE|6™ — 0|12 + M -9C1 + 9E|[V.7(6™)|?]
m * m ~(m */n(m m N(m 60
+ 202 [BLIE ™ — " (6™) |2 + OLZE|&™) — w* ()| + 6LEE o™ — 82 + =2].
Taking expectation on both sides of the above inequality and simplifying, we obtain that

EllwlT) — w* (6T

9
<(1-demo+ (1 + 2L2)6L2”—9 + 120502 ) Elluf™ — w (6™
9
[ oo s EIEt) - @)
9 n? 901 12C, 9 ne
Do 9 o =+ 202) LgR|| v (62
Jr()\CJr S)nw i +n; Vi Jr()\CJr 3)77w I 0l
+ {1222 4 (1 +20d) 9L2’7 CEjom — ot
— 277W}E%§m) — 277WE§75( ), (22)
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where

"= ™ = w0, (6T = O) (™ = (0))),
and

™ = (™ = w0 (0™, (o) Tw (05™) — 617 (0] ™).

Applying Lemma D.5, and Lemma D.6 to (22), we obtain that

Ellwf) — o 0D < (1= Frems + (5 +2L3)6L2ni+12L4nw)Enw§ )~ (o)
9 _ .
[ SO LALII R 18L4nw}IE||w(m) G
9 n? 901 12C, 9 ne (m
=y 2r12) 2. = 4 2L) P oR||v.I(0™))2
Jr(/\C ) M Nw M Jr()\CJr 3)770.1 ” (t )”
[12L5nw o) 9L2’7 }Enegm) — g2
+ 277w(03 + C4) (23)
Telescoping the above inequality over one epoch, we obtain that
1 9 M—-1
(gheme = (5 + 2L2)6L2— —1223n2) 3 Ellwf™ - w60
t=0

<Ellw — (65

(2 oot 4 isnemEe @)

9 2 9 m
+(%+2L§) 690y 4 - 12C’2+(>\—+2L2 %ZEHW K
“ =0

9 M—1 N
t=0
+ QUW(Cg + 04)
Choosing an appropriate (79, 1,,) such that

9

iAan - (>\

1
T 2L2)6L22—9 — 120305 = Aen., (24)

w

and we finally obtain that

M-—1
> Efw™ —wr@™))?
t=0
471 9 n2
< —|—+M|(~ +2L3)9L}-% +18L3n, | [Ea™ — 2
< ol MG + 228988 + 18 RIS w60
4 .9 n2 4 9 n2
—(—+2L2)2 . 9C, + —n,, - 12C 2L3) 15 36 E||V.J(0 2
+>\c()\c+ 3)773 W 2+(A + EA Z [ ™|
4 9 M-—1 B
+ —[ngnm + (== 4 2L2)9L2 ’79] E||6™ — gtm)|2
Ao Ao R
8
+7(03+C4)
Ac
O
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Lemma D.8. Under the same assumptions as those of Theorem 4.5, the tracking error can be

bounded as

E[|@™ — w* (0|2 < (1 - *Acn )"MMENG® - w (0O

(Cg+C4)—+iH2 +—(2L2G2 9G2)”—3.
e T e Ae g

Proof. Recall the one-step update at wt(fl):

Wit = g (W™ = nh{™).

Then, we obtain the following upper bound of the tracking error [|lw!™ — w*(6{"™))|12.
) =™ (0 — W (B
)

“OTDI? < o™ — W (o™
12 = 20 (™ — w* (6™, n{™)

||wt+1 -
< Jlwi™ — w* (65
+20wf™ — w (O™, w (™) — w (651)))
+ 22 H2 4 2w (6™) — w (0712

Then above inequality can be further bounded as

) — (BTN < o™ — w812 —

||Wt+1 - t+1 21 <wt(m) - W*(agm))a hgm)>

+Acnolwf™ =t (0™
9 na
— +2L2) L G?
* ()‘C * 3) N
+ 202 H?.
Taking conditional expectation on both sides of the above inequality, we obtain that

m0||wt+1 —w*(0 t+1)H2
< Emollwf™ = w* (071 — 20 Epm o (w™ —
- 277wEm,o<wt(m) - w*(H(m)) H(m)(e(m) &™)y + 7))

w0 +

wwﬁ%Jﬂmwﬁ%@”»

9
Ao ||w! Aicﬁ
CNw

+ 2H 0% + 253G
= Epollw{™ — w* (0™)|? -
+FAcnullwi™ — (6™

2
+2H2 + (2L3G? + %GQ)U—Q
C

2B o(w™ — w* (0™, HI™ (0™, wi™))

Nw

(25)

To further bound the inequality above, we first consider the following explicit form of the pseudo-

gradient term:

H™(0,w) = [(6/™)Tw — 871 ()] o™
= o™ (6™) T (w —w*(9)) + [(8™) Tw*(6™) — 617 (6)] (™

= (6™ (™) = C) (w — w*(8)) + C(w — w*())
+ [(@™) Tw* () — 5177 (0)] ™.
By Assumption 4.3, we have

—2nwEm,0<w§m) - w*(@t(m)), C(wt(m) —

26

W (0™))) < —2pAclw™ — w0712

(26)
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Substituting eq. (27) and eq. (26) into eq. (25) yields that
Ellwr —w 0517 < (1= Aoma)Ellwf™ —w (07" — 20.Esq™) — 2n,E™

9 n2
2H2 2 2L2 2 2\ 10 2
2+ (21567 + 1 -67) 28)
where (m) (m) (m) (m) , (m)\T (m) (m)
S = (wy —wt (b, )>(¢t (01 ) _C)(wt —w (0, ))>’
and

A" = (™ = O, [0 T O) - 6 O] 6 ™).
Applying Lemma D.5, and Lemma D.6 to the above inequality, we obtain that

Ellw{T) — w (6| < (1—*Acﬂw)E||w(m) W (0)?

1
+ 277w (Cd + C4)M

9 n2
+2Hn? 4+ (2L3G* + —G?) 2.
( 8 Ac ) N
Telescoping the above inequality over one epoch, we obtain that

Ellwi — w057 < (1—%0%) ME||wi™ — w*(65™)|12

1 1—(1—4xem)M
M %/\an
1- (1 - %ACT]w)M

+ 21, (C3 + Cy)

9

7G2)ﬁ == o)

+2H?n? -
)\C TNw %)\C’r]w

+ (2L3G? +
%Aan ( °

By definition, &™) = w( and 9(™) = 9%74”), and the initial parameter for the current inner loop is
chosen as the reference parameter, w(() ™) = 5(m) and Gém) = #™)_ Then we have

@™ — w*(60)|* < (1—*/\cm) ME|E — W ()]

1 1—(1—=3ixen)M
+2’I7w(03 + C4)M : ( l/\én )
2 w

1—(1—xen )M 2 1—(1—3ixen)M
opge . L2 (L7 2Aem) +(2L§G2+%G2)”—9- (1 = zAcm.)

%ACT]UJ - Nw %ACT/UJ

Then, we unroll the inequality above and yield that

El|&™ — w*(@T™)|? < (1 - fAcn )mM]EIIw — W (0))?
(c + 04) + Lgrg, —(2L2G2 ! cﬂ)’Lg
° Ao TG Ao T2
O
E OTHER SUPPORTING LEMMAS
Constant Bounds:
Lemma E.1. Within the set {0 : ||0|| < R}, there exists a constant C'y ; such that
@) < Cvy. (29)

Proof. By Lemma E.9, V.J(#) is smooth. Hence, by the compactness of {6 : ||0|| < R}, we
conclude that ||VJ(#)]| is bounded by a certain constant C ;. O
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Lemma E.2. Let G := ryax + (1 +7)R + v(|A|Rk1 + 1) R be a constant unrelated to m and t.
Then ||G§m) || < G forallmandt.

Proof. By its definition, we obtain that

G = 11( = Se11(62) e+ v(w] be)draa(61))]]

< (= G @) Igell + Il (i’ Do) [ De41(8))
< Tmax + (1 +7)R + v(|A|Rk1 + 1)R.
O
Lemma E.3. Let H = (2 + )R + Tmax be a constant unrelated to m and t. Then ||Ht(m) | < H
for all m and t.

Proof. The result follows from the definition:

IH ™| = (| [6Fwe — Se41(62)] b
< (24+9)R+ rmax-

O
Lipschitz Continuity:
Lemma EA4. The mapping w > Ggfl) (0,w) is Ly-Lipschitz in w for all 0.
Proof. See Lemma 3 of Wang & Zou (2020). O]
Lemma E.5. The mapping 6 — G,Efl) (0,w*(9)) is La-Lipschitz in 6.
Proof. See Lemma 3 of Wang & Zou (2020). O]
Lemma E.6. The mapping w*(-) is Ls-Lipschitz.
Proof. See eq.(56) of Wang & Zou (2020). O]

Lemma E.7. The mapping w — Hfrl) (0,w) is Ly-Lipschitz.
Proof. Tt follows that

IH (8, w2) — HE (8, w2) | = [ (6570(0) — [0™] wi) o™ — (67)(8) — [68™ ] wa)ot™ |
< |¢™ |12 jor — wa
< lwr — wall.

Hence, L, = 1. O

Lemma E.8. The mapping 6 — Ht(fl) (6,w*(9)) is Ls-Lipschitz.

Proof. By definition, we have
1T (01,007 (01)) — H{TY (62,07 (62))]
= (6 (01) — [64™] w* (01)) 6™ — (57 (62) — [6™] " w* (62)) 8™ |
< 61 (01) — 67 (62)]| + [l (81) — w* (62)|
< ((v|Alk1R+ 1) + 1+ L3)||61 — 62].
Hence, Ls = (7| AlkiR+ 1)+ 1+ Ls. O

Bounding Lyapunov function:
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Lemma E.9 (L-smoothness of J). For any 01 and 0, it holds that

T(02) = J(02) = (VI(62), 61 = 23] < S 61— .

Proof. See Lemma 2 of Wang & Zou (2020). O
Lemma E.10. It holds that
1655 — 812 = m3llgs™ |17 + [165™ — 601 — 2me¢{™

1 m m m
o[ 5 IV TEP + g™ — )], (30)
where (™ := (g™ — VJ(6]™), 0™ — (™).

Proof. Note that

6157 = 0% = ot — 01> + 165 — 012+ 20077 — o™ 0™ — 6)

= n2llgi™ 12 + (168 — 6|2 — 2ma(gi™ (™ — Gy

=2 lg™ 2 + 1165 — G2 — 200 (g™ — wI(0™), 0™ — 6
_ 2779<VJ(9t(m))a 9§m) _ §(m)>

= n2llgi™ |2 + (165 — 6|2 — 23 (gi™ — W I(O™), 0™ — G0

1 m m n(m
0| IV IO + Bulof™ — )]

F DETAILS OF EXPERIMENTS

Garnet problem: The Garnet problem Archibald et al. (1995) is specified as G(ns,n .4, b, d), where
ns and n 4 denote the cardinality of the state and action spaces, respectively, b is referred to as the
branching factor—the number of states that have strictly positive probability to be visited after an
action is taken, and d denotes the dimension of the features. In our experiment, we set ng = 5,
na = 3,b=2,d = 4 and generate the features ® € R"s*< via the uniform distribution on [0, 1].
‘We then normalize its rows to have unit norm. Then, we randomly generate a state-action transition
kernel P € R"s*™AX"5 yia the uniform distribution on [0, 1] (with proper normalization). We set
the behavior policy as the uniform policy, i.e., m(als) = n;‘1 for any s and a. The discount factor
is set to be v = 0.95. As the transition kernel and the features are known, we compute ||V.J()]|?
to evaluate the performance of all the algorithms. We set the default learning rates as 79 = 0.02
and n,, = 0.01 for both VR-Greedy-GQ and Greedy-GQ algorithm. For VR-Greedy-GQ, we set the
default batch size as M = 3000.

Frozen Lake: We generate a Gaussian feature matrix with dimension 8 to linearly approximate the
value function and we aim to evaluate a target policy based on a behavior policy. The target policy
is generated via the uniform distribution on [0, 1] with proper normalization and the behavior policy
is the uniform policy. We set the learning rates as 179 = 0.2 and 7,, = 0.1 for both algorithms and
set the batch size as M = 3000 for the VR-Greedy-GQ. We run 200k iterations for each of the 10
trajectories.

Estimated maximum Reward: In the experiments, we compute the maximum reward as follows:
When the policy parameter 6, is updated to 6,1, we estimate the corresponding reward by sam-
pling a Markov decision process {s1, a1, S2,az, ..., SN, an, SN+1} using mg. Then we estimate the
expected reward using

1 N
ft = Nz;r(s,;,ai,s,;+1).
1=

29



Published as a conference paper at ICLR 2021

Under the ergodicity assumption, this average reward will tend to the expected reward with respected
the stationary distribution induced by my (Wu et al. (2020)). Then the maximum reward is defined
as the maximum estimated expected reward along the training trajectory; that is,

Maximum Reward = m?x Tt.

In the experiments, we set N = 100 when estimating the expected reward.
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