
Published as a conference paper at ICLR 2023

NEURAL NETWORKS EFFICIENTLY LEARN
LOW-DIMENSIONAL REPRESENTATIONS WITH SGD

Alireza Mousavi-Hosseini1,2, Sejun Park3, Manuela Girotti4, Ioannis Mitliagkas5,6, Murat A. Erdogdu1,2

1University of Toronto, 2Vector Insitute, 3Korea University, 4Saint Mary’s University,
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ABSTRACT

We study the problem of training a two-layer neural network (NN) of arbitrary width
using stochastic gradient descent (SGD) where the input x ∈ Rd is Gaussian and
the target y ∈ R follows a multiple-index model, i.e., y = g(⟨u1,x⟩, . . . , ⟨uk,x⟩)
with a noisy link function g. We prove that the first-layer weights of the NN con-
verge to the k-dimensional principal subspace spanned by the vectors u1, . . . ,uk

of the true model, when online SGD with weight decay is used for training. This
phenomenon has several important consequences when k ≪ d. First, by employ-
ing uniform convergence on this smaller subspace, we establish a generalization
error bound of O(

√
kd/T ) after T iterations of SGD, which is independent of the

width of the NN. We further demonstrate that, SGD-trained ReLU NNs can learn
a single-index target of the form y = f(⟨u,x⟩) + ϵ by recovering the principal
direction, with a sample complexity linear in d (up to log factors), where f is a
monotonic function with at most polynomial growth, and ϵ is the noise. This is in
contrast to the known dΩ(p) sample requirement to learn any degree p polynomial
in the kernel regime, and it shows that NNs trained with SGD can outperform the
neural tangent kernel at initialization. Finally, we also provide compressibility
guarantees for NNs using the approximate low-rank structure produced by SGD.

1 INTRODUCTION

The task of learning an unknown statistical (teacher) model using data is fundamental in many areas
of learning theory. There has been a considerable amount of research dedicated to this task, especially
when the trained (student) model is a neural network (NN), providing precise and non-asymptotic
guarantees in various settings (Zhong et al., 2017; Goldt et al., 2019; Ba et al., 2019; Sarao Mannelli
et al., 2020; Zhou et al., 2021; Akiyama & Suzuki, 2021; Abbe et al., 2022; Ba et al., 2022; Damian
et al., 2022; Veiga et al., 2022). As evident from these works, explaining the remarkable learning
capabilities of NNs requires arguments beyond the classical learning theory (Zhang et al., 2021).

The connection between NNs and kernel methods has been particularly useful towards this expedi-
tion (Jacot et al., 2018; Chizat et al., 2019). In particular, a two-layer NN with randomly initialized
and untrained weights is an example of a random features model (Rahimi & Recht, 2007), and regres-
sion on the second layer captures several interesting phenomena that NNs exhibit in practice (Louart
et al., 2018; Mei & Montanari, 2022), e.g. cusp in the learning curve. However, NNs also inherit
favorable characteristics from the optimization procedure (Ghorbani et al., 2019; Allen-Zhu & Li,
2019; Yehudai & Shamir, 2019; Li et al., 2020; Refinetti et al., 2021), which cannot be captured
by associating NNs with regression on random features. Indeed, recent works have established a
separation between NNs and kernel methods, relying on the emergence of representation learning
as a consequence of gradient-based training (Abbe et al., 2022; Ba et al., 2022; Barak et al., 2022;
Damian et al., 2022), which often exhibits a natural bias towards low-complexity models.

A theme that has emerged repeatedly in modern learning theory is the implicit regularization effect
provided by the training dynamics (Neyshabur et al., 2014). The work by Soudry et al. (2018) has
inspired an abundance of recent works focusing on the implicit bias of gradient descent favoring,
in some sense, low-complexity models, e.g. by achieving min-norm and/or max-margin solutions
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despite the lack of any explicit regularization (Gunasekar et al., 2018; Li et al., 2018; Ji & Telgarsky,
2019; Gidel et al., 2019; Chizat & Bach, 2020; Pesme et al., 2021). However, these works mainly
consider linear models or unrealistically wide NNs, and the notion of reduced complexity as well as
its implications on generalization varies. A concrete example in this domain is compressiblity and its
connection to generalization (Arora et al., 2018; Suzuki et al., 2020). Indeed, when a trained NN
can be compressed into a smaller NN with similar prediction behavior, the resulting models exhibit
similar generalization performance. Thus, the model complexity of the original NN can be explained
by the smaller complexity of the compressed one, which is classically linked to better generalization.

In this paper, we demonstrate the emergence of low-complexity structures during the training
procedure. More specifically, we consider training a two-layer student NN with arbitrary width m
where the input x ∈ Rd is Gaussian and the target y ∈ R follows a multiple-index teacher model,
i.e. y = g(⟨u1,x⟩, . . . , ⟨uk,x⟩; ϵ) with a link function g and a noise ϵ independent of the input. In
this setting, we prove that the first-layer weights trained by online stochastic gradient descent (SGD)
with weight decay converge to the k-dimensional subspace spanned by the weights of the teacher
model, span(u1, , . . . ,uk), which we refer to as the principal subspace. Our primary focus is the
case where the target values depend only on a few important directions along the input, i.e. k ≪ d,

Figure 1: Two-layer ReLU network with m =
1000, d = 2 is trained to recover a tanh single-
index model via SGD with weight decay. Initial
neurons (red) converge to the principal subspace.
10% of student neurons are visualized.

which induces a low-dimensional structure on the
SGD-trained first-layer weights, whose impact on
generalization is profound. First, convergence to the
principal subspace leads to an improved bound on
the generalization gap for SGD, independent of the
width of the NN. In the specific case of learning a
single-index target with a ReLU student network, we
show that this convergence leads to useful features
that improve upon the initial random features. Hence
we prove that NNs can learn certain degree-p polyno-
mials with a number of samples (almost) linear in d
using online SGD, while learning a degree p polyno-
mial with any rotationally invariant kernel, including
the neural tangent kernel (NTK) at initialization, re-
quires dΩ(p) samples (Donhauser et al., 2021). We
summarize our contributions as follows.

• We show in Theorem 3 that NNs learn low-dimensional representations by proving that the iterates
of online SGD on the first layer of a two-layer NN with width m converge to

√
mε neighborhood

of the principal subspace after O(d/ε2) iterations, with high probability. The error tolerance of√
mε is sufficient to guarantee that the risk of SGD iterates and that of its orthogonal projection

to the principal subspace are within O(ε) distance.
• We demonstrate the impact of learning low-dimensional representations with three applications.

– For a single-index target y = f(⟨u,x⟩) + ϵ with a monotonic link function f where f ′′ has at
most polynomial growth, we prove in Theorem 4 that ReLU networks of width m can learn
this target after T iterations of SGD with an excess risk estimate of Õ(

√
d/T + 1/m), with

high probability (see the illustration in Figure 1). In particular, the number of iterations is
linear in the input dimension d, even when f is a polynomial of any (fixed) degree p.

– Based on a uniform convergence argument on the principal subspace, we prove in Theorem 5
that T iterations of SGD will produce a model with generalization error of O(

√
kd/T ), with

high probability. Remarkably, this rate is independent of the width m of the NN, even in the
case k ≍ d where the target is any function of the input, and not necessarily low-dimensional.

– Finally, we provide a compressiblity result directly following from the low-dimensionality of
the principal subspace. We prove that T iterations of SGD produce first-layer weights that are
compressible to rank-k with a risk deviation of O(

√
d/T ), with high probability.

The rest of the paper is organized as follows. We discuss the notation and the related work in the
remainder of this section. We describe the problem formulation and preliminaries in Section 2,
and provide an analysis for the warm-up case of population gradient descent in Section 2.1. Our
main result on SGD is presented in Section 3. We discuss three implications of our main theorem
in Section 4, where we provide results on learnability, generalization gap, and compressibility in
Sections 4.1, 4.2, and 4.3, respectively. We finally conclude with a brief discussion in Section 5.
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Notation. For a loss function ℓ : R2 → R, let ∂iℓ and ∂2
ijℓ denote its partial derivatives with respect

to ith and jth inputs for i, j ∈ {1, 2}. For quantities a and b, a ≲ b implies a ≤ Cb for some absolute
constant C > 0, and a ≍ b implies both a ≳ b and a ≲ b. Finally, Unif(A) denotes the uniform
distribution over a set A and N (0, Id) denotes the d-dimensional isotropic Gaussian distribution.

1.1 RELATED WORK

Training dynamics of NNs. Several works have demonstrated learnability in a special case of teacher-
student setting where the teacher model is similar to the student NN being trained (Zhong et al., 2017;
Brutzkus & Globerson, 2017; Li & Yuan, 2017; Zhang et al., 2019; Zhou et al., 2021). This setting
has also been studied through the lens of loss landscape (Safran et al., 2021) and optimization over
measures (Akiyama & Suzuki, 2021). We stress that our results work under misspecification and
hold for generic teacher models that are not necessarily NNs with similar architecture to the student.

Two scaling regimes of analysis have seen a surge of recent interest. In the regime of lazy train-
ing (Chizat et al., 2019), the parameters hardly move from initialization and the NN does not learn
useful features, behaving like a kernel method (Jacot et al., 2018; Du et al., 2019; Allen-Zhu et al.,
2019; Arora et al., 2019; Oymak & Soltanolkotabi, 2020). However, many works have shown
that deep learning is more powerful than kernel models (Yehudai & Shamir, 2019; Ghorbani et al.,
2020; Geiger et al., 2020), establishing a clear separation between them; thus, several important
characteristics of NNs cannot be captured with lazy training (Ghorbani et al., 2019), even though
it might still perform better than feature learning in certain low-dimensional settings (Petrini et al.,
2022). In the other scaling regime, gradient descent on infinitely wide NNs reduces to Wasserstein
gradient flow, known as the mean-field regime where feature learning is possible (Chizat & Bach,
2018; Rotskoff & Vanden-Eijnden, 2018; Mei et al., 2019; Nitanda et al., 2022; Chizat, 2022). Closer
to our results, the concurrent work of Hajjar & Chizat (2022) shows that low-dimensional targets
induce low-dimensional dynamics on mean-field NNs. However, these results mostly hold for infinite
or very wide NNs, and quantitative guarantees are difficult to obtain. Our setting is different from
both of these regimes, as we allow for NNs of arbitrary width without excessive overparameterization.

Feature learning with multiple-index teacher models. The task of learning a target of an unknown
low-dimensional function of the input is fundamental in statistics (Li & Duan, 1989). Several recent
works in the learning theory literature have also focused on this problem, with an aim to demonstrate
NNs can learn useful feature representations, outperforming kernel methods (Bauer & Kohler, 2019;
Ghorbani et al., 2020). In particular, Abbe et al. (2022) studies the necessary and sufficient conditions
for learning with sample complexity linear in d with inputs on the hypercube, in the mean-field limit.
Closer to our setting are the recent works Ba et al. (2022); Damian et al. (2022); Barak et al. (2022)
which demonstrate a clear separation between NNs and kernel methods, leveraging the effect of
representation learning. However, their analysis considers a single (full) gradient step on the first-layer
weights followed by training the second-layer parameters. In contrast, in our learnability result, we
consider training both layers with SGD, which induces essentially different learning dynamics.

Generalization bounds for SGD. A popular algorithm-dependent approach for studying general-
ization is through algorithmic stability (Bousquet & Elisseeff, 2002; Feldman & Vondrak, 2018;
Bousquet et al., 2020), which has been used to study the generalization behavior of gradient-based
methods in various settings (Hardt et al., 2016; Bassily et al., 2020; Farghly & Rebeschini, 2021;
Kozachkov et al., 2022). Other approaches include studying the low-dimensional structure of the
trajectory (Simsekli et al., 2020; Park et al., 2022) or the invariant measure of continuous-time
approximations of SGD (Camuto et al., 2021), and employing information-theoretic tools (Neu et al.,
2021). Among these works, Barsbey et al. (2021) show that SGD is able to learn compressible
networks. However, they require large width for the mean-field approximation and assume that the
SGD iterates converge to a heavy-tailed distribution, while we do not make either of the assumptions.

2 PRELIMINARIES: NEURAL NETWORKS AND THE PRINCIPAL SUBSPACE

For an input x ∈ Rd, we consider training a two-layer neural network (NN) with m neurons

ŷ(x;W ,a, b) =

m∑
i=1

aiσ(⟨wi,x⟩+ bi), (2.1)
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where σ is the activation function, {wi}1≤i≤m are the first-layer weights collected in the rows of
the matrix W ∈ Rm×d, b ∈ Rm is the bias, and a ∈ Rm is the second-layer weights. We assume
x ∼ N (0, Id) and the target is generated from a multiple-index (teacher) model given by

y = g(⟨u1,x⟩, . . . , ⟨uk,x⟩; ϵ), (2.2)

for a weakly differentiable link function g : Rk+1 → R and a noise ϵ. Throughout the paper,
the noise ϵ is assumed to be independent from the input x, and our framework covers the special
noiseless case where ϵ = 0. While our results remain valid regardless of how k and d compare, they
are most insightful when k ≪ d; thus, we specifically consider this regime when interpreting the
results. We also collect the teacher weights {ui}1≤i≤k in the rows of the matrix U ∈ Rk×d and use
y = g(Ux; ϵ) for simplicity.

For a given loss function ℓ(ŷ, y), we consider the population and the empirical risks

R(W,a, b) := E[ℓ(ŷ(x;W,a, b), y)] and R̂(W,a, b) :=
1

T

T−1∑
t=0

ℓ(ŷ(x(t);W,a, b), y(t)),

where the expectation is over the data distribution. Similarly, for some τ ≥ 1, the truncated loss
is defined as ℓτ (ŷ, y) := ℓ(ŷ, y) ∧ τ with the corresponding risks Rτ and R̂τ , both of which are
used in Section 4 to obtain sharp high probability statements. In the warm-up case, we consider the
L2-regularized population risk with a penalty parameter λ ≥ 0, defined as

Rλ(W ,a, b) := R(W ,a, b) +
λ

2
∥W ∥2F. (2.3)

To minimize (2.3), we use stochastic gradient descent (SGD) over the first-layer weights, where we
are interested in the convergence of iterates to the principal subspace defined by the teacher weights

S(U) := span(u1, . . . ,uk)
m = {CU : C ∈ Rm×k}.

Notice that the principal subspace satisfies S(U) ⊆ Rm×d, and its dimension is mk as opposed to
the ambient dimension of md, with any matrix in this subspace having rank at most k. For any vector
v ∈ Rd, we let v∥ denote the orthogonal projection of v onto span(u1, . . . ,uk) and v⊥ := v − v∥.
Similarly, for a matrix W ∈ Rm×d, we define W ∥ and W⊥ by applying the projection to each row.

We make the following assumption on the data generating process.
Assumption 1 (Student-teacher setup). The student model is a two-layer NN (2.1) trained over the
data set {(x(i), y(i))}i≥1, where the target values y(i) are generated according to the teacher model

(2.2) and the inputs satisfy x(i) iid∼ N (0, Id). The link function g(·, . . . , ·; ϵ) is weakly differentiable
(see e.g. Evans (2010, Sec. 5.2.1) for definition) for any fixed ϵ.

The Gaussian input is a rather standard assumption in the literature, especially in recent works that
consider the student-teacher setup; see e.g. Safran et al. (2021); Zhou et al. (2021); Damian et al.
(2022). The multiple-index teacher model (2.2) can encode a broad class of input-output relations
through the non-linear link function, including a multi-layer fully-connected NN with arbitrary depth
and width and weakly differentiable activations. The smoothness properties of the activation σ play
an important role in our analysis. As such, we consider two scenarios, with different requirements on
the loss function.
Assumption 2.A (Smooth activation). The activation function σ satisfies |σ(z)|, |σ′(z)|, |σ′′(z)| ≤ 1
for all z ∈ R, the loss is ℓ(ŷ, y) = 1

2 (ŷ − y)2 for simplicity, and y satisfies |y| ≤ K almost surely.
Assumption 2.B (ReLU activation). The activation function σ is σ(z) = max(z, 0) for z ∈ R. The
loss satisfies 0 ≤ ∂2

1ℓ(ŷ, y) ≤ 1, |∂1ℓ(ŷ, y)| ≤ 1, and |∂2
12ℓ(ŷ, y)| ≤ 1.

Commonly used activations such as sigmoid and tanh satisfy Assumption 2.A. For ReLU activation in
Assumption 2.B, we choose σ′(z) = 1(z ≥ 0) as its weak derivative. We highlight that Assumption
2.B is satisfied by common Lipschitz and convex loss functions such as the Huber loss

ℓH(ŷ − y) :=

{
1
2 (ŷ − y)2 if |ŷ − y| ≤ 1

|ŷ − y| − 1
2 if |ŷ − y| > 1,

(2.4)

as well as the logistic loss ℓL(ŷ, y) := log(1 + e−ŷy), up to appropriate scaling constants.
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2.1 WARM-UP: POPULATION GRADIENT DESCENT

In this section, we study the dynamics of population gradient descent (PGD) to motivate our investi-
gation of the more practically relevant case of SGD. When initialized from W 0, PGD with a fixed
step size η will update the current iterate W t according to the update rule

W t+1 = W t − η∇WRλ(W
t), (2.5)

We use the following initialization throughout the paper.
Assumption 3 (Initialization). For all 1 ≤ i ≤ m, 1 ≤ j ≤ d, we initialize the NN weights and
biases with

√
dW 0

ij
iid∼ N (0, 1), ma0i

iid∼ Unif([−1, 1]), and b0i
iid∼ Unif({−1, 1}).

While this initialization is standard in the mean-field regime, we only use it to simplify the exposition.
Indeed, we can initialize W and a with any scheme that guarantees ∥W ∥F ≲

√
m and ∥a∥∞ ≲ m−1

with high probability. Further, initialization of b mostly matters in the analysis of ReLU activation.

Next, we show that the population gradient admits a certain decomposition which plays a central
role in our analysis. For smooth activations, the below result is a remarkable consequence of Stein’s
lemma, which provides a certain alignment between the true statistical model (teacher) and the model
being trained (student), which has profound impact on the learning dynamics. We generalize this
result for ReLU through a sequence of smooth approximations (see Appendix A.1 for details).
Lemma 1. Under Assumptions 1&2.A or 1&2.B, the gradient of the population risk can be written as

∇WRλ(W ) = (H(W ) + λIm)W +D(W )U , (2.6)
for some H(W ) ∈ Rm×m and D(W ) ∈ Rk×d (with explicit forms provided in Appendix A.1).

Notice that the subset of critical points {W ∗ : ∇Rλ(W∗) = 0} for which H(W∗)+λIm is invertible
belongs to the principle subspace, i.e. W∗ ∈ S(U). Further, if we initialize PGD (2.5) within the
principal subspace, i.e. W 0 ∈ S(U), the subsequent iterates for t > 0 remain in this subspace.

In statistics literature, the setting we consider is often termed as model misspecification, i.e. the
teacher model generating the data and the student model being trained are different. Proposition 2
states a general result that, as long as the target depends on certain directions, PGD will produce
weights in their span, despite the possible mismatch between the two models. We highlight that the
classical results on dimension reduction, e.g. Li & Duan (1989); Li (1991), rely on a similar principle,
which was also used for designing optimization algorithms, see e.g. Erdogdu et al. (2019). However,
we are interested in the implications of this phenomenon in the setting of NNs trained with SGD.

The following result, proved in Appendix A.2, demonstrates the algorithmic implications of Lemma 1
for the simplistic case of PGD, and shows that the iterates converges to the principal subspace.
Proposition 2. Consider running T PGD iterations (2.5) with an initialization satisfying Assump-
tion 3 and a step size η > 0. For any γ > 0, choose λ = λ̃

m and η = mη̃ based on the following.
1. Smooth activation. Under Assumptions 1&2.A, let λ̃ ≥ 1 + γ +

√
1 + 2γ + 2R(W 0) and

η̃ ≲
(
λ̃+ λ̃ς

γ + ς
)−1

where ς := E[∥U⊤∇g(Ux; ϵ)∥2].
2. ReLU activation. Under Assumptions 1&2.B, let λ̃ ≥ γ + 2

√
2
eπ and η̃ ≲ λ̃−1.

Then, with probability at least 1− e−Cmd over the initialization, where C is an absolute constant,
the iterates of PGD satisfy

∥W T
⊥∥F ≤ (1− η̃γ)T ∥W 0

⊥∥F. (2.7)

A few remarks are in order. First and most importantly, PGD iterates converge to the principal
subspace as T → ∞ and this phenomenon is mainly due to the alignment provided by Lemma 1.
Indeed in the limit, (2.7) provides sparsity in the basis of principal subspace, and it is widely known
that L2-regularization does not have a similar sparsity effect (unless λ → ∞) in contrast to its L1

counterpart. Thus, the choice of λ in Proposition 2 will lead to non-trivial orthogonal projections
W T

∥ in general, as we will demonstrate in Section 4.1 with a learnability result. However, without L2-
regularization, i.e. λ = 0, it is possible to converge to a critical point W ∗ for which H(W ∗) + λIm
is not invertible; hence, the weights are likely to be outside of the principal subspace in this case (cf.
Figures 1&2). It is also worth emphasizing that the penalty level used in the above proposition still
allows for non-convexity as we demonstrate with an example in Appendix D. We finally remark that,
as evident from the proof, Proposition 2 remains valid even with unbounded smooth activations.
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3 CONVERGENCE OF STOCHASTIC GRADIENT DESCENT

We now consider stochastic gradient descent (SGD) in the online setting where at each iteration t, we
have access to a new data point (x(t), y(t)) drawn independently of the previous samples from the
same distribution. We update the first-layer weights W t with a (possibly) time varying step size ηt
and a weight decay, according to the update rule

W t+1 = (1− ηtλ)W
t − ηt∇W ℓ(ŷ(x(t);W t,a, b), y(t)). (3.1)

The above algorithm can be used to minimize the population risk (2.3) in practice (Polyak & Juditsky,
1992), even in certain non-convex landscapes (Yu et al., 2021). As we demonstrate next, SGD still
preserves several important characteristics of its population counterpart, PGD.
Theorem 3. Consider running T SGD iterations (3.1) over samples satisfying Assumption 1, with an
initialization satisfying Assumption 3, and using the following step size schedules.
1. Constant step size. Under Assumption 2.A, choose the constant step size ηt =

2m log(T )
γT . For any

γ > 0, let λ̃ ≥ 1+ γ +
√
1 + 2γ + 2R(W 0) + C log(T )2d

γ2T where C is an absolute constant, and
suppose T ≳ (1/δ)C/d ∨ λ̃

γ log λ̃
γ . Then, for a penalty λ = λ̃

m , with probability at least 1− δ,

∥W T
⊥∥F√
m

≲

√
log(T )(d+ log(1/δ))

γ2T
, (3.2)

2. Decaying step size. Let ζ := E[|y|] + 1 under Assumption 2.A and ζ := 2
√
2/eπ under

Assumption 2.B. Choose the decreasing step size ηt = m 2(t+t∗)+1
γ(t+t∗+1)2 , λ̃ ≥ γ + ζ, and t∗ ≍ λ̃

γ for

any γ > 0. Then, for λ = λ̃
m , with probability at least 1− δ,

∥W T
⊥∥F√
m

≲

√
d+ log(1/δ)

γ2T
, (3.3)

whenever m ≳ log(1/δ) and T ≳ λ̃2

d+log(1/δ) .

Remark. Our results are most insightful when γ ≍ 1 with respective rates of Õ(
√
d/T ) and

O(
√
d/T ) in the constant and decreasing step size settings; this scaling allows efficient learning

of certain targets (see Section 4.1). Indeed, choosing a large γ may significantly restrict the learn-
ability properties and will result in underfitting. However, if we ignore the underfitting issue, one
can get the fastest convergence rate by choosing γ ≍

√
T (d+ log(1/δ)), from which we obtain

∥WT
⊥∥F /

√
m ≲ 1/T . We also note that the convergence rate is stated in the normalized distance to

the principal subspace, i.e. ∥W T
⊥∥F/

√
m ≤ ε, as this is sufficient to guarantee that the risk of W T

and its orthogonal projection W T
∥ are within O(ε) distance.

The above result states that, with a number of samples linear in d, SGD is able to produce iterates
that are in close proximity to the principal subspace; thus, it efficiently learns (approximately)
low-dimensional weights, exhibiting an implicit bias towards low-complexity models. While prior
works have established that NNs adapt to low-dimensional manifold structures in the data in some
contexts (Chen et al., 2019; Buchanan et al., 2021; Wang et al., 2021), our result has a different nature.
More specifically, the interplay between two forces is in effect here. The most important one is the
linear relationship between the first-layer weights and the input in both student and teacher models
together with the input distribution. The alignment described in Lemma 1 yields sparsified weights
in a basis defined by the teacher network, effectively reducing the dimension from d to k. The second
force is the explicit L2-regularization. We emphasize that L2-regularization does not play the main
role in this sparsification; even though it may provide shrinkage to zero, L2 penalty will in general
produce non-sparse solutions. However, it is still required to ensure that SGD avoids critical points
outside of the principal subspace.

Although Theorem 3 does not have any implications on the convergence behavior of W ∥, in the next
section we show that the implied low-dimensional structure is sufficient to provide guarantees on the
generalization error, learnability, and compressibility of SGD. The proof of this Theorem is provided
in Appendix B, and is based on a recursion on the moment generating function of ∥W t

⊥∥F. We note
that, as in Proposition 2, regularization in Theorem 3 does not imply (strong) convexity in general,
which we demonstrate in a non-convex example in Appendix D.
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4 IMPLICATIONS OF LOW-DIMENSIONALITY

4.1 LEARNING SINGLE-INDEX TARGETS

An essential characteristic of NNs is their ability to learn useful representations, which allows them
to adapt to the underlying misspecified statistical model. Although this fundamental property has
been the guiding principle in all empirical studies, it was mathematically proven only recently for
gradient-based training (Abbe et al., 2022; Ba et al., 2022; Barak et al., 2022; Damian et al., 2022;
Frei et al., 2022); see also a survey of prior works in Malach et al. (2021). Our results in the previous
section are in the same spirit, establishing the convergence of SGD to the principal subspace which
is indeed a span of useful directions associated with the target function being learned. As such, we
leverage the learned low-dimensional representations to demonstrate that SGD is capable of learning a
target function of the form y = f(⟨u,x⟩)+ ϵ with a number of samples linear in d (up to logarithmic
factors). For simplicity, we work with the Huber loss below; however, we can accommodate any
Lipschitz and convex loss at the expense of a more detailed analysis.

Algorithm 1 Training a two-layer ReLU network with SGD.

Input: a0, b0 ∈ Rm, W 0 ∈ Rm×d, {(x(t), y(t))}0≤t≤T−1, (ηt)t≥0, (η′t)t≥0, λ, λ′, ∆.
1: for t = 0, ..., T − 1 do
2: W t+1 = (1− ηtλ)W

t − ηt∇W ℓ(ŷ(x(t);W t,a0, b0), y(t)).
3: end for
4: Let bj

iid∼ Unif(−∆,∆) for 1 ≤ j ≤ m.
5: for t = 0, ..., T ′ − 1 do
6: Sample it ∼ Unif{0, ..., T − 1}.
7: at+1 = (1− η′tλ

′)at − η′t∇aℓ(ŷ(x
(it);W T ,at, b), y(it))

8: end for
9: return (W T ,aT ′

, b).

In the sequel, we use Algorithm 1 and train the first layer of the NN with online SGD using T data
samples. Then, we randomly choose the biases and run T ′ SGD iterations on the second layer using
the same data samples used to train the first layer. Thus, the overall sample complexity is T whereas
the total number of SGD iterations performed is T + T ′. We highlight that the recent works Ba et al.
(2022); Barak et al. (2022); Damian et al. (2022) perform only one gradient step on the first layer
weights, whereas in Algorithm 1, we train the entire NN with SGD.
Theorem 4. Suppose that the data is from a single-index model y = f(⟨u,x⟩) + ϵ with a monotone
differentiable f and ν-sub-Gaussian noise ϵ, and Assumptions 1&2.B hold. Further, let ∥u∥2 = 1,
|f(0)| < 1, and consider the Huber loss (2.4) for simplicity. Consider running Algorithm 1 with
the initialization 0 < a0j = a ≲ 1/m, 0 < b0j = b ≲ 1, and w0

j = w0 ∼ N (0, 1
dId) for all j with

the hyper-parameters λ = λ̃
m = γ

m + 2a
b

√
2
eπ for any γ ≍ 1, ηt = m 2(t∗+t)+1

γ(t∗+t+1)2 with t∗ ≍ γ−1,

η′t =
2t+1

λ′(t+1)2 , and ∆ ≍
√
log(T/δ). Then, for T ≳ (d+ log(1δ )) ∨ ( λ̃

γd log(
m
δ )), some λ′ > 0 (see

(C.8)), and sufficiently large T ′ (see (C.9)), with probability at least 1− δ,

Rτ (W
T ,aT ′

, b)− E[ℓH(ϵ)] ≲ ∆2
∗

{√
log(T/δ)

m
+

√
d+ log(1/δ)

T

}
+ ν

√
log(1/δ)

T
, (4.1)

where ∆∗, defined in (C.7), is poly(log(Tδ )) when f ′′ has at most polynomial growth.

This result implies that a ReLU NN trained with SGD can learn any monotone polynomial with a
sample complexity linear in the input dimension d, up to logarithmic factors. Indeed, this is consistent
with the work of Ben Arous et al. (2021); they establish a sharp sample complexity of Õ(d1∨(I−2))
to learn a target with online SGD using the same activation f in the student network, where I is the
information exponent (I = 1 in the above case due to the monotonocity of f ). Despite assuming the
link function f is known, we highlight that their setting covers I ≥ 1, whereas Theorem 4 is a proof
of concept to demonstrate the learnability implications of convergence to the principal subspace, even
when f is unknown. Building on their work, the concurrent work of Bietti et al. (2022) also proves
learnability for unkown single-index targets with I ≥ 1, albeit with a sample complexity of d2 for
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I = 1 when training ReLU students. Nonparametric regression with NNs has also been considered
within the NTK framework (Hu et al., 2021; Kuzborskij & Szepesvári, 2021), but our result holds
beyond this regime as m grows with poly log(T/δ), in contrast to the poly(T ) requirement of the
NTK regime. Additionally, learning any degree p polynomial using rotationally invariant kernels
requires dΩ(p) samples for a variety of input distributions including isotropic Gaussian (Donhauser
et al., 2021); thus, our result shows that SGD is able to efficiently learn a target function where kernel
methods cannot. For polynomial targets, Damian et al. (2022) consider training the first-layer weights
with one gradient descent step with a carefully chosen weight decay, and obtain a sample complexity
of d2 to learn any degree p polynomial depending on a few directions. Finally, Chen & Meka (2020)
propose a method that can train NNs to learn such polynomials with sample complexity linear in d;
yet, their algorithm is not a simple variant of SGD and requires a non-trivial warm-start initialization.

The proof of Theorem 4, detailed in Appendix C.2, relies on the fact that after training the first layer,
the weights will align with the true direction u. Then, similarly to Damian et al. (2022) we construct
an optimal a∗ with |a∗i | ≍ m−1 for every i with a small empirical risk, and employ the generalization
bound of Theorem 5 to achieve a rate estimate on the population risk.

4.2 GENERALIZATION GAP

For a given learning algorithm, the gap between its empirical and population risks is termed as the
generalization gap (not to be confused with excess risk), and establishing convergence estimates
for this quantity is a fundamental problem in learning theory. Classical results rely on uniform
convergence over the feasible domain containing the weights; thus, they apply to any learning
algorithm including SGD (Neyshabur et al., 2019). However, these bounds often diverge with the
width of the NN, yielding vacuous estimates in the overparameterized regime (Zhang et al., 2021).
To alleviate this, recent works considered establishing estimates for a specific learning algorithm; see
e.g. Hardt et al. (2016); Soudry et al. (2018); Yun et al. (2021); Park et al. (2022).

Here, we are interested in deriving an estimate for the generalization gap over the SGD-trained first-
layer weights, which holds uniformly over the second layer weights and biases. More specifically, we
study, after T iterations of SGD (3.1) initialized with (W 0,a0, b0), the following quantity

E(W T ) :=supSRτ (W
T,a, b)−R̂τ (W

T,a, b) with S := {a, b ∈ Rm : ∥a∥2 ≤ ra√
m
, ∥b∥∞≤ rb},

where the scaling ensures ŷ = O(1) when ∥wj∥2 ≍ 1, which is the setting considered in Theorem 4.
We state the following bound on E(W T ); the proof is provided in Appendix C.1, and it is based on a
covering argument over the smaller dimensional principal subspace implied by Theorem 3.
Theorem 5. Consider the setting of Theorem 3 with either decreasing or constant step size. For any
δ > 0, if T ≳ (d+ log(1/δ)) ∨ (κλ̃γd log(m/δ)), then with probability at least 1− δ,

E(W T ) ≲ τra

{√
κ(d+ log(1/δ))

γ2T
+ (rb + λ̃−1)

√
dk

T

}
, (4.2)

where we let κ = 1 for decreasing step size and κ = log(T ) for constant step size.

The above bound is independent of the width m of the NN, and only grows with the dimension of
the input space d and that of the principal subspace k; thus, producing non-vacuous estimates in
the overparametrized regime where m is large. Further, the bound is stable in the number of SGD
iterations T , that is, it converges to zero as T → ∞. We remark that generalization bounds for SGD
that rely on algorithmic stability are optimal for strongly convex objectives (Hardt et al., 2016); yet,
they lead to unstable diverging bounds in non-convex settings as T → ∞. As such, these techniques
often require early stopping, which is clearly not needed in our result.

4.3 COMPRESSIBILITY

NNs exhibit compressiblity features in empirical studies, which is known to be associated with
better generalization. Under the assumption that the trained network is compressible, several works
established generalization bounds, see e.g. Arora et al. (2018); Suzuki et al. (2020). However, a
theoretical justification of this assumption, specifically for a NN trained with SGD, was missing.
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Indeed, Theorem 3 provides a concrete answer to this question; since the SGD iterate W T converges
to a low-rank matrix, the resulting weights are compressible. More precisely, let πk : Rm×k → Rm×k

be the low-rank approximation operator defined by πk(W ) := argmin{W ′:rank(W ′)≤k}∥W−W ′∥F.
As W T

∥ lies in the principal subspace, it has rank at most k. Thus, we can write

∥W T − πk(W
T )∥F ≤ ∥W T −W T

∥ ∥F = ∥W T
⊥∥F,

and the following is an immediate consequence of the bound in Theorem 3, that is ∥W T
⊥∥F/

√
m ≲√

d/T , combined with the Lipschitzness of Rτ (W ), which we prove in Lemma 17.
Proposition 6. Consider the setting of Theorem 3 with either decreasing or constant step size. Then,
with probability at least 1− δ,∣∣∣Rτ (πk(W

T ),a, b)−Rτ (W
T ,a, b)

∣∣∣ ≲ τκ

γ

√
d+ log(1/δ)

T
, (4.3)

where we let κ = 1 for decreasing step size and κ =
√

log(T ) for constant step size.

This result demonstrates that the low-dimensionality exhibited by the trained NN provides a rate of
O(
√
d/T ) for the gap between its population risk and that of its compressed version. The bound is

independent of both the width m and the dimension of the principal subspace k. Finally, we highlight
that Suzuki et al. (2020) provide generalization bounds by assuming a near low-rank structure for
the weight matrix, namely that its jth singular value decays proportional to j−α for some α > 1/2.
However, this condition imposes a structure quite different than what we proved in Theorem 3.

5 CONCLUSION

Figure 2: Neurons fail to converge to the
principal subspace without weight decay, in
the same experimental setup of Figure 1.

We studied the dynamics of SGD with weight decay on
two-layer NNs, and proved that under a multiple-index
teacher model, the first-layer weights converge to the prin-
cipal subspace, i.e. the span of the weights of the teacher.
This phenomenon is of particular interest when the target
depends on the input along a few important directions. In
this setting, we proved novel generalization bounds for
SGD via uniform convergence on the low-dimensional
principal subspace. Further, we proved that two-layer
ReLU networks can learn a single-index target with a
monotone link that has at most polynomial growth, using
online SGD, with a number of samples almost linear in d.
Thus, as an implication of low-dimensionality, we estab-
lished a separation between kernel methods and trained NNs where the former suffers from the curse
of dimensionality.

Two principal forces are responsible for the emergence of the low-dimensional structure. The main
one is the linear interaction between the Gaussian input and the first-layer weights in both student and
teacher models. The secondary one is the weight decay which allows SGD to avoid critical points
outside of principal subspace. Figure 2 shows the convergence behavior in absence of weight decay.
Understanding more precisely the range of λ that implies convergence to the principal subspace, as
well as investigating the possibility of learning multiple-index models using this convergence, are left
as important directions for future studies.

ACKNOWLEDGMENTS

The authors would like to thank Denny Wu for generating the figures, and both DW and Matthew S.
Zhang for valuable feedback on the manuscript. This project was mainly funded by the CIFAR AI
Catalyst grant. The authors also acknowledge the following funding sources: SP was supported by
Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by
the Korea government (MSIT) (No. 2019-0-00079, Artificial Intelligence Graduate School Program,
Korea University). MG was supported by NSERC Grant [2022-04106], IM was supported by a
Samsung grant and CIFAR AI Chairs program. Finally, MAE was supported by NSERC Grant
[2019-06167] and CIFAR AI Chairs program.

9



Published as a conference paper at ICLR 2023

REFERENCES

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase property: a
necessary and nearly sufficient condition for sgd learning of sparse functions on two-layer neural
networks. In Conference on Learning Theory, 2022.

Shunta Akiyama and Taiji Suzuki. On Learnability via Gradient Method for Two-Layer ReLU Neural
Networks in Teacher-Student Setting. In International Conference on Machine Learning, 2021.

Zeyuan Allen-Zhu and Yuanzhi Li. What Can ResNet Learn Efficiently, Going Beyond Kernels? In
Advances in Neural Information Processing Systems, 2019.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A Convergence Theory for Deep Learning via
Over-Parameterization. In International Conference on Machine Learning, 2019.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger Generalization Bounds for
Deep Nets via a Compression Approach. In International Conference on Machine Learning, 2018.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-Grained Analysis
of Optimization and Generalization for Overparameterized Two-Layer Neural Networks. In
International Conference on Machine Learning, 2019.

Jimmy Ba, Murat Erdogdu, Taiji Suzuki, Denny Wu, and Tianzong Zhang. Generalization of
two-layer neural networks: An asymptotic viewpoint. In International Conference on Machine
Learning, 2019.

Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representa-
tion. arXiv preprint arXiv:2205.01445, 2022.

Boaz Barak, Benjamin L Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang.
Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit. arXiv
preprint arXiv:2207.08799, 2022.

Melih Barsbey, Milad Sefidgaran, Murat A Erdogdu, Gael Richard, and Umut Simsekli. Heavy
tails in SGD and compressibility of overparametrized neural networks. In Advances in Neural
Information Processing Systems, 2021.
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A PROOFS OF SECTION 2.1

Additional Notation. We employ the following notation throughout the appendix. For vectors v and
u, we use ⟨v,u⟩ and v ◦u to denote their Euclidean inner product and the element-wise product, and
we use ∥v ∥p and diag(v) to denote the Lp-norm and the diagonal matrix whose diagonal entries
are v. For matrices V and W , we use ⟨V ,W ⟩F, ∥V ∥F, and ∥V ∥2 to denote the Frobenius inner
product, Frobenius norm, and the operator norm, respectively. For an activation function σ : R → R,
σ′ and σ′′ denote its first and second (weak) derivatives, which are applied element-wise for vector
inputs. We frequently use ∇ℓ to denote ∇W ℓ when it is clear from the context. We use the shorthand
notation σa,b(Wx) to denote a ◦ σ(Wx + b), and similarly for σ′

a,b(Wx) and σ′′
a,b(Wx). We

use vec(A) ∈ Rmn to denote the vectorized representation of a matrix A ∈ Rm×n, and A⊗B for
the Kronecker product of two matrices A ∈ Rm×n and B ∈ Rp×q; we recall that the Kronecker
product is an mp× nq block matrix comprised of m× n blocks of shape p× q, where block (i, j) is
given by AijB.

In the appendix, we will prove the statements of the main text in a more general formulation. In
particular, for smooth activations, we assume sup|σ′| ≤ β1 and sup|σ′′| ≤ β2 for some β1, β2 ∈ R+,
and we denote sup|σ| ≤ β0, β0 ∈ (0,∞]. We will consider the following general case for the bias
vector b ∈ Rm: bj

iid∼ Db, such that |bj | ≥ b∗ > 0, for some b∗ > 0. This setting clearly covers the
case of bj = ±1 from the initialization of Assumption 3. Throughout the appendix, C will denote a
generic positive absolute constant (e.g. 10), whose value may change from line to line.

A.1 PROOF OF LEMMA 1

In what follows, ∇⊤ is the Jacobian matrix and ∇ is the transpose of Jacobian for vector valued
functions, which is the same as gradient for real-valued functions.

When σ is twice differentiable (Assumption 2.A), standard matrix calculations yield

∇W E[R(W )]
(a)
= E[∇W ℓ(ŷ(x;W ), y)]

= E[∂1ℓ(ŷ(x;W ), y)∇W ŷ(x;W )]

= E
[
∂1ℓ(ŷ(x;W ), y)σ′

a,b(Wx)x⊤]
= E

[
E
[
∂1ℓ(ŷ(x;W ), y)σ′

a,b(Wx)x⊤ | ϵ
]]

(b)
= E

[
E
[
∇⊤

x

{
∂1ℓ(ŷ(x;W ), gϵ(Ux))σ′

a,b(Wx)
}
| ϵ
]]

= E
[
∂2
1ℓ σ

′
a,b(Wx)∇⊤

x ŷ(x;W ) + ∂1ℓ∇⊤
xσ

′
a,b(Wx) + ∂2

12ℓ σ
′
a,b(Wx)∇⊤

x gϵ(Ux)
]

= E
[{
∂2
1ℓ σ

′
a,b(Wx)σ′

a,b(Wx)⊤ + ∂1ℓ diag(σ′′
a,b(Wx))

}
W
]
+

+ E
[
∂2
12ℓ σ

′
a,b(Wx)∇gϵ(Ux)⊤U

]
= H(W )W +D(W )U , (A.1)

where (a) follows from the dominated convergence theorem and (b) follows from the Stein’s lemma,
and ∇gϵ is the weak derivative of gϵ w.r.t. its inputs. Combining the above calculations with the
gradient of the regularization term, with

D(W ) = E
[
∂2
12ℓ(ŷ, y)(a ◦ σ′(Wx+ b))∇g⊤ϵ

]
, (A.2)

where ∇gϵ is the weak derivative of gϵ w.r.t. its inputs, and

H(W ) =E
[
(a ◦ σ′(Wx+ b))(a ◦ σ′(Wx+ b))

⊤
]
+ E[(ŷ − y) diag((a ◦ σ′′(Wx+ b)))],

(A.3)

the proof is complete for smooth activations.

For ReLU activations and ℓ satisfying Assumption 2.B, we introduce the following smooth approxi-
mation

σι(z) =
1

ι
log(1 + eιz) , ι > 0 .
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Then we have

Hι(W ) = E
[
∂2
1ℓ (a ◦ σ′

ι(Wx+ b))(a ◦ σ′
ι(Wx+ b))⊤

]
+ E[∂1ℓ diag(a ◦ σ′′

ι (Wx+ b))]

⪰ −∥a∥∞ max
1≤j≤m

E[|σ′′
ι (⟨wj ,x⟩+ bj)|]Im.

As σ′′
τ ≥ 0, the critical step is to show limι→∞ E[σ′′

ι (⟨w,x⟩+ b)] < ∞, uniformly for all w. Let
z = ⟨w,x⟩+ b. Then z ∼ N (b, ∥w∥22), and

∫ ∞

0

σ′′
ι (z)

e
− (z−b)2

2∥w∥22
√
2π∥w∥2

dz ≤ ι

∫ ∞

0

e
−ιz− (z−b)2

2∥w∥22
√
2π∥w∥2

dz

= ιe
− b2

2∥w∥22
+

(ι∥w∥2−
b

∥w∥2
)2

2

∫ ∞

0

e
− 1

2 (
z

∥w∥2
+ι∥w∥2−

b
∥w∥2

)2

√
2π∥w∥2

dz.

= ιe
− b2

2∥w∥22
+

(ι∥w∥2−
b

∥w∥2
)2

2 (1− Φ(ι∥w∥2 −
b

∥w∥2
)).

(a)
≤ ιe

− b2

2∥w∥2
2

√
2π∥w∥2(ι− b

∥w∥2
2
)

(b)
≤
√

2

π

e
−b2

2∥w∥22

∥w∥2
(c)
≤ 1

|b|

√
2

eπ
,

where (a) follows from the Gaussian tail bound 1−Φ(x) ≤ e−x2/2
√
2πx

, where Φ is the standard Gaussian
CDF; (b) holds for large enough ι; and (c) holds by considering supremum over ∥w∥2. Thus

E[σ′′
ι (⟨wj ,x⟩+ bj)] ≤ 2

|bj |

√
2
eπ and consequently,

−2∥a∥∞
b∗

√
2

eπ
Im ⪯ Hι(W ) ⪯

(
∥a∥22 +

2∥a∥∞
b∗

√
2

eπ

)
Im

where b∗ = min1≤j≤m|bj |. Moreover, as σ′
ι(Wx+b) converges a.s. (i.e. except when ⟨wj ,x⟩+bj =

0 for some j) to σ′(Wx+ b), by the dominated convergence theorem,

∇R(W ) = lim
ι→∞

Hι(W )W + lim
ι→∞

Dι(W )U

We can immediately observe from the dominated convergence theorem that Dι(W ) → D(W ) as
ι → ∞ with D(W ) given in (A.2). Moreover, we let H(W ) = limι→∞ Hι(W ), and observe that

−2∥a∥∞
b∗

√
2

eπ
Im ⪯ H(W ) ⪯

(
∥a∥22 +

2∥a∥∞
b∗

√
2

eπ

)
Im. (A.4)

This finishes the proof of Lemma 1.

In the case of smooth activations (Assumption 2.A), we have the following bounds.
Lemma 7. Let R(W ) := E[ℓ(ŷ(x;W ,a, b), y)] be the unregularized population risk. Under
Assumptions 1&2.A we have

−β2∥a∥∞
√
2R(W )Im ⪯ H(W ) ⪯

{
β2
1∥a∥22 + β2∥a∥∞

√
2R(W )

}
Im. (A.5)

Proof. Assumption 2.A requires ℓ(ŷ, y) = 1
2 (ŷ − y)2. Hence by definition of H,

H(W ) = E
[
σ′
a,b(Wx)σ′

a,b(Wx)⊤
]
+ E

[
(ŷ(x;W )− y) diag(σ′′

a,b(Wx))
]
.
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The first term is positive semi-definite and it can be easily bounded:

0 ≤ v⊤ E
[
σ′
a,b(Wx)σ′

a,b(Wx)⊤
]
v ≤ E

[
∥σ′

a,b(Wx)2∥2
]
∥v∥22 ≤ β2

1∥a∥22∥v∥22
for an arbitrary vector v ∈ Rm. For the second term, we have

−β2∥a∥∞ E[|ŷ − y|]Im ⪯ E
[
(ŷ(x;W )− y) diag(σ′′

a,b(Wx))
]
⪯ β2∥a∥∞ E[|ŷ − y|]Im

and E[|ŷ(x;W )− y|] ≤
√

2R(W ) by Jensen’s inequality.

A.2 PROOF OF PROPOSITION 2

In order to present the proof of Proposition 2, we need a uniform control over the eigenspectrum
of H(W ). In the case of ReLU (Assumption 2.B), this follows from (A.4). For smooth activations
(Assumption 2.A), we need to establish the boundedness of R(W t) along the trajectory. The first
step towards achieving this goal is to obtain an estimate of Rλ(W

t+1)−Rλ(W
t), which depends

on the local smoothness of Rλ(W ).

We denote by ∇2Rλ(W ) the full Hessian of the risk function, an md ×md matrix comprised of
d× d blocks (∇2

wi,wj
Rλ(W ))1≤i,j≤m where (∇2

wi,wj
Rλ(W ))pq = ∂2Rλ(W )

∂(wi)p∂(wj)q
.

Lemma 8. Let R(W ) := E[ℓ(ŷ(x;W ,a, b), y)] be the unregularized population risk. Under
Assumptions 1&2.A, we have the following estimate for the eigenspectrum of the Hessian(

λ− β2∥a∥∞
√

6R(W )
)
Imd ⪯ ∇2Rλ(W ) ⪯

(
λ+ β2

1∥a∥22 + β2∥a∥∞
√
6R(W )

)
Imd.

(A.6)

Proof. By the chain rule for derivatives, we have

∇2
wi,wj

R(W ) = E
[
{aiajσ′(⟨wi,x⟩+ bi)σ

′(⟨wj ,x⟩+ bj) + (ŷ(x;W )− y)δijaiσ
′′(⟨wi,x⟩+ bi)}xx⊤],

where δij is the Kronecker delta. As a result, in matrix form, the Hessian reads

∇2R(W ) = E
[
σ′
a,b(Wx)σ′

a,b(Wx)⊤ ⊗ xx⊤]+ E
[
(ŷ(x;W )− y) diag(σ′′

a,b(Wx))⊗ xx⊤].
The first term is a positive semi-definite matrix with bounded spectral norm; indeed, for any V ∈
Rm×d

0 ≤ vec(V )⊤ E
[
σ′
a,b(Wx)σ′

a,b(Wx)⊤ ⊗ xx⊤] vec(V ) = E
[〈
σ′
a,b(Wx)x⊤,V

〉2
F

]
=

= E
[〈
σ′
a,b(Wx),V x

〉2] ≤ E
[
∥σ′

a,b(Wx)∥22∥V x∥22
]
≤ β2

1∥a∥22∥V ∥2F.

The second term is bounded by the following:∣∣v⊤ E
[
(ŷ(x;W )− y)ajσ

′′(⟨wj ,x⟩)xx⊤]v∣∣ = ∣∣E[(ŷ(x;W )− y)ajσ
′′(⟨wj ,x⟩+ bj)(x

⊤v)2
]∣∣

≤ β2∥a∥∞ E
[
(ŷ(x;W )− y)2

] 1
2 E
[
(x⊤v)4

] 1
2 = β2∥a∥∞

√
2R(W )

√
3∥v∥4,

for all 1 ≤ j ≤ m and for any v ∈ Rd, which completes the proof.

Lemma 9. In the same setting as the previous Lemma, for any W ,W ′ ∈ Rm×d we have

Rλ(W
′) ≤ Rλ(W ) +

〈
∇Rλ(W ),W ′ −W

〉
F +

(λ+ β2
1∥a∥22 + 2β2∥a∥∞

√
3R(W ))

2
∥W ′ −W ∥2F

+

√
6β2β1∥a∥∞∥a∥2

2
∥W ′ −W ∥3F.

Proof. By Taylor’s theorem,

Rλ(W
′) = Rλ(W ) +

〈
∇Rλ(W ),W ′ −W

〉
F +

1

2

〈
vec(W ′ −W ),∇2Rλ(W α) vec(W

′ −W )
〉

(A.7)
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for some W α = W + α(W ′ −W ), α ∈ [0, 1]. The last term can be estimated using Lemma 8:〈
vec(W ′ −W ),∇2Rλ(W α) vec(W

′ −W )
〉
≤ ∥∇2Rλ(W α)∥2∥W ′ −W ∥2F ≤

≤
(
λ+ β2

1∥a∥22 + β2∥a∥∞
√
6R(W α))

)
∥W ′ −W ∥2F, (A.8)

Next, we provide an upper bound for R(W α):

2(R(W α)−R(W )) = E
[
(ŷ(x;W α)− y)2 − (ŷ(x;W )− y)2

]
= E

[
(ŷ(x;W α)− ŷ(x;W ))

2
]
+ 2E[(ŷ(x;W α)− ŷ(x;W ))(ŷ(x;W )− y)]

≤ E
[
(ŷ(x;W α)− ŷ(x;W ))

2
]
+ 2E

[
(ŷ(x;W α)− ŷ(x;W ))

2
] 1

2√
2R(W )

(∗)
≤ β2

1∥a∥22∥W α −W ∥2F + 2β1∥a∥2∥W α −W ∥F
√

2R(W )

≤ β2
1∥a∥22∥W

′ −W ∥2F + 2β1∥a∥2∥W ′ −W ∥F
√

2R(W )

≤ 2β2
1∥a∥22∥W

′ −W ∥2F + 2R(W ), (A.9)

where the last inequality follows from Young’s inequality and (∗) is due to the estimate below:

E
[
(ŷ(x;W α))− ŷ(x;W ))2

]
= E


 m∑

j=1

aj{σ(⟨(wα)j ,x⟩+ bj)− σ(⟨wj ,x⟩+ bj)}

2


≤
m∑
j=1

a2j E
[
(σ(⟨(wα)j ,x⟩+ bj)− σ(⟨wj ,x⟩+ bj))

2
]

≤
m∑
j=1

a2jβ
2
1 E

 m∑
j=1

⟨(wα)j −wj ,x⟩2


= β2
1∥a∥22∥W α −W ∥2F., (A.10)

Plugging (A.9) into (A.8) completes the proof.

In order to prove Proposition 2 we will additionally need a bound on the norm of the iterates {W t}t≥0

of the trajectory.
Lemma 10. Let {W t}t≥0 be the sequence of PGD iterates (2.5). Suppose that there exists T ≥ 1
such that Rλ(W

t) is non-increasing in t = 0, 1, . . . , T . Under Assumptions 1&2.A, for η = mη̃

λ > β2∥a∥∞
√

2Rλ(W
0) and η <

(
λ+ β2

1∥a∥22 + β2∥a∥∞
√

2Rλ(W
0)

)−1

, (A.11)

we have

∥W t∥F ≤ (1− η̃γ)t∥W 0∥F +
β1m∥a∥2 E

[
∥∇g⊤ϵ U∥2

]
γ

∀ t ≤ T , (A.12)

where γ/m = λ− β2∥a∥∞
√
2Rλ(W

0).

Proof. The update rule of PGD reads

W t+1 = (Im − η(H(W t) + λIm))W t − ηD(W t)U . (A.13)

Since R(W t) ≤ Rλ(W
t) ≤ Rλ(W

0), for all t ≤ T , we obtain from Lemma 7(
λ− β2∥a∥∞

√
2Rλ(W

0)

)
Im ⪯ H(W t) + λIm ⪯

(
λ+ β2

1∥a∥22 + β2∥a∥∞
√
2Rλ(W

0)

)
Im,

(A.14)

and for η as in (A.11) we have

0 ⪯ Im − η(H(W t) + λIm) ⪯ (1− η̃γ)Im.
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Therefore,
∥W t+1∥F ≤ (1− η̃γ)∥W t∥F +mη̃∥D(W t)U∥F. (A.15)

and we can easily bound the last term

∥D(W t)U∥F = ∥E
[
σ′
a,b(W

tx)∇g⊤ϵ U
]
∥F ≤ E

[
∥σ′

a,b(W
tx)∇g⊤ϵ U∥F

]
≤ β1∥a∥2 E

[
∥∇g⊤ϵ U∥2

]
. (A.16)

The statement of the lemma then follows by plugging the above bound back into (A.15) and expanding
the recursion.

We are now ready to prove Proposition 2.

Proof. [Proposition 2] Along the proof, we set ϱ := λ+ β2
1∥a∥22 + β2∥a∥∞

√
2Rλ(W

0). Notice

that in the setting of Proposition 2, we have ϱ ≍ λ̃
m = λ. We will consider the event where

∥W 0∥F ≤
√
2m, which happens with probability at least 1− exp(−Cmd).

Smooth activations. We begin by considering the following condition

λ ≥ γ

m
+ β2∥a∥∞

√
2Rλ(W

0). (A.17)

Solving the quadratic equation to find the range of λ where the above condition is satisfied yields

λ ≥ γ

m
+

β2
2∥a∥2∞∥W 0∥2F

2
+

√
β4
2∥a∥4∞∥W 0∥4F

4
+ γ

mβ2
2∥a∥2∞∥W 0∥2F + 2β2

2∥a∥2∞R(W 0)

In the setting of Proposition 2 with ∥a∥∞ ≲ m−1, the above simplifies to

λ ≥
1 + γ +

√
1 + 2γ + 2R(W 0)

m
,

which is satisfied in Proposition 2. Thus we will assume (A.17) holds in the rest of the proof for
smooth activations.

We will use induction on t to show that Rλ(W
t) is non-increasing. The base case is trivial, and

assuming the claim holds up to time t, Lemma 9 implies

Rλ(W
t+1) ≤ Rλ(W

t)− η∥∇Rλ(W
t)∥2F + Cη2ϱ∥∇Rλ(W

t)∥2F
+ Cβ1β2∥a∥∞∥a∥2η3∥∇Rλ(W

t)∥3F. (A.18)

Moreover, we have the following upper bound on gradient norm

∥∇Rλ(W
t)∥F

(a)
≤ ∥H(W t) + λIm∥2∥W t∥F + ∥D(W t)U∥F

(b)
≲ ϱ∥W 0∥F + β1ς∥a∥2

(
mϱ

γ
+ 1

)
(A.19)

where (a) follows from the closed form of the gradient (2.6) and (b) follows from (A.12),

(A.14) and (A.16). Thus with a choice of η ≲
(
ϱ∥W 0∥F∥a∥2 + β1ς∥a∥22(

mϱ
γ + 1)

)−1

we have
η∥a∥2∥∇Rλ(W )∥F ≤ 1. Consequently, with η∥a∥2∥∇Rλ(W )∥F ≤ 1,

Rλ(W
t+1) ≤ Rλ(W

t)− η∥∇Rλ(W
t)∥2F + Cη2(ϱ+ β1β2∥a∥∞)∥∇Rλ(W

t)∥2F.
Therefore, with a choice of η ≲ (ϱ+ β1β2∥a∥∞)−1, we will have

Rλ(W
t+1) ≤ Rλ(W

t)− Cη∥∇Rλ(W
t)∥2F.

As ∥a∥2 ≲ m−1/2, ∥W 0∥F ≲ m1/2, and ϱ ≍ λ
m , we can simplify the two conditions to η ≲

m(λ̃+ λ̃ς
γ + ς)−1 and η ≲ mλ̃−1 respectively, hence proof of the induction is complete.

Finally, recall the update rule of PGD (A.13):

W t+1 = (Im − η(H(W t) + λIm))W t − ηD(W t)U .
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By projecting each row of this recursion onto the orthogonal complement of the principal subspace,
we have

W t+1
⊥ = (Im − η(H(W t) + λIm))W t

⊥ .

Again from (A.14), we have that for η < ϱ−1,

0 ⪯ Im − η(H(W ) + λIm) ⪯ (1− η̃γ)Im ,

therefore
∥W t+1

⊥ ∥F ≤ (1− ηγ)∥W t
⊥∥F.

We have shown (2.7) and the proof for smooth activations is complete.

ReLU activation. By (A.4), for λ ≥ γ + 2∥a∥∞
b∗

√
2
eπ and η < (λ+ ∥a∥22 +

2∥a∥∞
b∗

√
2
eπ )

−1 we have

0 ⪯ Im − η(H(W ) + λIm) ⪯ (1− ηγ)Im.

Notice that in the setting of Proposition 2, ∥a∥22 + ∥a∥∞ ≲ λ, thus η ≲ λ−1 suffices for the above
inequality to hold. The rest of the proof follows similarly to the smooth case.

B PROOFS OF SECTION 3

We begin by characterizing the tail behavior of the stochastic gradient noise in the SGD updates (3.1)
through the following lemma.
Lemma 11. For any fixed W ∈ Rm×k, let

Γ := ∇ℓ(ŷ(x;W ), y)− E[∇ℓ(ŷ(x;W ), y)]

denote the zero-mean stochastic noise in the gradient of the loss function ℓ when (x, y) are generated
according to Assumption 1, and recall that

∇ℓ(ŷ(x;W ), y) = ∂1ℓ(ŷ(x;W ), y)σ′
a,b(Wx)x⊤.

Suppose supŷ,y|∂1ℓ(ŷ, y)| ≤ κ. Then for any V ∈ Rm×d, the zero-mean random variable ⟨V ,Γ⟩F
is Cβ1κ∥a∥2∥V ∥F-sub-Gaussian.

Proof. We use the shorthand notation ∇ℓ := ∇W ℓ(Wx, y) and ∇R := ∇WR(W ). We compute
the following

E[|⟨V ,∇ℓ−∇R⟩F|
p]

1
p

(a)
≤ E[|⟨V ,∇ℓ⟩F|

p]
1
p + E[|⟨V ,∇R⟩F|

p]
1
p

(b)
≤ 2E[|⟨V ,∇ℓ⟩F|

p]
1
p

≤ 2κ E
[
|
〈
V , σ′

a,b(Wx)x⊤〉
F
|2p
] 1

2p

.

where (a) and (b) follow from the Minkowski and Jensen inequalities respectively. Furthermore, we
have

E
[
|
〈
V , σ′

a,b(Wx)x⊤〉
F
|2p
] 1

2p

= E
[
|
〈
V x, σ′

a,b(Wx)
〉
|2p
] 1

2p

≤ β1∥a∥2 E
[
∥V x∥2p2

] 1
2p

≤ β1∥a∥2(∥V ∥F + C∥V ∥2
√
p),

where the last inequality follows from Gaussianity of V x and Lemma 32. Hence

E[|⟨V ,∇ℓ−∇R⟩F|
p]

1
p ≤ Cβ1κ∥a∥2∥V ∥F

√
p.

Invoking Lemma 28 implies sub-Gaussianity of ⟨V ,∇ℓ−∇R⟩F and completes the proof.

We proceed by presenting a lemma which constitutes the main part of the proof of Theorem 3 via
establishing a recursive bound on the moment generating function (MGF) of ∥W t

⊥∥2F, which will in
turn be used to prove high probability statements for ∥W t

⊥∥2F.

20



Published as a conference paper at ICLR 2023

Lemma 12. Consider running the iterates of SGD (3.1), under either Assumptions 1&2.A or 1&2.B,
with stepsize sequence {ηt}t≥0 that is either constant ηt = η or decreasing ηt = m 2(t∗+t)+1

γ(t∗+t+1)2

(cf. (Gower et al., 2019, Theorem 3.2)). Let κ := sup|∂1ℓ(ŷ, y)|, κ := β1∥a∥2κ, and ϱ̃ :=
λ + β2

1∥a∥22 + β2κ∥a∥∞. Suppose η0 ≲ ϱ̃−1. Let Ft denote the sigma algebra generated by
{W j}tj=0, and let {At}t≥0 be a sequence of decreasing events (i.e. At+1 ⊆ At), such that At ∈ Ft

and on At we have H(W t) + λIm ⪰ γ
mIm. Then, for every t ≥ 0, with probability at least

P(At)− δ,

∥W t
⊥∥2F ≲

t−1∏
j=0

(1− ηjγ
m )∥W 0

⊥∥2F +
mηtκ

2(d+ log(1/δ))

γ
. (B.1)

Proof. Let Ft denote the sigma algebra generated by {W j}tj=0. Recall from Lemma 11 that we
define

Γt = ∇ℓ(ŷ(x(t);W t), y(t))− E
[
∇ℓ(ŷ(x(t);W t), y(t))

]
with

∇ℓ(ŷ(x(t);W t), y(t)) = ∂1ℓ(ŷ(x
(t);W t), y(t))σ′

a,b(W
tx(t))(x(t))⊤.

Then for the SGD updates we have

W t+1 = W t − ηt∇Rλ(W
t)− ηtΓt.

By projecting the iterates onto the orthogonal complement of the principal subspace,

W t+1
⊥ =

(
Im − ηt(H(W t) + λIm)

)
W t

⊥ − ηtΓ
t
⊥.

Let M t := Im−ηt(H(W t)+λIm). Then, by observing that 1At+1
≤ 1At

, for any 0 ≤ s ≲ γ
mηtκ2

we have

E
[
1At+1

es∥W
t+1
⊥ ∥2

F | F0

]
≤ E

[
1At

es∥MtW
t
⊥∥2

F+sη2
t ∥Γ

t
⊥∥2

F+⟨−2sηtMtW
t
⊥,Γt

⊥⟩F | F0

]
= E

[
1At

es∥MtW
t
⊥∥2

F E
[
esη

2
t ∥Γ

t
⊥∥2

F e⟨−2sηtMtW
t
⊥,Γt

⊥⟩F | Ft

]
| F0

]
≤ E

[
1At

es∥MtW
t
⊥∥2

F E
[
e2sη

2
t ∥Γ

t
⊥∥2

F | Ft

] 1
2 E
[
e⟨−4sηtMtW

t
⊥,Γt

⊥⟩F | Ft

] 1
2 | F0

]
,

(B.2)

where the last inequality follows from the Cauchy-Schwartz inequality for conditional expectation.

Moreover, it is straightforward to observe that ∥∇ℓ(ŷ(x(t);W t), y(t))∥2F ≤ κ2∥x∥22, hence

E
[
∥∇ℓ(ŷ(x(t);W t), y(t))∥2F

]
≤ κ2d.

Note that by Jensen’s inequality

∥Γt
⊥∥2F ≤ 2∥∇ℓ(W tx(t), y(t))∥2F + 2E

[
∥∇ℓ(W tx(t), y(t))∥2F

]
.

Consequently

E
[
exp
(
2sη2t ∥Γ

t
⊥∥2F

)
| Ft

]
≤ exp

(
4sη2t κ

2d
)
E
[
exp
(
4sη2t κ

2∥x∥22
)

| Ft

]
≤ exp

(
4sη2t κ

2d
)
exp
(
8sη2t κ

2d
)
,

where the second inequality follows from Lemma 33 for 4sη2t κ
2 ≤ 1/4. Since s ≲ γ

mηtκ2 , in order
to satisfy the condition of Lemma 33 we need to ensure ηtγ/m ≲ 1, which is guaranteed by our
ηtϱ̃ ≲ 1 assumption for a suitably small absolute constant, as γ/m ≤ λ ≤ ϱ̃.

Next, we bound the last term in (B.2). Let V := −4sηtM tW
t
⊥. Then by Lemma 11 we have

E
[
exp
(〈
V ,Γt

⊥
〉

F

)
| Ft

]
≤ exp

(
Cs2η2t κ

2∥M tW
t
⊥∥2F

)
Putting things back together in (B.2) and using the tower property of expectation, we have

E
[
1At+1

es∥W
t+1
⊥ ∥2

F | F0

]
≤ E

[
1At

es(1+Csη2
tκ

2)∥MtW
t
⊥∥2

F+Csη2
tκ

2d | F0

]
. (B.3)
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Next, we bound ∥M t∥2. By definition of At, we can already ensure H(W t) ⪰ γ
mIm in (B.3).

Recall the definition of H(W t)

H(W t) = E
[
∂2
1ℓ(ŷ(x;W

t), y)σ′
a,b(W

tx)σ′
a,b(W

tx)⊤ + ∂1ℓ(ŷ(x;W
t), y) diag(σ′′

a,b(W
tx))

]
.

Notice that 0 ≤ ∂2
1ℓ(ŷ(x;W ), y) ≤ 1 under either Assumption 2.A or Assumption 2.B. Moreover

we have, |∂1ℓ(ŷ, y)| ≤ κ. Thus,

H(W t) + λIm ⪯
(
λ+ β2

1∥a∥22 + β2κ∥a∥∞
)
Im = ϱ̃Im.

Therefore,
0 ⪯ Im − ηt(H(W t) + λIm) ⪯ (1− ηtγ

m )Im.

As a result ∥M t∥2 ≤ 1− ηtγ
m . Combined with (B.3) we have

E
[
1At+1

exp
(
s∥W t+1

⊥ ∥2F
)
| F0

]
≤ E

[
1At

exp
(
s(1 + Csη2t κ

2)(1− ηtγ
m )2∥W t

⊥∥2F + Csη2t dκ
2
)
| F0

]
≤ exp

(
Csη2t κ

2d
)
E
[
1At

exp
(
s(1− ηtγ

m )∥W t
⊥∥2F

)
| F0

]
(B.4)

where the second inequality holds by the fact that Csη2t κ
2 ≤ ηtγ/m, which in turn holds when a

small enough absolute constant is chosen in 0 ≤ s ≲ γ
mηtκ2 . Also notice that for decreasing stepsize,

1− γηt

m =
(t+ t∗)2

(t+ t∗ + 1)2
≤

1− (t+t∗)2

(t+t∗+1)2

1− (t+t∗−1)2

(t+t∗)2

=
ηt

ηt−1
, (B.5)

(and the above holds trivially for constant step size), thus when s ≤ C1γ
ηtκ2 for some absolute constant

C1, we have s(1− ηtγ) ≤ C1γ
ηt−1κ2 with the same absolute constant. Hence we are allowed to expand

the recursion (B.4), which implies

E
[
1At

exp
(
s∥W t

⊥∥2F
)
| F0

]
≤ exp

s

t−1∏
j=0

(1− ηjγ
m )∥W 0

⊥∥2F + Csκ2d

t−1∑
i=0

η2i

t−1∏
j=i+1

(1− ηjγ
m )


for all 0 ≤ s ≲ γ

mηt−1κ2 . Moreover, direct calculation implies that with both constant and decreasing

step sizes of Lemma 12, we have
∑t−1

i=0 η
2
i

∏t−1
j=i+1(1 − ηjγ

m ) ≤ Cmηt

γ (with C = 1 for constant
stepsize). Thus, for all 0 ≤ s ≲ γ

mηt−1κ2

E
[
1At

exp
(
s∥W t

⊥∥2F
)
| F0

]
≤ exp

s

t−1∏
j=0

(1− ηjγ
m )∥W 0

⊥∥2F + Csmηtκ
2d

γ

.

Finally, we can apply a Chernoff bound to obtain

P
(
At ∩ {∥W t

⊥∥2F ≥ ε} | F0

)
≤ exp

s


t−1∏
j=0

(1− ηjγ)∥W 0
⊥∥2F + Cmηtκ

2d
γ − ε




By choosing

ε =

t−1∏
j=0

(1− ηjγ
m )∥W 0

⊥∥2F +
Cmηtκ

2(d+ log(1/δ))

γ
.

and the largest possible s ≲ γ
mηtκ2 , we obtain

P
(
∥W t

⊥∥2F ≥ ε | F0

)
≤ P

(
At ∩ {∥W t

⊥∥F ≥ ε}
)
+ P

(
AC

t

)
≤ δ + P

(
AC

t

)
.

Taking another expectation to remove conditioning on initialization completes the proof.

The proof of Theorem 3 for decreasing stepsize follows by a direct computation of the quantities
in Lemma 12 and is presented below. On the other hand, in order to get a better dependence on λ,
choosing the events At for constat stepsize is more subtle and is presented in Section B.2.
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B.1 PROOF OF THEOREM 3 FOR DECREASING STEPSIZE

This part is directly implied by Lemma 12. The following argument holds on an event where
∥W ∥F ≲

√
m, which happens with probability at least 1−O(δ). In order to see this connection, we

will first present an improved statement over Lemma 7 for the case of smooth activations. Recall the
definition of H(W ) for the squared error loss ℓ(ŷ, y) = (ŷ−y)2

2 ,

H(W ) = E
[
σ′
a,b(Wx)σ′

a,b(Wx)⊤
]
+ E

[
(ŷ(x;W ,a, b)− y) diag(σ′′

a,b(Wx))
]
.

Notice that under Assumption 2.A we have |ŷ| ≤ β0∥a∥1. Then basic matrix algebra similar to that
of Lemma 7 along with the triangle inequality shows

−β2∥a∥∞(β0∥a∥1 + E[|y|])Im ≺ H(W ) ⪯
(
β2
1∥a∥22 + β2∥a∥∞(β0∥a∥1 + E[|y|])

)
Im.

Therefore, with λ ≥ γ/m+ β2∥a∥∞(∥a∥1β0 + E[|y|]), we have H(W ) + λIm ⪰ γ/mIm for all
W . In addition, |∂1ℓ(ŷ, y)| ≤ β0∥a∥1 +K by the triangle inequality. Thus we can invoke Lemma
12 with ηt =

m
γ

(
1− (t∗+t)2

(t∗+t+1)2

)
, κ = β0∥a∥1+K, and 1At

= 1. Recall that in the statement of the

theorem, β0 = β1 = β2 = 1, K ≲ 1, ∥a∥∞ ≤ 1/m, ∥a∥2 ≤ 1/
√
m, and ∥a∥1 ≤ 1, hence ϱ̃ ≍ λ,

and with t∗ ≍ λ̃
γ we can guarantee ηtλ ≲ 1. As the step size condition of Lemma 12 is satisfied, the

desired result follows.

Similarly, for ReLU we have |∂1ℓ(ŷ, y)| ≤ 1 by Assumption 2.B, and for λ ≥ γ/m+ 2∥a∥∞
b∗

√
2
eπ

(recall b∗ = 1 in the statement of the theorem), we have H(W ) + λIm ⪰ γ/mIm. Hence this time,
we can invoke Lemma 12 with the same decreasing ηt, 1At

= 1, and κ = 1.

B.2 PROOF OF THEOREM 3 FOR CONSTANT STEPSIZE

In order to improve the condition on λ, we will specifically look at the events At on which
max0≤j≤t Rλ(W

j) is bounded. The following lemma indicates that these events occur with high
probability.

Lemma 13. Under Assumptions 1&2.A, consider the setting of Lemma 12 with constant stepsize
η ≲ ϱ̃−1. Then we have with probability at least 1− T exp(−CTηϱ̃d),

max
0≤t≤T

Rλ(W
t) ≤ Rλ(W

0) + CTη2κ2ϱ̃d. (B.6)

Proof. First, recall from Lemma 8 together with
√

Rλ(W ) ≲ β0∥a∥1 +K = κ, that

∥∇2Rλ(W )∥2 ≲ λ+ β2
1∥a∥22 + β2κ∥a∥∞ = ϱ̃.

We will first prove that for any t ≤ T and any s ≲ (ηκ2)−1, we have

E
[
esRλ(W

t) |W 0
]
≤ E

[
esRλ(W

0)+Cstη2κ2ϱ̃d
]
.

Recall that Ft is the sigma algebra generated by {W j}tj=0, and Γt := ∇ℓ(W t) − ∇R(W t). By
Taylor’s theorem and Young’s inequality

Rλ(W
t+1) ≤ Rλ(W

t)− η
〈
∇Rλ(W

t),∇Rλ(W
t) + Γt

〉
F +

ϱ̃η2

2 ∥∇Rλ(W
t) + Γt∥2F

≤ Rλ(W
t)− η(1− ηϱ̃)∥∇Rλ(W

t)∥2F − η
〈
∇Rλ(W

t),Γt
〉

F + ϱ̃η2∥Γt∥2F,

and

E
[
esRλ(W

t+1) | F0

]
≤ E

[
esRλ(W

t)−sη(1−ηϱ̃)∥∇Rλ(W
t)∥2

F−sη⟨∇Rλ(W
t),Γt⟩F

+sϱ̃η2∥Γt∥2
F | F0

]
= E

[
esRλ(W

t)−sη(1−ηϱ̃)∥∇Rλ(W
t)∥2

F E
[
e−sη⟨∇Rλ(W

t),Γt⟩F
+sϱ̃η2∥Γt∥2

F | Ft

]
| F0

]
(a)
≤ E

[
esRλ(W

t)−sη(1−ηϱ̃)∥∇Rλ(W
t)∥2

F E
[
e−2sη⟨∇Rλ(W

t),Γt⟩F | Ft

] 1
2 E
[
e2sϱ̃η

2∥Γt∥2
F | Ft

] 1
2 | F0

]
,
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where (a) follows from the Cauchy-Schwartz inequality for conditional expectation. Moreover, in
this setting we have |∂1ℓ(ŷ, y)| = |ŷ − y| ≤ β0∥a∥1 +K, thus letting κ = β0∥a∥1 +K in Lemma
11, by the sub-Gaussianity of Γt we have

E
[
e⟨−2sη∇Rλ(W

t),Γt⟩F | Ft

]
≤ eCs2η2κ2∥∇Rλ(W

t)∥2
F .

Furthermore, we have the following upper bound

E
[
eCsϱ̃η2∥∇ℓ(W t)∥2

F | Ft

]
≤ E

[
eCsϱ̃η2κ2∥x∥2

2 | Ft

]
≤ eCsϱ̃η2κ2d

where the second inequality holds for s ≲ 1
ϱ̃η2κ2 with a sufficiently small absolute constant by

Lemma 33. Similar to the argument in Lemma 12, as we choose s ≲ (ηκ2)−1, in order to satisfy the
condition of Lemma 12 it suffices to have ηϱ̃ ≲ 1 for a sufficiently small absolute constant. Putting
the above bounds back together, we have

E
[
esRλ(W

t+1) | F0

]
≤ E

[
esRλ(W

t)−sη(1−ηϱ̃−Csηκ2)∥∇Rλ(W
t)∥2

F+Csη2κ2ϱ̃d | F0

]
.

Expanding the recursion yields, for any s ≲ (ηκ2)−1 (with a sufficiently small absolute constant
chosen)

E
[
esRλ(W

t) | F0

]
≤ esRλ(W

0)+Cstη2κ2ϱ̃d.

As a result, by applying Markov’s inequality at time t ≤ T , we have

P
(
Rλ(W

t) ≥ Rλ(W
0) + CTη2κ2ϱ̃d

)
≤ e−CsTη2κ2ϱ̃d ≤ e−CTηϱ̃d.

Consequently, with a union bound we have

P
(

max
0≤t≤T

Rλ(W
t) ≥ Rλ(W

0) + CTη2κ2ϱ̃d

)
≤ Te−CTηϱ̃d,

which completes the proof.

As depicted by the following proposition, the rest of the proof is analogous to the decreasing stepsize
case.

Proposition 14. Consider the setting of Lemma 13 with constant stepsize η ≲ ϱ̃−1 and λ sufficiently

large such that λ ≥ γ/m + β2∥a∥∞
√
2(Rλ(W

0) + CTη2κ2ϱ̃d). Then with probability at least
1− Te−CTηϱ̃d − δ we have

∥W T
⊥∥2F ≤ (1− ηγ

m )T ∥W 0∥2F +
Cmηκ2(d+ log(1/δ))

γ
(B.7)

Proof. Let At = {max0≤i≤t Rλ(W
i) ≤ Rλ(W

0) + CTη2κ2ϱ̃d}. Notice that At is {W j}tj=0

measurable and At+1 ⊆ At. By the bound established on H(W ) in Lemma 7, on At we have
H(W i) + λIm ⪰ γ/mIm for all 0 ≤ i ≤ T . Moreover, from Lemma 13, we have P

(
AC

T

)
≤

Te−CTηϱ̃d. Invoking Lemma 12 finishes the proof.

The above proposition immediately implies the statement of Theorem 3 for constant stepsize, which
we repeat here as a corollary of Proposition 14.

Corollary 15 (Proof of Theorem 3 for constant stepsize). Consider the setting of Lemma 13 with
λ given in Proposition 14, for constant stepsize η = 2m log(T )

γT with T ≥ (1/δ)C/d. Then with
probability at least 1− δ we have

∥W T
⊥∥F ≲

∥W 0
⊥∥F

T
+

mκ

γ

√
log(T )(d+ log(1/δ))

T
. (B.8)
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C PROOFS OF SECTION 4

C.1 PROOF OF THEOREM 5

As our arguments are based on the Rademacher complexity of a two-layer neural network, we require
the knowledge of the norm of W t. We prove a high probability bound for this norm in the following
lemma.
Lemma 16. Under Assumptions 1&2.A or 1&2.B with either decreasing or constant stepsize as
in Theorem 3, let κ = supŷ,y|∂1ℓ(ŷ, y)| < ∞ and κ∞ := β1∥a∥∞κ. Then for any t ≥ 1, with

probability at least 1−m exp
(

−γtd
mφλ

)
we have for all 1 ≤ j ≤ m

∥wt
j∥2 ≤

t−1∏
i=0

(1− ηiλ)∥w0
j∥2 +

3κ∞
√
d

λ
, (C.1)

where φ = 1 for decreasing step size and φ = log(T ) for constant step size.

Proof. First, we prove that for any t > 0 and 0 ≤ s ≤ 2
√
d

κ∞ηt−1
, we have

E
[
exp(s∥wt

j∥2) |W
0
]
≤ exp

(
s

t−1∏
i=0

(1− ηiλ)∥w0
j∥2 +

2sκ∞
√
d

λ

)
, (C.2)

The base case of t = 0 is trivial, and for the induction step, for any 0 ≤ s ≤ 2
√
d

κ∞ηt
we have

E
[
exp
(
s∥wt+1

j ∥2
)
|W 0

]
= E

[
exp
(
s∥(1− ηtλ)w

t
j − ηt∇wj ℓ(ŷ(x;W

t), y)∥2
)
|W 0

]
≤ E

[
exp
(
s(1− ηtλ)∥wt

j∥2 + sηt∥∇wj ℓ(ŷ(x;W
t), y)∥2

)
|W 0

]
= E

[
exp
(
s(1− ηtλ)∥wt

j∥2 + sηtκ∞∥x∥2
)
|W 0

]
= E

[
exp
(
s(1− ηtλ)∥wt

j∥2
)
E
[
exp(sηtκ∞∥x∥2) |W t,W 0

]
|W 0

]
(a)
≤ E

[
exp
(
s(1− ηtλ)∥wt

j∥2
)
exp

(
sηtκ∞

√
d+

s2κ2
∞η2t
2

)
|W 0

]
(b)
≤ exp

(
s

t∏
i=0

(1− ηiλ)∥w0
j∥2 +

2sκ∞
√
d

λ

)
where (a) holds since ∥x∥2 is a 1-Lipschitz function of a standard Gaussian random vector, thus it is
sub-Gaussian with parameter 1 (Lemma 29) and additionally E[∥x∥2] ≤

√
d, and (b) holds by the

induction hypothesis (notice that for decreasing stepsize s(1− ηtλ) ≤ 2
√
d

κ∞ηt−1
by (B.5)). Next, we

apply the following Chernoff bound,

P

(
∥wt

j∥2 >

t−1∏
i=0

(1− ηiλ)∥w0
j∥2 +

3κ∞
√
d

λ
| W 0

)
≤ exp

(
−sκ∞

√
d

λ

)
,

which holds for any 0 ≤ s ≤ 2
√
d

κ∞ηt−1
. Choosing the largest s possible and noting that ηt−1 ≤

2mφ
γt yields an exp

(
−γtd
mφλ

)
upper bound on the conditional probability, which followed by taking

expectation removes the randomness of conditioning on w0
j . Finally applying a union bound gives us

the desired bound.

In addition, we would like to approximate Rτ (W
T ) and R̂τ (W

T ) with Rτ (W
T
∥ ) and R̂τ (W

T
∥ )

respectively. As a result, we will investigate the Lipschitzness of the population and empirical risk in
the next lemma.
Lemma 17. Under either Assumptions 1&2.A or 1&2.B, the truncated risk W 7→ Rτ (W ) is√
2τβ1∥a∥2-Lipschitz. Moreover, for T ≥ d + log(1/δ) with probability at least 1 − δ over the

stochasticity of {x(t)}0≤t≤T−1, the truncated empirical risk W 7→ R̂τ (W ) is Cτβ1∥a∥2-Lipschitz
for some absolute constant C.

25



Published as a conference paper at ICLR 2023

Proof. We begin by the simple observation that ŷ 7→ ℓ(ŷ, y) ∧ τ is
√
2τ -Lipschitz when ℓ(ŷ, y) =

1/2(ŷ − y)2 and 1-Lipschitz when |∂1ℓ(ŷ, y)| ≤ 1. As τ ≥ 1, we can consider both of them as
√
2τ

Lipschitz. Thus by Jensen’s inequality

|Rτ (W )−Rτ (W
′)| ≤

√
2τ E

[
|ŷ(x;W )− ŷ(x;W ′)|

]
≤

√
2τ E


 m∑

j=1

ajσ(⟨wj ,x⟩+ bj)−
m∑
j=1

ajσ(
〈
w′

j ,x
〉
+ bj)

2


1
2

(a)
≤

√
2τ∥a∥2

√√√√ m∑
j=1

E
[(
σ(⟨wj ,x⟩+ bj)− σ(

〈
w′

j ,x
〉
+ bj)

)2]

≤
√
2τβ1∥a∥2

√√√√ m∑
j=1

E
[〈
wj −w′

j ,x
〉2]

(C.3)

≤
√
2τβ1∥a∥2∥W −W ′∥F

where (a) follows from the Cauchy-Schwartz inequality. Note that Equation (C.3) also holds for
|R̂τ (W )−R̂τ (W

′)| when expectation is over the empirical distribution given by the training samples,
meaning

|R̂τ (W )− R̂τ (W
′)| ≤

√
2τβ1∥a∥2

√√√√ m∑
j=1

(wj −w′
j)

⊤

(
1

T

T−1∑
t=0

x(t)x(t)⊤
)
(wj −w′

j). (C.4)

By Lemma 30, with probability at least 1− δ, we have∥∥∥∥∥ 1T
T−1∑
t=0

x(t)x(t)⊤ − Id

∥∥∥∥∥
2

≲ 1,

which completes the proof.

Lemma 18. Suppose either Assumptions (1,2.A) or (1,2.B) hold. Denote the loss with ℓ(ŷ, y) =
ℓ(ŷ − y),

S̃ =

{
W̃ ∈ Rm×k,a, b ∈ Rm : ∥a∥2 ≤ ra√

m
, ∥b∥∞ ≤ rb , ∥w̃j∥2 ≤ rw̃ , ∀ 1 ≤ j ≤ m

}
and

G =
{
(x̃, y) 7→ ℓ(ŷ(x̃; W̃ ,a, b), y) ∧ τ : (W̃ ,a, b) ∈ S̃

}
for x̃ ∈ Rk and y ∈ R. Let R(G) denote the Rademacher complexity of the function class G (see
Lemma 18 for definition). Then with x̃ ∼ N (0,UU⊤) for some U ∈ Rk×d we have

R(G) ≤ 2τβ1(rw̃∥U∥F + rb)ra

√
2

T
,

where T is the number of samples.

Proof. Let F = {(x̃, y) 7→ fa,W̃ (x̃, y) : (W̃ ,a, b) ∈ S̃} for fa,W̃ (x̃, y) = ŷ(x̃; W̃ ,a, b) − y.
Define g(z) := ℓ(z) ∧ τ , and notice G = {(x̃, y) 7→ g(fa,W̃ (x̃, y)) : fa,W̃ ∈ F}, and that
g is a

√
2τ -Lipschitz (thus

√
2τ -Lipschitz as well, for τ > 1) function. Then by Talagrand’s

contraction principle we have R(G) ≤
√
2τR(F). Moreover, let {ξt}0≤t≤T−1 be a sequence of i.i.d.
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Rademacher random variables. Then similar to the Rademacher bound of Damian et al. (2022)

R(F) = E

[
sup

(W̃ ,a,b)∈S̃

1

T

T−1∑
t=0

ξt

(
a⊤σ(W̃ x̃(t) + b)− y(i)

)]

= E

[
sup

(W̃ ,a,b)∈S̃

1

T

T−1∑
t=0

ξta
⊤σ(W̃ x̃(t) + b)

]
(a)
≤ ra

T
E

[
sup

(W̃ ,b)∈S̃

∥
T−1∑
t=0

ξtσ(W̃ x̃(t) + b)∥∞

]

≤ ra
T

E

[
sup

∥w̃∥2≤rw̃,|b̃|≤rb

|
T−1∑
t=0

ξtσ
(〈

w̃, x̃(t)
〉
+ b̃
)
|

]
(b)
≤ 2β1ra

n
E

[
sup

∥w̃∥2≤rw̃,|b|≤rb

|
T−1∑
t=0

ξt

(〈
w̃, x̃(t)

〉
+ b
)
|

]

≤ 2β1ra
T

E

[
sup

∥w̃∥2≤rw̃

|
T−1∑
t=0

ξt⟨w̃, x̃⟩|+ sup
|b̃|≤rb

|
T−1∑
t=0

ξtb|

]

≤ 2β1ra
T

(
rw̃ E

[
∥
T−1∑
t=0

ξtx̃
(t)∥2

]
+ rb

√
T

)

≤ 2β1(rw̃∥U∥F + rb)ra√
T

,

where (a) holds by Hölder’s inequality and the fact that ∥a∥1 ≤
√
m∥a∥2 ≤ ra, and (b) follows from

the fact that σ is β1 Lipschitz, thus another application of Talagrand’s contraction principle.

Proof. [Proof of Theorem 5] Let E1 denote the event of Lemma 17. We begin with the following
decomposition for generalization error which holds on E1,

Rτ (W
T )− R̂τ (W

T ) = Rτ (W
T )−Rτ (W

T
∥ ) +Rτ (W

T
∥ )− R̂τ (W

T
∥ ) + R̂τ (W

T
∥ )− R̂τ (W

T )

≤ Cτβ1∥a∥2∥W T
⊥∥F +Rτ (W

T
∥ )− R̂τ (W

T
∥ ).

where the upper bound follows from Lemma 17. Consequently,

sup
a,b

Rτ (W
T ,a, b)− R̂τ (W

T ,a, b) ≤ Cτβ1ra√
m

∥W T
⊥∥F + sup

a,b
Rτ (W

T
∥ ,a, b)− R̂τ (W

T
∥ ,a, b).

(C.5)

We begin by upper bounding the first term. From Theorem 3, on an event E2 we have with probability
at least 1−O(δ)

∥W T
⊥∥F√
m

≲ κ

√
d+ log(1/δ)

γ2T
.

Next, we bound the second term in (C.5). For each W , define W̃ := U †W ∥, where U † is the
Moore–Penrose pseudo-inverse of U . Then, since we have the representation W ∥ = MU for some
M ∈ Rm×k,

W̃U = W ∥U
†U = MUU †U = MU = W ∥.

Thus, Wx = W̃ x̃ and ℓ(ŷ(x;W ,a, b), y) = ℓ(ŷ(x̃; W̃ ,a, b), y) for x̃ = Ux, when W is in the
principal subspace, i.e. W = W ∥. Let E3 denote the event of Lemma 16, on which

∥wT
j ∥2 ≤

T−1∏
i=0

(1− ηiγ
m )∥w0

j∥2 +
3κ∞

√
d

λ

and consequently

∥w̃T
j ∥2 ≤ ∥U †∥2

(
T−1∏
i=0

(1− ηiγ
m )∥w0

j∥2 +
3κ∞

√
d

λ

)
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for any 1 ≤ j ≤ m. Define rw̃T as the RHS bound above. Then on E3

sup
a,b

Rτ (W
T
∥ )− R̂τ (W

T
∥ ) ≤ sup

(W̃ ,a,b)∈S̃

Rτ (W̃ ,a, b)− R̂τ (W̃ ,a, b),

where we recall

S̃ :=
{
W̃ ∈ Rm×k,a, b ∈ Rm : ∥a∥2 ≤ ra√

m
, ∥b∥∞ ≤ rb , ∥w̃j∥2 ≤ rw̃T ,∀ 1 ≤ j ≤ m

}
.

Additionally define

G = {(x̃, y) 7→ ℓ(ŷ(x̃; W̃ ,a, b), y) ∧ τ : (W̃ ,a, b) ∈ S̃}.

Then Lemma 31 and Lemma 18 yield

E

[
sup

(W̃ ,a,b)∈S̃

Rτ (W̃ )− R̂τ (W̃ )

]
≤ 2R(G) ≲ τβ1(rw̃T + rb)ra∥U∥F

√
1

T
.

Besides, as the loss is bounded by τ , by McDiarmid’s inequality, on an event E4 which happens with
probability at least 1−O(δ) we have

sup
(W̃ ,a,b)∈S̃

Rτ (W̃ )− R̂τ (W̃ ) ≤ E

[
sup

(W̃ ,a,b)∈S̃

R(W̃ )

]
+ Cτ

√
log(1/δ)

T
.

and consequently on ∩4
i=1Ei

sup
a,b

Rτ (W
T
∥ ,a, b)− R̂τ (W

T
∥ ,a, b) ≲ τβ1(rw̃T + rb)ra∥U∥F

√
1

T
+ τ

√
log(1/δ)

T
.

Finally, observe that ∥a∥1 ≤
√
m∥a∥2 ≤ ra, and without loss of generality assume U is orthonormal,

hence ∥U †∥2 = 1 and ∥U∥F =
√
k, thus with probability at least 1− o(δ),

sup
a,b

Rτ (W
T ,a, b)− R̂τ (W

T ,a, b) ≲τβ1raκ

√
d+ log(1/δ)

γ2T

+ τβ1ra

{(
t∗

t∗ + T

)2

rw +
κ∞

λ
+ rb

}√
dk

T

+ τ

√
log(1/δ)

T
. (C.6)

We remark that in the setting of Theorem 3 which is adapted in Theorem 5, ∥a∥∞ ≲ m−1, thus
κ∞ ≲ m−1. Finally, we observe that rw ≤

√
2m with probability at least 1−O(δ) over initialization,

which completes the proof.

C.2 PROOF OF THEOREM 4

Note that due to the special symmetry in the initialization of Algorithm 1, while training the first
layer, all neurons have an identical value, i.e. wt

j = wt for all j, and that the stochastic gradient with
respect to any neuron can be denote by ∇ℓ = a∂1ℓ(ŷ, y)σ

′(⟨w,x⟩+b)x. Furthermore, ∇wjRλ(W )
will also be identical for all j, which due to the population gradient formula (2.6), we denote by

∇Rλ(w) = (h(w) + λ)w + d(w)u,

where h(w) =
∑m

j=1 Hij(W ) and d(w) = aE
[
∂2
12ℓ(ŷ, y)σ

′(⟨w,x⟩+ b)f ′(⟨u,x⟩)
]
. Additionally,

via the arguments in the proof of Lemma 1, it is not difficult to observe γ/m ≤ h(w) + λ ≲ m−1.
Furthermore, similar to the arguments of Lemma 11, ⟨∇ℓ,v⟩ is Ca∥v∥2-sub-Gaussian for any
v ∈ Rd. Next, we will derive a lower bound for ⟨wt,u⟩ to argue that useful features are learned,
which first requires obtaining a sharper upper bound on ∥wt∥2 than that of Lemma 16. This
improvement is possible due to considering the special case of wt

j = wt here.
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Lemma 19. Suppose t ≥ d. Then,

∥wt∥2 ≤
(

t∗

t∗ + t

)
∥w0∥2 +

Cma

γ

with probability at least 1− exp(−C(t∗ + t)). In particular, using the union bound, we have

sup
t≥t0

∥wt∥2 ≤ ∥w0∥2 +
Cma

γ
≲ 1

with probability at least 1− exp(−C(t∗ + t0))− exp(−Cd).

Proof. Let et := ∇wℓ−∇wR. Then we have

wt+1 = wt − ηt∇wRλ − ηte
t.

Recall that ⟨et,v⟩ is Ca∥v∥2-sub-Gaussian, and Ft is the sigma algebra generated by {wj}0≤j≤t.
Let ωt := wt − ηt∇wRλ. Then, for any 0 ≤ s ≲ γ

mηta2 ,

E
[
exp
(
s∥wt+1∥22

)
| F0

]
= E

[
exp
(
s∥ωt∥22 − 2sηt

〈
ωt, et

〉
+ sη2t ∥et∥22

)
| F0

]
≤ E

[
exp
(
s∥ωt∥22

)
E
[
exp
(
−4sηt

〈
ωt, et

〉)
| Ft

] 1
2 E
[
exp
(
2sη2t ∥et∥22

)
| Ft

] 1
2 | F0

]
.

By sub-Gaussianity of ⟨ωt, et⟩ we have E[exp(−4sηt⟨ωt, et⟩) | Ft] ≤ exp(Cs2η2t a
2∥ωt∥22). More-

over, as ∥∇ℓ∥2 ≤ |a|∥x∥2, by Jensen’s inequality

∥et∥22 ≤ 2∥∇ℓ∥22 + 2E
[
∥∇ℓ∥22

]
≤ 2a2(∥x∥22 + d).

Thus E
[
exp(2sη2t ∥et∥22) | Ft

]
≤ exp(Csη2t a

2d) for s ≲ 1
η2
t a

2 (which holds by s ≲ γ
mηta2 , see the

proof of Lemma 12 for more details), i.e. we have

E
[
exp
(
s∥wt+1∥22

)
| F0

]
≤ E

[
exp
(
s(1 + Csη2t a

2)∥ωt∥22 + Csη2t a
2d
)
| F0

]
.

Recall that by our choice of ηt, 0 ≤ (1− ηt(h(w
t) + λ)) ≤ 1− ηtγ

m (cf. proof of Lemma 12), and
ωt = (1− ηt(h(w

t) + λ))wt − ηtd(w
t)u. As ∥u∥2 = 1 and |d(wt)| ≲ |a|, we have

∥ωt∥22 ≤ (1− ηtγ
m )2∥wt∥22 + Ca2η2t + 2ηtCa(1− ηtγ

m )∥wt∥2
(a)
≤ (1− ηtγ

m )2∥wt∥22 + ηt

(
4Cma2

γ
+

γ

4m
(1− ηtγ

m )2∥wt∥22
)
+ Ca2η2t

(b)
≤ (1− 3ηtγ

2m )∥wt∥22 +
Cmηta

2

γ
+ Ca2η2t .

where (a) holds by Young’s inequality and (b) holds for ηtγ/m ≲ 1 with a sufficiently small absolute
constant. Therefore, for s ≲ γ

mηta2 ,

E
[
exp
(
s∥wt+1∥22

)
| F0

]
≤ E

[
exp

(
s(1− ηtγ

m )∥wt∥22 +
Csmηta

2

γ
+ Csη2t a

2d

)
| F0

]
.

Notice that we can expand the recursion since s(1 − ηtγ
m ) ≲ γ

mηt−1a2 (cf. proof of Lemma 12,
Eq. (B.5)). Expanding the recursion yields,

E
[
exp
(
s∥wt∥22

)
| F0

]
≤ exp

(
s

(
t∗

t∗ + t

)2

∥w0∥2F +
Csm2a2(t+ d)

γ2(t∗ + t)

)
.

Finally, we apply a Chernoff bound with the maximum choice of s ≲ γ
mηta2 , and combine it with the

fact that ∥w0∥2 ≲ 1 with probability at least 1− exp(−Cd).

Lemma 20. Suppose mab < 1 − |f(0)|. Then, we have |⟨wt,u⟩| ≳ 1 with probability at least
1− 2 exp(−Ct)− exp(−Cd).
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Proof. We will only prove for the case where f is increasing as the case for decreasing f is similar.
We begin by proving an upper bound for d(w) when ∥w∥2 ≲ 1. By the triangle inequality,

|ŷ − y| ≤ |ŷ|+ |f(0)|+ |f(⟨u,x⟩)− f(0)|+ |ϵ|.

Furthermore, |ŷ| ≤ ma(|⟨w,x⟩|+ b). Thus, for

|⟨w,x⟩| ≤
(
1− |f(0)| −mab

2ma

)
∧ b,

|⟨u,x⟩| ≲ 1 and |ϵ| ≲ 1 for sufficiently small absolute constants, we have |ŷ − y| ≤ 1 hence
∂2
12ℓ(ŷ, y) = −1. Then we have,

d(w) = aE
[
∂2
12ℓ(ŷ, y)σ

′(⟨w,x⟩+ b)f ′(⟨u,x⟩)
]

≲ −aE[1(|ϵ| ≲ 1)1(|⟨w,x⟩| ≲ 1)1(|⟨u,x⟩| ≲ 1)f ′(⟨u,x⟩)]
= −aE[1(|ϵ| ≲ 1)]E[1(|⟨w,x⟩| ≲ 1)1(|⟨u,x⟩| ≲ 1)f ′(⟨u,x⟩)]
≲ −a.

where the last line is obtained by considering supremum over ∥w∥2 ≲ 1.

Let At = {supt0≤t′≤t∥wt′∥2 ≲ 1}. Then,

E
[
exp
(
−s
〈
wt+1,u

〉)
1At+1

]
≤ E

[
exp
(
−s
〈
wt+1,u

〉)
1At

]
= E

[
exp
(
−s
〈
wt,u

〉
+ sηt

〈
∇ℓ+ λwt,u

〉)
1At

]
(a)
≤ E

[
exp
(
−s
〈
wt,u

〉
+ sηt⟨∇Rλ,u⟩+ Cs2η2t a

2
)
1At

]
(b)
= E

[
exp
(
−s(1− ηt(h(w

t) + λ))
〈
wt,u

〉
+ sηt(d(w

t) + Csηta
2)
)
1At

]
(c)
≤ exp(−Csηta)E

[
exp
(
−s(1− ηt(h(w

t) + λ))
〈
wt,u

〉)
1At

]
,

where (a) follows from the sub-Gausianity of the stochastic noise in the gradient, (b) follows
since ⟨∇Rλ(w

t),u⟩ = d(wt) by definition, and (c) holds for s ≲ (ηta)
−1 with a sufficiently small

absolute constant. Notice that by the condition on t∗ inherited from Theorem 3, 1−ηt(h(w
t)+λ)) >

0, and since s(1− ηt(h(w
t) + λ)) ≤ s(1− ηtγ

m ), we can expand the recursion,

E
[
exp
(
−s
〈
wt,u

〉)
1At

]
≤ E

exp
−Csa

t−1∑
i=t0

ηi

t−1∏
j=i+1

(1− ηjγ
m ) + s

t−1∏
i=t0

(1− ηiγ
m )|

〈
wt0 ,u

〉
|

1At0


≤ E

[
exp

(
−Cs

(
1−

(
t∗ + t0
t∗ + t

)2
)

+ Cs

(
t∗ + t0
t∗ + t

)2
)]

.

where in the second inequality we used a ≍ m−1 and γ ≍ 1. Applying the Chernoff bound implies
that ⟨wt,u⟩ ≳ 1 with probability at least 1 − P

(
AC

t

)
− exp(−Ct) ≥ 1 − exp(−C(t∗ + t0)) −

exp(−Cd)−exp(−Ct). Finally the result follows by letting t0 = Ct for a sufficiently small absolute
constant C.

We have proven that |⟨wt,u⟩| ≳ 1 while ∥wt
⊥∥2 → 0. This fact shows that the features learned

in the first layer are useful. What remains to be shown is an approximation result, such that for a
carefully constructed second layer, the network can approximate polynomials of the desired type.
This type of approximation using random biases has been adopted from Damian et al. (2022). We
first present an approximation result using infinite neurons.

Lemma 21. Let 0 < |α| ≤ r and b ∼ Unif(−2r∆, 2r∆). For any smooth f : R → R, let f̃α : R →
R be a smooth function such that f̃α(z) = f(z) for |z| ≤ r∆

|α| and f̃α(− 2r∆
α ) = f̃ ′

α(− 2r∆
α ) = 0.

Then, for |z| ≤ ∆ we have

Eb

[
4r∆

α2
f̃ ′′
α

(
− b

α

)
σ(αz + b)

]
= f(z).
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Proof. Using integration by parts, we have

Eb

[
4r∆

α2
f̃ ′′
α

(
− b

α

)
σ(αz + b)

]
=

∫ 2r∆

−αz

f̃ ′′
α(−

b

α
)(z +

b

α
)
db

α

= −f̃ ′
α(−

2r∆

α
)(z +

2r∆

α
) +

∫ z

− 2r∆
α

f̃ ′
α(b) db

= f̃α(z) = f(z).

Now, by a concentration argument, we state an approximation result with finitely many neurons.

Lemma 22. Let r∗ ≤ |αj | ≤ r and bj ∼ Unif(−2r∆, 2r∆). Let

∆∗ := ∆ sup
j,|z|≤ 2r∆

r∗

|f̃ ′′
αj
(z)|, (C.7)

where f̃αj
is the extension of fαj

introduced in Lemma 21. Then there exists a(αj , bj) such that for
any fixed z ∈ [−∆,∆], with probability at least 1− δ over the choice of (bj), we have∣∣∣∣∣∣

m∑
j=1

a(αj , bj)σ(αjz + bj)− f(z)

∣∣∣∣∣∣ ≲ r2∆∆∗

r∗2

√
log(1/δ)

m
.

Moreover, ∥a∥2 ≲ r∆∗
r∗2

√
m

.

Proof. Let f̃α(z) be a candidate in Lemma 21, which can be obtained by e.g. extending f with
suitable polynomials (notice that f̃α only needs to be twice differentiable on its domain). Now choose
aj = 4 r∆

α2
jm

f̃ ′′
αj
(− bj

αj
). Then Lemma 21 ensures that

Ebj [a(αj , bj)σ(αjz + bj)] = f(z).

It immediately follows that ∥a∥2 ≤ Cr∆∗
r∗2

√
m

and |ajσ(αz+bj)| ≤ Cr2∆∆∗
r∗2m . Applying the Hoeffding’s

inequality finishes the proof.

In the following lemma, we will briefly record useful properties of W T which will be of help
for invoking the above approximation results and providing guarantees when the second layer is
optimized by SGD. Through the rest of the proof, we will add the mild assumption that d ≳ log(1/δ).
Otherwise, we need to add e−Cd to the probability of failure in Theorem 4.

Lemma 23. Suppose T ≳ d + log(1/δ). Then with probability at least 1 − δ over the choice of
(bj)1≤j≤m and {(x(t), y(t))}T−1

t=0 , the following statements hold:

1. ∥wT
j ∥2 ≍ |

〈
wT

j ,u
〉
| ≍ 1 for all 1 ≤ j ≤ m.

2. ∥ 1
T

∑T−1
t=0 x(t)(x(t))⊤∥2 ≲ 1.

3. ∥W T
⊥∥F ≲

√
m(d+log(1/δ))

T .

4. |
〈
u,x(t)

〉
| ≲ ∆ for all 0 ≤ t ≤ T − 1.

5. ∥W Tx(t)∥2 ≲
√
m(

√
d+∆) for all 0 ≤ t ≤ T − 1.

Proof. We will show that each of the events holds with probability (w.p.) at least 1−O(δ). Recall
from Lemma 19 that ∥wT

j ∥2 ≲ 1 for all j w.p. ≥ 1−O(δ), which implies the same for
〈
wT

j ,u
〉
. On

the other hand, from Lemma 20, |
〈
wT

j ,u
〉
| ≳ 1 for all j w.p. ≥ 1−O(δ). Combining these events

implies that |
〈
wT

j ,u
〉
| ≍ 1. The fact that ∥ 1

T

∑T−1
t=0 x(t)(x(t))⊤∥2 ≲ 1 w.p. ≥ 1 −O(δ) for T ≳
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d+ log(1/δ) follows from the statement of Lemma 30. Furthermore, ∥W T
⊥∥F ≲

√
m(d+log(1/δ))

T

w.p. 1−O(δ) follows from Theorem 3. Note that as
〈
u,x(t)

〉
∼ N (0, 1), by the choice of ∆, we

have
〈
u,x(t)

〉
≳ ∆ w.p. ≤ O(δ/T ), thus |

〈
u,x(t)

〉
| ≲ ∆ for any 0 ≤ t ≤ T − 1 w.p. ≥ 1−O(δ)

by a union bound. Finally, we have

∥W Tx(t)∥2 ≤ ∥W T
∥ x

(t)∥2 + ∥W T
⊥x

(t)∥2 ≲
√
m|
〈
u,x(t)

〉
|+
√

m(d+ log(1/δ))

T
∥x(t)∥2

≲
√
m|
〈
u,x(t)

〉
|+

√
m∥x(t)∥2

The first term is already bounded by
√
m∆ with probability at least 1−O(δ). Moreover, recall that

∥x(t)∥2−E
[
∥x(t)∥2

]
is 1-sub-Gaussian, thus by the union bound ∥x(t)∥2−

√
d ≲

√
log(T/δ) ≲ ∆

for all 0 ≤ t ≤ T−1. Thus w.p. ≥ 1−O(δ) we have ∥W Tx(t)∥2 ≲
√
m(

√
d+∆) which completes

the proof.

From this point onwards, we will denote the Huber loss with ℓH(ŷ, y) = ℓ(ŷ − y). Notice that ℓH is
1-Lischitz.
Lemma 24. Recall

R̂(W T ,a, b) =
1

T

T−1∑
t=0

ℓH

 m∑
j=1

ajσ(
〈
wT

j ,x
(t)
〉
+ bj)− f(

〈
u,x(t)

〉
)− ϵ(t)

,

the empirical risk of W T given by Algorithm 1. Let ∆ ≍
√
log(Tδ ), ∆∗ as defined in (C.7), and

bj
i.i.d.∼ Unif(−∆,∆). Then, with probability at least 1− δ (over the randomness of (bj)1≤j≤m and

{x(t), y(t)}T−1
t=0 hence WT ), for T ≳ d+ log(1/δ), there exists a∗ with ∥a∗∥2 ≲ ∆∗

√
m

such that

R̂(W T ,a∗, b)− E[ℓH(ϵ)] ≲ ∆∗

(
∆

√
log(T/δ)

m
+∆∗

√
d+ log(1/δ)

T

)
+ ν

√
log(1/δ)

T
.

Proof. We will condition the following discussion on the event of Lemma 23. Let αj =
〈
wT

j ,u
〉
,

and let a∗ be constructed according to Lemma 22. By the Lipschitzness of the Huber loss, for an
inividual sample (x, y) we have

ℓH(ŷ(x;W
T ,a∗, b)− f(⟨u,x⟩)− ϵ) ≤ ℓH(ϵ) + |ŷ(x;W T ,a∗, b)− f(⟨u,x⟩)|

≤ ℓH(ϵ) + |ŷ(x;W T ,a∗, b)− ŷ(x;W T
∥ ,a

∗, b)|

+ |ŷ(x;W T
∥ ,a

∗, b)− f(⟨u,x⟩)|.

Moreover, by the Cauchy-Schwartz inequality

|ŷ(x;W T ,a∗, b)− ŷ(x;W T
∥ ,a

∗, b)| ≤ ∥a∗∥2

√√√√ m∑
j=1

(
σ(
〈
wT

j ,x
〉
+ bj)− σ(

〈
(wT

j )∥,x
〉
+ bj)

)2
≤ ∥a∗∥2

√√√√ m∑
j=1

〈
(wT

j )⊥,x
〉2
.

Additionally, since ∥ 1
T

∑T−1
t=0 x(t)(x(t))⊤∥2 ≲ 1, by Jensen’s inequality,

T−1∑
t=0

1

T
|ŷ(x;W T ,a∗, b)− ŷ(x;W T

∥ ,a
∗, b)| ≤ ∥a∗∥2

√√√√ 1

T

T−1∑
t=0

∥W T
⊥x

(t)∥2F

≲ ∥a∗∥2∥W T
⊥∥F

≲ ∆∗

√
d+ log(1/δ)

T
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On the other hand, let z(t) :=
〈
u,x(t)

〉
≲ ∆. Then, we can apply Lemma 22 along with a union

bound, which states that with probability 1−O(δ) over the choice of (bj)1≤j≤m,

1

T

T−1∑
t=0

|ŷ(x(t);W T
∥ ,a

∗, b)− f(
〈
u,x(t)

〉
)| ≤ 1

T

T−1∑
t=0

|
m∑
j=1

a∗jσ(αjz
(t) + bj)− f(z(t))|

≲ ∆∆∗

√
log(T/δ)

m
.

Combining the events above, we have with probability at least 1− δ,

R̂(W T ,a∗, b)− 1

T

T−1∑
t=0

ℓH(ϵ
(t)) ≲ ∆∗

(
∆

√
log(T/δ)

m
+

√
d+ log(1/δ)

T

)
.

The final step is to apply a concentration bound for
∑T−1

t=0 ℓH(ϵ
(t)). Note that as ℓH(ϵ) ≤ |ϵ|, if |ϵ| is

ν-sub-Gaussian, then ℓH(ϵ)− E[ℓH(ϵ)] is also Cν-sub-Gaussian (can be verified e.g. by Lemma 28).

Then a sub-Gaussian concentration bound implies that E[ℓH(ϵ)]− 1
T

∑T−1
t=0 ℓH(ϵ

(t)) ≲ ν
√

log(1/δ)
T ,

which finishes the proof.

Let ES [·] denote expectation w.r.t. the random sampling of SGD used to train a, hence conditioned
on {x(t), y(t)}T−1

t=0 . Also, define the stochastic noise in the gradient w.r.t. a as

eta = ∇aℓ(ŷ(x
(it);W T ,at, b)− y(it))−∇aR̂(W T ,at, b).

Notice that ES [e
t
a] = 0.

Lemma 25. On the event of Lemma 23 and with (bj)
i.i.d.∼ Unif(−∆,∆), consider the mapping

a 7→ R̂λ′(a). Then, ∇2
aR̂λ′(a) ≾ m∆2 + λ′, and ∥eta∥2 ≲

√
m(

√
d+∆).

Proof. For ∇2
aR̂(a), and any v ∈ Rm with ∥v∥2 = 1, we have the following computation:〈

v,∇2
aR̂λ′(a)v

〉
=

1

T

T−1∑
t=0

∂2
1ℓ(ŷ, y)v

⊤σ(W Tx(t) + b)σ(W Tx(t) + b)⊤v + λ′

≤ 1

T

T−1∑
t=0

∥σ(W Tx(t) + b)∥2 + λ′

(a)
≲ ∥W T ∥F + ∥b∥22 + λ′

≲ m∆2 + λ′

where (a) holds since ∥ 1
T

∑T−1
t=0 x(t)x(t)⊤∥2 ≲ 1. Thus ∇2

aR̂λ′(a) ≾ m∆2 + λ′. On the other
hand, as ∥W Tx(t)∥2 ≲

√
m(

√
d+∆) for all 0 ≤ t ≤ T − 1, we have

∥eta∥2 ≤ 2∥∇aℓ∥2 ≤ 2∥W Tx(t) + b∥2 ≲
√
m(

√
d+∆).

Now we can analyze the SGD run on the second layer a to give a high probability statement for
R̂λ′(aT ). As R̂λ′(a) is a smooth and strongly convex function of a, we will state the following
well-known elementary convergence result of SGD for smooth and strongly convex functions with
bounded noise, which we present in a high-probability framework suitable for our analysis.
Lemma 26. Let R : Rm → R be a µ-strongly convex function satisfying µIm ⪯ ∇2

aR(a) ⪯ LIm.
Suppose we run the SGD iterates at+1 = at − ηtg

t with E[gt |at] = ∇aR(at) and ∥gt∥2 ≤ G.
Choose ηt =

2t+1
µ(t+1)2 . Then with probability at least 1− δ

R(aT )−R∗ ≤ R0

T 2
+

CLG2

µ2T
+

CG2 log(1/δ)

µT
,

where R∗ = argmina R(a).
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Proof. Let et = gt −∇aR(at) denote the stochastic noise. By the smoothness property of R, we
have

R(at+1)−R∗ ≤ R(at)−R∗ − ηt
〈
∇aR(at),∇aR(at) + et

〉
+

Lη2t
2

∥gt∥22

≤ R(at)−R∗ − ηt∥∇aR(at)∥22 − ηt
〈
∇aR(at), et

〉
+

Lη2tG
2

2
.

Notice that by Jensen’s inequality, ∥∇aR(at)∥2 ≤ G, thus ∥et∥2 ≤ 2G and the zero-mean random
variable ⟨∇aR(at), et⟩ is 2G∥∇aR(at)∥2-sub-Gaussian conditioned on at. Now, we can establish
the following recursive bound on the MGF of Rt := R(at)−R∗. For 0 ≤ s ≤ 1

4ηtG2 we have

E
[
esR

t+1
]
≤ E

[
exp

(
sRt − sηt∥∇aR(at)∥22 − sηt

〈
∇aR(at), et

〉
+

η2tLG
2

2

)]
≤ E

[
exp

(
sRt − sηt(1− 2sηtG

2)∥∇aR(at)∥22 +
LG2η2t

2

)]
(a)
≤ E

[
exp

(
s(1− ηtµ)Rt +

LG2η2t
2

)]
where (a) follows since R(a) is strongly convex thus satisfies the Polyak-Łojasiewicz inequality
2µ(R(a)−R∗) ≤ ∥∇aR(a)∥22. As s(1− ηtµ) ≤ 1

4ηt−1G2 (cf. (B.5)), we can expand the recursion
and have

E
[
exp
(
sRt

)]
≤ exp

(
s

(
t∗

t∗ + t

)2

R0 +
16LG2

µ2(t∗ + t)

)
.

Finally, applying a Chernoff bound using s = (4ηt−1G
2)−1 concludes the proof.

We are finally in a position to complete the proof of Theorem 4.

Proof. [Proof of Theorem 4] We will consider the event of Lemma 23 on which from Lemma 24 we
know with probabilility at least 1− δ over the dataset and (bj)1≤j≤m we have

min
a:∥a∥2≲

∆∗√
m

R̂(W T , a, b)− E[ℓH(ϵ)] ≲ ∆2
∗

(√
log(T/δ)

m
+

√
d+ log(1/δ)

T

)
+ ν

√
log(1/δ)

T
.

Notice that a 7→ R̂(W ,a, b) is a convex function. Thus by strong duality, there exists λ′ > 0 such
that the value of the above constrained minimization problem is equal to the value of the following
regularized minimization problem,

min
a

R̂λ′(W T ,a, b)− E[ℓH(ϵ)] ≲ ∆2
∗

(√
log(T/δ)

m
+

√
d+ log(1/δ)

T

)
+ ν

√
log(1/δ)

T
.

Explicitly, this λ′ can be chosen such that the unique solution to

∇aR̂(W T ,a∗, b) + λ′a∗ = 0 (C.8)

has ∥a∗∥2 ≲ ∆∗√
m

. Notice that this a∗ is the unique solution to argmina R̂λ′(W T ,a, b).

Moreover, from Lemma 26 we have

R̂λ′(W T ,aT ′
, b)− R̂λ′(W T ,a∗, b) ≲

R̂(W T ,a0, b)

T ′2
+

(d+∆2)(∆2 + λ′/m+ log(1/δ))

(λ′/m)2T ′ ,

and by strong convexity

∥aT ′
− a∗∥22 ≤ 2

m

(
R̂λ′(W T ,aT ′

, b)− R̂λ′(W T ,a∗, b)
)
.

Thus, with sufficiently large T ′ such that

R̂(W T ,a0, b)

T ′2
+

(d+∆2)(∆2 + λ′/m+ log(1/δ))

(λ′/m)2T ′ ≲ ∆2
∗

√
d+ log(1/δ)

T
∧ λ′∆∗√

m
, (C.9)
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we have ∥aT ′∥2 ≲ ∆∗√
m

and

R̂λ′(aT ′
)− E[ℓH(ϵ)] ≲ ∆2

∗

(√
log(T/δ)

m
+

√
d+ log(1/δ)

T

)
.

Finally, we invoke Theorem 5, to close the generalization gap and get

Rτ (W
T ,aT ′

, b)− E[ℓH(ϵ)] ≲ ∆2
∗

(√
log(T/δ)

m
+

√
d+ log(1/δ)

T

)
+ ν

√
log(1/δ)

T
.

D EXAMPLE OF NON-CONVEX Rλ(W )

Here, we outline examples for which Rλ(W ) is non-convex on a neighborhood around W = 0

while λ = λ̃
m satisfies the condition in Proposition 2 or Theorem 3. For simplicity of exposition, in

both examples we fix a = 1m

m where 1m is the vector of all ones. It is easy to observe that the results
hold with high probability when a follows the initialization of Assumption 3 as well. Furthermore, we
work on the event where ∥W 0∥F ≤ 2

√
m, which happens with probability at least 1− exp(−md/2).

We begin by constructing a non-convex example for Proposition 2. For this example, we choose σ
such that β1 ≤ 1, σ(1) = σ(−1) = 0, σ′(1) = σ′(−1) = 0, and σ′′(−1) = σ′′(1) = β2 = 1. An
example of such a function is σ(z) = cos(πz)+1

π2 . Then, using the computations of Lemma 8 we have

∇2
WRλ(W ) = E

[(
σ′
a,b(Wx)σ′

a,b(Wx)⊤ + (ŷ(x;W ,a, b)− y) diag(σ′′
a,b(Wx))

)
⊗ xx⊤]+ λ̃

m
Imd.

Which simplifies to

∇2
WRλ(0) =

−Im
m

⊗ E
[
yxx⊤]+ λImd = Im ⊗

(
−E

[
yxx⊤]
m

+
λ̃

m
Id

)
.

Therefore, ∇2Rλ(0) is not positive semi-definite (PSD) if and only if −1
m E

[
yxx⊤]+ λ̃

mId is not
PSD. Moreover, by Jensen’s inequality

ŷ2(x;W 0,a, b) ≤ 1

m

m∑
i=1

(σ(
〈
w0

j ,x
〉
+ bj)− σ(bj))

2 ≤ ∥W 0x∥2F
m

,

hence
2R(W 0) ≤ 2E

[
ŷ2
]
+ 2E

[
y2
]
≤ 8 + 2E

[
y2
]
.

Now, let y = K⟨w,x⟩2 for some w with ∥w∥2 = 1. Then E
[
y2
]
= 3K2, and choosing λ̃ =

1 +
√
9 + 6K2 + ϑ for arbitrarily small ϑ suffices to satisfy the condition of Proposition 2. Then we

have

w⊤∇2
WRλ(0)w = w⊤

(
−E

[
yxx⊤]+ λ̃

m

)
w =

−E
[
K⟨w,x⟩4

]
+ λ̃

m

=
−3K + 1 +

√
9 + 6K2 + ϑ

m
< 0

where the above inequality holds for sufficiently large K, hence Rλ(W ) is non-convex at least on a
neighborhood around zero.

Next, we construct a non-convex example for the smooth and decaying step size case of Theorem 3.
This time, we require σ(±1) = −β0 = −1 (which automatically implies σ′(±1) = 0 as σ attains
its minimum) and σ′′(±1) = β2 = 1. For instance, we can choose σ(z) = cos(πz)−π2+1

π2 . Then
simplifying ∇2Rλ(0) yields

∇2
WRλ(0) =

Im ⊗ (−Id − E
[
yxx⊤])

m
+

λ̃

m
Imd = Im ⊗

(
λ̃− 1

m
Id −

E
[
yxx⊤]
m

)
.
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Thus, we need to show that λ̃−1
m Id −

E[yxx⊤]
m is not PSD. Let y = 1

2 (1 + tanh(⟨w,x⟩2 − ∥w∥22))
and λ̃ = 1 + E[y] + γ (notice that y ≥ 0 thus λ̃ indeed satisfies the assumption in Theorem 3) with

γ =
1

4
E
[
(⟨w,x⟩2 − ∥w∥22) tanh(⟨w,x⟩2 − ∥w∥22)

]
> 0.

Then we have

w⊤

(
λ̃− 1

m
Id −

E
[
yxx⊤]
m

)
w =

γ∥w∥22 + E
[
y(∥w∥22 − ⟨w,x⟩2)

]
m

=
γ∥w∥22 − 1

2 E
[
(⟨w,x⟩2 − ∥w∥22) tanh(⟨w,x⟩2 − ∥w∥22)

]
m

< 0.

Therefore, once again we have shown that Rλ(W ) is not convex on a neighborhood around zero.

E AUXILIARY LEMMAS

In order to be explicit, we state the following definitions and lemmas that will be used in the proof of
Theorem 5. We only state the next definitions and lemmas and refer the reader to Wainwright (2019)
and Vershynin (2018) for proof and more details.

Definition 27. (Wainwright, 2019, Definitions 2.2 and 2.7) A real-valued random variable z is
said to be ν-sub-Gaussian if for all s ∈ R we have E[exp(sz)] ≤ exp(sE[z] + s2ν2

2 ), and is said to

be u-sub-exponential if for all |s| ≤ 1
ν we have E[exp(sz)] ≤ E

[
exp(sE[z] + s2ν2

2 )
]
.

Lemma 28. (Vershynin, 2018, Propositions 2.5.2 and 2.7.1) Suppose z is a zero-mean random
variable and E[|z|p]

1
p ≤ L

√
p for all p ≥ 1. Then z is cL-sub-Gaussian for an absolute constant

c > 0, i.e. E[exp(sz)] ≤ exp( s
2c2L2

2 ) for all s ∈ R. Similarly, suppose E[|z|p]
1
p ≤ Lp. Then z is

cL-sub-exponential for an absolute constant c > 0.

Lemma 29. (Wainwright, 2019, Theorem 2.26) Let x ∼ N (0, Id). If f : Rd → R is L-Lipschitz,
then f(x) is sub-Gaussian with parameter L.

Lemma 30. (Wainwright, 2019, Example 6.3) Let {x(i)}1≤i≤n be a sequence of i.i.d. standard
Gaussian random vectors xi ∼ N (0, Id). It holds with probability at least 1− δ that

∥ 1
n

n∑
i=1

x(i)x(i)⊤ − Id∥2 ≤ C

(√
d

n
+

√
log(1/δ)

n
+

d+ log(1/δ)

n

)
,

where C is an absolute constant.

The next lemma is the well-known symmetrization argument that upper bounds the expected value of
an empirical process with Rademacher complexity.

Lemma 31. (Mohri et al., 2018, Theorem 3.3) Let F be a class functions f : Rp → R for some
p > 0. For a number of samples T and a probability distribution P on Rp, define the Rademacher
complexity of F as

R(F) = E

[
sup
f∈F

1

T

T−1∑
t=0

ξtf(x
(t))

]
, (E.1)

where {x(t)}T−1
t=0

i.i.d.∼ P and {ξt}T−1
t=0 are independent Rademacher random variables (i.e. ±1

equiprobably). Then the following holds,

E

[
sup
f∈F

| 1
T

T−1∑
t=0

f(x(t))− E[f(x)]|

]
≤ 2R(F).

Furthermore, we have the following fact for standard normal random vectors.
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Lemma 32. Let x ∼ N (0, Id). There exists an absolute constant C > 0 such that for any V ∈ Rm×k

and p ≥ 1 we have
E[∥V x∥p2]

1
p ≤ ∥V ∥F + C∥V ∥2

√
p.

Proof. First of all, ∥V x∥2 is a ∥V ∥2-Lipschitz function of x, thus Lemma 29 applies and ∥V x∥2
is sub-Gaussian. Furthermore, by applying Lemma 28 to ∥V x∥2 − E[∥V x∥2] and Minkowski’s
inequality, we have

C∥V ∥2
√
p ≥ E[∥V x∥p2]

1
p − E[∥V x∥2]

≥ E[∥V x∥p2]
1
p − ∥V ∥F,

where the last inequality follows from Jensen’s inequality.

Lemma 33. Let x ∼ N (0, Id). Then E
[
exp(c∥x∥22)

]
≤ exp(2cd) for c ≤ 1/4.

Proof. Gaussian integration yields E
[
exp(cx2

i )
]
= 1√

1−2c
. Furthermore, for c ≤ 1

4 we have
1√

1−2c
≤ exp(2c).
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