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ABSTRACT

Hyperdimensional computing (HDC) is a biologically-inspired framework which
represents symbols with high-dimensional vectors, and uses vector operations to
manipulate them. The ensemble of a particular vector space and a prescribed set
of vector operations (e.g., addition-like for “bundling” and outer-product-like for
“binding”) form a vector symbolic architecture (VSA). While VSAs have been
employed in numerous learning applications and have been studied empirically,
many theoretical questions about VSAs remain open. In this paper, we analyze the
representation capacities of four common VSAs: MAP-I, MAP-B, and two VSAs
based on sparse binary vectors. “Representation capacity” here refers to bounds
on the dimensions of the VSA vectors required to perform certain symbolic tasks,
such as testing for set membership and estimating set intersection sizes for two
sets of symbols, to a given degree of accuracy. We also analyze the ability of a
novel variant of a Hopfield network (a simple model of associative memory) to
perform some of the same tasks that are typically asked of VSAs. In addition
to providing new bounds on VSA capacities, our analyses establish and leverage
connections between VSAs, “sketching” (dimensionality reduction) algorithms,
and Bloom filters.

1 INTRODUCTION

Hyperdimensional computing (HDC) is a biologically inspired framework for representing symbolic
information (Kanerva, 2009; Kleyko et al., 2021a). In this framework, we represent different sym-
bols using high-dimensional vectors (hypervectors) called atomic vectors, sampled from a natural
vector distribution, such as random signed vectors or sparse binary vectors. We then use standard
arithmetic or bit-wise operations on these vectors to perform symbolic operations like associating
or grouping symbols. The distribution over atomic vectors, together with their corresponding oper-
ations, form a vector-symbolic architecture (VSA) (Schlegel et al., 2020).

Many features of VSAs are inspired by aspects of the human brain and memory. They are robust to
noise, and the fact that all entries of the vectors are symmetric (i.e. don’t correspond to specific fea-
tures) allows VSA computations to be highly parallelizable. Most VSA vector entries are {0,±1},
so there is no need for floating point arithmetic, and they admit energy-efficient and low-latency
hardware implementations (Kleyko et al., 2022). The atomic vectors are typically chosen randomly,
with a distribution such that they are likely to be pairwise near-orthogonal. While we encounter
“the curse of dimensionality” in many algorithmic and machine learning problems, the ability to fit
many near-orthogonal vectors into d-dimensional space is a kind of “blessing of dimensionality.”

While VSAs sometimes do not achieve the same performance as neural networks do on certain
classification tasks, VSA-based classifiers require much less time and space to train and store Ge &
Parhi (2020). There is also much research at the intersection of VSAs and deep learning; for instance,
VSA vector representations could be good neural network inputs, and since all vector representations
have the same size, this could be a better way to support inputs with different numbers of features
(Kleyko et al., 2019a; Alonso et al., 2021). In addition, VSAs have found numerous applications
outside of learning, including the modeling of sensory-motor systems in smaller organisms (Kleyko
et al., 2015a;b), combining word embeddings to form context embeddings (Kanerva et al., 2000;
Sahlgren, 2005; Jones & Mewhort, 2007), and the processing of heart rate respiratory data and
other biological times series data (Kleyko et al., 2018a; 2019b; Burrello et al., 2019). They are
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Table 1: A summary of MAP-I, MAP-B, and Binary Sparse VSAs.
VSA Atomic Vector Bundling Binding

MAP-I {±1}m Elem.-wise addition Elem.-wise mult.
MAP-B {±1}m Elem.-wise add., round to ±1 Elem.-wise mult

Bloom filters k-sparse, {0, 1}m Elem.-wise addition, cap at 1 (Out of scope)
Counting Bloom filters k-sparse, {0, 1}m Elem.-wise addition (Out of scope)

also promising tools for bridging the gap between symbolic data, such as word relationships, and
numerical data, such as trained word embeddings (Quiroz-Mercado et al., 2020).

In addition to exploring the performance of VSAs in such applications, there have also been a few
works that study the representation capacity of many VSAs (Neubert et al., 2017; Mirus et al., 2020).
The representation capacity refers to lower bounds on the VSA dimension, needed so that we can
reliably perform certain symbolic tasks, such as computing set intersection sizes |X∩Y | for two sets
of symbols X and Y (with possibly different cardinalities). These lower bounds then translate into a
design choice (minimum required dimension) for VSA applications. Here we understand reliability
in the setting of generating the atomic vectors at random, and asking for good-enough accuracy with
high-enough probability. Similarly, another way to quantify representation capacity is: if we tolerate
a failure probability of δ, can we bound the number of sets/objects we can encode?

Overview and significance of our contributions: The goal of this paper is to provide theoretical
analyses of the representation capacities of four VSA models for different symbolic operations. In
general, there are more models employed in practice; see (Schlegel et al., 2022; Kleyko et al., 2021b)
for longer catalog of VSAs. We also assemble a set of tools and frameworks for any future com-
putations and high-probability bounds on VSA capacity. We focus on four popular VSA families,
plus a novel variant of Hopfield networks. Table 1 shows the atomic vector initializations of the
four, as well as their bundling and binding operators. As surveyed by Schlegel et al. (2022), “MAP”
stands for “Multiply-Add-Permute,” and “I” and “B” reference the values that non-atomic vectors
take (“integer” and “binary,” respectively). While several binding operators have been proposed for
Binary Sparse VSAs, the study of these operators is outside the scope of this paper. A key aspect
of our analyses is that we translate several VSA operations of interest into the language of sketch-
ing matrices (used for dimensionality reduction) or of hashing-based data structures (like Bloom
Filters). These connections have not been made explicit, or leveraged previously in VSA analysis.

In several of our analyses, we rely on the Johnson-Lindenstrauss (JL) property, which is foundational
to algorithmic matrix sketching, the study of techniques for compressing matrices while approxi-
mately preserving key properties, such as least-squares solutions, see (Woodruff, 2014) for details.
From the perspective of sketching, our results on permutations, bundles of k-bindings, and Hop-
field networks can be regarded as extensions of sketching theory using structured matrices with less
randomness than the most direct approaches. The bundling operator for MAP-B is per-coordinate
the Majority function in the setting of the analysis of Boolean functions, and is a simple linear
threshold function. The analysis of the membership test for MAP-B that we give is close to that for
analyzing the influence of variables for the majority function (cf. (O’Donnell, 2014, Exer. 2.2)).
Our analysis of MAP-B extends to other operations, including a bundling of bindings, which are
related to polynomial threshold functions of degree k, where k depends on the maximum number of
symbols that are bound together. Two of the VSAs we analyze are based on Bloom filters, which
are space-efficient data structures for testing set membership. They have seen extensive study since
their introduction fifty years ago by Bloom (1970), but we have not found rigorous analyses of their
performance in the setting of set intersection. Our results are novel contributions in this regard.

Related works: Some recent works in the VSA literature that have inspired our own work also
study the capacity problem, but they analyze more restricted VSA systems and/or use different
analysis approaches. To our knowledge, we are the first to formally analyze VSAs in terms of
sketching, using tools like the JL property, though Thomas et al. (2022) does mention the sparse
JL transform, but under different context. Thomas et al. (2021b) provides a theoretical analysis of
VSAs in terms of a measure called “incoherence,” which quantifies the size of the “cross-talk” (dot
product) between two independently initialized VSA vectors. They prove results on membership
testing and set intersection of bundles, membership testing in key-value pairs, and show pairwise
near-orthogonality of vectors and their coordinate permutations in terms of incoherence. Their work
is in the linear setting (which pertains to MAP-I), and extends, as does ours via known results,
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VSA Op Expression Dimension m Thm. or
Section

MAP-I S ∥S̄v∥2 O(ε−2 log(1/δ)) Lem 2
Sparse JL S ∥PSJLv∥2 O(ε−2 log(1/δ)) §B.1.1
SRHT S ∥PSRHTv∥2 O(ε−2 log(1/δ) log4 d) §B.1.1
MAP-I SS ∥S̄R,Lv∥2 O(ε−2L2 log(L/δ)) Thm 8
MAP-I SS ∥S̄R,Lv∥2 O

(
ε−2K2 log(K/(εδ))

)
Thm 9

MAP-I BB ∥S̄⊙2v∥2 O(ε−2 log(∥v∥1/εδ)3) Thm 11
MAP-I BB ∥S̄⊙kv∥2 O(ε−2Ck log k logk+1(k∥v∥1/(εδ))) Cor 12
Hopfield± S tr(S̄V DS̄⊤) O(ε−1 log(d/δ)2) (space is m2) Thm 14

MAP-B MS sign(Sv)⊤S∗j ≥ τb O(∥v∥1 log(d/δ)) Thm 15
MAP-B MSS sign(SR,Lv)⊤R⌊j/d⌋S∗,j%d

≥ τb O(∥v∥1L log(Ld/δ)) Thm. 38
MAP-B MKV sign(S⊙2v)⊤S⊙2

∗j ≥
√
2τb O(∥v∥1 log(d/δ)) Thm 40

Bloom SI hm,k(Bv ·Bw) O(kε−1(nvnw +n2+ε(n+nw)))
k = O(ε−1 log(1/δ))

Thm 18

Counting
Bloom

GSI Bv ∧· Bw O(kε−1nvnw)
k = O(Kbε

−1 log(1/δ))
Thm 19

Table 2: We compile the bounds in this paper for various architectures and operations. Here δ is a
bound on the failure probability; m is the VSA dimension; d is the size of the groundset of symbols;
S, S̄ are defined in Def. 1; L is the sequence length; S̄R,L denotes a sequence, Def. 7; S̄⊙k denotes
a bundle of bindings, Def. 10; and v ∈ {0, 1}d for sets of singletons, v ∈ {0, 1}Ld for sequences,
v ∈ {0, 1}(

d
k) for bundles of k bindings.

The first block of rows are bounds for norm-preserving linear operators, so that relative error ε
bound for each in estimating ∥v∥ translates to an error bound for estimating ∥u− v∥ for many pairs
of vectors u, v, as in Cor. 3; dot products, as in Cor. 4; and in computing set intersection sizes under
a variety of conditions on the set sizes, Thm. 5.
First block notation: operation S is estimation of size of a set; SS is size of sequence of sets;
BB is size of a Bundle of Bindings (set of bound key-value pairs); matrices PSJL, PSRHT are sparse
JL matrix and SRHT matrix, as discussed in §B.1.1; K the maximum number of times a symbol
appears in a sequence; V is a diagonal matrix version of v; D is a diagonal sign matrix.
The second block are operations with non-linear steps. ε is the additive estimation error.
Second block notation: operation MS is set membership test; MSS is membership in a sequence of
sets; MKV is membership in a bundle of bindings, where the bindings are key-value pairs; GSI is
generalized set intersection (estimation of v ∧· w =

∑
imin{vi, wi}); matrix B is a sparse binary

matrix, Def. 17; τb =
√
2m log(2d/δ); k is the number of nonzeros per column of B; hm,k(z) =

1
k log1−1/m(1 − z/m), defined in Lem. 41; v, w ∈ {0, 1}d for Bloom filters; v, w ∈ Zd≥0 for
Counting Bloom filters; Kb = ∥v−w∥∞ ≤ max{∥v∥∞, ∥w∥∞}; finally, n = v∧· w, nv = ∥v∥1−n,
and nw = ∥w∥1 − n, so nv + nw = ∥v − w∥1.

from sign matrices to matrices of independent sub-Gaussians. We add new bounds that include
set intersections for bundles of k-bindings, and sequences of sets encoded with rotations (cyclic
permutations). Our hypergraph framework for binding in §B.3 also allows us to extend our analysis
for bundlings of bindings beyond only key-value pairs. Another related work is that of Kleyko et al.
(2018b), which studies bundling in binary VSA systems, where atomic vectors are controlled by a
sparsity parameter. Their model is slightly different from the Bloom-filter inspired binary VSAs that
we analyze, and their bundling operator includes a “thinning” step, where the support of the bundle
gets reduced to the size of a typical atomic vector. Their analysis of VSA capacity uses Gaussian
approximations holding in the limit, and some heuristics to get around the thinning step. We formally
analyze the capacity of bundling without thinning, using concentration inequalities. Kleyko et al.
(2018b) also conduct several empirical analyses and simulations of sparse binary VSAs, which may
be of independent interest.

Summary of contributions: A summary of most of our results are given in Table 2. A few results
here not in the table: analyses of Hopfield nets using standard concentration results (§C.1); and of
the decay in “signal” in MAP-B when bundling operation trees have nontrivial depth (§D.1.2).
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2 TECHNICAL OVERVIEW

We begin with background details on VSAs, and an overview of the techniques used in this paper.

Notation and Terminology: We summarize some notation in the following list.

• ⌊a⌉ is the nearest integer to a ∈ IR;
• sign(a) for a ∈ IR is 1 if a > 0, −1 if a < 0 and ±1 with equal probability if a = 0;
• sign≥(a) for a ∈ IR is 1 if a ≥ 0, and −1 otherwise
• For a, b ∈ IR, a = b±ε means that |a−b| ≤ ε, so that a = b(1±ε) means that |a−b| ≤ bε;
• v ◦ w denotes the Hadamard (elementwise) product of two vectors, (v ◦ w)i = viwi;
• v ∧w denotes the elementwise minimum of two vectors v and w, (v ∧w)i = min{vi, wi};

for scalar a and vector v, a ∧ v is the vector with (a ∧ v)i = min{a, vi};
• v ∧· w denotes

∑
imin{vi, wi};

• supp(v) = {i ∈ [d] | vi ̸= 0}, for v ∈ Rd. For diagonal V ∈ Rd×d, let supp(V ) = {i ∈
[d] | Vii ̸= 0};

Background on VSAs: To define a VSA, we need to first choose a distribution for sampling the
atomic vectors. For every individual symbol we want to introduce (excluding associations between
multiple symbols), we will independently sample a random m-dimensional vector from a distribu-
tion, such as the uniform one over {±1}m (i.e. sign vectors), or a random k-sparse binary ({0, 1}m)
vector. VSAs are equipped with the following operations; permutation is not always required.

• Similarity Measurement (⟨·, ·⟩): In almost all VSAs in this paper, we use cosine simi-
larity (i.e. dot product ⟨u, v⟩) to measure the similarity between the symbols that u and v
represent.

• Bundling (⊕): We use bundling to represent a “union” of several symbols. The goal is for
u⊕ v to be similar to both u and v.

• Binding (⊗): Binding is often used to associate symbols as (key, value) pairs. Here, we
want u⊗ v to be nearly orthogonal to both u and v.

• Permutation (π): If π is a permutation, let π(v) be the vector whose i-th entry is vπ−1(i).
We use [v1; π(v2); π

2(v3); . . . ;π
L−1(vL)] to encode an ordered sequence of symbols.

• Cleanup 1: Let vector x represent a set X ⊆ X , where X is the universe of all symbols.
Given a dictionary of symbols S ⊆ X , we want to compute the elements in X ∩ S.

Example 1. We can represent categorical data (Agresti, 2012) using the bundle of bindings:

y⃗ =
⊕

i∈ features

f⃗i ⊗ v⃗i

Here, f⃗i is a VSA vector encoding the concept “feature i,” while v⃗i is a VSA vector encoding the
value of feature i. To train a classifier on the VSA representations {y⃗}, we can average the training
vectors over each class to get an exemplar for the class.

c⃗i =
1

#{z : label(z) = i}
∑

z: label(z)=i

z

To classify a new input, we first compute its VSA encoding. We then return the class whose repre-
sentative vector ci is closest to it (using similarity measurement).

We will study a few basic predicates on VSAs; one is membership testing: given a vector x repre-
senting a bundle of atomic vectors, and an atomic vector y, determine if y is in the set represented
by x. Another predicate is set intersection: if y also represents a set, estimate the size of the inter-
section of the sets represented by x and y. Here these sets might be sets of vectors bound together,
or permuted. Estimation of intersection size is a natural extension of membership testing, and is
helpful in applications where VSA represent, for example, sets of properties, where intersection and
difference size are rough measure of relatedness.

Bundling as the output of a linear map. Our central approach is to cast VSA vectors as the outputs
of linear transformations, followed by nonlinear maps for some of the VSAs. Via the linear maps,

1Cleanup will not be a focus of our paper. If we have access to the individual vector representations of ele-
ments in S, we can execute cleanup as a set of (parallel) membership tests, which use similarity measurement.
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we can translate between a very simple vector representation for symbols (described below) and the
more robust, fault-tolerant, and (in some settings) lower-dimensional ones used in VSAs.

A simple vector representation of elements in a universe X is their one-hot encoding as unit binary
vectors ei ∈ {0, 1}d, where d ≡ |X |. Then, set union corresponds to adding vectors: a set X ⊂ X
is a characteristic vector v ∈ {0, 1}d with v =

∑
i∈X ei. The size of |X| corresponds to the squared

Euclidean norm ∥v∥2. For two sets X,Y ⊆ X with corresponding characteristic vectors v and w,
respectively, |X ∩ Y | is simply v⊤w; similarly, their symmetric difference |X∆Y | is ∥v − w∥2.
Thus an embedding of these one-hot encodings, linear or non-linear, that approximately preserves
distances and/or dot products of vectors (which is particularly challenging for binary vectors), can
be used to maintain sets and the sizes of their intersections and symmetric differences. With this
in mind, we can regard the atomic vectors of a VSA as the columns of a random matrix P (so the
embedding of vector x is Px, possibly with a non-linearity applied), and for appropriate random
P , we will obtain such embeddings. From this perspective, VSAs perform dimensionality reduction
from characteristic vectors in {0, 1}d to an m-dimensional space, for m≪ d.

Overview of Tools and Techniques: Our analysis of MAP-I establishes the JL property for a variety
of random sign matrices, some with dependent entries, that are used to encode bundles, sequences,
and bundles of bindings. In the case of sequences and bindings, the entries of the sign matrices we
analyze will not be independent, which complicates our analysis; we get around this using standard
concentration results like McDiarmid’s inequality (Theorem 21) and a version for when the bounded
differences hold with high probability (Corollary 23). Our analysis of MAP-B also uses these con-
centration techniques and also borrows some ideas from Boolean Fourier analysis. For Hopfield nets
and our variation Hopfield±, we also use standard concentration results like the Hanson-Wright in-
equality. Bernstein-like variation of McDiarmid, Theorem 24, is key to our analysis of Bloom filters.

3 STATEMENTS OF RESULTS

In the remainder of the paper, we will present concrete statements of our results, and highlight some
of the proof ideas, with an emphasis again on connections to sketching and data structures. Each
subsection here (roughly organized by each different VSA we analyze) will have a full section in the
appendix where we give their proofs.

3.1 ANALYSIS OF MAP-I USING JOHNSON-LINDENSTRAUSS

Bundling and Set Intersection. For MAP-I, we choose P as a scaled sign matrix S̄.
Definition 1. A sign vector y ∈ {±1}m (also called a Rademacher vector) is a vector with inde-
pendent entries, each chosen uniformly from {±1}. A sign matrix S ∈ {±1}m×d has columns that
are independent sign vectors, and a scaled sign matrix S̄ = 1√

m
S where S is sign matrix.

Thus, Sei is a random sign vector. For MAP-I, the bundling operator is addition, so a set X can
be represented as S̄v, with v =

∑
i∈X ei. (More typically, MAP-I would use the unscaled sign

matrix S, but S̄ is convenient for analysis and discussion.) It is known that with high probability,
for m sufficiently large, that S̄ satisfies the Johnson-Lindenstrauss (JL) property, which is the norm-
preserving condition in the lemma below.
Lemma 2 (Johnson (1984); Achlioptas (2003), JL). Suppose S̄ ∈ 1√

m
{−1, 1}m×d is a scaled sign

matrix (described in Def. 1). Then for given δ, ϵ > 0 there is m = O(ϵ−2 log(1/δ)) such that for
given vector v ∈ IRd, it holds that ∥S̄v∥ = ∥v∥(1± ϵ), with failure probability at most δ.

This immediately tells us the dimension m required to estimate set sizes up to a multiplicative factor
of ε, with failure probability δ. For X,Y ⊆ X , let v and w denote their characteristic vectors. An
immediate consequence of the JL lemma is that the symmetric difference size |X∆Y | = ∥v − w∥2
can be estimated with small relative error as well.
Corollary 3. If random matrix P satisfies the JL property (Lemma 2), then for given δ, ϵ > 0, and
a set V ⊂ IRd of cardinality n, there is m = O(ϵ−2 log(n/δ)) such that with failure probability δ,
for all pairs v, w ∈ V , ∥P (v − w)∥2 ∈ ∥v − w∥2(1± ϵ).

The JL lemma also implies that (Pv)⊤(Pw) = v⊤P⊤Pw concentrates around |X ∩ Y | = v⊤w.
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Corollary 4. Suppose the random matrix P satisfies the JL property (Lemma 2). Then for v, w ∈
IRd, there is m = O(ϵ−2 log(1/δ)) so that v⊤P⊤Pw = v⊤w± ϵ∥v∥∥w∥ with failure probability δ.

Estimation of the cosine of the angle between v and w, which is |X ∩Y |/
√
|X| · |Y |, up to additive

error ϵ , is also now immediate. The goal of our MAP-I bundling section is to use the above lemmas
and corollaries to prove the following theorem.
Theorem 5. Suppose random matrix P satisfies the JL property (Lemma 2). Given M pairs of
characteristic vectors v, w ∈ {0, 1}d such that for every pair v, w, ∥v∥1∥w∥1 ≤ N , then there is
m = O(N log(M/δ)) such that ⌊v⊤P⊤Pw⌉ = v⊤w for all M pairs with probability ≥ 1− δ.

In short, we inherit much of our capacity analysis of bundling in MAP-I through known results about
the JL property.

Rotations via JL property. One operation used in VSAs to expand on the number of nearly orthog-
onal vectors available for use is via permutations of the entries; this is the “P” in the MAP VSA sys-
tems introduced by Gayler (1998). These can be encoded in permutation matrices R ∈ {0, 1}m×m.
We will focus on cyclic permutations.
Definition 6. Let R ∈ IRm×m denote the permutation matrix implementing a rotation, so that
Rm,1 = 1 and for i ∈ [m− 1], Ri,i+1 = 1, with all other entries equal to zero.

For a random sign vector y, and such a rotation matrix R (or indeed for any permutation matrix with
few fixed points), Ry is nearly orthogonal to y, and the vectors Rℓy for ℓ = 0, 1 . . . L are pairwise
mutually orthogonal with high probability, if L is not too large. However, the entries of these vectors
are not independent, so additional care is needed in analyzing them.

Permutations (and specifically, rotations) can be used to encode a sequence of atomic vectors xℓ as
a sum

∑
ℓR

ℓxℓ. We can also encode a sequence of sets with characteristic vectors v(ℓ).

Definition 7. For R ∈ Rm×m, S ∈ IRm×d and integer L ≥ 0, let SR,L ∈ Rm×Ld denote

[S RS R2S . . . RL−1S].

For a sequence of v(0), v(1), . . . v(L−1) ∈ Rd, let v ∈ RLd denote v ≡ [v(0) v(1) . . . v(L−1)].

The sequence given by v in the definition can be represented in MAP-I as a single vector S̄R,Lv. We
first find m such that S̄R,L satisfies the JL property for general v ∈ RLd.

Theorem 8. Given scaled sign matrix S̄ ∈ IRm×d, rotation matrix R ∈ IRm×m as in Def. 6, integer
L > 0, and S̄R,L as in Def. 7. Then for v ∈ IRLd as defined above,

|∥S̄R,Lv∥2 − ∥v∥2| ≤ 3ϵ∥v∥2L,1 ≤ 3Lϵ∥v∥2,
with failure probability 6L2δ. It follows that there is m = O((L/ε)2 log(L/δ)) such that with
failure probability at most δ, ∥S̄R,Lv∥2 = (1± ε)∥v∥2.

The proof of Theorem 8 relies on partitioning the rows of S̄ so that within the rows of a single
partition subset, the corresponding rows of S̄ and RiS̄ can be treated independently.

We get tighter bound on m when the v(i) are characteristic vectors: our bound on m depends on K,
the maximum number of times that a given symbol appears in v.

Theorem 9. Given scaled sign matrix S̄ ∈ IRm×d, rotation matrix R ∈ IRm×m (Def. 6), integer
L > 0, and S̄R,L as in Def. 7. For a sequence of vectors v(0), v(1), . . . v(L−1) ∈ {0, 1}d, let K ≡
∥
∑

0≤j<L v(j)∥∞. There is m = O
(
K2ε−2 log(K/(εδ))

)
such that with failure probability δ,

|∥S̄R,Lv∥2 − ∥v∥2| ≤ ϵ∥v∥2

We handle dependences between rows of S using a version of McDiarmid’s inequality (Corollary
23). As noted by Corollary 3 and Corollary 4, satisfying the JL property allows us to find m so
we can perform set intersection (dot product) and symmetric difference (subtraction) operations on
vectors of form [v(0) v(1) . . . v(L−1)] up to a multiplicative factor of ε and failure probability δ.

Bundles of bindings: the JL property. In MAP-I, we implement binding using the Hadamard
(element-wise) products of atomic vectors. In this setting, we can compactly represent a bundling
of k-wise atomic bindings using the matrix S̄⊙k.
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Definition 10. For sign matrix S, let S⊙k ∈ 1√
m
IRm×(dk), where each column of S⊙k is the

Hadamard (element-wise) product of k different columns of S. The scaled version S̄⊙k is 1√
m
S⊙k.

We clarify that P⊙k⊤ denotes (P⊙k)⊤.

With this notation, a bundling of k-wise atomic bindings is S̄⊙kv, for v ∈ {0, 1}(
d
k). Note that

E[S̄⊙kS̄⊙k⊤] =
(dk)
m Im, while E[S̄⊙k⊤S̄⊙k] = I(dk)

. In order to reason about intersections over
bundles of k-bindings, or about the symmetric difference between the bundles of k-bindings, we
again establish the JL property, this time for S̄⊙kv. We first present the result for the k = 2 case,
which captures bundles of key-value bindings.

Theorem 11. For v ∈ {0, 1}(
d
2), there is m = O

(
ε−2 log3(∥v∥1/εδ)

)
so that for S̄⊙2 ∈

{± 1√
m
}(

d
2), we have Pr[|∥S̄⊙2v∥2 − ∥v∥2| > ε∥v∥2] ≤ δ.

We have a generalized result for all k as well.

Corollary 12. For scaled sign S̄⊙k ∈ {± 1√
m
}(

d
k), v ∈ {0, 1}(

d
k), and i ∈ [m], there is C > 0 and

m = O(ε−2Ck log k logk+1(k∥v∥1/(εδ))) such that Pr[|∥S̄⊙kv∥2 − ∥v∥2| > ε∥v∥2] ≤ δ.

The key challenge of establishing the JL property for bundles of bindings is the fact that the columns
of S̄⊙k are not independent; for instance, when k = 2, the columns corresponding to i ⊗ j, j ⊗ k,
and i⊗k are dependent. To track these dependencies, we can represent S̄⊙kv as a hypergraph when
v ∈ {0, 1}(

d
k). Then, if we apply McDiarmid’s inequality to the bundling of bindings, we can obtain

the constants used in the bounded differences in terms of the degrees in the hypergraph.

Roadmap for Proofs In §B.1, we prove Theorem 5 and discuss how the JL frame extends to the
sparse JL and Subsampled Randomized Hadamard Transforms (SRHTs). In §B.2, we prove Theo-
rems 8 and 9. Finally, in §B.3, we prove Theorem 11 and Corollary 12.

3.2 HOPFIELD NETS AND HOPFIELD±

In the early seventies, a simple model of associative memory, based on autocorrelation, was intro-
duced in Nakano (1972); Kohonen (1972); Anderson (1972). In a paper that might be regarded
as ushering in the “second age of neural networks,” Hopfield (1982) reformulated that model, and
described a dynamic process for memory retrieval. We analyze the capacity of Hopfield’s model,
where a collection of vectors constituting the memories is stored. (A survey of autoasssociative
memories is given in Gritsenko et al. (2017).) The capacity problem is to determine the maximum
number of such vectors a network can effectively represent in a model described below, and it is as-
sumed that the vectors to be stored are sign vectors. In our setting, the memories are simply columns
of a sign matrix S ∈ {±1}m×n.

Much of our description of the model paraphrases that of Nakano (1972); Kohonen (1972); Anderson
(1972). The neural network in Hopfield’s model comprises a recurrent collection of neurons with
pairwise synaptic connections, with an associated weight matrix W ∈ Rm×m, such that given
input x ∈ {±1}m, a dynamic process ensues with vectors x[ℓ], where x[0] = x, and x[ℓ + 1] =
sign≥(Wx[ℓ]). Here, sign≥(z) = 1 if z ≥ 0, and −1 otherwise. When we reach a fixed point, i.e.,
x[ℓ + 1] = x[ℓ], the process stops, and x[ℓ] is output. If a vector x is a fixed point of the network,
the network is said to “represent” x. Typically, the goal is to not only show the fixed-point property
for some x, but also show that for y ∈ {0,±1}m close to x (i.e. y⊤x is large), the network output
is x given input y, with high probability. The capacity problem is to determine how many vectors
are represented by a network, as a function of m and a given lower bound on y⊤x.

The weight matrix W in a Hopfield network is SS⊤ − nIm, the sum of the outer products of the
input vectors with themselves, with the diagonal set to zero. One motivation for this setup is that
such a weight matrix can be learned by an appropriately connected neural network via a Hebbian
learning process (Kosko, 1986). In Theorem 13 below, we give a bound on m and y⊤S∗j so that
sign≥((SS

⊤ − nI)y) = S∗j with bounded failure probability.

Theorem 13. Given matrix S ∈ {±1}m×n with uniform independent entries, j ∈ [n], and δ ∈
(0, 1]. If y ∈ {0,±1}m with y⊤S∗j/∥y∥ ≥ 2

√
n log(2m/δ), then with failure probability at most δ,

7
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sign≥((SS
⊤ − nIm)y) = S∗j . Here it is assumed that the coordinates i at which yi ̸= Sij are

chosen before S, or without knowledge of it.

The y⊤S∗j/∥y∥ = y⊤S∗j/
√
∥y∥1 term may seem mysterious. m− ∥y∥1 is the number of erasures

in y, that is, the number of zero coordinates, and m− |y⊤S∗j | is the number of erasures plus twice
the number of error coordinates i where yi ̸= Sij . When there are only erasures, and y = S∗j except
for errors, ∥y∥1 = y⊤S∗j , and ∥y∥1 ≥ 2n log(2m/δ) suffices.

We also introduce a variant of Hopfield nets, which we call Hopfield±, in which the vector outer
products yielding W are each multiplied by a random ±1 value before summing.2 As described in
Theorem 14 below, which establishes a JL-like property for Hopfield±, this system can store and
recover m2 (up to log factors) vectors. Considering that it uses O(m2) space, its storage efficiency
for bundling is not far from that of MAP-I.

Theorem 14. Given ε, δ ∈ (0, 1], scaled sign matrix S̄ ∈ 1√
m
{±1}m×d with uniform independent

entries, diagonal matrix V ∈ Rd×d, and diagonal matrix D ∈ {0,±1}d×d with uniform indepen-
dent ±1 diagonal entries. There is m = O(ε−1 log(d/δ)2) such that with failure probability δ,
∥S̄V DS̄⊤∥2F = (1± ε)∥V ∥2F .

Roadmap for Proofs. Theorem 13 is proven in §C.1. Theorem 14 is discussed in §C.2.

3.3 ANALYSIS OF MAP-B

For MAP-B, we write our VSA atomic vectors as Sei, where S is a random sign matrix (Def. 1).
However, we require here that even composite (non-atomic) VSA vectors be sign vectors, so a
bundle of atomic vectors is represented as sign(Sv) for a characteristic vector v.

The nonlinearity of bundling makes analysis more difficult. While we were able to reason about
set intersection readily via the JL framework when analyzing MAP-I, our results for MAP-B only
hold for testing set membership, which is a specific instance of set intersection. We are able to
show that membership testing, to determine if i ∈ [d] is in supp(v), as represented by the bundle
x = sign(Sv), can be done by checking if x⊤S∗i ≥ τ , with threshold τ specified below.

Theorem 15. For v ∈ {0, 1}d, let x = sign(Sv) be the MAP-B bundling of n = ∥v∥1 atomic
vectors. Then for all i ∈ [m] and j ∈ supp(v), Pr[xiSij = +1] = 1/2 + Θ(1/

√
n), as n → ∞,

and there is m = O(n log(d/δ)) such that with failure probability δ, j ∈ [d] has j ∈ supp(v) if and
only if x⊤S∗j = e⊤j S sign(Sv) has x⊤S∗j ≥

√
2m log(2d/δ).

The proof borrows ideas from Boolean Fourier analysis, namely the analysis of the majority func-
tion, see O’Donnell (2014) for a thorough guide. In §D.1.3, we also provide an extension of Thm. 15
to testing for whether the set intersection between two sets X , Y is empty or not.

We also remark that the bundling operator for MAP-B is not associative; while sign(Sv) is one
way that MAP-B might compute a bundle, in a more general setting, there could be a sequence of
bundling operations. This would result in a tree of bundle operations of some depth greater than
one, in contrast to sign(Sv), whose tree has depth one. We prove that the reliability of the bundling
operation decays exponentially with the depth.

Lemma 16. Given independent sign vectors x(i) ∈ {±1}m, i ∈ [r], construct vector x by setting
x← x(1), and for j = 2, . . . , r, setting x← sign(x+ x(j)). Then, for ℓ ∈ [m],

Pr[x
(1)
ℓ xℓ = 1] = 1/2 + 1/2r

Rotations and Bundles of Bindings: In the Appendix §D, we analyze for MAP-B, rotations in
the same setting described in Definition 7 and Theorem 8, and bundles of bindings in the setting of
Definition 10 and Theorem 11.

2The name Hopfield± references the Rademacher values, and is in homage to many variants of X called
X++.
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3.4 SPARSE BINARY BUNDLING AND BLOOM FILTER ANALYSIS

If we use VSA vectors Bx with B chosen as a sparse binary matrix (defined below), we obtain two
new families of VSAs, which we refer to as Bloom filters and Counting Bloom filters, from their
names in the data structures literature.
Definition 17. For given m and k ≤ m, a k-sparse binary vector y ∈ {0, 1}m has ∥y∥0 ≤ k,
chosen by adding k random natural basis vectors ei ∈ {0, 1}m, with each i chosen independently
and uniformly from [m]. A k-sparse binary matrix B ∈ {0, 1}m×d has columns that are independent
sparse binary vectors, and a scaled k-sparse binary matrix has the form B̄ = 1

kB, where B is a
sparse binary matrix. These may be called just sparse, leaving the k implicit.

The Bloom and Counting Bloom filters slightly generalize BSDC-CDT, described in Schlegel et al.
(2022). For more on Bloom filters, see Bloom (1970); Broder & Mitzenmacher (2004). Bloom filter
represents the set supp(v) for v ∈ {0, 1}d as 1∧Bv, denoting the vector x with xi = min{1, (Bv)i}.
We give VSA dimension bounds enabling reliable estimation of set intersections; a rigorous version
of such an estimator appears to be novel for Bloom filters. We define a function hm,k(·) that maps
the expected dot product of the VSA bundles to the dot product of the original vectors.
Theorem 18. Let v, w ∈ {0, 1}d represent sets X,Y respectively, and define the following counts:

n ≡ |X ∩ Y | = v · w, nv ≡ |X \ Y | = ∥v∥0 − n, nw ≡ |Y \X| = ∥w∥0 − n

Let x = 1 ∧Bv and y = 1 ∧Bw, where B ∈ {0, 1}m×d is a sparse binary matrix.

Assume WLOG nw ≥ nv . Then for δ ∈ (0, 1) and ε > 0, there are k = O(ε−1 log(1/δ)) and
m = O(kε−1(nvnw + n2 + ε(n+ nw))) such that hm,k(x · y) = n± ϵ with failure probability δ.
Here, hm,k(z) (see Lemma 41) maps the Bloom filter output 1 ∧Bz to an estimate of ∥z∥0.

We remark that hm,k(x · y) is not an unbiased estimator of v · w; we use a “Bernstein version”
of McDiarmid (Theorem 24) to establish concentration of x · y first, and conclude the success of
the estimator hm,k(x · y) from there. In our analysis, we also divide x · y into two parts: the 1s
contributed by supp(v) ∩ supp(w) after applying B and the min operation, and the 1s contributed
by supp(v)∆ supp(w), which may increment the same index after applying B.

In the Counting Bloom filter, the bundle is simply B̄v. Here, we want to compute the generalized
set intersection of two vectors v, w, which refers to the coordinate-wise minimum v ∧ w. The
generalized set intersection size is v ∧· w = ∥v ∧ w∥1. Even though the bundle is a linear map, as
was the case with MAP-I, we ultimately analyze a non-linear function for set similarity.
Theorem 19. Let v, w ∈ Rd≥0. Let Kb ≡ ∥v − w∥∞ ≤ max{∥v∥∞, ∥w∥∞}, and define:

n ≡ v ∧· w, nv ≡ ∥v∥1 − n, nw ≡ ∥w∥1 − n,

Let x = Bv and y = Bw, where B ∈ {0, 1}m×d is a sparse binary matrix. Then, for δ ∈ (0, 1) and
ε > 0, there are k = O(Kbε

−1 log(1/δ)) and m = 12π2kε−1nvnw = O(Kbε
−2nvnw log(1/δ))

such that
(x ∧· y)/k − (v ∧· w) ∈ [0, ϵ)

with failure probability at most δ. Since nv + nw = ∥v − w∥1, m = O(Kbε
−2∥v − w∥21 log(1/δ))

also suffices (using the AM-GM inequality on nvnw). If ∥v∥1, ∥w∥1 are stored, then ∥v − w∥1 can
be estimated up to additive ε with the same m.

Our theorem helps analyze weighted sets, represented as v, w ∈ Zd≥0, where Z≥0 denotes the non-
negative integers. This also translates to a bound for estimating the ℓ1 distance between v and w,
via ∥v −w∥1 = ∥v∥1 + ∥w∥1 − 2(v ∧· w). Similarly to our proof of Theorem 18, we split 1

k (x∧· y)
into a contribution related to v ∧· w, which is supp(v)∩ supp(w)| for v, w ∈ {0, 1}d, and a contribu-
tion from v − (v ∧ w) and w − (v ∧ w), which are the characteristic vectors of supp(v) \ supp(w)
and supp(w) \ supp(v) for v, w ∈ {0, 1}d. The proof of Theorem 19 also relies on the “Bernstein
version” of McDiarmid’s inequality (Theorem 24).

Roadmap for Proofs: In §E.1, we prove Theorem 18, and in §E.2, we prove Theorem 19.

Concluding remarks. In this paper, we have presented analyses of the capacity of four different
VSA representations (and the novel Hopfield± network) for various symbolic operations, and their
relation to known concepts. Yet, much remains, including the analysis of VSAs where the atomic
vectors have semantic content, as in distance sensitive Bloom filters (Kirsch & Mitzenmacher, 2006).
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A PRELIMINARIES AND CONCENTRATION INEQUALITIES

In this section, we include a few useful concentration inequalities for functions of random variables
that are used throughout our VSA analysis.

Let f : Ω1 × . . .× Ωn → R be an arbitrary function on n variables.
Definition 20. A function f : Ω1× . . .×Ωn → R has bounded differences with constants {ci}i∈[n]

if for all x1 ∈ Ω1, . . . , xn ∈ Ωn and all i ∈ [n],

sup
y∈Ωi

|f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, y, xi+1, . . . , xn)| ≤ ci

When we want to study how f applied to a random variable X concentrates around its mean
E[f(X)], the most standard tool is McDiarmid’s inequality. The usual form of McDiarmid’s in-
equality is the following statement:
Theorem 21. Let X = (X1, . . . , Xn) be a tuple of independent random variables supported on
Ω1, . . . ,Ωn, respectively. If f has bounded differences with constants c1, . . . , cn, then:

Pr [f(X)− E[f(X)] > t] ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
Pr [f(X)− E[f(X)] < −t] ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
We now derive a standard variant (Corollary 23) of McDiarmid that applies when the bounded
differences hold with high probability. This is not a novel modification, but we include it for com-
pleteness. The corollary follows from the following lemma, which we will also use throughout our
VSA analysis.
Lemma 22. Let X be a random variable taking values in domain D, e.g. D = Rn. Let f and g
map from D to R, such that Pr[g(X) ̸= f(X)] ≤ δ, with g(X) = 0 when g(X) ̸= f(X), and
supx∈D f(x) ≤M for a value M ∈ R. Then

Pr[f(X)− E[f(X)] > t+ δM ] ≤ Pr[g(X)− E[g(X)] > t] + δ

Pr[f(X)− E[f(X)] < −t− δM ] ≤ Pr[g(X)− E[g(X)] < −t] + δ

Proof. Let B be the “bad subset” of D where g(X) ̸= f(X). Here E[g(X)] is close but not equal
to E[f(X)]:

E[f(X)] =
∑
x/∈B

Pr[X = x] · f(x) +
∑
x∈B

Pr[X = x] · f(x)

≤
∑

(x)/∈B

Pr[X = x] · g(x) + δM = E[g(X)] + δM

Similarly, E[f(X)] ≥ E[g(X)]− δM

Using this relationship between the means of f(X) and g(X), we have.

Pr [f(X)− E[f(X)] ≥ t′] ≤ Pr [f(X)− E[f(X)] ≥ t′ | f(X) = g(X)] · Pr[f(X) = g(X)] + δ

≤ Pr [g(X)− E[f(X)] ≥ t′ | f(X) = g(X)] · Pr[f(X) = g(X)] + δ

≤ Pr[g(X)− E[f(X)] ≥ t′] + δ

≤ Pr[g(X)− E[g(X)] ≥ t′ − δM ] + δ

The final line comes from the fact that E[f(X)] ≥ E[g(X)]− δM . Letting t′ = t+ δM yields the
desired bound. The upper bound for Pr [f(X)− E[f(X)] ≤ −t′] is analogous.

Corollary 23. Let X1, . . . , Xn be independent random variables supported on Ω1, . . . ,Ωn, re-
spectively. Define M := supx1,...,xn

|f(x1, . . . , xn)|. If with probability 1 − δ over X1, . . . , Xn,
the function f has bounded differences with constants c1, . . . , cn, i.e. there is a set S ⊆ Ω with
Pr[X ∈ S] = 1− δ such that for all (x1, . . . , xn) ∈ S and i ∈ [n], we satisfy

sup
y∈Ωi

|f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, y, xi+1, . . . , xn)| ≤ ci

14
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VSA Atomic Vector Bundling

MAP-I S̄ei S̄v
MAP-B Sei sign(Sv)

Bloom filter Bei 1 ∧Bv
Counting Bloom Bei Bv

Table 3: Equivalent to Table 1. Here ei ∈ {0, 1}d for i ∈ [d] has ei = 1, all other coordinates zero,
and v ∈ {0, 1}d represents the set supp(v) ⊂ [d]. The matrices S, S̄, and B are sign (also called
bipolar or Rademacher), scaled sign, and sparse binary, as in Def. 1 and 17.

then both of the following inequalities hold.

Pr [f(X)− E[f(X)] > t+ δM ] ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
+ δ

Pr [f(X)− E[f(X)] < −t− δM ]] ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
+ δ

Proof. Apply Lemma 22 to f and the function g defined as taking the same value of f for
X1, . . . , Xn such that the bounded differences hold, and zero otherwise. Then, we apply Theo-
rem 21 to g.

There is also a version of McDiarmid’s inequality that incorporates variances; we refer to it as the
“Bernstein form of McDiarmid’s Inequality:”
Theorem 24 (Ying (2004)). Let X = (X1, . . . , Xn) be a tuple of independent random variables
supported on Ω ≡

∏
i∈[n] Ωi. For function f : Ω → IR and x ∈ Ω, i ∈ [n], y ∈ Ωi, let gi(x, y) ≡

f(x1, . . . , xi−1, y, xi+1, . . . , xn). (Note that gi(x, y) does not depend on xi.) Let

Vari(f) ≡ sup
x∈Ω

EXi

[(
gi(x,Xi)− EX′

i
gi(x,X

′
i)
)2]

σ̃(f) ≡
∑
i∈[n]

Vari(f)

B(f) ≡ max
i∈[n]

sup
x∈Ω

∣∣gi(x,Xi)− EX′
i
gi(x,X

′
i)
∣∣

Then

Pr [f(X)− E[f(X)] > t] ≤ exp

(
− 2t2

σ̃(f) + tB(f)/3

)
Pr [f(X)− E[f(X)] < −t] ≤ exp

(
− 2t2

σ̃(f) + tB(f)/3

)
We will also need this known concentration bound for Rademacher random variables.
Theorem 25. Let X1, . . . , Xn be independent Rademacher random variables. Let (a1, . . . , an) be
an arbitrary vector in Rn. Then,

Pr

[
n∑
i=1

aiXi ≥ t∥a∥2

]
≤ exp

(
− t2

2

)
A correspondence between the VSAs we study and their choice of matrix P is found in Table 3.

B ANALYSIS OF MAP-I USING JOHNSON-LINDENSTRAUSS

In §B.1, we analyze MAP-I bundling, including the relation of norm estimation to distance, set
intersection, and angle estimation, and discuss how the JL perspective extends to the sparse JL and
Subsampled Randomized Hadamard Transforms (SRHTs).
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Next, in §B.2, we analyze the VSA dimension needed to reliably estimate the intersection of two
sequences of sets, as encoded using rotations, in both a general and a more restricted setting. This
entails proving the JL property for a specific kind of random matrix with dependent entries.

Finally, in §B.3, we analyze intersection of bundles of bound pairs and bundles of k-wise bindings.
Again, we establish the JL property for a random matrix with dependent entries. While bundles of
key-value bindings have been analyzed before, bundles of k-wise bindings have not.

B.1 BUNDLING AND SET INTERSECTION

The results in this section may apply to VSAs beyond just MAP-I where the bundling operator is
addition over the real numbers. Section 3.1 of Thomas et al. (2021a) gives some representational
bounds in that setting. Though we provide similar bounds, we frame our results using the Johnson-
Lindenstrauss (JL) random projection lemma, which provides a simpler yet powerful lens through
which to view the MAP-I VSA. (A connection to JL was briefly mentioned by Kent (2020), but it
did not factor into any capacity analysis there.)

We first introduce the Johnson-Lindenstrauss (JL) lemma:
Lemma (Restatement of Lemma 2). Suppose S̄ ∈ 1√

m
{−1, 1}m×d is a scaled sign matrix (de-

scribed in Def. 1). Then for given δ, ϵ > 0 there is m = O(ϵ−2 log(1/δ)) such that for given vector
v ∈ IRd, it holds that ∥S̄v∥ = ∥v∥(1± ϵ), with failure probability at most δ.
Remark 26. We have a similar result for any matrix P with i.i.d. subGaussian entries.

This approximation bound can be easily translated to a bound for multiple differences of vectors.
The proof is simply the application of of Lemma 2 to the O(n2) pairs of differences of vectors of V ,
and a union bound (yielding the log n part of the bound).
Corollary (Restatement of Corollary 3). If random matrix P satisfies the JL property (Lemma 2),
then for given δ, ϵ > 0, and a set V ⊂ IRd of cardinality n, there is m = O(ϵ−2 log(n/δ)) such that
with failure probability δ, for all pairs v, w ∈ V , ∥P (v − w)∥2 ∈ ∥v − w∥2(1± ϵ).

In other words, the linear mapping P preserves Euclidean distances up to a multiplicative factor
of (1 ± ϵ). If v and w are characteristic vectors for sets X and Y , then ∥v − y∥2 = |X∆Y |, the
cardinality of the symmetric difference of X and Y . Thus, by taking the difference between their
VSA representations Pv and Pv, we can estimate how much the sets X and Y disagree, with small
relative error ϵ in that estimate, mild dependence on the number of sets we can represent in this way,
and no dependence, in the error, on the groundset size n.

However, this doesn’t say what the needed dimensionality m is, for accurate estimation of the size
of the intersection. We consider this next, using the following standard corollary of Lemma 2.
Corollary (Restatement of Corollary 4). Suppose the random matrix P satisfies the JL property
(Lemma 2). Then for v, w ∈ IRd, there is m = O(ϵ−2 log(1/δ)) so that v⊤P⊤Pw = v⊤w ±
ϵ∥v∥∥w∥ with failure probability δ.

Proof. First, suppose v and w are unit vectors. By Lemma 2 and a union bound, with failure proba-
bility at most 3δ we have v⊤P⊤Pv = v⊤v±ϵ, w⊤P⊤Pw = w⊤w±ϵ, and (v+w)⊤P⊤P (v+w) =
(v +w)⊤(v +w)± 2ϵ. Since 2v⊤w = (v +w)⊤(v +w)− v⊤v −w⊤w and matrix multiplication
is an application of a linear operator, an analogous expression holds for v⊤P⊤Pw. Then,

2(v⊤P⊤Pw − v⊤w) = ±ϵ± ϵ± 2ϵ = ±4ϵ,

with failure probability 3δ. If v and w are not unit vectors, we apply this reasoning to v/∥v∥ and
w/∥w∥, and then multiply through by ∥v∥∥w∥, getting v⊤P⊤Pw = v⊤w± 2ϵ∥v∥∥w∥. That is, the
conclusion holds with relative error parameter 2ϵ and failure probability 3δ. We can fold the factors
2 and 3 into the bound for m, and the result follows.

Beyond the approximation condition, the proof only depends on P being a linear operator. Suppose
P is a scaled sign matrix S̄, and let v, w ∈ {0, 1}d be characteristic vectors. We want v⊤P⊤Pw =
v⊤w ± ϵ0, where ϵ0 < 1/2. Since v⊤w is an integer, this assures that v⊤P⊤Pw rounds to v⊤w.
The next lemma gives conditions on ϵ and δ to attain this.
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Theorem (Restatement of Theorem 5). Suppose random matrix P satisfies the JL property
(Lemma 2). Given M pairs of characteristic vectors v, w ∈ {0, 1}d such that for every pair v, w,
∥v∥1∥w∥1 ≤ N , then there is m = O(N log(M/δ)) such that ⌊v⊤P⊤Pw⌉ = v⊤w for all M pairs
with probability ≥ 1− δ.

Remark 27. In particular, this holds for the following special cases.

• Set membership: v is a characteristic vector, and w is a standard basis vector ei for i ∈ [d].
Then, N = ∥v∥1, M = d, and VSA dimension m = O(∥v∥1 log(d/δ) suffices.

• To get all pairwise intersections among MO(1) vectors v with ∥v∥1 ≤
√
N , we can use

m = O(N log(M/δ)).

Proof. For a given pair of vectors v and w, by Corollary 4 it is enough to choose ϵ0 < 1/2 and
ϵ = ϵ0/(∥v∥∥w∥) ≥ ϵ0/

√
N , to achieve the desired accuracy.

If δ′ is the failure probability of Corollary 4, then the overall failure probability is at most Mδ′, by
a union bound. Thus for δ′ = δ/M and ϵ from the JL property equal to ϵ0/

√
N , the dimension

m of Corollary 4 is m = O(N log(M/δ)), and every dot product estimate is accurate to within
additive ϵ0 with failure probability at most δ. The result follows.

Angle estimation Let Θv,w denote the angle between vectors v and w.

Lemma 28. Under the conditions of Lemma 2, for v, w ∈ IRd, there is m = O(ϵ−2 log(1/δ)) so
that cosΘS̄v,S̄w = cosΘv,w ± ϵ with failure probability δ.

Proof. This follows from cosΘv,w = v⊤w
∥v∥∥w∥ , and similarly for ΘS̄v,S̄w; applying Corollary 4 to the

estimation of v⊤w, ∥v∥, and ∥w∥, and finally folding constant-factor increases in ϵ and δ into m.

B.1.1 VARIATIONS USING ALTERNATIVE SKETCHING MATRICES

Using sparse JL The sparse JL transform has ϵm nonzero entries per column of P , each entry an
independent sign (that is, ±1). Such a matrix, multiplied by a scaling factor, also satisfies Lemma 2,
as shown in Kane & Nelson (2014); Cohen et al. (2018), and therefore could be used in VSAs with
the same performance, at least as far as bundling goes. However, element-wise product does not
seem to be enough to do binding effectively for such a representation, as the element-wise product
of sparse vectors is likely to be all zeros.

Using Subsampled Randomized Hadamard Transform (SRHT) The SRHT, described in Bout-
sidis & Gittens (2013), is multiplication by a matrix ZHD, where D is a random sign diagonal
matrix (random sign flips on the diagonal), H is a Hadamard matrix (an orthogonal sign matrix),
and Z simply selects a uniform random subset of the rows (a diagonal binary matrix). This opera-
tion, along with a scaling factor, is shown by Krahmer & Ward (2011) to satisfy the conditions of
Lemma 2, up to needing the larger target dimension m = O(ϵ−2 log(1/δ) log4 d), that is, with an
additional factor of log4 d. While for many applications, a useful property of SRHT is that ZHDv
is rapidly computed, here the main attraction is that the generation or storage of random sign values
is greatly reduced; entries of the H matrix are readily computed using bitwise operations on the
entry indices.

B.2 ROTATIONS FOR ENCODING SEQUENCES

For scaled sign matrices, using a rotation (i.e. a permutation that is a single large cycle), we can store
length-L sequences of vectors with an error bound that grows quadratically with L. It is possible
that there is a better general bound than this; we found better performance in a special case. If
the vectors are, in particular, characteristic vectors, so that a sequence of symbols is being stored
(and not e.g. a sequence of embeddings), then better error behavior (that depends on how much the
vectors overlap, rather than naively on L) typically occurs.

Before further definition and analysis, we have some lemmas useful for the analysis.
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Lemma 29. Say we sample independent scaled random sign matrices P1, P2 ∈ {±1}m×d with m

large enough to satisfy the JL property, i.e. for given v ∈ IRd, with failure probability δ, it holds
that ∥Pix∥2 = (1± ϵ)∥x∥2. If the block matrix [P1 P2] also satisfies the JL property, then for given
unit vectors x1, x2 ∈ IRd, with failure probability at most 3δ, |x⊤

1 P
⊤
1 P2x2| ≤ 2ϵ.

Proof. Since P1 and P2 were sampled independently, the block matrix [P1 P2] itself is a larger
random sign matrix, and it satisfies the JL property for ε with probability ≤ δ. We have

∥P1x1 + P2x2∥2 = ∥[P1 P2]

[
x1

x2

]
∥2 = (∥x1∥2 + ∥x2∥2)(1± ϵ) = 2(1± ϵ)

with failure probability δ, since [P1 P2] satisfies the same conditions as P1, P2. With failure proba-
bility at most 3δ, the embedding conditions hold for [P1 P2], P1, and P2. Assuming they do,

|x⊤
1 P

⊤
1 P2x2| =

∣∣∣∣12 [∥P1x1 + P2x2∥2 − ∥P1x1∥2 − ∥P2x2∥2
]∣∣∣∣

≤ 1

2
[2(1 + ϵ)− (1− ϵ)− (1− ϵ)] ≤ 2ϵ.

The result follows.

Lemma 30. Let R ∈ IRm×m denote a rotation matrix, as in Def. 7. Let S̄ ∈ IRm×d be a scaled
sign matrix such that for given x ∈ IRd, ∥S̄x∥2 = ∥x∥2(1 ± ϵ) with failure probability δ. Then for
unit vectors x, y ∈ IRd and r ≤ m/2, we have |x⊤S̄⊤RrS̄y| ≤ 4ϵ, with failure probability 6δ. If x
and y are not unit vectors, then |x⊤S̄⊤RrS̄y| ≤ 4ϵ∥x∥∥y∥.

Proof. We have (RrS̄)i∗ = S̄[(i+r−1)%m+1]∗, where j%m denotes j modulo m. Consider the
division of the rows of S̄ and of RrS̄ into blocks of size r. The first r rows of S̄ and the first r rows
of RrS̄ comprise together the first and second blocks of S̄, since {(i + r − 1)%m + 1|i ∈ [r]} =
{1+ r, 2+ r, . . . , r+ r}. The second block of r rows of S̄ and of RrS̄ comprise together the second
and third block of rows of S̄, and so on.

As a consequence, S̄ and RrS̄ can each be split into two matrices S̄1, S̄2 and (RrS̄)1, (R
rS̄)2, where

S̄1 comprises the odd-numbered blocks of S̄, and (RrS̄)1 comprises the corresponding blocks of
RrS̄, such that the rows of S̄1 and the rows of (RrS̄)1 are chosen from disjoint sets of rows of
S̄, and similarly for S̄2 comprising the even-numbered blocks of S̄, and (RrS̄)2 comprising the
corresponding blocks of RrS̄. That is, splitting the entries of x and y in the same way into vectors
x1, x2, y1, y2, we have that

x⊤S̄⊤RrS̄y = x⊤
1 S̄

⊤
1 (RrS̄)1y1 + x⊤

2 S̄
⊤
2 (RrS̄)2y2.

Since the entries of S̄1 were chosen independently from those of (RrS̄)1, we can apply Lemma
29 to have that |x⊤

1 S̄
⊤
1 (RrS̄)1y1| ≤ 2ϵ, with failure probability Cδ, with a similar statement for

x⊤
2 S̄

⊤
2 (RrS̄)2y2. Adding these bounds, and taking a union bound on the failure probability, yields

the result for unit vectors. The claim about non-unit vectors follows immediately.

Definition 31. For v ∈ IRLd encoding a sequence v(0), v(1), . . . v(L−1) ∈ Rd, as in Def. 7, define

∥v∥L,1 ≡
∑

0≤j<L

∥v(j)∥

Theorem (Restatement of Theorem 8). Given scaled sign matrix S̄ ∈ IRm×d, rotation matrix
R ∈ IRm×m as in Def. 6, integer L > 0, and S̄R,L as in Def. 7. Then for v ∈ IRLd as defined above,

|∥S̄R,Lv∥2 − ∥v∥2| ≤ 3ϵ∥v∥2L,1 ≤ 3Lϵ∥v∥2,

with failure probability 6L2δ. It follows that there is m = O((L/ε)2 log(L/δ)) such that with
failure probability at most δ, ∥S̄R,Lv∥2 = (1± ε)∥v∥2.

Note that bounds for set difference and intersection follow by slight variation of Corollaries 3 and 4,
and sharper ones using ∥v∥L,1 instead of ∥v∥.
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Proof. Recall that R⊤R = I and R⊤ = R−1. Assuming the approximation bounds of Lemma 30
hold for several instances, we have that

∥S̄R,Lv∥2 = ∥
∑

0≤j<L

RjS̄v(j)∥2

=
∑

0≤j,j′<L

v⊤(j′)S̄
⊤(R⊤)j

′
RjS̄v(j)

=
∑

0≤j<L

v⊤(j)S̄
⊤S̄v(j) + 2

∑
0≤j′<j<L

v⊤(j′)S̄
⊤Rj−j

′
S̄v(j)

≤ ∥v∥2(1± ϵ) + 2
∑

0≤j′<j<L

ϵ∥v(j′)∥ ∗ ∥v(j)∥

≤ ∥v∥2 + 3ϵ

 ∑
0≤j<L

∥v(j)∥

2

,

as claimed. Here we use that for vector z ∈ IRL, ∥z∥2 ≤ ∥z∥1 ≤ ∥z∥2
√
L. This also implies the

last inequality of the theorem statement. The failure probabilities of Corollary 4 for the diagonal
terms, and Lemma 30 for the off-diagonal terms, imply the overall bound via a union bound. The
last line follows using Lemma 2.

B.2.1 TIGHTER BOUNDS FOR CHARACTERISTIC VECTORS

The above theorem applies to any sequence of vectors, but better bounds are obtainable for charac-
teristic vectors, in some cases: consider v and w the characteristic vectors of distinct symbols. Then
S̄v and RS̄w are entry-wise independent, because v and w select different columns of S̄, and the
rotation RS̄ doesn’t change this. Next we apply this idea more generally.

Theorem (Restatement of Theorem 9). Given scaled sign matrix S̄ ∈ IRm×d, rotation matrix
R ∈ IRm×m (Def. 6), integer L > 0, and S̄R,L as in Def. 7. For a sequence of vectors
v(0), v(1), . . . v(L−1) ∈ {0, 1}d, let K ≡ ∥

∑
0≤j<L v(j)∥∞. There is m = O

(
K2ε−2 log(K/(εδ))

)
such that with failure probability δ,

|∥S̄R,Lv∥2 − ∥v∥2| ≤ ϵ∥v∥2

Note that here, each v(j) is the characteristic vector of a collection of symbols, and K is the max-
imum number of times that some symbol is represented, adding up appearances over the given
vectors. Bounds for set difference and intersection follow by slight variation of Corollaries 3 and 4.

Proof. Our proof of this lemma uses a corollary of McDiarmid’s Inequality (Theorem 21). The
product S̄R,Lv is a sum of vectors of the form RjS̄∗i, for entries i of v(j) equal to one. Recall that
v(j) ∈ Rd is the j-th block of v, and that we defined K = ∥

∑
0≤j<L v(j)∥∞. We can decompose

v into a sum v =
∑
k∈[K] x

k, where each xk ∈ {0, 1}Ld, such that no j, j′ ∈ supp(xk) has
j mod d = j′ mod d. For each k ∈ K, the vector

√
mS̄R,Lx

k is a sum of independent sign
vectors, since each entry of 1 in xk will select a different column of S̄, and so Lemma 2 applies, and
∥S̄R,Lxk∥2 = (1± ϵ)∥xk∥2 with failure probability δ.

We will show next for k, k′ ∈ [K] with k ̸= k′, that Dk,k′ ≡ xk
′ ⊤S̄⊤

R,LS̄R,Lx
k concentrates around

its expectation xk
′ ⊤xk. To do this, we will apply McDiarmid’s Inequality, (Corollary 23). First, we

note that each entry (S̄R,Lx
k)i is a sum of independent Rademacher values, scaled by 1/

√
m, and

so by Theorem 25 its square is at most 1
m∥x

k∥2 log(2/δ1) with failure probability δ1, for δ1 to be
determined.

Let E be the event that all entries of S̄R,Lxk and S̄R,Lx
k′ satisfy this bound; this holds with failure

probability at most 2δ1m. To apply Theorem 21, we need to bound, for each entry of S̄, the change
in Dk,k′ that can occur when the entry takes one of its values +1 or −1. Due to the construction of
xk and xk

′
, the entry affects only at most one entry (S̄R,Lx

k)i and at most one entry (S̄R,Lx
k′)i′ .
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The difference in Dk,k′ due to a change in an entry of S̄ contributing to (S̄R,Lx
k)i is at most

2√
m
(S̄R,Lx

k′)i; if event E holds, its square is at most 4
m2 ∥xk

′∥2 log(2/δ1). Similarly, the difference

due to a change in an entry contributing to S̄R,Lx
k′

i is at most 4
m2 ∥xk∥2 log(2/δ1). Putting these

together, the squared change in Dk,k′ due to an entry that appears on both sides is at most

(2|(S̄R,Lxk
′
)i|+ 2|(S̄R,Lxk)i′ |)2

= 4
(
|(S̄R,Lxk

′
)i|2 + 2|(S̄R,Lxk

′
)i · (S̄R,Lxk)i′ |+ |(S̄R,Lxk)i′ |2

)
≤ 8|(S̄R,Lxk

′
)i|2 + 8|(S̄R,Lxk)i′ |2

=
8

m2
· log(2/δ1)(∥xk

′
∥2 + ∥xk∥2).

The third line follows from the AM-GM inequality.

To obtain the total of the squared difference bounds, as needed in Corollary 23, note that a given
entry of S̄ may be one of m∥xk∥2 relevant entries of S̄ on one side, and may be one of m∥xk′∥2
relevant entries on the other. Suppose we “charge” an appearance of an entry among the m∥xk∥2
entries contributing to S̄R,Lx

k an amount of 8
m2 log(2/δ1)∥xk

′∥2, and an appearance of an entry
among among the m∥xk′∥2 contributing to S̄R,Lx

k′ an amount of 8
m2 log(2/δ1)∥xk∥2. Then from

the above, the contribution of every entry, and its one or two appearances, to the sum of squares of
per-entry changes to Dk,k′ , is accounted for. That sum of squares, as needed for Cor. 23, is therefore
at most

16

m
log(2/δ1)∥xk∥2∥xk

′
∥2,

assuming still event E .

To apply Cor. 23, we have upper bound M = ∥xk∥2∥xk′∥2, and δ of that corollary at most 2δ1m.
We note that since k ̸= k′, we have E[Dk,k′ ] = 0. So

Pr(Dk,k′ ≥ t+ 2δ1m∥xk∥2∥xk
′
∥2) ≤ 2 exp

(
− t2m

16 log(2/δ1)∥xk∥2∥xk′∥2

)
+ 2δ1m.

Setting δ1 ≤ εδ/4K2m for target failure probability δ, and t = 1
2ε∥x

k∥∥xk′∥, we get

Pr(Dk,k′ ≥ ε∥xk∥2∥xk
′
∥2) ≤ 2 exp

(
− ε2m

16 log(2/δ1)

)
+ εδ/2K2,

so the failure probability is less than δ/K2 for m = O(ε−2 log(K/εδ)). (As is not hard to verify.)

Suppose we have this bound for all k ̸= k′, which by union bound holds with failure probability at
most δ. We have

∥S̄R,Lv∥2 =
∑
k

(1± ε)∥xk∥2 ± 1

2
ε
∑
k ̸=k′
∥xk∥∥xk

′
∥

= ∥v∥2(1± ε)± ε

(∑
k

∥xk∥

)2

= ∥v∥2(1± ε)±Kε∥v∥2,

and the theorem follows, after folding K into ε and adjusting constants.

B.3 BINDING

B.3.1 BUNDLES OF PAIR-WISE BINDINGS

As discussed in the introduction, a bundle of pairwise bindings can be given as a vector S̄⊙2v, where
v ∈ {0, 1}(

d
2), and S̄⊙2 ∈ {± 1√

m
}m×(d2) is defined in Def. 10. We have E[∥S̄⊙2v∥2] = ∥v∥2, and

need to show that ∥S̄⊙2v∥2 ∈ ∥v∥2(1± ε) with high probability.

Theorem (Restatement of Theorem 11). For v ∈ {0, 1}(
d
2), there is m = O

(
ε−2 log3(∥v∥1/εδ)

)
so that for S̄⊙2 ∈ {± 1√

m
}(

d
2), we have Pr[|∥S̄⊙2v∥2 − ∥v∥2| > ε∥v∥2] ≤ δ.
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For our analysis we will use a graph G(V,E) of interactions in S̄⊙k of columns in S̄. Index the
columns of S̄⊙k by the columns of S̄ from which they came, so S̄⊙k

∗,{i1,i2,...,ik} denotes the column
of S̄⊙k that is the binding of columns S̄∗,i1 , S̄∗,i2 , . . . S̄∗,ik of S̄. Also use this indexing scheme
for v ∈ R(

d
k). Now for given v ∈ R(

d
k), the graph (or hyper-graph, for k > 2) G has edges

E = {e ⊂ [
(
d
k

)
] | ve ̸= 0}, and vertices V = {i | i ∈ e ∈ E}.

We can also include singleton atomic vectors in the bundling, by including the all-ones vector 1⃗m as
an atomic vector, bound to each singleton. Note that approximate orthogonality holds also for these
bindings, and the dimension is

(
d+1
2

)
, within a constant factor of

(
d
2

)
.

We prove Theorem 11 using this graphical view of S̄⊙2v in the following way. For given ℓ ∈
[m] we can write the Rademacher variables contributing to nonzero summands of S̄⊙2

ℓ v as Xℓ =

(x1, x2, . . . , x|V |), for V the vertex set of the associated graph G. Also, we can express S̄⊙2
ℓ v as a

function √
m · S̄⊙2

ℓ,∗ v = f(Xℓ), where f(x) =
∑

{i,j}∈E

xixj . (1)

Proof of Theorem 11. For i ∈ [|V |], let function gi(x1, . . . , x|V |) take value xi(1{i}∈E +∑
j: (i,j)∈E xj). (Here 1{i}∈E equals one when {i} ∈ E, and zero otherwise.) Then, for any

ℓ ∈ [m], flipping the sign of xi changes any f(Xℓ) by no more than 2|gi(Xℓ)|. By Theorem 25,
with a1, . . . , adegG(i) = 1 and t =

√
6 log(|E|m/δ), we have

Pr
[
2|gi(Xℓ)| > 2

√
6 degG(i) · log(2|E|m/δ)

]
<

δ3

8|E|3m3
. (2)

Let E be the event that these upper bounds hold for all ℓ ∈ [m], i ∈ V . Then taking the union bound
over all m|V | such gi(Xℓ), event E occurs with failure probability at most

δE ≡
δ3

4|E|2m2
,

noting that 2|E| ≥ |V |, since each vertex occurs in some edge, and at most two vertices occur in
one edge.

For ℓ ∈ [m], let function f̌(Xℓ) be equal to f(Xℓ) when E holds, and be zero otherwise. By
McDiarmid’s Inequality, Theorem 21,

Pr[|f̌(Xℓ)− E[f̌(Xℓ)]| ≥ t] ≤ 2 exp

(
−2t2∑

i∈[|V |](2
√

6 degG(i) · log(|E|m/δ))2

)

= 2 exp

(
− t2

12|E| log(|E|m/δ)

)
.

From Proposition 2.5.2 of Vershynin (2018), therefore, for all ℓ ∈ [m], f̌(Xℓ) − E[f̌(Xℓ)] is a
sub-Gaussian random variable, with proxy variance within a constant factor of at most

σ2
f̌
≡ 12|E| log(|E|m/δ).

Let f̄ ≡ E[f̌(X)], for Rademacher X . Since E[f(X)] = 0, we have

|f̄ | = |E[f̌(X) | E ] Pr[E ] + E[f̌(X) | ¬E ] Pr[¬E ] |
= |E[f(X) | E ] Pr[E ] + 0 |
= |E[f(X)]− E[f(X) | ¬E ] Pr[¬E ] |
≤ | 0− E[f(X) | ¬E ]δE |
≤ |E|δE , (3)

since |f(X)| ≤ |E|.
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Let F̌ ≡ 1
m

∑
ℓ f̌(Xℓ)

2, and F̌c ≡ 1
m

∑
ℓ(f̌(Xℓ)− f̄)2. Using Exercise 2.7.10 and Corollary 2.8.3

of Vershynin (2018), it follows that

Pr[|F̌c − E[F̌c]| > t] ≤ 2 exp

(
−cmmin

(
t2

σ4
f̌

,
t

σ2
f̌

))
.

For t = ε|E|/2 < σ2
f̌

, the upper bound is 2 exp(−cmε2/ log(|E|m/δ)2), for a different constant c,
so there is m = O(ε−2 log(|E|/εδ)3) such that

Pr[|F̌c − E[F̌c]| > ε|E|/2] ≤ δ/2. (4)

We have a tail estimate for F̌c, but not for F̌ or ∥P⊙2v∥2 = 1
m

∑
ℓ f(Xℓ)

2. We have

F̌c − E[F̌c] =
1

m

∑
ℓ

(f̌(Xℓ)− f̄)2 − E[f̌(Xℓ − f̄)2]

= F̌ − E[F̌ ] +
1

m

∑
ℓ

−2f̌(Xℓ)f̄ + f̄2 + 2E[f̌(Xℓ)f̄ ]− f̄2

= F̌ − E[F̌ ] + 2f̄2 − 2

m
f̄
∑
ℓ

f̌(Xℓ).

Using (3) and |f(X)| ≤ |E|, we have

|F̌ − E[F̌ ]| ≤ |F̌c − E[F̌c]|+ 4δE |E|2. (5)

We can apply Lemma 22 to S̄⊙2v and F̌ , as f and g in that lemma, using that F̌ = ∥S̄⊙2v∥2 with
failure probability at most δE , and that ∥S̄⊙2v∥2 ≤ |E|2. Using t = ε∥v∥2/2 + 4δE |E|2 in that
lemma, together with (5) and (4), we have

Pr[|∥S̄⊙2v∥2 − ∥v∥2| > ε∥v∥2/2 + 4δE |E|2 + δE |E|2] ≤ Pr[|F̌ − E[F̌ ]| > ε∥v∥2/2 + 4δE |E|2]
≤ Pr[|F̌c − E[F̌c]| > ε∥v∥2/2] + δE

≤ δ/2 + δE ≤ δ.

The theorem follows, using 5δE |E|2 = 5δ3/4m2 < ε∥v∥2/2, possibly adjusting m by a constant
factor.

B.3.2 BUNDLES OF BINDINGS OF MULTIPLE VECTORS

We can again hope to use Corollary 23 in this setting. However, to obtain the appropriate constants
c1, . . . , cn to use in Corollary 23, we cannot directly apply Theorem 25; it is only a base case, for
when k = 2. We proceed via induction on the maximum binding size.
Lemma 32. Given hypergraph G = (V,E), let f(x1, . . . , x|V |) =

∑
e∈E

∏
i∈e xi, and let k be the

maximum hyperedge size. Let X = (X1, . . . , X|V |) be a tuple of independent random Rademacher

variables, i.e., each takes values {±1} with probability 1
2 . For δ0 ≤ O

(
1/
√
|E|
)

:

Pr
[
|f(X)| ≥ 2

√
k! · |E| logk/2 (k/δ0)

]
≤ δ0

Proof. We proceed by induction on k. When k = 2, we are done by Theorem 11.

To handle general k, we again apply the version of McDiarmid in Corollary 23. If we fix
(x1, . . . , x|V |), changing the value of xi again changes f by at most

∑
e∈E: i∈E

∏
j∈E: j ̸=i xj . The

expression
∑
e∈E: i∈E

∏
j∈E: j ̸=i xj encodes a hypergraph Gi = (Vi, Ei) with maximum edge size

k − 1, so by induction, we may assume:

Pr

∣∣∣∣∣∣
∑

e∈E: i∈E

∏
j∈E: j ̸=i

xj

∣∣∣∣∣∣ ≥ 2
√

(k − 1)!|Ei| log(k−1)/2 (k/δ0)

 ≤ (k − 1)δ0
k
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Now, we invoke Corollary 23 with ci = 2
√

(k − 1)!|Ei| log(k−1)/2(k/δ0).

|V |∑
i=1

c2i =

|V |∑
i=1

4(k − 1)!|Ei| logk−1(k/δ0)

= 4(k − 1)! logk−1(k/δ0)

|V |∑
i=1

|Ei|

≤ 4(k − 1)!(logk−1(k/δ0)) · k|E|
= 4k! · |E| logk−1(k/δ0)

We can also set t =
√
2
√
k! · |E| logk/2(k/δ0). Then,

t2 = 2k! · |E| logk(k/δ0) ≥
1

2
log(k/δ0)

|V |∑
i=1

c2i

Finally, setting δ = (k−1)δ0
k , M = |E|, Corollary 23 implies:

Pr

[
|f(X)]| ≥

√
2
√
k! · |E| logk/2(k/δ0) +

(k − 1) · |E| · δ0
k

]
≤ δ0

k
+

(k − 1)δ0
k

≤ δ0

To complete the proof, it suffices to show

(k − 1) · |E| · δ0
k

≤ (2−
√
2)
√

k! · |E| logk/2(k/δ0)

However, given our upper bound on δ0, this holds for all values of k.

Corollary (Restatement of Corollary 12). For scaled sign S̄⊙k ∈ {± 1√
m
}(

d
k), v ∈ {0, 1}(

d
k), and

i ∈ [m], there is C > 0 and m = O(ε−2Ck log k logk+1(k∥v∥1/(εδ))) such that Pr[|∥S̄⊙kv∥2 −
∥v∥2| > ε∥v∥2] ≤ δ.

Just as there was a graphical view of S̄⊙2v, we have a natural way to view S̄⊙kv as a hypergraph
H = (V,E). For each ℓ ∈ [m], let Xℓ = (x1, x2, . . . , x|V |) be the Rademacher variables contribut-
ing to the summands of S̄⊙k

ℓ , ∗v, the ℓ-th entry of S̄⊙kv, and we can write

f(Xℓ) ≡
√
mS̄⊙k

ℓ =
∑

(i1,...,ik)∈E

xi1xi2 · · ·xik

Proof. We will follow the same approach to the proof of Theorem 11. Due to the similarity of the
proofs, we will omit steps here, but we will keep track of the parameters and calculations that differ.

Fix i ∈ [|V |], and define gi(x1, . . . , x|V |) = xi
∑
e∈E:i∈e

∏
j∈e,j ̸=i xj . For each coordinate ℓ ∈

[m], flipping the sign of xi will change f(Xℓ) by at most
∑
e∈E:i∈e

∏
j∈e,j ̸=i xj . Lemma 32 gives

us a high probability bound on the magnitude of
∑
e∈E:i∈e

∏
j∈e,j ̸=i xj :

Pr

[
2|gi(Xℓ)| > 2

√
(k − 1)! · 3k−1 · degG(i) · log

(k−1)(k|E|m/δ)

]
≤ δ3

4k|E|3m3

Choosing this upper bound on the probability ensures that we obtain the same δE as we do in Theo-
rem 11. Defining f̌(Xℓ) as before, Theorem 21 says

Pr
[
|f̌(Xℓ)− E[f̌(Xℓ)]| ≥ t

]
≤ 2 exp

(
− t2

k! · 3k−1 · |E| log(k−1)(k|E|m/δ)

)

The proxy variance of f̌(Xℓ)− E[f̌(Xℓ)] is now

σ2
f̌
≡ k! · 3k−1 · |E| log(k−1)(k|E|m/δ)
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Defining F̌ and F̌c the same way, and choosing large enough m = O(ε−2 · k!2 · 32k ·
logk+1(k|E|/(εδ))), we have

Pr
[
|F̌c − E[F̌c]| > ε|E|/2

]
≤ δ/2

The remainder of the proof follows without changes after we fix the value of m. Regarding the
dependence on k,

log(k!232k) ≤ log(2πk(k/e)2ke1/6k32k) = 2k log(3k/e) +O(log k) = O(k log k),

using an inequality form of Stirling’s approximation. The corollary follows.

C AUTOCORRELATION ASSOCIATIVE MEMORIES AS BUNDLES OF ROBUST
BINDINGS

As discussed in §3.2, this section provides a new analysis of Hopfield networks, and proposes a
Hopfield variant that is a space-efficient VSA bundling operation.

C.1 ANALYSIS OF HOPFIELD NETWORKS VIA CONCENTRATION BOUNDS

Our analysis is akin to that of McEliece et al. (1987), but uses concentration bounds instead of large
deviation bounds holding in the limit. The results are similar, in leading terms.
Theorem (Restatement of Theorem 13). Given matrix S ∈ {±1}m×n with uniform independent
entries, j ∈ [n], and δ ∈ (0, 1]. If y ∈ {0,±1}m with y⊤S∗j/∥y∥ ≥ 2

√
n log(2m/δ), then with

failure probability at most δ, sign≥((SS
⊤−nIm)y) = S∗j . Here it is assumed that the coordinates

i at which yi ̸= Sij are chosen before S, or without knowledge of it.

Since m ≥ (y⊤S∗j)
2/∥y∥1, a necessary condition here is that m ≥ 4n log(2m/δ). When y = S∗j ,

y⊤S∗j = m = ∥y∥1, and m ≥ 4n log(2m/δ) suffices. There is

m = (1 + o(1))4n log(2n/δ) as n/δ →∞
such that m ≥ 4n log(2m/δ).

Proof. Let I−j ∈ Rn×n denote the identity matrix with its j’th diagonal entry set to zero. We have

(SS⊤ − nIm)y = S∗jS
⊤
∗jy − y + (SI−jS

⊤ − (n− 1)I)y.

The first coordinate of (SI−jS⊤−(n−1)I)y is
∑
j′∈[n]
j′ ̸=j

∑
1<j′′≤m S1j′Sj′j′′yj′′ , which is a sum of

at most (n−1)(∥y∥1−1) ≤ n∥y∥1 independent±1 values. By Theorem 25, with failure probability
at most 2 exp(−α), this sum is bounded by

√
2αn∥y∥1 in magnitude. For α = log(2m/δ), with

failure probability δ, every coordinate of (SI−jS⊤ − (n− 1)I)y is at most
√
2αn∥y∥1.

Assuming this bound, if S⊤
∗jy− 1 >

√
2αn∥y∥1, then SijS

⊤
∗jy− yi agree in sign with Sij , and will

exceed ((SI−jS
⊤− (n− 1)I)y)i in magnitude, for all i ∈ [m], and therefore sign≥(SS

⊤y) = S∗j .
For this it is enough if S⊤

∗jy/
√
∥y∥1 > 2

√
αn = 2

√
n log(2m/δ), as claimed.

Relation to VSA: bundling of bindings Suppose m is even, and we can write S∗j = [ xy ], for
x, y ∈ {±1}m/2. Then assuming the above conditions, there is m = O(n log(n/δ)) so that the
Hopfield output on input [ x0 ] or

[
0
y

]
will be S∗j . In this special case, the Hopfield network does

a bit more than a bundle of pairwise bindings can do: it returns the other vector of a binding,
without performing membership tests over a dictionary of vectors (cleanup). This should not be
entirely surprising, since [ xy ] [ xy ]

⊤
=
[
xx⊤ xy⊤

yx⊤ yy⊤

]
, and the diagonal entries of xy⊤ and yx⊤ form the

Hadamard product vector (i.e. element-wise product vector) x ◦ y, which is the MAP-I binding of x
and y.

Looking at the weight matrix W =
∑n
j=1 S∗jS

⊤
∗j , the two particular diagonals observed above

contain exactly the MAP-I bundling of pairwise bindings of MAP-I atomic vectors, of dimension

24



Under review as a conference paper at ICLR 2024

equal to half the net size. Also, the outer product xy⊤ is the binding operator for x and y proposed
by Smolensky (1990), and the relation of this binding operator to the MAP-I binding as a reduced
representation is well-known via Frady et al. (2021).

As mentioned in the introduction, much of this discussion, including the weight matrix as a sum
of outer products of the input vectors, the fixed-point condition for representation, the mapping to
neural networks, and reconstruction from erasures, goes back at least to Nakano (1972); Kohonen
(1972); Anderson (1972).

Thinning the weight matrix By Theorem 13, it suffices if ∥y∥1 ≥ 2n log(2m/δ) for the theo-
rem’s conclusion to apply, so that the S∗j matching y can be reconstructed. That is, for diagonal
matrix V ∈ {0, 1}m×m, if ∥V y∥1 ≥ 2n log(2m/δ) is large enough, sign≥(SS

⊤V y) = S∗j . We
could regard this, for given V, y, as sign≥(Wy) for a matrix W ≡ SS⊤V with ∥V ∥2F nonzero
columns: we erase columns of SS⊤, not entries of y. That is, if n vectors are to be stored, but the
vector dimension is fixed at larger than m≫ 2n log(2m/δ), the necessary number of stored entries
is smaller than m2.

VSAs, Autocorrelation Associative Memories, and modern Hopfield nets. A different neural
network model was proposed in recent years by Krotov & Hopfield (2016), sometimes called a mod-
ern Hopfield network, which also uses a dynamic process to produce its output. Here the output of
an iteration is more “peaked;” for example, a version by Demircigil et al. (2017) uses softmax when
computing the next iterate. This model has a higher capacity than classical associative memories
using sums of outer products. However, it stores all its input vectors explicitly, so that the main
question is not whether the given vectors are represented (since they are stored), but under what cir-
cumstances the dynamic process converges. The number of entries stored in this model is Θ(mn),
where (classic) associative networks store Θ(m2), and VSAs store Θ(m). The different amounts of
storage imply different capabilities:

• The modern Hopfield model gives a high-capacity way to do maximum inner product
search on a set of vectors, using a neural network formalism.

• The associatron/original Hopfield model supports the reconstruction of a vector in a stored
set of vectors from an erased or noisy version.

• VSAs support membership tests, telling us whether two given vectors are present as a bound
pair in a set.

C.2 HOPFIELD±: AUTOCORRELATION ASSOCIATIVE MEMORIES AS VSAS

We can also use an AAM/Hopfield model (a sum of vector outer products) to do set intersection
estimation, as in VSAs. Here we represent a bundle as the sum of outer products of a vector with
itself, as in Smolensky (1990). The key theorem, proven below, is the following.

Theorem (Restatement of Theorem 14). Given ε, δ ∈ (0, 1], scaled sign matrix S̄ ∈ 1√
m
{±1}m×d

with uniform independent entries, diagonal matrix V ∈ Rd×d, and diagonal matrix D ∈
{0,±1}d×d with uniform independent ±1 diagonal entries. There is m = O(ε−1 log(d/δ)2) such
that with failure probability δ, ∥S̄V DS̄⊤∥2F = (1± ε)∥V ∥2F .

Since S̄ is a JL projection matrix, it will, with high probability, preserve the norms of the columns
of V , and multiplying by S̄⊤ on the right will preserve the norms of the rows of S̄V . We can think of
this as S̄ satisfying the JL property with respect to the operation S̄V DS̄⊤. The novelty here is that
the dependence of m on ε is ε−1, not ε−2; on the other hand, S̄V DS̄⊤ comprises m2 values, not m.
This is yet another route to preserving the norm of a vector, stored as the diagonal of V , using the
same storage and speed of computation (up to log factors) as that of simply using a larger projection
matrix on one side, as in MAP-I. In other words, we obtain a bundling operator with performance
characteristics similar to those of MAP-I, but using fewer random bits.

This theorem is analogous to Lemma 2. The following is analogous to Corollary 4, and can be
proven in exactly the same way. It implies in particular that for diagonal matrices X,Y representing
sets, with 0/1 diagonal entries encoding element membership, the size of their intersection can be
estimated accurately using their “Hopfield net” representations.
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We have a direct analog of Corollary 4, stated below. Analogs of Corollary 3 and Theorem 5 also
follow directly; we omit the proofs.
Corollary 33. Under the conditions of Theorem 14 (the JL property for S̄V DS̄⊤), for diagonal
X,Y ∈ IRd×d, there is m = O(ε−2 log(d/δ)2) so that tr((S̄XDS̄⊤)(S̄Y DS̄⊤)) = tr(XY ) ±
ϵ∥X∥F ∥Y ∥F with failure probability δ.

Note that tr(XY ) is here the Frobenius product of X and Y . We omit the proof; it is isomorphic to
the proof of Corollary 4.

To prove Theorem 14, we will use the Hanson-Wright inequality. In its statement,

∥X∥ψ2
= inf{K | E(exp(X2/K2) ≤ 2}

is the sub-Gaussian norm of random variable X , which in our case, for a Rademacher variable, will
be 1/

√
log 2.

Theorem 34 (Hanson-Wright inequality, Rudelson & Vershynin (2013)). Let x ∈ Rd be a random
vector with independent entries, E[x] = 0, and ∥xi∥ψ2 ≤ K for some positive constant K. Let A
be an n× n matrix. Then for every t ≥ 0,

Pr
{
|x⊤Ax− E[x⊤Ax]| > t

}
≤ 2 exp

[
−cmin

(
t2

K4∥A∥2F
,

t

K2∥A∥

)]
,

where c is some positive constant. In particular, t = K2

c ∥A∥F log(2/δ) yields a failure probability
bound of at most δ, when log(1/δ) ≥ c.

Proof of Theorem 14. Let E = S̄⊤S̄ − I; since the diagonal entries of E are zero, we have

∥S̄V DS̄⊤∥2F = tr(S̄V DS̄⊤S̄V DS̄⊤) = tr(V D(I + E)V D(I + E))

= tr(V 2D2) + 2 tr(V 2D2E) + tr(V DEVDE)

= ∥V ∥2F + 0 + tr(V DEVDE)

= ∥V ∥2F + 0 +
∑
i∈[d]

(V DE)i∗(V DE)∗i

= ∥V ∥2F + 0 +
∑
i,j∈[d]

ViiDiiEijVjjDjjEji

= ∥V ∥2F + b⊤V (E ◦ E)V b, (6)

where in the last step b ∈ {±1}d comprises the diagonal entries of D, and we use the symmetry
of E. The simplifications also use the fact that V and D commute and D2 is a projection matrix.

We will apply the Hanson-Wright inequality, for which we need to bound ∥V (E ◦ E)V ∥2F . First,
we bound the entries of E: each such entry is 1

m times a sum of m independent Rademacher values,
and therefore from Theorem 25 is at most 1√

m

√
2 log(2/δ1) with failure probability δ1. By applying

a union bound to all d(d − 1) off-diagonal entries of E, we have that all such entries are at most
2√
m

√
log(2d/δ1) with failure probability δ1. Assuming this event, the square of each entry is at

most 4
m log(2d/δ1). We have

∥V (E ◦ E)V ∥2F =
∑
i,j∈[d]

V 2
iiV

2
jjE

4
ij ≤

16 log(2d/δ1)
2

m2

∑
i,j∈[d]

V 2
iiV

2
jj =

16 log(2d/δ1)
2

m2
· ∥V ∥4F .

We will apply Theorem 34 with x and A of the theorem mapping to b and V (E ◦ E)V . We have
Eb[b⊤V (E ◦E)V b] = 0, since off-diagonal terms with Eb[bibj . . .], i ̸= j are zero, and the diagonal
entries of E are zero. The value of t in the last line of Theorem 34 translates here to

b⊤V (E ◦ E)V b ≤ c

log(2)
· 4 log(2d/δ1)

m
· ∥V ∥2F log(1/δ2)

with failure probability δ2, using ∥X∥ψ2
= 1/

√
2, for X ∼ {±1}. Putting this together with (6),

using a union bound for the events with failure probabilities δ1 and δ2, and reducing the precise
bound above to O() notation, yields the result.
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D ANALYSIS OF MAP-B

We will analyze membership testing for MAP-B, for bundles (§D.1), sequences of sets as encoded
with rotations (§D.2), and bundles of bound key-value pairs (§D.3). Here being a key-value pair
means that some restrictions are placed on members of a bound pair, in particular that the keys come
from a set that is disjoint from the set of values, and so there is greater independence among the
relevant random variables.

Recall that the MAP-B bundling operator is sign(Sv), where S is a sign matrix, Def. 1, and the sign
function takes a random ±1 value when its argument is zero.

D.1 BUNDLING

D.1.1 MEMBERSHIP TEST

We first consider testing membership in a MAP-B bundling of n atomic vectors.
Theorem (Restatement of Theorem 15). For v ∈ {0, 1}d, let x = sign(Sv) be the MAP-B bundling
of n = ∥v∥1 atomic vectors. Then for all i ∈ [m] and j ∈ supp(v), Pr[xiSij = +1] = 1/2 +
Θ(1/

√
n), as n→∞, and there is m = O(n log(d/δ)) such that with failure probability δ, j ∈ [d]

has j ∈ supp(v) if and only if x⊤S∗j = e⊤j S sign(Sv) has x⊤S∗j ≥
√

2m log(2d/δ).

Note that MAP-B bundling is not associative, so analysis of this bundling operation is not the end
of the story, as discussed in §D.1.2.

Proof. We consider S⊤
∗jx in the two cases where j is, and is not, in supp(v). Fix some ĵ ∈ supp(v),

and let a = S1ĵ and b = (Sv)1 − a, so that x1 = sign(a+ b), and a sign((a+ b)) = sign(a(a+ b))

is a summand of S⊤
∗ĵx. We consider the cases where n − 1 is even vs. odd. Let E denote the event

sign(a(a+ b)) > 0.

Since the n − 1 summands of b = (Sv)1 − a are i.i.d. Rademacher variables, the probability that

b = 0 is, for n − 1 even, equal to
(
2p
p

)
1

22p = 1√
πp (1 + O(1/p)) =

√
2
πn (1 + O(1/n)), where

p = (n − 1)/2, using Stirling’s approximation, or the related expression for the Catalan numbers.
For n− 1 even, when b ̸= 0, |b| >= 2, so a+ b > 0, and Pr[E|b ̸= 0] = 1/2. We have

Pr[E ] = Pr[E | b = 0]Pr[b = 0] + Pr[E | b ̸= 0]Pr[b ̸= 0]

= Pr[b = 0] +
1

2
(1− Pr[b = 0])

=
1

2
+

1

2

√
2

πn
(1 +O(1/n)) =

1

2
+

√
1

2πn
(1 +O(1/n)).

When n− 1 is odd, b cannot be zero, while

Pr[b = 1] = Pr[b = −1] =
(

n− 1

n/2− 1

)
1

2n−1
=

n/2

n

(
n

n/2

)
2

2n
=

1√
π(n/2)

(1 +O(1/n)).

Considering the rounding for the case a+ b = 0, we have Pr[E | b = ±1] = 3/2. Therefore,

Pr[E ] = 3

2
Pr[b = ±1] + 1

2
Pr[b ̸= ±1]

=
1

2
+ Pr[b = ±1]

=
1

2
+

√
2

πn
(1 +O(1/n)).

So
Pr[x

(1)
1 x1 = 1] = Pr[sign(a(a+ b)) > 0]

= Pr[E ] ≥ 1/2 +
√
1/2πn(1 +O(1/n))

> 1/
√
7n for large enough n.

27



Under review as a conference paper at ICLR 2024

This applies to all coordinates of all vectors Si,j for j ∈ supp(v), and inspection of the expressions
shows the first claim of the theorem, Pr[xiSij = +1] = 1/2 + Θ(1/

√
n) for such i, j.

For the remaining claim: we have that x⊤S∗j for j ∈ supp(v) is a sum of ±1 independent values,
with +1 having probability 1/2 + Θ(1/

√
n), and at least 1/2 +

√
1/7n, for large enough n; this

implies expectation at least m/
√
7n. Hoeffding’s inequality implies that Pr[x⊤S∗j − m/

√
7n <

−
√
2m log(2d/δ)] ≤ δ/2d. Now suppose j /∈ supp(v). Then using Hoeffding again, we obtain:

Pr[x⊤S∗j >
√
2m log(2d/δ)] ≤ δ/2d.

Thus, there is m = O(n log(d/δ)) such that m/
√
7n > 2

√
2m log(2d/δ), and therefore by a union

bound for all j ∈ [d], with failure probability at most δ, x⊤S∗j >
√

2m log(2d/δ) if an only if
j ∈ supp(v).

D.1.2 DEPENDENCE ON DEPTH

Instead of bundling a set of elements all at once, suppose instead that bundling is done as a sequence
of operations. We will see that for some such sequences, with high depth, so much information is
lost that accurate membership tests become impossible.

Lemma (Restatement of Lemma 16). Given independent sign vectors x(i) ∈ {±1}m, i ∈ [r],
construct vector x by setting x← x(1), and for j = 2, . . . , r, setting x← sign(x+ x(j)). Then, for
ℓ ∈ [m],

Pr[x
(1)
ℓ xℓ = 1] = 1/2 + 1/2r

Proof. We consider x(1)
1 x1; the same analysis applies to x

(1)
ℓ xℓ for ℓ > 1. Let a denote x

(1)
1 , and

let z(j) denote the value of x1 just after the assignment x ← sign(x + x(j)) in computing x. Since
b sign(c+ e) = sign(bc+ be) for b = ±1, we have that

x1x
(1)
1 = az(r) = sign(az(r−1)) + ax(r)).

By induction on j with this base case, az(r−j)) = sign(az(r−(j+1)))+ax(r−j)), ending with az(1) =

a2 = 1. Suppose inductively on j (in the other direction) that az(j) is +1 with probability 1/2 +

1/2j , respectively; this is true for j = 1, as noted. We have az(j) = sign(az(j−1)) + ax(j)),
and ax(j) = ±1 with equal probability independent of az(j−1). Analysis of the four combinations
az(j−1)) = ±1, ax(j) = ±1 and their probabilities shows that the inductive step holds, that is,
az(j+1) is +1 with probability 1/2+1/2j+1. In particular, Pr[x1x

(1)
1 = az(r) = +1] = 1/2+1/2r,

as claimed.

Note that this property of xℓx
(1)
ℓ does not require the x(i) to be atomic vectors of the VSA. Consid-

ering such summands for x⊤x(1) leads to E[x⊤x(1)] ≈ m/2r, as compared to at least m/
√
7n as

in Theorem 15, with a corresponding change in m needed to obtain effective membership testing.
Suppose all the x(i) are bundles, and x is the root of a tree of bundlings of a total of n vectors. Then
x(1) is a leaf of a tree of bundling operations of depth at least r, with possibly n = r, when all x(i)

involved with x(1) are atomic; n = 2r, when x is the root of a complete binary tree of depth r; or
n > 2r, when x(1) is not at the maximum depth, or when a single bundling operation involves more
than two vectors. Thus for membership testing to be effective, m might need to be at large as 4n, or
as small as Õ(n), depending on operation depth in computing x.

The following lemma puts x(1) in a more general bundle.

Corollary 35. Given independent sign vectors x(i) ∈ {±1}m for i ∈ [n′] and y(j) ∈ {±1}m for
j ∈ [r], construct vector x by setting x ← sign(

∑
i∈n′ x(i)), and then for j = 1, . . . , r, setting

x← sign(x+ y(j)). Then, for ℓ ∈ [m],

Pr[x
(1)
ℓ xℓ = 1] =

1

2
+

1

2r
Θ

(
1√
n

)
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Proof. Combine the analysis of Theorem 15 with the lemma just above.

Note that this corollary covers any sequence of operations yielding a vector of the form x(1) ⊕ y,
that is x(1) bundled with y, regardless of how y was computed in the MAP-B algebra.

D.1.3 TESTING FOR EMPTY INTERSECTION

In this section, rather than estimating set intersection size, we aim for bounds on m so that we
can distinguish between nonempty and empty set intersections. Estimating the set intersection size
will depend on a rather complicated convolution of Rademacher random variable; the question of
distinguishing emptiness has a much cleaner analysis.

Throughout this section, we assume that the elements comprising X and Y were all bundled during
the same operation. In other words, they correspond to a depth-1 bundling tree, in the language of
the previous section.

Lemma 36. Let X,Y ⊆ [d], and use x and y to denote their respective MAP-B vectors. If we
choose dimension m ≥ Ω (log(1/δ) · |X||Y |), we can distinguish between the cases |X ∩ Y | = 0

and |X ∩ Y | ≥ 1, using the criterion of whether xT y is smaller or greater than
√
2m log(2/δ).

Proof. Let v, w ∈ {0, 1}d be characteristic vectors for the sets X,Y ⊆ [d]. First, if |X ∩ Y | = 0,
their MAP-B bundles x = sign(Sv) and y = sign(Sw) are independent, and for any coordinate
ℓ ∈ [m]:

E[xℓyℓ] = Pr[xℓyℓ = 1]− Pr[xℓyℓ = −1] = 0

Using Theorem 25, we conclude that with probability 1− δ
2 , we satisfy x⊤y ≤

√
2 log(2/δ) ·m.

Now, suppose |X ∩ Y | = 1. Then, we can use e∗ to denote the standard basis vector that represents
the element in their intersection. Let x = sign(Sv) and y = sign(Sw) be the MAP-B bundles
representing X and Y . (Here, S is a random sign matrix; see Definition 1.)

Since all coordinates within x are independent of each other (and likewise for y), it suffices to under-
stand the distribution of a single coordinate. Fix ℓ ∈ [m]. We will study the quantities Pr[xℓyℓ = 1]
and Pr[xℓyℓ = −1] to eventually obtain a concentration bound for x⊤y.

Let Z(X) = (Se∗)ℓ +
∑
i∈X\Y Z

(X)
i , where the {Z(X)

i }mi=1 are independent Rademacher variables
coming from the ℓ-th coordinates of the atomic vectors that were bundled to form X . Define Z(Y )

similarly for Y , and let X ′ = Z(X) − (Se∗)ℓ and Y ′ = Z(Y ) − (Se∗)ℓ.

First, assume |X \ Y | and |Y \X| are both even. The other cases follow similarly; the only change
to track is that when |X \ Y | (or |Y \ X|) is odd, Z(X) (resp. Z(Y )) could be 0, and we have a 1

2

chance of Z(X) (resp. Z(Y )) being positive and a 1
2 chance it is negative.

Pr[xℓ = yℓ = 1] = Pr[Z(X) = Z(Y ) = 1]

= Pr[X ′ ≥ 0, Y ′ ≥ 0] · Pr[(Se∗)ℓ = 1] + Pr[X ′ ≤ 1, Y ′ ≤ 1] · Pr[(Se∗)ℓ = −1]
= Pr[X ′ ≥ 0] · Pr[Y ′ ≥ 0]

We obtain the following equations similarly, again when |X \ Y | and |Y \X| are even.

Pr[xℓ = 1, yℓ = −1] = Pr[X ′ ≥ 0] · Pr[Y ′ < 0]

Pr[xℓ = −1, yℓ = 1] = Pr[X ′ < 0] · Pr[Y ′ ≥ 0]

Pr[xℓ = yℓ = −1] = Pr[X ′ < 0] · Pr[Y ′ < 0]

Combining these terms, the quantity Pr[xℓyℓ = 1]− Pr[xℓyℓ = −1] is equal to:

(Pr[X ′ ≥ 0]− Pr[X ′ < 0]) · (Pr[Y ′ ≥ 0]− Pr[Y ′ < 0]) = Pr[X ′ = 0] · Pr[Y ′ = 0] (7)

Again using the fact that
(
2p
p

)
1

22p = 1√
πp (1 +O(1/p)) =

√
2
πn (1 +O(1/n)) (which was also used

in the membership test), we have Pr[xℓyℓ = 1]− Pr[xℓyℓ = −1] ≥ Ω

(
1√

|X|·|Y |

)
.
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Define p ≡ C ′ · 1√
|X|·|Y |

, so Pr[xℓyℓ = 1] ≥ 1+p
2 . Applying the Chernoff bound for a sum of m

Rademachers, we have:

Pr
[
(x⊤y ≥ m

2
+

pm

2
−
√
2 log(2/δ) ·m

]
≥ 1− δ

2

In order to distinguish between the two cases, we require pm
2 ≥ 2

√
2 log(2/δ) ·m, so we need to

choose m ≥ Ω
(

log(2/δ)
p2

)
.

Remark 37. If we have |X| = n and |Y | = 1, and enforce a failure probability of δd (so that we
can union bound over all atomic vectors that represent [d]), we recover the result of Lemma D.1.

D.2 ROTATIONS

Our results for MAP-B rotations and bundles of bindings are more limited than what we are able to
prove for MAP-I, again due to the nonlinearities present in the binding operation. As noted before,
we only consider single element membership testing. For sequences, this means checking if a single
element i is present in the j-th set in a sequence.

Theorem 38. Given a sign matrix S ∈ IRm×d and rotation matrix R ∈ IRm×m, and integer
length L. Recall (Def. 7) that SR,L ≡ [S RS R2S . . . RL−1S]. For a sequence of d-vectors
v(0), v(1), . . . v(L−1) ∈ {0, 1}d, let v ≡ [v(0) v(1) . . . v(L−1)], let x = sign(SR,Lv), and let n =
∥v∥1. Then there is m = O(Ln log(Ld/δ)) such that with failure probability at most δ, j ∈ [Ld]

has j ∈ supp(v) if and only if x⊤R⌊j/d⌋S∗,j%d
≥ 2

√
m log(Ld/δ), where j%d ≡ 1 + (j − 1)

mod d.

Here we consider membership testing, leveraging Theorem 15 in a simple way.

Proof. Consider

x⊤R⌊j/d⌋S∗,j%d
=
∑
i∈[m]

xiR
⌊j/d⌋Si,j%d

=
∑
i∈[m]

Si,j%d
R⌊j/d⌋(SR,L)i,∗v

= 1 +
∑
i∈[m]

Si,j%d
R⌊j/d⌋((SR,L)i,∗v − Si,j%d

).

The random variables of S that appear in Si,j%d
R⌊j/d⌋((SR,L)i,∗v − Si,j%d

) cannot appear in

Si+L,j%d
R⌊j/d⌋((SR,L)i+L,∗v − Si+L,j%d

),

since the appearances of a given Si,j due to shifting in SR,L only span L rows. That is, there are at
most L blocks of at least (m/L) − 1 rows such that each block can be analyzed as in Theorem 15.
We obtain, for a given block of rows, and after taking into account that only (m/L) − 1 rows
are in a block, that there is m = O(Ln log(d/δ)) such that with failure probability δ, j ∈ [d]

has j ∈ supp(v) if and only if the vectors x̃ and S̃∗j corresponding to the block of rows have
x̃⊤R⌊j/d⌋S̃∗j ≥ 2

√
(m/L) log(d/δ). By requiring failure probability at most δ/L, satisfied by

m = O(Ln log(dL/δ)), the result follows.

D.3 BINDING

D.3.1 MEMBERSHIP IN KEY-VALUE PAIRS

We will analyze MAP-B bundles of bindings in the restricted setting of key-value pairs. We can test
whether a single key⊗ value belongs to such a bundle.

Definition 39. A bundle of key-value pairs is here a bundling of bindings S⊙2v, where S⊙2
∗j for

j ∈ supp(v) is S∗,q ◦ S∗,w with q ∈ Q, w ∈ W , where Q,W ⊂ [d],Q ∩W = {}, and a given q
appears in only one binding in such a representation. That is, each S∗,q is bound to only one S∗,w,
noting that two q, q′ may bind to the same S∗,w.
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Theorem 40. Let v ∈ {0, 1}(
d
2) be such that x = sign(S⊙2v) is a bundle of key-value pairs, as in

Def. 39. Let n = ∥v∥1. Then there is m = O(n log(d/δ)) such that with failure probability at most
δ, j ∈ [

(
d
k

)
] has j ∈ supp(v) if and only if x⊤S⊙2

∗j ≥ 2
√
m log(d/δ).

The proof of this theorem again leverages Theorem 15.

Proof. For j ∈ [
(
d
2

)
], let w(j) ∈ W, q(j) ∈ Q be the indices such that S⊙2

∗,j = S∗,w(j) ◦ S∗,q(j). Let
ĵ ∈ supp(v). We have sign(x⊤S⊙2

∗ĵ ) = sign(1 + (S⊙2v − S⊙2

∗,ĵ )
⊤S⊙2

∗ĵ ), and

S⊙2v − S⊙2

∗,ĵ =
∑
j ̸=ĵ

S∗,q(j) ◦ S∗,w(j).

Since each S∗,q(j) appears only once in the sum, the summands are independent sign vectors. (What-
ever the relations among the w(j).) So x⊤S⊙2

∗,ĵ satisfies the same conditions as does the same expres-

sion in the proof of Theorem 15, as does x⊤S⊙2
∗,j′ for j′ /∈ supp(v). Therefore the same conditions

on m imply the same results on failure probability as in Theorem 15, and the lemma follows.

The conclusion of the theorem is much the same as that of Theorem 15. This is not a coincidence:
the analysis of key-value pairs reduces to the same setting as that earlier lemma. Binding is done in
MAP-B the same as in MAP-I, namely, as coordinate-wise product. Here we also consider member-
ship test in a bundle of bindings, where again we assume that the bundling is done in one step, that
is, a sum over the integers followed by the sign function.

E SPARSE BINARY BUNDLING AND BLOOM FILTER ANALYSIS VIA
CONCENTRATION

We will analyze the VSA dimension needed for reliably estimating the size of the intersection of
sets represented by Bloom filters (§E.1) and Counting Bloom filters (§E.2). In the latter, we actually
consider a generalization to weighted sets.

E.1 BLOOM FILTERS

In the VSA model described in this section, the atomic vectors are x ∈ {0, 1}m where for some k,
∥x∥1 ≤ k, with the nonzero entries chosen randomly. As discussed in Def. 17, an atomic vector
B∗j is created by performing k trials, in each trial picking i ∈ [m] uniformly at random and setting
Bij ← 1. (It is possible to pick the same i ∈ [m] twice, in which case we only perform the update
once.) Bundling will be done with disjunction, so a set with characteristic vector v ∈ {0, 1}d is
represented as 1 ∧Bv, meaning that the coordinate-wise minimum of Bv with 1 is taken.

This representation, and the resulting membership testing, has long been studied as used as Bloom
filters, with many variations, including applications to private set intersection estimation. However,
the narrow question of how to use dot products of Bloom filter representations (or other simple
vector operations) to estimate set intersection size, is less well developed. It is outlined briefly in
Broder & Mitzenmacher (2004), and discussed in Swamidass & Baldi (2007). An analysis is given
in Papapetrou et al. (2010), where the assumption is made that the entries of Bv are independent of
each other. 3 We will bound the error in estimating set intersections using Bloom filters in Theorem
18.

A key quantity for our analysis is the number of nonzeros in Bv as a function of ∥v∥0, when v ∈
{0, 1}d. We will let ∥x∥0 denote the number of nonzeros of x, so ∥1 ∧ Bv∥1 = ∥Bv∥0. This
includes real numbers y, so ∥y∥0 is one when y ̸= 0, and 0 otherwise.

3This is a good approximation, but the approximation is not rigorously substantiated, so the results are
correct only up to that assumption. See also Bose et al. (2008) regarding difficulties in the analysis of Bloom
filters.
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Lemma 41. For v ∈ {0, 1}d, let n ≡ ∥v∥0. Define κ ≡ ∥Bv∥0, and let pℓ ≡ (1 − 1/m)kℓ. Then
E[κ] = m(1− pn). Moreover, letting m̃ ≡ −1/ log(1− 1/m),

1− kℓ

m− 1
≤ pℓ = exp(−kℓ/m̃) ≤ exp(−kℓ/m) (8)

Letting hm,k(z) ≡ −m̃
k log(1− z

m ), we have hm,k(E[κ]) = hm,k(m(1− pn)) = n.

Here, we can think of hm,k as an estimator for ∥v∥0, accounting for collisions in Bv. It is not
unbiased, as we do not have E[hm,k(κ)] = n, but hm,k(κ) will still be a good estimator if κ
concentrates; luckily for us, it does, as shown below.

The definitions of m̃ may also seem a bit curious; we use the following well-known inequalities.

log(1 + x) ≤ x for all x

− log(1− x) ≤ x

1− x
for x < 1

(9)

These imply

1

m
≤ − log(1− 1

m
) ≤ 1/m

1− 1/m
=

1

m− 1
, and so (10)

m− 1 ≤ m̃ ≤ m (11)

Proof of Lemma 41. Observe that for each of n vectors B∗j , there will be k independent trials gen-
erating random i ∈ [m], so for (Bv)i to be zero, all kn independent trials need to miss index i. This
happens for a single trial with probability 1− 1/m, and so the probability that all kn trials miss i is
(1− 1/m)kn. It follows that the expected number of nonzeros

E[κ] = E[∥Bv∥0] = E[
∑
i∈[m]

∥Bi∗v∥0] =
∑
i∈[m]

E[∥Bi∗v∥0] = m(1− (1− 1/m)kn) = m(1− pn),

as claimed. To show (8), we use (9) and (10), which imply

1− kℓ

m− 1
≤ exp(−kℓ/(m− 1)) ≤

(
1− 1

m

)kℓ
= pℓ ≤ exp(−kℓ/m),

as claimed. The last claim is immediate.

Theorem (Restatement of Theorem 18). Let v, w ∈ {0, 1}d represent sets X,Y respectively, and
define the following counts:

n ≡ |X ∩ Y | = v · w, nv ≡ |X \ Y | = ∥v∥0 − n, nw ≡ |Y \X| = ∥w∥0 − n

Let x = 1 ∧Bv and y = 1 ∧Bw, where B ∈ {0, 1}m×d is a sparse binary matrix.

Assume WLOG nw ≥ nv . Then for δ ∈ (0, 1) and ε > 0, there are k = O(ε−1 log(1/δ)) and
m = O(kε−1(nvnw + n2 + ε(n+ nw))) such that hm,k(x · y) = n± ϵ with failure probability δ.
Here, hm,k(z) (see Lemma 41) maps the Bloom filter output 1 ∧Bz to an estimate of ∥z∥0.

When ε < 1/2, the integrality of n implies an exact result. Thus, the theorem implies that when n
and nv are O(1), m = O(knw) and k = O(log(1/δ)) suffice. This includes the case of membership
testing, where nv = 1.

The theorem also allows ε > 1, including ε = ε̃n, which allows us to estimate n up to relative
error ε rather than additive error ε. In this case, m = O(kε̃−1(nvnw/n + n) + knw) and k =
O(max{1, ε̃−1n−1 log(1/δ)}) suffice.

Proof. Let vc = v ◦ w, where ◦ denotes element-wise product, so n = ∥vc∥0, and let

κ∩ = ∥Bvc∥0.

Let xc = 1 ∧Bvc, x̃ = x− xc, ỹ = y − xc, and let

κ∆ ≡ x̃ · ỹ = x · y − κ∩,
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noting that x̃ · xc = 0 and ỹ · xc = 0,

x̃ · ỹ = x · y − xc · x− xc · y + xc · xc

= x · y − (xc · x̃+ xc · xc)− (xc · ỹ + xc · xc) + xc · xc

= x · y − xc · xc

In other words, we can rewrite x · y = κ ≡ κ∩ + κ∆, where κ∩ counts the 1s that x and y have
in common due to elements in supp(v) ∩ supp(w), while κ∆ counts the 1s common to x, y due to
elements corresponding to the symmetric difference supp(|v − w|) = supp(v)∆ supp(w), that are
not already counted in κ∩.

Recall that we defined pℓ ≡ (1− 1/m)kℓ in Lemma 41. Then,

pn ≡ 1− 1

m
E[κ∩] = 1− 1

m
E[∥Bv∥0], pnv

≡ 1− 1

m
E[∥Bv∥0], pnw

≡ 1− 1

m
E[∥Bw∥0]

Using Lemma 41 and (8), and letting pvw ≡ (1− pnv
)(1− pnw

),

E[κ∩] = m(1− pn)

E[κ∆] = mpnpvw, and pvw ≤
knv
m− 1

· knw
m− 1

=
k2nvnw
m2

(1 +O(1/m)).
(12)

where the latter is due to the fact that the probability that given entries x̃i and ỹi contribute to x̃ · ỹ
is the probability that (a) the n entries of vc yield Bi∗v

c = 0, and (b) that both entries x̃i and ỹi are
nonzero. Note that the three events in (a) and (b) are independent, since supp(vc), supp(v−vc), and
supp(w − vc) are disjoint.

Suppose, for some ε∩, εT > 0,

κ∩ ≥ E[κ∩]− ε∩

κ ≤ E[κ] + εT ,
(13)

which holds with small failure probability, as shown below. First, using these assumptions on κ∩
and κ, we establish a lower bound on hm,k(κ). Since κ∆ ≥ 0,

− k

m̃
hm,k(κ) = log(1− κ

m
) = log(1− κ∩ + κ∆

m
)

≤ log(1− κ∩

m
)

≤ log(1− E[κ∩]− ε∩
m

)

= log(pn +
ε∩
m

)

= log(pn) + log(1 +
ε∩
mpn

)

≤ log(pn) +
ε∩
mpn

≤ − k

m̃
(n− ε∩

kpn
), using (11) and the definition of pℓ, and so

hm,k(κ) ≥ n− ε∩
kpn

.

If we assume that m ≥ 2kn+ 1, then pn ≥ 1/2. We have

hm,k(κ)− n ≥ − ε∩
kpn
≥ −2ε∩

k
, (14)
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Again, using our assumptions on the sizes of κ∩ and κ, we can obtain an upper bound on hm,k(κ)

hm,k(κ) =
−m̃
k

log(1− κ

m
)

≤ −m̃
k

log(1− E[κ] + εT
m

)

=
−m̃
k

log(pn − pnpvw −
εT
m

)

= n− m̃

k
log(1− pvw −

εT
mpn

)

≤ n− m

k
log(1− pvw −

εT
mpn

) using (11)

≤ n+
m

k
pvw +

m

k

εT
mpn(1− pvw)

, using (9) (15)

Assume that
m ≥ max{k

√
2nvnw + 1, 2kn+ 1}. (16)

which includes the prior assumption on m. Then using (8) and (12),

1− pvw ≥ 1− knv
m− 1

· knw
m− 1

≥ 1/2

so pn(1− pvw) ≥ 1/4. Therefore, from (15),

k

m
(hm,k(κ)− n) ≤ pvw +

εT
mpn(1− pvw)

≤ pvw +
4εT
m

,

and so

hm,k(κ)− n ≤
[
knvnw
m

+
4εT
k

]
(1 +O(1/m)), using(12). (17)

Both (14) and (17) control how close hm,k(κ) is to n, but they rely on the assumptions in (13). We
now need to bound Pr[κ∩ − E[κ∩] ≤ −ε∩] and Pr[κ − E[κ] ≥ εT ], so that (13) holds with high
probability.

Recall that κ∩ = ∥Bvc∥0. We can express κ∩ as κ∩(X1, X2, . . . , Xkn), where each Xℓ makes a
random choice i ∈ [m] and sets Bi∗v

c to one; such choices are made k times for each of the n
entries of vc that are equal to one. To apply Theorem 24, bounds on B(κ∩) and the Vari(κ∩) are
needed.

Given choices for all other Xℓ′ , a choice i for Xℓ changes κ∩ if and only if given those other
choices, Bi∗v is equal to zero. The only effect of these other choices is the number of bins already
with ones, that is, the number of i′ with Bi′∗v

c = 1. Given that r bins have ones, the expected value
of κ∩ with respect to the random choice Xℓ is 1 − r/m, and the most κ∩ can differ from this is
1 − r/m ≤ 1, since it can hit one of those r bins that are already one. The variance Varℓ(κ∩) is
r/m− (r/m)2 ≤ r/m ≤ (kn−1)/m, the variance of a Bernoulli random variable with probability
1 − r/m of being one, and zero otherwise. Thus σ̃(κ∩) ≤ (kn)2/m.4 From Theorem 24, if
ε∩ = kε/4 for given ε > 0, then

Pr[κ∩ − E[κ∩] ≤ −ε∩] ≤ exp

(
− 2ε2∩
σ̃(κ∩) + ε∩B(κ∩)/3

)
≤ exp

(
− 2ε2∩
(kn)2/m+ ε∩/3

)
= exp

(
− 2(kε/4)2

(kn)2/m+ (kε/4)/3

)
= exp

(
− ε2

8n2/m+ 2ε/3k

)
. (18)

Leaving aside for the moment the values needed for m and k, we consider next Pr[κ− E[κ] ≥ εT ].
Here from κ = κ∩ +κ∆, we can regard κ as the function of 2kn+2knv +2knw random variables,
of which the first 2kn, from κ∩, have σ̃ contribution at most (kn)2/m and B ≤ 1. The next 2knv ,

4Put in a common setting, the bound of Broder & Mitzenmacher (2004) corresponds to putting into the tail
estimate denominator a value of kn ≥ (kn)2/m for m ≥ kn, and the bound of Kamath et al. (1995) quoted in
Bose et al. (2008) corresponds to m ≥ (kn)2/m for m ≥ kn.
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representing the choices made that result in x̃, each have the property that their mean and variance,
as a function of the choices of all the other variables, depend only on the number of ones in ỹ: the
minimum mean is 1−knw, so the contribution to B is at most 1−knw ≤ 1; the maximum variance
is (knw/m)(1 − (knw/m)) ≤ knw/m. There are knv such variables, so the contribution to σ̃
is (knv)(knw/m). Similarly, the last knw random choices have B ≤ 1 and contribution to σ̃ of
(knw)(knv/m). So B(κ) ≤ 1, and σ̃(κ) ≤ k2(n2 + 2nvnw)/m. If εT = kε/4, we have

Pr[κ− E[κ] ≥ εT ] ≤ exp

(
− 2ε2T
σ̃(κ) + εTB(κ)/3

)
≤ exp

(
− 2ε2T
k2(n2 + 2nvnw)/m+ εT /3

)
= exp

(
− 2(kε/4)2

k2(n2 + 2nvnw)/m+ (kε/4)/3

)
= exp

(
− ε2

8(n2 + 2nvnw)/m+ 2ε/3k

)
. (19)

If (19) yields a bound of δ/2, (18) will too, and the total failure probability will be at most δ.

Assume WLOG that nw ≥ nv . From (17), for the mean of κ to be at most ε, we must have
m ≥ knvnw/2ε. This implies that in (19), 8(n2 + 2nvnw)/m + 2ε/3k ≤ 8n2/m + c1ε/k, for
c1 = 32+ 2

3 . For 8n2/m to not dominate c1ε/k in the sum 8n2/m+c1ε/k, we need m ≥ 8kc1n
2/ε,

yielding 2c1ε/k in the denominator, so that under these assumptions regarding m,

Pr[κ∆ − E[κ∆] ≥ ε] ≤ exp

(
− ε2

8(n2 + 2nvnw)/m+ 2ε/3k

)
≤ exp

(
− ε2

2c1ε/k

)
= exp(−kε/2c1) ≤ δ/2 for k = 2c1 log(2/δ)/ε.

With a similar bound for Pr[κ − E[κ] ≤ −ε], via (14), we have that m ≥ k
ε (nvnw/2 + 8c1n

2 +
ε(n+ nw)) with k = 2c1 log(2/δ)/ε suffices to obtain hm,k(x · y) = n± ε with failure probability
δ. The result follows.

E.2 COUNTING BLOOM FILTERS

In another sparse binary model, bundling is done by addition in instead of disjunction, so a bundle
is simply Bv instead of 1 ∧ Bv. In the data structures literature, this is a counting variant of a
Bloom filter. Here B is chosen to be sparse in a slightly different way than for Bloom filters: each
atomic vector B∗j for j ∈ [m] has all vectors with k ones equally likely, or equivalently, is created
by starting from a vector of all zeros, in each trial picking i ∈ [m] uniformly at random, setting
Bij → 1, until there are k nonzeros.

When the sparsity is block-structured, that is, an atomic m-vector has m divisible by k, and there
are k blocks each with exactly one nonzero entry, then the resulting bundling is called a count-min
sketch in the data structures literature, and the Sparse Block Codes model in the VSA literature. See
Cormode & Muthukrishnan (2005) and Laiho et al. (2015) respectively for more information.

Cormode & Muthukrishnan (2005) showed that dot product estimation for two bundles can be done
as a nonlinear operation: taking dot products of corresponding blocks and then the minimum of
these k dot products. The resulting estimate X of v ·w using Bv and Bw has v ·w ≤ X ≤ v ·w+ ε
with failure probability δ, for m = km′ where k = O(log(1/δ)) and m′ = O(∥v∥1∥w∥1/ε).
For v, w ∈ {0, 1}d, the dimension m needed for estimating set intersection size has a smaller
dependence on ε, but possibly worse dependence on ∥v∥1, ∥w∥1, and v · w than what we showed
for Bloom filters. This is because ∥v∥1∥w∥1 = (nv + n)(nw + n) ≥ nvnw + n2, where n, nv , and
nw are defined in Theorem 18.

Beyond the setting above, v and w may have entries that are nonnegative integers, corresponding to
multi-sets (sets where each element appears with some multiplicity). Dot products for such multi-
sets have applications in database operations. However, one could also consider an analog of set
intersection for multi-sets where the multiplicity of an element in the intersection is the minimum
of its multiplicities in the two intersected multi-sets. The size of the intersection, defined in this
way, can also be estimated using bundles of sparse binary atomic vectors. This operation will be
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analyzed next. For x, y ∈ IRm, let x ∧ y denote the vector z with zi = min{xi, yi}. As discussed,
on nonnegative vectors, we define the operation x∧· y ≡ ∥x∧ y∥1 =

∑
i∈[m] min{xi, yi}. Note that

∥x− y∥1 = ∥x∥1 + ∥y∥1 − 2(x ∧· y), analogous to ∥x− y∥22 = ∥x∥22 + ∥y∥22 − 2(x · y).
Theorem (Restatement of Theorem 19). Let v, w ∈ Rd≥0. Let Kb ≡ ∥v − w∥∞ ≤
max{∥v∥∞, ∥w∥∞}, and define:

n ≡ v ∧· w, nv ≡ ∥v∥1 − n, nw ≡ ∥w∥1 − n,

Let x = Bv and y = Bw, where B ∈ {0, 1}m×d is a sparse binary matrix. Then, for δ ∈ (0, 1) and
ε > 0, there are k = O(Kbε

−1 log(1/δ)) and m = 12π2kε−1nvnw = O(Kbε
−2nvnw log(1/δ))

such that
(x ∧· y)/k − (v ∧· w) ∈ [0, ϵ)

with failure probability at most δ. Since nv + nw = ∥v − w∥1, m = O(Kbε
−2∥v − w∥21 log(1/δ))

also suffices (using the AM-GM inequality on nvnw). If ∥v∥1, ∥w∥1 are stored, then ∥v − w∥1 can
be estimated up to additive ε with the same m.

Proof. Let ṽ ≡ v − (v ∧ w), w̃ ≡ w − (v ∧ w) and x̃ ≡ Bṽ, ỹ ≡ Bw̃. Note that nv = ∥ṽ∥1,
nw = ∥w̃∥1. Using min{c+ a, c+ b} = c+min{a, b}, we have

1

k
(x ∧· y) = 1

k
(Bv ∧· Bw)

=
1

k
(B(v ∧ w) +Bṽ) ∧· (B(v ∧ w) +Bw̃)

=
1

k
1⃗⊤mB(v ∧ w) +

1

k
(Bṽ ∧· Bw̃)

= v ∧· w +
1

k
(x̃ ∧· ỹ). (20)

It remains to bound 1
k (x̃ ∧· ỹ). We have ṽ ◦ w̃ = 0, so for every i ∈ [m], Bi∗ṽ is independent of

Bi∗w̃. Therefore,
Pr[x̃i ∧ ỹi ≥ z] = Pr[x̃i ≥ z] Pr[ỹi ≥ z]

Since ∥ṽ∥1 = nv , E[x̃i] = knv/m, and so by Markov’s inequality Pr[x̃i ≥ z] ≤ knv/(zm).
Similarly, Pr[ỹi ≥ z] ≤ knw/(zm). Using the identity E[Y ] =

∑
z≥1 Pr[Y ≥ z],

E[x̃i ∧ ỹi] =
∑
z≥1

Pr[x̃i ∧ ỹi ≥ z] =
∑
z≥1

Pr[x̃i ≥ z] Pr[ỹi ≥ z]

≤
∑
z≥1

(knv/(mz))(knw/(mz)) = ζ(2) · k
2nvnw
m2

=
π2

6
· k

2nvnw
m2

,

where ζ(2) =
∑
z≥1 1/z

2 is the Riemann zeta function. Thus

E[x̃ ∧· ỹ] ≤ π2

6
· k

2nvnw
m

. (21)

It remains to show that x̃∧· ỹ concentrates. We will use the Bernstein form of McDiarmid’s inequality
(Theorem 24), showing concentration of a function f(X). Here X ∈ [m]nt for nt ≡ k∥ṽ + w̃∥0 ≤
k(nv+nw), and each Xr, for r ∈ [nt], maps to a column j of B where ṽj+ w̃j > 0, and for random
i = Xr ∈ [m], Bij is incremented by one. The function f(X) is then f(X) = Bṽ∧· Bw̃, where B is
determined by X . To use Theorem 24, we need to bound σ̃(f) and B(f) of that theorem, bounding
the effects of changes of single entries of X .

Suppose B′ is the result of the choices of X , for all entries except for entry Xr, where Xr maps to
column j, and to a random I ∈ [m]. Then the resulting B = B′ + eIe

⊤
j , where ej ∈ {0, 1}d (with

the 1 in the j position) and eI ∈ {0, 1}m (with the 1 in the I position) are natural basis vectors, and
Bv = B′v + eIe

⊤
j v = B′v + vjeI .

Here gi(X, y) of Theorem 24 corresponds to g(B′, j, I) = (B′ + eIe
⊤
j )ṽ ∧· (B′ + eIe

⊤
j )w̃, and we

need to bound, over all B′ and j, Vari[g(B′, j, i)] and maxi |g(B′, j, i) − Ei′g(B′, j, i′)]|. Again
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noting that because addition distributes over minimization, we can let x′ ≡ B′ṽ− (B′ṽ ∧B′w̃) and
y′ ≡ B′w̃ − (B′ṽ ∧B′w̃), and write

g(B′, j, I) = (B′ṽ + eI ṽj) ∧· (B′w̃ + eIw̃j)

= [(B′ṽ)I + ṽj ] ∧ [(B′w̃)I − w̃j ] +
∑
i ̸=I

(B′ṽ ∧B′w̃)i

= [(B′ṽ)I + ṽj − ((B′ṽ)I ∧ (B′w̃)I)]

∧ [(B′w̃)I + w̃j − ((B′ṽ)I ∧ (B′w̃)I)]

+ ((B′ṽ)I ∧ (B′w̃)I) +
∑
i ̸=I

(B′ṽ ∧B′w̃)i

= (x′
I + ṽj) ∧ (y′I + w̃j) + (B′ṽ ∧· B′w̃)

= (B′ṽ ∧· B′w̃) + βIj , (22)

where βIj ≡ (x′
I + ṽj) ∧ (y′I + w̃j).

Since the choices of I and j don’t affect (B′ṽ∧· B′w̃), only βIj affects σ̃(f) and B(f). As ṽ◦w̃ = 0,
we first assume that ṽj > w̃j = 0. Under that assumption, since x′ ◦ y′ = 0, either βIj = 0 or
βIj = y′I ∧ ṽj , and so ∥β∗j∥∞ ≤ ∥ṽ∥∞ for all j.

Allowing for the possibility that w̃j > ṽj = 0 and that sometimes βij = 0, we have

B(f) = max
B′,j,i

|g(B′, j, i)− EI′g(B′, j, I ′)]|

=max
B′,j,i

|βij − EI′βI′j ]| from (22)

≤max{∥ṽ∥∞, ∥w̃∥∞} = ∥v − w∥∞ = Kb. (23)

Also, under the assumption for given j ∈ [d] that ṽj > w̃j = 0,

Varr(f) = sup
B′

EI [(βIj − EI′βI′j ])2] ≤ sup
B′

EI [β2
Ij ] ≤ sup

B′
EI [(y′I ∧ ṽj)

2] using ṽj > w̃j = 0

≤ sup
B′

ṽjEI [y′I ∧ ṽj ] ≤ sup
B′

ṽjEI [y′I ] = sup
B′

ṽj∥y′∥1/m

≤kṽj∥w̃∥1/m.

Combining this with an analogous expression when w̃j > ṽj = 0, and summing over all Xr,

σ̃(f) ≤ 2k2∥ṽ∥1∥w̃∥1/m = 2k2nvnw/m. (24)

We can now apply Theorem 24, scaling by k as in the theorem, and using k = 2Kb

3 ε−1 log(1/δ) and
m = 12π2kε−1nvnw = 8π2ε−2nvnw log(1/δ), to obtain

Pr[x̃ ∧· ỹ > E[x̃ ∧· ỹ] + kε/2] ≤ exp

(
− 2(k2ε2/4)

σ̃(f) + kεB(f)/6

)
≤ exp

(
− k2ε2/2

(2k2nvnw/m) + kεKb/6

)
from (24), (23)

= exp

(
− ε2

4nvnw/m+ k−1εKb/3

)
= exp

(
− ε2

nvnw/(3π2ε−2nvnw log(1/δ)) + ε2/2 log(1/δ)

)
≤ exp

(
− ε2

ε2/2 log(1/δ) + ε2/2 log(1/δ)

)
= δ.

We also need (21) to bound

E[x̃ ∧· ỹ] ≤ π2

6
· k

2nvnw
m

=
π2

6
· k2nvnw
12π2kε−1nvnw

= kε/2.

Putting these together,
Pr[x̃ ∧· ỹ ≥ kε] ≤ δ,

which with (20) implies the result.
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