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Abstract

Despite recent advances in text-to-video generation, the role of text and video latent spaces in
learning a semantically shared representation remains underexplored. In this cross-modality
generation task, most methods rely on conditioning the video generation process by injecting
the text representation into it, rather than exploring the implicit shared knowledge between
the modalities. However, the feature-based alignment of both modalities is not straightfor-
ward, especially for the one-to-many mapping scenario in which one text can be mapped
to several valid semantically aligned videos, a challenge that generally produces a represen-
tation collapse in the alignment phase. In this work, we investigate and give insights into
how both modalities cope in a shared semantic space where each modality representation
is previously learned in an unsupervised way. We explore this from a latent space learning
perspective by proposing a plug-and-play framework that adopts autoencoder-based models
that could be used with other representations. We show that the one-to-many case requires
different alignment strategies than those commonly used in the literature, which struggle to
align both modalities in a semantically shared space.

1 Introduction

Cross-modality video generation has recently received a lot of attention due to the impressive performance
of recent video generators, making it more difficult to distinguish synthetic from real samples. However,
regarding the representation learning aspect of this task, particularly when coupled with joint embedding
learning, it remains unclear how both modalities cope in latent space and how feature alignment occurs
across different approaches. Recent works (Girdhar et al., 2023; Maiorca et al., 2023; Theodoridis et al.,
2020) focus on alignment directions in latent space but employ general approaches that do not explicitly
address the one-to-many mapping scenario, where one input from a source modality can be mapped to n

different and valid outputs in a target modality.

In text-to-video generation, the nature of language enables multiple textual descriptions of a single video
scene, while simultaneously, a single text description can correspond to multiple valid visual interpretations.
In this context, cross-modality alignment is hindered by the one-to-many mapping problem, as a collapse
process is unintentionally encouraged in training. In a general one-to-one case, one input text is trained
to be associated with one output video, but in the one-to-many case, one input is associated with several
cross-modality outputs. A generic training pipeline in this case encourages poor alignment between the
modalities that may cause collapse to the most frequent association, a mean representation of it, or even a
random and nearby output in latent space.

Despite being a challenging task, the analysis of the learned joint latent space in the generative context
is underexplored. In representation learning, most methods rely on classification and retrieval tasks when
dealing with a joint embedding approach (Fang et al., 2022; Girdhar et al., 2023; Xue et al., 2023) to validate
the learned representation. Regarding text-to-video generators, most methods focus on solutions in which
the text representation is integrated through a fusion process within the video generator (Ge et al., 2022;
He et al., 2022; Ho et al., 2022; Wang et al., 2024). In these approaches, the latent representation is held
in the background, as this alignment is learned implicitly in the process, with evaluation focusing primarily
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on video quality. While metrics can detect poor alignment, alignment-based methods would benefit from
complementary analysis of the learned joint latent space.

In this context, some works have been proposed to align and generate data from multiple modalities (Tang
et al., 2023), where modality-specific models are trained from scratch to learn and regularize a semantically
shared representation space. Moreover, these methods rely on large-scale data sets for training, such as
WebVid-2M (Bain et al., 2021) and HD-VILA-100M (Xue et al., 2022), whose large volume of text-video
pairs may mask the one-to-many mapping problem. Nevertheless, there are currently several pre-trained
models available in the computer vision community for text and video, yet, to the best of our knowledge,
few works leverage these pre-trained representations for feature-based cross-modal alignment. Additionally,
little is known about this alignment from a latent space perspective, which could provide insights into how
the modalities cope in a semantically shared space.

In particular, when using autoencoding approaches that regularize the target-modality latent space, analyzing
this implicit representation could aid in understanding the alignment process. For the image modality, prior
work has explored this relation, from concerns about bias (Gat et al., 2022) when analyzing the latent space,
ideal latent distributions for generative models (Hu et al., 2023), to understanding cross-modality alignments
for classification tasks (Maiorca et al., 2023), and methods for building joint distributions from autoencoder
models (Piening & Chung, 2024; Xu et al., 2019) that enable the generation process.

In this work, we aim for a better understanding of the one-to-many case in text-to-video generation. We take
the latent space analysis perspective to investigate the structure of the case along with how the modalities
cope in pure alignment-based methods. We consider this complementary information with common video
quality metrics used for the problem, for which we also make an adaptation considering the several videos
associated with one input text. We consider a pipeline that leverages models trained in an unsupervised way
on their respective modalities, such as text and video encoders, and aligns them in a shared representational
space. We show that approaches that directly align these representations (Girdhar et al., 2023) struggle with
the one-to-many mapping problem, for which we propose a progressive learning strategy for analysis and as
a baseline. Furthermore, we investigate the impact of self-supervised learning methods originally designed
for single-modality representation learning, such as BYOL (Grill et al., 2020), SimSiam (Chen & He, 2021),
and VicReg (Bardes et al., 2022), and show their limitations when applied to cross-modal alignment. The
main contributions of this work1 include the following:

• We identify the one-to-many mapping scenario as a key challenge in cross-modality text-to-video genera-
tion and demonstrate its impact on feature alignment approaches. To investigate this, we adopt a latent
space analysis perspective to characterize the problem’s structure and to explore the relationship between
text and video distributions.

• We propose a unidirectional progressive text-to-video model to analyze the one-to-many case, mapping
text first to a shared semantic space, then to the target video distribution.

• We investigate different mapping functions between the data modalities and show their impact on the
shared semantic space and how the individual video modality representations can affect the alignment.

2 Related Works

Text-to-video generation approaches can be divided into those that inject the text as conditioning information
in the video generation process and those that aim to learn a generation pipeline by aligning the latent
representations of both modalities.

2.1 Fusion-based text-to-video generation

In multimodal machine learning, Liang et al. (2024) categorizes fusion into two types: fusion with abstract
modalities and with raw modalities. In text-to-video generation, most methods adopt the former, which
considers encoders to represent each modality before applying a fusion method with the two streams of data.

1The models, checkpoints and data sets generated in this work are publicly available at http://to.be.shared.
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The latter employs a fusion process at early representation learning stages, such as using the raw modalities
as inputs, and is less explored in the literature.

Text conditioning in fusion-based techniques ranges from simple text injection in the generation process,
such as concatenating text and video embeddings (Ge et al., 2022; Wang et al., 2024), to complex fusion
methods based on attention modules or Multi-layer Perceptron (MLP) layers that generate fused text-video
embeddings (He et al., 2022; Ho et al., 2022). Both text-only and fused text-video embeddings can be used
at different stages or layers of the video generation process. This type of injection aims to ensure that the
conditioning information is maintained in the generation and aligned with the desired video semantics. Ge
et al. (2022) prepend the text embedding to the video tokens in their transformer-based video generator.
Ho et al. (2022) applied MLP layers to the text embedding before adding it to each residual block of their
diffusion process. He et al. (2022) concatenates the conditioning information with the latent input with the
option to apply or not cross-attention layers before adding it as input to a Latent Diffusion Model (LDM).

2.2 Cross-modality generation based on feature-alignment

Unlike approaches that inject the conditioning information into the generation process, multi-modal latent
alignment focuses on creating a shared latent space between different modalities. The alignment can support
various generation scenarios, ranging from a unidirectional or one-to-one generation (Theodoridis et al.,
2020) to any-to-any generation (Tang et al., 2023). In the former, a sample of a target modality M t

1 is
generated from an input modality M1, but not the other way around. In the latter, one or multiple target
modalities M t

1, . . . , M t
m can be generated from one or multiple input modalities M1, . . . , Mn.

In the unidirectional context, Theodoridis et al. (2020) proposed a alignment of the latent spaces of two
modalities using Variational Auto-Encoders (VAEs) in two separate phases. First, a VAE model for each
modality is trained to learn their respective latent spaces. In a second phase, an additional VAE is used to
learn a mapping between the two modalities, forming a joint embedding space between them. The alignment
is learned by minimizing the Fréchet distance (C. Dowson & V. Landau, 1982) between the distributions
and is validated on food image analysis and 3D hand pose estimation. Similarly, in an any-to-any context,
CoDi (Tang et al., 2023) employs a two-stage process. The first stage learns the representation of each
modality using an LDM. The second stage learns a shared latent space between the modalities, in which one
representation is projected onto another by also injecting the target modality in the process, and alignment
is achieved through a contrastive approach.

Although these approaches implicitly support text-to-video generation, they did not explore this scenario,
particularly the one-to-many case. Furthermore, they require joint training from scratch, without leveraging
pre-trained representation models for text and video that could benefit the generation process.

Moreover, other methods have been proposed in video-language pre-training for cross-modality tasks such
as video-text retrieval and video question answering (Xue et al., 2022; 2023). Xue et al. (2022) proposed a
method that encodes high- and low-resolution frames separately before combining them through fusion prior
to cross-modal processing. Expanding beyond video-text, Girdhar et al. (2023) proposed a representation-
based alignment focused on images as the main binding modality across other modalities, excluding video.
In a similar vein, Maiorca et al. (2023) presented a CoDi-like (Tang et al., 2023) approach in the text-image
domain, where the decoders for target modalities are pre-trained on their respective source modalities.

Regarding the alignment process, a contrastive approach is generally used, such as InfoNCE (van den Oord
et al., 2018), which was adopted in CLIP (Radford et al., 2021). Other works further explore this alignment
process (Li et al., 2022; Yeh et al., 2022). DeCLIP (Li et al., 2022) uses a smaller data set of 88M pairs with
self-supervised learning applied to both modalities, a multi-view cross-modality loss that extends the multi-
crop transformation of Caron et al. (2020), and a nearest-neighbor alignment strategy. Yeh et al. (2022)
propose the removal of the negative-positive-coupling effect in learning. Although these works propose
different modality augmentations, they are not directly applicable to the one-to-many case. Augmenting or
changing the text modality could generate multiple valid mappings for a single input, potentially mixing
different semantics. Moreover, InfoNCE enforces a one-to-one match between the modalities, treating other
valid pairs, such as multiple videos corresponding to the same text in the one-to-many case, as “incorrect
pairings” in its batch formulation of positive and negative samples.
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Figure 1: Pipeline to learn a joint semantic space p(z) by bridging the gap between the conditional latent distributions of each
data modality, q(z | v) and q(z | t), by minimizing the divergences between shared and target video representations, between the
available pairs of text and video. We learn each of these posteriors individually as a variational family using the original data,
p∗(v) and p∗(t), through a specific encoder, Ev and M ◦ Et, respectively. Given that our evaluation task is video generation
from text, we evaluate the quality of the generated videos (by decoder G) through a discriminator Dv , and by inspecting the
similarity on the latent spaces of the decoupling process through additional discriminators Dz and Ds.

3 Unidirectional Progressive Learning for Semantic-Shared Latent Space Alignment

To analyze and understand the one-to-many scenario, we propose a unidirectional approach for cross-modal
text-to-video generation. Our pipeline consists of two phases: (1) representation learning for each modality,
and (2) semantic space alignment based on progressive learning from the text modality. Through this
pipeline, we analyze how alignment occurs in two key stages: the shared semantic space between modalities
and the target video distribution. First, we assume that video, v, and text, t, data are in an ideal joint space,
p∗(v, t, z), where a latent variable, z, holds the joint semantic meaning of them. Hence, our problem is to
learn the marginalized distribution p∗(z) given the observations that come from the other marginals that are
available at training time. To address the modeling problem of the semantic space p∗(z), we intend to learn
the marginal conditional distributions for each modality. That is, we intend to learn p(z | v) ≡ p∗(z | v) and
p(z | t) ≡ p∗(z | t). However, learning these posteriors is intractable. Thus, we intend to approximate them
with a variational family, q(z | v) and q(z | t), respectively, parameterized with neural networks. Finally, we
need to make them similar so that the semantic information of both is equivalent.

To learn q(z | v) and q(z | t), we decouple each approximation into two phases. The first phase learns each
modality representation, such as q(zv |v) and q(zt |t), and, the second phase learns the shared representation of
q(z | zv) and q(z | zt), respectively. For q(zv | v), we propose a video extension of a Wasserstein Autoencoder
(WAE) (Tolstikhin et al., 2018), which is trained in an unsupervised manner and, for completeness, is
presented in Appendix A. Although a pre-trained model can be incorporated here as well, we select this
approach to further evaluate different video architectures in the alignment process. For q(z | t), we employ a
pre-trained text encoder Et, for which we do not impose any restrictions. Figure 1 presents an overview of
this pipeline.

Bridging the Semantic Spaces by Progressive Decoupling. To learn the shared semantic space
given text, p(z | t), we approximate this posterior with a parameterized variational family, q(z | t), for which
we propose a two-part decoupling process represented by two models in hierarchical form. The first part
encodes the string of words into an embedding zt using a text encoder model Et. Then, zt is projected
into a shared representation space with a mapping function M : zt → ts. We map ts to the video latent
space q(z | t), through a generator Gs, which is the decoder part of an autoencoder model from the video
latent space q(zv | v) to a shared representation between text and video. In this scenario, the encoder Es

generates the shared representation vs from the video code sampled from q(zv | v).
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We found empirically that trying to approximate the target distribution in a one-step approach, i.e. without
a hierarchical form, led to the collapse of q(z | t) in the one-to-many case. The decoupling by a hierarchical
latent space is similar to Xu et al.’s (2019), but we apply to a modality that is different from the source
modality. Moreover, instead of applying a regularization in the latent space in the second stage, our model
applies regularization in both intermediate (shared) and target (video) latent spaces.

To link the information between the learned semantic spaces from text, q(z | t), and video, q(z | v), we use a
WAE-based approach similar to the video semantic space, where we define:

DW (p∗(z), p(z | zt)) = inf
q(z | zv),q(z | zt)∈Q′

{

E
z1∼p∗(z)

E
z2∼q(z | zt)

[c (z1, z2)] + λzs
Ds(q(z), p(z))

}

, (1)

such that Q′ is a non-parametric set of deterministic encoders, z1 ∼ p∗(z) is a latent code representing the
‘real’ distribution, q(z | zv), z2 ∼ q(z | zt) is a generated latent code (through M) that depends on text em-
bedding zt ∼ q(zt | t), and λzs

> 0 is weight for the divergence measure Ds between q(z) = Ez∼p∗(z) [q(z | zt)]
and p(z) representing our shared semantic space. For this phase, we use the cost similarity c(z1, z2) as:

c(z1, z2)=λs
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where Gs(z1) is the video semantic code from shared code z1; G(Gs(z1)) is the video generated from
code Gs(z1); and λs, λfeat, and λs

pixel are weights for shared semantic codes, video semantic space, and
reconstructed videos terms, respectively.

Shared Latent Space Divergency. The divergence measure Ds is defined as:

Ds(q(z), p(z)) = LDs
z

+ Lbucket, (3)

where LDs
z

is defined considering a shared semantic space discriminator Ds
z between distribution samples z1

and z2 (similarly to Equation A.5), and Lbucket is a divergence loss based on a bucket approach.

In the one-to-many case, the text is represented by the same conditioning information, which is mapped to
several semantic-related output videos, named a bucket. A bucket Bi is composed of videos with the same
semantics of ti ∈ T , such as 1 ≤ i ≤ N and N is the number of different text samples. The loss Lbucket

is defined with the buckets available in a training batch and follows a contrastive approach between the
similarities of intra- (same semantics) and inter-bucket (different semantics) samples. Given zs

v ∼ p(z) and
zs

t ∼ q(z), we define the loss as:

Lbucket (zs
t , zs

v) =
λneg

Nt





Nt
∑

i=1

Nv
∑

j=1,j 6∈Bi

Sij

|Bi|



 +
λpos

Nt



α −
Nt
∑

i=1

Nv
∑

j=1,j∈Bi

λij

Sij

|Bi|



 , (4)

where Sij = 1
2 (cos(zs

t (i), zs
v(j))+ 1) is the cosine similarity between embeddings zs

t (i) and zs
v(j) of the batch,

λij is a weight for the intra-bucket pair, which is set λij = 1 if i 6= j (the sample belongs to the bucket
but is not the direct match in the batch) and λij = α if i = j (direct match of the batch). The left term
in Equation 4 keeps inter-bucket samples far apart, while the right term encourages intra-bucket samples to
be closer. The direct match is reinforced to prevent collapse of mapping ti to the same zs

t and to maintain
sample diversity.

Unlike InfoNCE loss (van den Oord et al., 2018) and its extensions (Li et al., 2022; Yeh et al., 2022), we
do not treat only direct matches as positive samples in the pairwise cosine similarity phase (or diagonal
match). Rather, we treat all samples within a bucket as positive samples instead of negative samples by the
masking approach in Equation 4. Moreover, the bucket loss used in a one-to-one case resembles commonly
used losses for contrastive learning, as each bucket will contain a single video associated with each input text.
Equation 1 is the overall loss used in the progressive alignment approach, with each modality representation
already trained.
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4 Experiments

In this section, we first describe the main components of our evaluation protocol (Section 4.1), then explore
the one-to-many case from a latent space perspective (Section 4.2). This analysis proceeds in four stages.
First, we examine the general structure of the one-to-many scenario. Second, we isolate the video autoen-
coder model that forms the target modality representation and examine how different architectures generate
different target distributions. Third, we analyze how the shared semantic space between text and video is
learned, investigating how different models impact cross-modality alignment. Fourth, we present ablation
experiments on the alignment process, including self-supervised methods.

4.1 Implementation Details

Modality Architectures. We use 3D convolutional deep neural networks for our probabilistic encoder Ev,
deterministic decoder G, and discriminator Dv. For the discriminator Dz, mapping function M , video shared
encoder Es, and video semantic space generator Gs we use fully connected networks. For video representation,
we consider latent spaces with dimension dz and isotropic Gaussian prior distributions pz = N (z; 0, σ2Idz

).
We used different dz depending on the video architecture, but maintained these values in all corresponding
experiments and for all data sets. We did not optimize our model for the choice of dz on any data set.

We use CLIP (Radford et al., 2021) text encoder with its pre-trained model from the ViT-B/32 version. For
the video autoencoder (AE), we consider three architectures for comparison. The first is a 3D convolutional
network extended from the 2D DCGAN (Radford et al., 2016) guidelines (3DConv-Base). This network
does not use attention modules and residual blocks, although we added skip connections to improve its
convergence. The second architecture (UNetLDM) is adapted from Rombach et al. (2022) and is based on
latent diffusion. This network is extended with 3D convolutional and transposed operations and includes
residual blocks and attention mechanisms. Beyond that, we also include the VDM (Ho et al., 2022) model
based on diffusion to have a baseline comparison for video quality only, as this model was not proposed for
representational learning with a posterior reconstruction decoder step.

Alignment Architectures. We use the following alignment baselines for comparison: ImageBind (Girdhar
et al., 2023), CoDi (Tang et al., 2023), and CLIP (Radford et al., 2021). To focus on the alignment aspect,
we extract only the alignment components from these approaches, isolating the impact of the alignment
method from the modality representation learning, which varies across methods and data sets.

For the ImageBind-based alignment, we adopt its projection layer approach, which maps video and text
representations to a shared semantic space. The CLIP-based alignment model employs our default map-
ping function architecture rather than a projection layer. Since CoDi (Tang et al., 2023) follows a different
paradigm, we implement an alternative inspired by their model. Instead of using the representation injec-
tion through cross-attention layers in all the modality autoencoders, which are based on LDMs, we used
the UnetLDM autoencoder with our mapping function architecture, which is based on a non-sharing repre-
sentational framework, i.e., video embeddings are not passed through the text encoder and vice versa. For
all baselines except CoDi, we use the 3DConv-Base video autoencoder. Additionally, all baselines employ
InfoNCE (van den Oord et al., 2018) as the alignment loss.

Data Sets and Metrics. We consider three data sets of increasing complexity that present the one-to-
many case: Moving MNIST (Mittal et al., 2017) (SyncDraw-MM), KTH Human Action (Schuldt et al.,
2004), and TACoS Multi-level Corpus (Rohrbach et al., 2014). For all sets, we sampled 16-frame videos with
64 × 64 pixels. Additionally, we consider objective full-reference measures to evaluate video quality, which
include: Peak-Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) (Wang et al.,
2004), and perceptual metrics LPIPS (Zhang et al., 2018) and DISTS (Ding et al., 2022). Furthermore, to
evaluate the generated video distributions, we consider both Fréchet Video Distance (FVD) and Kernel Video
Distance (KVD) (Unterthiner et al., 2018) metrics. For text-to-video evaluation, unlike distribution-based
metrics (e.g., FVD and KVD), the full-reference metrics compare against all elements in a bucket (the set
of videos paired with the same text) rather than a single direct match, since one input text can correspond
to multiple semantically aligned videos. Thus, bucket-based metrics compare a generated video to all videos
in its corresponding bucket, with the final score being the best match. This approach avoids assuming only
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one valid aligned video exists and instead considers the entire bucket. We also couple the evaluation with
latent space analysis to better interpret the results.

Latent Space Understanding. For analysis, we adopt two dimensionality reduction methods: Principal
Component Analysis (PCA) and t-SNE (van der Maaten & Hinton, 2008) that are focused on global and local
structure preservation, respectively. For completeness, Appendices B and D also include UMAP (McInnes
et al., 2018) results, another locally oriented method similar to t-SNE. Although both t-SNE and UMAP are
stochastic methods, we use them to interpret the structures captured from the distributions. While different
runs can generate different local structures, we focus on overall distribution relationships and complement
these local views with global analysis from PCA. In our experiments, multiple runs did not result in different
interpretations, as global distribution relationships remained consistent. Different runs altered individual
structures but preserved the overall distribution relationships.

For the video modality, we investigate different autoencoder approaches in Section 4.2.1. As an unbiased
reference outside these autoencoder-based representations for the analysis of the overall structure of the
one-to-many case, we use the latent space from ViT-based embeddings obtained using VideoMAE-v2 (Wang
et al., 2023), which Ge et al. (2024) demonstrated to be more effective for video representation than models
commonly used for FVD computation. Other implementation details can be found in Appendix C.

4.2 Latent Space Understanding of the One-to-Many Scenario

In this section, we analyze the alignment of text and video modalities from a latent space perspective.
We begin by examining the general structure of the latent space in this scenario, then we investigate how
the target modality is learned in unsupervised manner also characterizing its structure (Section 4.2.1), and
finally analyze the alignment between text and video (Section 4.2.2). To understand the impact of individual
components on the overall alignment, we first isolate each component of the cross-modality alignment process,
as multiple factors can contribute to successful alignment. Since we use a pre-trained model for the text
modality, we focus on characterizing its structure in this initial analysis.

The visual structure of the one-to-many scenario is shown in Figure 2, with latent spaces from the CLIP text
encoder and VideoMAE-v2. In the text spaces, we observe decreasing concentration from SyncDraw-MM,
which has fewer, tightly concentrated clusters, to KTH and TACoS, which show more scattered distributions,
with TACoS forming one large, dispersed cluster. Overall, the text modality consists of sparse, concentrated
clusters in distinct regions (each representing similar semantics), while the video modality shows dense
distributions for videos associated with the same text. In this regard, the data sets show decreasing one-to-
many difficulty: SyncDraw-MM is most challenging, followed by KTH, with TACoS presenting the lowest
difficulty.

4.2.1 Learning a Video Representation for the One-to-Many Scenario

The video modality can be represented using a pre-trained autoencoder, but to understand its role and the
impact of different video distributions on the alignment, we trained and evaluated different architectures.
Table 1 presents the quantitative results for video generation, while qualitative results are provided in
Appendix C. Overall, the UNetLDM model obtained the best results across all data sets, except for TACoS,
where VDM (Ho et al., 2022) achieved the best performance on FVD and KVD metrics. Notably, the
UNetLDM model, which uses a backbone adapted from an LDM, generates satisfactory results without
requiring the diffusion process. In contrast, while 3DConv-Base does not achieve optimal video quality, it
produces satisfactory results with occasional reconstruction errors, such as confusing digits 1 and 7.

Figure 3 shows the latent spaces obtained using 3DConv-Base and UNetLDM. Although both models gener-
ate high-quality reconstructions, they exhibit different latent space distributions, with UNetLDM producing
a sparser space than 3DConv-Base. Examining each space individually reveals different clustering struc-
tures, indicating that the models learn different representations for the same task despite identical training
parameters and sets. The impact of these differences on alignment is explored in the next section.
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(a) SyncDraw-MM (b) KTH (c) TACoS

Figure 2: Visualization of the text latent spaces generated with CLIP (Radford et al., 2021) (first row) and the corresponding
video latent spaces generated with VideoMAE-v2 (Wang et al., 2023) (second row), for the training split of each data set.

Table 1: Quantitative results of video autoencoder (AE) models on the SyncDraw-MM, KTH, and TACoS sets. Best results
per column are highlighted in gray. Columns represent the corresponding metric and its values the model results over the test
set. Notation: mean over the images (± standard deviation), ↑ indicates that higher is better and ↓ that lower values are better.
PSNR is in decibel scale (dB); SSIM in [0, 1]; LPIPS, FVD and KVD in [0, ∞].

Data Set Model \ Metrics PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ FVD ↓ KVD ↓

3DConv-Base 19.1 ± 1.9 0.89 ± 0.03 0.08 ± 0.02 0.09 ± 0.02 2.62 0.003
SyncDraw-MM UNetLDM 27.8 ± 2.2 0.97 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.27 0.0001

VDM (Ho et al., 2022) – – – – 4.15 0.006

3DConv-Base 18.8 ± 2.7 0.41 ± 0.16 0.14 ± 0.07 0.24 ± 0.05 7.77 0.007
KTH UNetLDM 21.7 ± 2.6 0.52 ± 0.19 0.10 ± 0.07 0.20 ± 0.06 5.88 0.005

VDM (Ho et al., 2022) – – – – 7.70 0.009

3DConv-Base 18.6 ± 2.3 0.54 ± 0.07 0.08 ± 0.03 0.13 ± 0.02 26.18 0.047
TACoS UNetLDM 18.7 ± 2.1 0.52 ± 0.07 0.06 ± 0.03 0.13 ± 0.02 19.67 0.039

VDM (Ho et al., 2022) – – – – 10.79 0.013

4.2.2 Learning a Semantic-Shared Representation for the One-to-Many Scenario

In this section, we analyze the alignment of the text and video modalities using our method from Section 3.
For the video representation, we use the models evaluated in Section 4.2.1; for text, we use CLIP. The
alignment baselines include ImageBind (Girdhar et al., 2023), CoDi (Tang et al., 2023), and CLIP (Radford
et al., 2021).

Table 2 presents the quantitative results for these methods, and Figures 4 and 5 show the target video and
shared semantic latent spaces obtained with them. In this section, we focus on latent space understanding,
while qualitative results for these models are provided in Appendix D.2. Although the alignment approaches
employ different architectures and losses, they produce similar quantitative results. No specific loss or archi-
tecture (projection layer versus progressive mapping) appears to confer a significant advantage. Moreover,
the optimal model varies across data sets depending on their one-to-many complexity. However, latent space
analysis reveals important differences that are not apparent in the quantitative metrics.

Video Architectures on Alignment. Although the UnetLDM model provides one of the best results
in video reconstruction, alignment using UnetLDM does not produce the best text-to-video results. Note
that both our UnetLDM-based method and the CoDi-based alternative employ UnetLDM. Quantitatively,
the CoDi-based alternative yields slightly superior or equivalent results to our approach, though with dif-
ferent video latent space distributions. We expect a different alignment pattern since the latent space from
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(a) SyncDraw-MM (b) KTH (c) TACoS

Figure 3: Visualization of video semantic spaces from 3DConv-Base and UnetLDM on the SyncDraw-MM, KTH, and TACoS
data sets. For UnetLDM, we first apply PCA to reduce the dimensionality to match the latent dimension of 3DConv-Base.

Table 2: Quantitative results of the feature alignment between text and video modalities on three data sets: SyncDraw-MM,
KTH, and TACoS. Best results per column are highlighted in gray. Notation: “B” indicates bucket approach for the metric.

Data Set Model \ Metrics B-PSNR ↑ B-SSIM ↑ B-LPIPS ↓ B-DISTS ↓ FVD ↓ KVD ↓

CLIP-based 20.1 ± 1.6 0.858 ± 0.025 0.25 ± 0.06 0.14 ± 0.02 7.29 0.007
CoDi-based 19.9 ± 1.3 0.868 ± 0.013 0.21 ± 0.06 0.13 ± 0.02 7.19 0.008

SyncDraw-MM ImageBind-based 20.0 ± 1.4 0.858 ± 0.033 0.23 ± 0.06 0.13 ± 0.02 7.78 0.009
Our method - 3DConvBase 19.6 ± 1.4 0.855 ± 0.019 0.21 ± 0.05 0.14 ± 0.02 6.77 0.006
Our method - UnetLDM 21.2 ± 1.6 0.889 ± 0.014 0.37 ± 0.03 0.15 ± 0.02 8.18 0.010

CLIP-based 21.2 ± 1.8 0.367 ± 0.094 0.26 ± 0.05 0.29 ± 0.04 31.86 0.037
CoDi-based 20.7 ± 1.3 0.390 ± 0.067 0.24 ± 0.06 0.29 ± 0.05 23.45 0.021

KTH ImageBind-based 19.9 ± 2.5 0.34 ± 0.14 0.29 ± 0.08 0.31 ± 0.06 35.78 0.047
Our method - 3DConvBase 20.7 ± 2.2 0.358 ± 0.088 0.26 ± 0.05 0.31 ± 0.04 27.51 0.028
Our method - UnetLDM 19.8 ± 4.2 0.28 ± 0.15 0.24 ± 0.09 0.30 ± 0.08 23.58 0.015

CLIP-based 17.9 ± 2.3 0.508 ± 0.081 0.14 ± 0.08 0.16 ± 0.04 27.22 0.049
CoDi-based 17.3 ± 2.2 0.471 ± 0.079 0.20 ± 0.08 0.19 ± 0.04 26.30 0.049

TACoS ImageBind-based 17.3 ± 2.1 0.478 ± 0.081 0.18 ± 0.07 0.18 ± 0.04 29.11 0.051
Our method - 3DConvBase 17.9 ± 2.3 0.505 ± 0.083 0.14 ± 0.08 0.16 ± 0.04 27.57 0.050
Our method - UnetLDM 17.3 ± 2.1 0.504 ± 0.079 0.29 ± 0.10 0.22 ± 0.05 58.88 0.103

UnetLDM is sparser than the one from 3DConv-Base, as shown in Section 4.2.1, but the model seems to
partially affect this result, as CoDi shows better alignment.

Furthermore, the video spaces produced by both models show a concentration of the generated video codes
in particular regions that do not align with the expected distribution. For our method, even the distribution
obtained with the video shared autoencoder, which maps the video latent codes to the shared semantic
space, does not align with the “true” distribution (blue color). This suggests that UnetLDM has difficulties
with alignment, which is partially associated with its architecture and the resulting sparser video space, as
different losses are considered for this model, and the results reveal poor alignment and a level of collapse in
the TACoS set (Figures 4(b) and 4(d)).

Projection versus Progressive Approach. Regarding projection layers versus our progressive architec-
ture, we found that the progressive approach generates latent spaces with less collapse, although it does
not fully prevent collapse on its own. Figure 4 shows more small clusters in the ImageBind-based method.
Additionally, this method shows slight misalignment of the video shared codes with the expected distribu-
tion for the KTH set (Figure 4(c)). This misalignment occurs to some degree in other methods as well.
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SyncDraw-MM KTH TACoS

(a) CLIP-based

(b) CoDi-based

(c) ImageBind-based

(d) Our method - UnetLDM

(e) Our method - 3DConvBase

Figure 4: Video latent spaces from the feature alignment methods, showing embeddings from the mapping functions, video
shared autoencoders, and video representation learning. Results for SyncDraw-MM (columns 1-2), KTH (3-4), and TACoS
(5-6) sets using PCA (odd columns) and t-SNE (even columns).

However, when we analyze the shared semantic space in Figure 5(c), we observe similar behavior in both
the projection-based model and in the TACoS set, which has lower one-to-many complexity. Thus, the
progressive architecture appears to favor alignment compared to projection layers.

Progressive Alignment. While the video codes produced by the video shared autoencoder are correctly
mapped to the video latent space, this does not occur entirely for the embeddings coming from the text
modality, especially at higher task difficulty levels. This indicates that aligning the video latent space with
the shared semantic space is more straightforward than mapping the text to the target video space. Note
that in the video context, we still consider a one-to-one mapping, and only from the text modality this
becomes our target problem.
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SyncDraw-MM KTH TACoS

(a) CLIP-based

(b) CoDi-based

(c) ImageBind-based

(d) Our method - UnetLDM

(e) Our method - 3DConvBase

Figure 5: Shared semantic latent spaces from the feature alignment methods, showing embeddings from the mapping functions
and video shared autoencoders. Results for SyncDraw-MM (columns 1-2), KTH (3-4), and TACoS (5-6) sets using PCA (odd
columns) and t-SNE (even columns).

Analyzing the resulting shared semantic spaces in Figure 5, we observe poor alignments that propagate to the
video latent space. For instance, the ImageBind-based method produces well-separated distributions, even for
TACoS. CoDi also generates poor alignment for this set. The methods producing the best alignments, from a
latent space perspective, appear to be CLIP-based and our method, both using 3DConv-Base. However, they
still present a cluster concentration of the generated distribution, which may indicate some misalignment
between the generated and expected distributions (e.g., SyncDraw-MM and KTH in Figure 4).

Moreover, the metrics used, whether bucket-based or distribution-based, are closely related to video quality.
A text mapped to a video code v̂1 could be closer to an expected true code vt

1, yet not close enough for
the decoder to properly generate the expected video. A key bottleneck is the decoder’s limited capacity to
decode from regions near but not within the true distributions, leading to attempted decoding from points
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unknown to the decoder. These cases appear to generate partially correct videos that are mostly incomplete
or missing information. Thus, the metrics could not properly capture the incorrect generation, as similar
incorrect decoding can generate similar metric results. Moreover, even latent space analysis, which offers an
alternative perspective with valuable insights into alignment, is limited to either overall distribution analysis
or manual inspection of small regions.

4.2.3 Ablation experiments

We conduct ablation experiments to assess the impact of our progressive approach and loss function on the
alignment process. Additional ablation studies on video representation learning are included in Appendix D.1.
In this section, we use the SyncDraw-MM set, where the one-to-many scenario is more prominent, and the
3DConv-Base as our video baseline. We evaluate a non-progressive method that directly aligns text with
the video representation without an intermediary step, using both our adapted loss and InfoNCE (van den
Oord et al., 2018). We also evaluate our progressive approach adapted to use self-supervised techniques such
as VicReg (Bardes et al., 2022) and BYOL (Grill et al., 2020). We adapt these techniques by treating each
augmented version as a separate modality (e.g., text and video streams rather than two views of the same
modality). Since SimSiam (Chen & He, 2021) produces similar results to BYOL, we only report BYOL.
Table 3 shows the quantitative results, Figures 6 and 7 shows the latent space exploration, while qualitative
results are provided in Appendix D.2.

Regarding the comparison between non-progressive and progressive approaches, full-reference metrics reveal
little difference in generated video quality. In contrast, distribution-based results more clearly favor the
progressive method. Analysis of the learned latent spaces shows that the non-progressive mapping generates
condensed clusters in regions outside the expected distributions and exhibits greater misalignment between
modalities in the video space compared to the progressive mapping. Although misalignment persists, gen-
erated and expected distributions show greater proximity in progressive methods than in non-progressive
methods, which produce more distant global alignments. Mapping the text to video in two phases introduces
an intermediate representation (shared semantic space) that is regularized during training, unlike mapping
directly with one phase. This regularization enforces alignment in the intermediate phase before generating
the target distribution in the subsequent step. In contrast, one-phase alignment is more challenging because
it must generate the desired distribution in a single step, with the model more constrained in performing
the transformation between latent spaces.

This more distant alignment in non-progressive methods is not improved by the bucket loss from Section 3.
In fact, InfoNCE performs better on distribution-based metrics, with bucket-based metrics being close to
each other. The global structures of both non-progressive methods present similar relationships but different
arrangements of the distributions in t-SNE visualization. However, PCA reveals generated distributions
falling outside the expected regions for the non-progressive approach using InfoNCE. Since InfoNCE considers
only the direct match in each text-video training pair as a positive sample, this appears to encourage
misalignment outside the expected distribution. When using the bucket loss, which treats all samples from
the same bucket (sharing the same input text) as positive samples, the generated distributions exhibit
different behavior, though misalignment persists. The bucket loss gives greater weight to the direct match
to enforce diversity within the bucket, but this diversity is not achieved with the non-progressive approach.

Considering the self-supervised approaches, VicReg and BYOL both generate similar - though not identical
- structures in the video and shared semantic latent spaces, with VicReg achieving slightly better quanti-
tative performance. We observe that their video space distributions are similar to those of our model and
CLIP-based alignment (Figures 4(a) and 4(e)). However, their shared semantic spaces differ from the best-
performing models in Section 4.2.2, which exhibit a split of the distribution into two regions. Additionally,
VicReg and BYOL produce more compact distributions that span narrower ranges along both axes.

Furthermore, all evaluated approaches demonstrate the difficulty of aligning text and video on SyncDraw-MM
and reveal that these strategies do not adequately address the one-to-many mapping challenge.
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Table 3: Quantitative results for ablation experiments on text-video feature alignment using the SyncDraw-MM data set and
the 3DConv-Base video autoencoder.

Model/Metrics B-PSNR ↑ B-SSIM ↑ B-LPIPS ↓ B-DISTS ↓ FVD ↓ KVD ↓

Non-progressive 19.7 ± 0.9 0.856 ± 0.014 0.20 ± 0.01 0.13 ± 0.01 8.47 0.011
Non-progressive w/ InfoNCE 19.0 ± 1.4 0.841 ± 0.027 0.20 ± 0.05 0.14 ± 0.02 8.10 0.008

Progressive - VicReg 19.6 ± 1.7 0.852 ± 0.036 0.20 ± 0.05 0.13 ± 0.02 6.67 0.006
Progressive - BYOL 19.6 ± 1.6 0.856 ± 0.032 0.19 ± 0.05 0.13 ± 0.02 7.14 0.007

(a) VicReg (b) BYOL

(c) Non-progressive w/ InfoNCE (d) Non-progressive w/ our loss

Figure 6: Video latent spaces from ablation experiments, showing embeddings from the mapping functions, video shared
autoencoders, and video representation learning, visualized with PCA (odd columns) and t-SNE (even columns).

5 Limitations

We explored a particular class of video architectures for representation learning based on autoencoder models.
Other architectures such as the Vision Transformer (ViT) from VideoMAE (Wang et al., 2023) could be
adapted with a full video decoder. Moreover, the representation learning method for the target modality
could be extended to other approaches with different assumptions on the data distributions, such as relational
regularization (Xu et al., 2020) and diffusion-based VampPriors (Kuzina & Tomczak, 2024), to understand
their impact on the video semantic space. Furthermore, we focus on a scenario in which the video target

(a) VicReg (b) BYOL

Figure 7: Shared semantic latent spaces from ablation experiments, showing embeddings from the mapping functions and
video shared autoencoders, visualized with PCA (odd columns) and t-SNE (even columns).
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modality is represented by fixed chunks of video. Future work can consider merging these chunks of video
and preserving spatial and temporal consistency for a longer video generation based on a cross-modality
approach with feature alignment.

6 Discussion and Conclusions

We shed light on an implicit problem of cross-modality generation that is currently underexplored. Although
modality alignment in a shared semantic space could benefit from knowledge obtained by pre-trained models
for each modality, a challenging aspect arises related to how to map both modalities. For the one-to-many
case, we propose a latent space analysis perspective for assessing alignment methods based on a progressive
learning framework coupled with bucket loss to learn a shared semantic space between text and video
modalities. We show that the one-to-many case has different levels of complexity across different data sets
and impacts the overall results of text-to-video generation from a semantic shared space. Moreover, this task
lacks effective quantitative metrics for evaluation, requiring complementary methods for robust assessment.

In this work, we focus on autoencoder models as their nature implicitly enables representation learning of
the modality and can be adapted for cross-modality generation by feature alignment. We show how some
components of this task affect the overall result and demonstrate that video representation plays an important
role in it. Overall, tackling the one-to-many case is not straightforward, requiring a different perspective
when considering a semantically shared space between modalities, as current methods and regularization
techniques are not designed with this case in mind.
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Appendix

A Video Semantic Space

To generate videos, we need to learn a distribution p(v |zv) that is conditioned on our semantic space and that
is similar to the original video data p∗(v). Toward this goal, we minimize the Wasserstein distance between
both distributions by using its dual form (Bousquet et al., 2017; Tolstikhin et al., 2018) of optimizing through
random encoders q(zv | v) instead of the original distribution couplings. Hence, we minimize

DW (p∗(v), p(v | zv)) = inf
q(zv | v)∈Q

{

E
x∼p∗(v)

E
zv∼q(zv | v)

[c (x, y)] + λzD(q(zv), p(zv))

}

, (A.1)

where Q is a non-parametric set of probabilistic encoders, p(v | zv) is our generative distribution, x ∼ p∗(v)
is a ground truth video, y ∼ p(v | zv) is a generated video (through decoder G) that depends on the semantic
vector zv ∼ q(zv | v), and λz > 0 is a hyperparameter that weights the divergence measure D between
the marginal distribution q(zv) = Ev∼p∗(v) [q(zv | v)] and the prior p(zv) for our semantic space, and c is a
similarity cost.

Video Similarity. The cost function c represents a measure between two videos, which we define as

c(x, y) = λpixel

∥

∥x − y
∥

∥

1
+ λf

∥

∥fDv
(x) − fDv

(y)
∥

∥

1
+ λp

∥

∥fVGG(x) − fVGG(y)
∥

∥

2

2
, (A.2)

where fDv
(x) denotes the features of an intermediate layer of the video discriminator Dv, when considering

video x; similarly, fVGG(x) denotes the features of a VGG19 network (Johnson et al., 2016); and λpixel > 0,
λf > 0, and λp > 0 are hyperparameters that define the weight of each term in the final cost.

This cost function penalizes the discrepancy between the videos on the pixel (left term) and feature space
(middle to right term). The penalization on the feature space acts as a perceptual similarity measure between
the original and generated samples, since pixel-wise metrics have difficulties capturing perceptual properties
of the reconstructed samples. Our perceptual measure is defined as a feature-matching loss (Bao et al., 2017;
Salimans et al., 2016) over feature space fDv

of discriminator Dv and feature space fVGG. We introduce the
details of Dv later in this section.

Video Latent Space Divergency. The divergence D represents a cost on the difference between two given
spaces. In the original WAE (Tolstikhin et al., 2018), this divergence is obtained using a GAN or Maximum
Mean Discrepancy approach. In contrast, we consider a metric based on feature matching (Salimans et al.,
2016), which we found to be more stable to train. We convert the WAE-GAN divergence (Tolstikhin
et al., 2018), defined as a non-saturating loss (Fedus et al., 2018; Goodfellow et al., 2014), into a distance
minimization problem between the semantic feature spaces, fDz

, of both q(zv) and p(zv). We empirically
found that removing the min-max between the autoencoder (i.e., Ev and G) and the discriminator Dz led
to a more stable training compared to the original WAE-GAN loss. Adding a gradient penalty (Fedus et al.,
2018; Gulrajani et al., 2017) also leads to stable training, but we found that the feature matching term was
enough to stabilize video training. Hence, we define the divergence as the aggregate

D(q(zv), p(zv)) = Lf + LDz
+ LDv

, (A.3)

where the losses L(·) depend on the same arguments as D. The feature-matching loss Lf penalizes the
semantic feature space induced by discriminator Dz, when it learned to distinguish between the true and
a variational approximation of the semantic distributions. The video adversarial loss, LDv

, measures the
similarity in the perceptual space as similar videos will have similar underlying semantic distributions, and the
semantic discriminator loss, LDz

, induces similarity between prior and approximated semantic distributions.

We consider the feature-matching loss as

Lf (q(zv), p(zv)) = E
z̃v∼p(zv)

E
zv∼q(zv)

∥

∥fDz
(z̃v) − fDz

(zv)
∥

∥

2

2
, (A.4)

such as fDz
(zv) denotes the features of an intermediate layer of Dz when considering the latent vector zv,

and the joint semantic space p(zv) is modeled as a multivariate normal distribution.
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Table B.1: Data set splits used for training and testing containing the number of text and video pairs along with its corre-
sponding number of buckets.

Model Train Validation Test Buckets

SyncDraw-MM 10000 2000 2000 20
KTH 21030 5502 6650 150
TACoS 31392 7848 9811 11659

Then, we define the semantic discriminator loss to penalize the difference between the true distribution,
p(zv), and our approximation, q(zv), as

LDz
= −E

z̃v∼p(zv)
[log Dz(z̃v)] − E

zv∼q(zv)
[log(1 − Dz(zv))], (A.5)

where Dz is the semantic space discriminator. Finally, the video discriminator Dv, from which we com-
pute fDv

in Equation A.2, tries to differentiate between real, p∗(v), and generated videos, p(v | zv), with a
loss similar to Equation A.5 but now considering the videos samples instead of the semantic vectors.

B Data sets

Moving MNIST is an extension of the MNIST (Lecun et al., 1998) data set where one or two digits move
up and down, left to right, and vice versa. Each video has a sentence describing the digits and their moving
direction. For the KTH data set, which contains videos of several actions of 25 persons recorded in four
different backgrounds with variations in light and clothing, we selected a subset of these actions (i.e., walking,
jogging, and running) as in Mittal et al. (2017) and Marwah et al. (2017) experiments. We also provide
a new set of text descriptions for this data2. Each text description indicates the person in the video, its
corresponding action, and direction of movement, such as “person 2 is walking left to right” and “person
5 is jogging right to left.” Lastly, the TACoS data set contains videos of people cooking with multilevel
descriptions, such as one sentence, short, and detailed descriptions for each video. In our experiments, we
selected the set of short descriptions that better represents the one-to-many case, with each description
depicting an event over a time interval in the video. We present data sets splits in Table B.1 and bucket
examples in Figure B.1.

C Implementation Details

In this section, we present additional implementation details used for latent space analysis, metrics, and
model architectures.

C.1 Latent Space Analysis

The t-SNE visualization is produced by first reducing the input dimensionality to 32 components with PCA,
and then applying t-SNE over the resulting components with a perplexity of 40 and a number of iterations
equal to 600 for all visualizations. Both t-SNE (van der Maaten & Hinton, 2008) and UMAP (McInnes et al.,
2018) are stochastic methods with the goal of preserving local structure. In order to reproduce their initial
randomness process, a random state variable can be used in these methods (e.g. seed of 42).

For the VideoMAE (Tong et al., 2022; Wang et al., 2023) representation used for the analysis of the overall
structure of the one-to-many case, we selected the VideoMAE-v2 (Wang et al., 2023) model, more specifically
the Hybrid-PT-SSv2-FT version used in the work of Ge et al. (2024)3. The ViT-g encoder features were
extracted following their guidelines, generating embeddings with dimension 1408 from the penultimate layer
of the encoder that were averaged across all patches.

2Mittal et al. (2017) and Marwah et al. (2017) also generated a set of text descriptions for the KTH data set, but they are
not publicly available.

3https://github.com/songweige/content-debiased-fvd
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(a) SyncDraw-MM

(b) KTH

(c) TACoS

Figure B.1: Samples of seven random buckets visualized in the video latent spaces generated using VideoMAE-v2 (Wang
et al., 2023) encoder, for each data set. The columns results correspond to: PCA, t-SNE, and UMAP, respectively.

C.2 Metrics

We used the official implementation of LPIPS (Zhang et al., 2018)4 and the AlexNet (Krizhevsky et al.,
2012) backbone to calculate the metric values. Other parameters were defined with the default values used
in the official code. We used the official implementation of DISTS (Ding et al., 2022)5 and the PyTorch
version of the metric. The default backbone used was the one based on VGG16 (Simonyan & Zisserman,
2015) with the default repository parameters.

For distribution-based metrics, we considered the following: FVD is calculated with the I3D video fea-
tures (Carreira & Zisserman, 2017) extracted from the model (RGB stream) available on Kinects-I3D6 with
an extension of the FID metric from Heusel et al. (2017)7; and KVD with the polynomial MMD (Unterthiner
et al., 2018).

4https://github.com/richzhang/PerceptualSimilarity
5https://github.com/dingkeyan93/DISTS
6https://github.com/google-deepmind/kinetics-i3d
7https://github.com/bioinf-jku/TTUR/
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C.3 Architectures

In this section, we present details of each training setup for text, video and the progressive decoupling
method. Additionally, Table C.1 shows an overview of the number of parameters of the models used for the
video autoencoder, mapping function and video semantic shared autoencoder.

C.3.1 Text Models

We evaluated the CLIP (Radford et al., 2021) text encoder, which is used with its pre-trained model from the
ViT-B/32 version. The CLIP method used was based on the transformers package8 using the pre-trained
model with key openai/clip-vit-base-patch32 generating a 512-dimensional embedding.

The word dictionary used as the noise set for sampling a noise word for the text in the cross-modal alignment
was built based on DBPedia (Lehmann et al., 2015)9 and is processed similarly to Dai & Le (2015). First,
we treat punctuation as separate tokens. Then, we ignore any non-English characters and words. Since the
removal of non-English words can affect the semantics of the text, we also remove entries that have too many
UNKNOWN tokens after this preprocessing. We have defined a maximum value of 45% of unknown tokens to
be considered a valid entry for the set. We also remove words that appear only once in the set, and we do
not perform any term weighting or stemming in the preprocessing. This word dictionary with the exception
of words in each data set is then the final dictionary set used.

C.3.2 Video Models

For the video pixel-based discriminator Dv, we adapted the Patch discriminator from Pix2PixHD (Wang
et al., 2018) that evaluates video quality on multiple scales. For the video representation, we considered the
dimensions: dz = 64 for 3DConv-Base and dz = 128 for UnetLDM. Other regularization coefficients were
defined as λpixel = 10, λf = 10, λz = 5. In particular, we defined λp = 0.0025 since this term dominated
other terms in the final loss and this value presented satisfactory results in perceptual quality. In this case,
the perceptual weight is defined over the VGG19 layers: block4_conv3 and block5_conv4. The training
setup for the video autoencoder considered Adam optimizer with a learning rate of 10−4 with a global clip
norm (maximum gradient norm of 5.0). We trained the video models for about 100 epochs with varying
batch size of 32 − 100, for UnetLDM and 3DConvBase, respectively.

For the video cost in Equation A.2, we found empirically that an L1-based distance converged better for the
pixel and feature discriminator terms, while an L2-square distance worked better for perceptual loss.

C.3.3 Progressive Decoupling

In the decoupling process, we also consider a second text description input t̂i from ti, where a noise word
is added with probability p = 0.15 to include variation in text representation in the same bucket bi, but
having the bucket loss considering the original text embeddings ti. The word dictionary from which the noise
sample is obtained did not include any words from the corresponding data set corpus. We also evaluated
dropout noise (Gao et al., 2021), but empirically found that the addition of random words worked better.
Word removal, on the other hand, was not suitable as it directly interferes with the original bucket semantics
since removing some words could join samples from originally different buckets.

For the progressive decoupling architecture, we considered a multilayer perceptron (MLP) with four layers.
Except for the last layer, each was defined with a hidden layer size of 512 and is followed by a Layer
Normalization (Ba et al., 2016) and Swish activation function (Ramachandran et al., 2017). A dropout layer
is used after the second and third layers with a rate of 0.1. This was the base network used for the mapping
function and video shared AE, changing only the input and output dimensions to match the corresponding
representation sizes. The regularization coefficients were defined as λzs

= 5.0, λs = 100, λfeat = 10,
λs

pixel = 30. In addition, for the bucket loss, we define λneg = 1.0, λpos = 1.0, and α = 2.0 to weight the
direct text-video pairs of the bucket. The training setup also considered Adam optimizer with a learning

8https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.TFCLIPTextModel
9Downloaded from https://github.com/srhrshr/torchDatasets/. The data set splits (’train’ and ’test’) provided were the

ones used in our experiments as well.
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Table C.1: Size of the networks and components used in this work.

Model Number of parameters

3DConv-Base 9.9M
UnetLDM 268.8M
VDM (Ho et al., 2022) 35.7M
Mapping Function M (dzt

= 512 and dzs
= 64) 824k

Video semantic shared AE (Es and Gs) (dzv
= 64 and dzs

= 64) 1.2M

Components

Discriminator Ds or Dz with dz = 64 133K
Discriminator Dv (PatchHD-Video) 2.6M
VGG19 (Johnson et al., 2016) network 20M

rate of 10−4 with a global clip norm (maximum gradient norm of 4.0). We trained the models for about
70 epochs with varying batch size, which depends on the video autoencoder used and the cross-modality
alignment approach, of 32 − 100.

D Additional Results

In this section, we present additional results on the video autoencoder models and the progressive decoupling
ablation experiments.

D.1 Video Representation Learning

In Figure D.1, we present the latent spaces of the 3DConv-Base and UNetLDM video autoencoder models
separately, whereas in Section 4.2.1 we presented their joint latent space. Figure D.2 also shows two different
runs of PCA, t-SNE and UMAP visualization for the same latent space that exhibits the different overall
distribution structures obtained in these different initializations.

In Figure D.3, we present the qualitative results for the video autoencoders: 3DConv-Base, UNetLDM, and
VDM (Ho et al., 2022). From the SyncDraw-MM set, we observed better quality with UNetLDM. The
3DConv-Base model generates correct results, but has more misleading cases and lacks sharpness in some
cases. In the SyncDraw-MM set, for example, there are cases where digit 5 is misplaced with 3, or 9 with
4, and 1 with 7. This occurs at a lower level in the other models. The VDM model, on the other hand, is
not consistent with its results, with its major drawback being the lack of filling in the digit (e.g., holes in
some digits) and the thin look in most samples. This model also does not correctly generate the digits in a
large part of the samples, generating instead frames with black background and random white points in the
border without any digit enclosed.

For the KTH set, UNetLDM also produces sharper videos compared to 3DConv-Base, which in some cases
generates an artifact resembling an aura over the person. In this set, UNetLDM appears to produce a
brighter background as well. VDM model produces sharper videos and also a large diversity in the samples,
but following the results with the previous set, there is a large amount of poor samples generated where
there is no movement or person in the video.

Lastly, for the TACoS set, 3DConv-Base generated videos with less fine-grained details. For some cases, this
seems to impact the understanding of the movement depicted in the video. The effect of “aura” also occurs
in some samples of this set around people. The UNetLDM model generated more blur effects for TACoS
and some artifacts resembling “checkboard” artifacts, mostly in brighter parts. The VDM model produced
sharper videos for this set, and it was observed that the majority of the samples were generated with people
in darker clothes.
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(a) SyncDraw-MM

(b) KTH

(c) TACoS

Figure D.1: Visualization of the video semantic spaces obtained with the 3DConv-Base (first rows) and UnetLDM (second
rows) models for the Syncdraw-MM, KTH, and TACoS data sets.

D.1.1 Ablation Experiments

Furthermore, we performed ablation experiments on video representation learning, where the quantitative
results are presented in Table D.1, qualitative results are shown in Figure D.4, and latent spaces are shown
in Figure D.5. We evaluated three main components using the 3DConv-Base architecture: the impact of
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(a) SyncDraw-MM

(b) KTH

(c) TACoS

Figure D.2: Two runs with different initialization seeds (first and second rows) for the visualization of the video semantic
spaces from 3DConv-Base and UnetLDM on the SyncDraw-MM, KTH, and TACoS data sets. For UnetLDM, we first apply
PCA to reduce the dimensionality to match the latent dimension of 3DConv-Base. Initialization seed are considered only for
t-SNE and UMAP.

the video latent dimension size; the impact of the autoencoder type by comparing with a Variational Auto-
Encoder (VAE); and the impact of the distribution discriminator Dz in the WAE-GAN-based approach.

From the quantitative results, we observe that the dimension size variation (dz) does not significantly af-
fect the quantitative results. However, switching from the WAE-GAN-based approach to VAE degrades
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Table D.1: Quantitative results of the video ablation experiments performed with SyncDraw-MM and the 3DConv-Base video
architecture evaluating the impact of: dimension size of latent space dz and the general autoencoder adopted approach.

Metrics PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ FVD ↓ KVD ↓

Dimension

dz = 48 19.2 ± 1.9 0.89 ± 0.03 0.083 ± 0.023 0.09 ± 0.02 2.81 0.0031
dz = 128 19.0 ± 1.8 0.887 ± 0.030 0.086 ± 0.024 0.09 ± 0.02 2.77 0.003
dz = 256 19.1 ± 1.9 0.889 ± 0.030 0.083 ± 0.023 0.09 ± 0.02 2.75 0.003

General AE approach

Base w/o Dz 18.8 ± 1.8 0.885 ± 0.030 0.085 ± 0.024 0.09 ± 0.02 2.60 0.0028
VAE w/o Dz 17.3 ± 1.2 0.860 ± 0.020 0.112 ± 0.036 0.11 ± 0.02 3.34 0.0041

VAE 15.3 ± 1.2 0.757 ± 0.040 0.289 ± 0.066 0.16 ± 0.02 9.10 0.0165

reconstruction. Removing the distribution discriminator Dz also degrades performance, except for the VAE
approach, which achieves better results without it.

The qualitative results reveal inferior reconstruction with the plain VAE approach where more than one digit
appears to be reconstructed, resulting in a mirror effect. Additionally, most videos seem to be concentrated
on “up and down” movements rather than “left to right” movements. However, this effect appears partially
associated with the distribution discriminator Dz, as removing it improves qualitative results on the same
instances. When removing Dz from our main approach, we observe a small decrease in some full-reference
metrics (e.g., PSNR) but slightly better distribution-based metrics (e.g., FVD). Qualitatively, this difference
is minimal, as the videos from both approaches are similar, with both showing some loss of fine-grained
details in the digits. Regarding latent dimension size, we observe minor differences in fine-grained details
between models on the same instances.

Moreover, examining the video latent spaces in Figure D.5, we observe slight structural differences across
models. For dimension variation, latent spaces with dz ≥ 128 are sparser than those with dz < 128 (also
including dz = 64 in Figure D.1). In contrast, VAE-based approaches produce more concentrated latent
spaces when we evaluate their distribution in the PCA visualization. Additionally, removing the distribution
discriminator Dz alters the latent space structure compared to the baseline in Figure D.1.

D.2 Progressive Decoupling Learning

In Figures D.6, D.7, and D.8, we present qualitative results for text-to-video generation produced with the
alignment models of Section 4.2.2 for: SyncDraw, KTH, and TACoS data sets.

From the SyncDraw results, we can observe a more difficult task for the alignment. All models seem to
present poor video generation with a lack of fine-grained details for the digits. The worst results being
the ones with the ImageBind-based and our method with UNetLDM alignments. They present higher
indicators of representation collapse, where the former shows vertical movements even when the input text
requires horizontal movements, and the latter generates almost the same exact video for different input texts.
Overall, better results were observed for vertical movements compared to horizontal ones, although both are
equivalently represented in the data set.

For the KTH set, the models present better results, which is possibly related to the decrease of the one-
to-many difficult level of this set. We still observe a level of representational collapse for some input texts,
but in a lower level than with the SyncDraw set. For CLIP-based and our method with 3DConv-Base, we
observe an aura effect in some persons, which was also identified in the video autoencoder results, indicating
a propagation of this effect. On the other hand, CoDi and our method with UNetLDM present less of
this artifact. For the ImageBind-based alignment, frames with more blur than the other and an artifact
resembling the generation of movement shadow in the legs part were noticed.

For the TACoS set, the results improve when compared with the KTH set, strongly indicating a correlation
with the difficulty level of the alignment. The only exception being our method with UNetLDM video
baseline, as this model, previously found to have the representational collapse problem in latent space,
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Table D.2: Quantitative results of additional ablation experiments on the feature alignment between text and video modalities
on the SyncDraw-MM data set with 3DConv-Base video autoencoder.

Model/Metrics B-PSNR ↑ B-SSIM ↑ B-LPIPS ↓ B-DISTS ↓ FVD ↓ KVD ↓

Dimension dz = 256 19.7 ± 1.9 0.864 ± 0.027 0.27 ± 0.10 0.14 ± 0.02 6.98 0.006

presents here the video generation indicator of this as well. In this set of results, an aura effect is also
observed for models based on 3DConv-Base video AE. The best models being CLIP-based alignment and
our method with 3DConv-Base. The aura effect seems more prominent in the ImageBind-based alignment,
although other methods also use this video autoencoder and this model also present more blur than the
others in the overall videos.

D.2.1 Ablation Experiments

In Table D.2, we present the quantitative results of additional ablation experiment on the cross-modality
alignment with the best architecture found in the video representation ablation. Figure D.9 shows the
corresponding latent spaces of the video and shared semantic representations. Lastly, in Figure D.10, we
present the qualitative results for the ablation experiment.

The additional ablation shows the impact of representation learning in mapping between the modalities. We
note that the structures of latent spaces change when we change the way the target modality is represented.
Although it is primarily outstanding in shared semantic spaces, the structure is affected by producing sparser
spaces (e.g. dz = 256 ).

Regarding the qualitative results, we observed poor generation, indicating a poor alignment level for the
SyncDraw data set, which is the most challenging one-to-many scenario. The non-progressive method trained
with our adapted loss shows a higher indicator of representational collapse, since their generated videos seem
to follow, with small differences, the same outlined video. The non-progressive version with the InfoNCE
loss seems to suffer less with the representation collapse, although the video quality still lacks fine-grained
details of the digits.

The VicReg seems to work better with particular digits, such as the digit 4. This is similar to BYOL results
in this regard. But this solution in some videos seems to be generation details of two digits in the same
scene, although in this scenario ground-truth data does not have it. Regarding the experiment with the
video AE 3DConv-Base with dz = 256, we observe better fine-grained details for some digits but far away
to be considered correctly aligned. In general, one case noticed in the results was that the models seem to
correctly follow the target motion, being better at the “moving up and down” category than the “left to
right” or vice versa. Considering that the SyncDraw set is balanced in this regard, i.e., the number of videos
with the “moving up and down” is close to the number of videos of “moving left to right” (or vice versa),
this can show a more difficult alignment in the later large bucket of horizontal movement.

27



Under review as submission to TMLR

(a) 3DConv-Base

(b) UNetLDM

(c) VDM (Ho et al., 2022)

(d) 3DConv-Base

(e) UNetLDM

(f) VDM (Ho et al., 2022)

(g) 3DConv-Base

(h) UNetLDM

(i) VDM (Ho et al., 2022)

Figure D.3: Comparison of the generated videos by the video autoencoder models on the SyncDraw-MM (a-c), KTH (d-f),
and TACoS (g-i) data sets with 3DConv-Base, UNetLDM, and VDM (Ho et al., 2022).
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(a) Dimension 48

(b) Dimension 128

(c) Dimension 256

(d) Base w/o Dz

(e) VAE w/o Dz

(f) VAE

Figure D.4: Comparison of the generated videos by the video AE models from the ablation experiments on the SyncDraw-MM
data set with 3DConv-Base architecture and variations on latent space dimension and AE approach.
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(a) Dimension dz = 48

(b) Dimension dz = 128

(c) Dimension dz = 256

(d) Base w/o Dz

(e) VAE w/o Dz

(f) VAE

Figure D.5: Visualization of the video semantic spaces obtained using 3DConv-Base for video ablation experiments on: (a-c)
latent dimension dz , (d) removal of distribution discriminator Dz , and (e-f) VAE approach.
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(a) CLIP-based

Text:“the digit 8 is moving up and down.”

Text:“the digit 4 is moving left and right.”

(b) CoDi-based

(c) ImageBind-based

(d) Our method - 3DConv-Base

(e) Our method - UNetLDM

Figure D.6: Comparison of the generated videos by the alignment models: CLIP-based, CoDi-based, ImageBind-based, Our
method with both 3DConv-Base and UNetLDM video architectures, on the SyncDraw data set.

(a) CLIP-based

Text:“person 03 is jogging left to right.”

Text:“person 16 is running right to left.”

(b) CoDi-based

(c) ImageBind-based

(d) Our method - 3DConv-Base

(e) Our method - UNetLDM

Figure D.7: Comparison of the generated videos by the alignment models: CLIP-based, CoDi-based, ImageBind-based, Our
method with both 3DConv-Base and UNetLDM video architectures, on the KTH data set.
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(a) CLIP-based

Text:“the person cut those beans into very small pieces.”

Text:“the person cut a plum in half.”

(b) CoDi-based

(c) ImageBind-based

(d) Our method - 3DConv-Base

(e) Our method - UNetLDM

Figure D.8: Comparison of the generated videos by the alignment models: CLIP-based, CoDi-based, ImageBind-based, Our
method with both 3DConv-Base and UNetLDM video architectures, on the TACoS data set.

(a) Dimension dz = 256 (Video Latent Space) (b) Dimension dz = 256 (Shared Latent Space)

Figure D.9: Video latent space (left side) from ablation experiment with video representation learning using dz = 256, showing
embeddings from the mapping functions, video shared autoencoders, and video representation learning. Additionally, shared
semantic latent space (right side), showing embeddings from the mapping functions and video shared autoencoders, visualized
with PCA (odd columns) and t-SNE (even columns).
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(a) VicReg

Text:“the digit 2 is moving up and down.”

Text:“the digit 5 is moving left and right.”

(b) BYOL

(c) Non-progressive w/ InfoNCE

(d) Non-progressive w/ our loss

(e) Dimension dz = 256

Figure D.10: Comparison of the generated videos by the ablation alignment models: VicReg, BYOL, Non-progressive w/
InfoNCE, Non-progressive w/ our loss, and video AE baseline with dimension dz = 256, considering the video 3DConv-Base
architecture on the SyncDraw data set.
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