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Abstract

Large language models achieve remarkable performance through ever-increasing
parameter counts, yet scaling imposes steep computational costs. We
observed a geometric phenomenon called embedding condensation, where token
representations collapse into narrow cones as they propagate through smaller
models. Through systematic measurements across multiple transformer families,
we show that small models such as ALBERT-base and GPT-2 exhibit severe
condensation, whereas large models maintain embedding dispersion. This suggests
that superior performance partly arises from sustained representational diversity.
We formulate four losses that explicitly encourage embedding dispersion during
training. Experiments demonstrate that these losses mitigate condensation, recover
dispersion patterns seen in larger models, and yield consistent performance gains
across 10 benchmarks, offering a principled path toward improving smaller
transformers without additional parameters.

1 Introduction

The remarkable success of large-scale transformer models has fundamentally transformed natural
language processing, with performance consistently improving as parameter counts scale from
millions to hundreds of billions [l 2, 3. However, this scaling paradigm presents significant
practical challenges: larger models require substantial computational resources [4}, 15, |6], making
them inaccessible for many applications. This motivates a critical question: Can we identify and
replicate the key properties that make large models effective, thus improving smaller models without
simply adding more parameters?

Recent theoretical work has shown that transformer embeddings mathematically tend to cluster
toward a single point as depth approaches infinity [7]], but the empirical manifestation of this
phenomenon and its relationship to model performance remain underexplored. In this work, we
provide a comprehensive empirical analysis of what we term embedding condensation: the tendency
for token representations in smaller transformer models to collapse into narrow directional cones as
they propagate through deeper layers. Through systematic measurement of pairwise cosine similarities
across multiple transformer families, we demonstrate that smaller models (e.g., GPT2, ALBERT-base)
exhibit severe condensation, with token representations becoming increasingly aligned and losing
representational diversity (Figure[I). In contrast, larger models (e.g., GPT2-x1, ALBERT-xxlarge)
naturally maintain embedding dispersion, which we define as diverse representation directions that
preserve expressive capacity.

This geometric perspective reveals a fundamental insight: condensation may be a key bottleneck
limiting the expressiveness of smaller transformers. We hypothesize that the superior performance
of large-scale models is partly a consequence of their ability to maintain representational breadth,

Submitted to 1st Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



36
37

38
39
40
41
42
43

44

45
46

47
48
49
50

51
52

53

54
55
56
57
58

59
60

61

62

63

64
65
66
67
68

69

70
71
72
73
74
75
76
77
78
79

80

82
83

suggesting that counteracting condensation could narrow the performance gap between small and
large models without increasing parameter count.

To test this hypothesis, we propose four variants of dispersion losses that explicitly encourage
embedding dispersion during training, serving as auxiliary objectives that promote representational
diversity. Our empirical evaluation demonstrates that these losses successfully counteract embedding
condensation in smaller models, restoring representational dispersion. More importantly, this
geometric improvement leads to overall performance gains on average across 10 language
understanding benchmarks when applied to GPT2 during mid-training.

The key contributions of this work are listed below.

1. We provide an empirical characterization of embedding condensation across transformer
scales, revealing a clear size-dependent geometric phenomenon.

2. We formulate four geometrically motivated dispersion loss variants that counteract
condensation through different mechanisms. Compared to their existing counterparts in the
literature, our implementations include specific design choices to maintain training stability
and reduce parameter search space.

3. We demonstrate that explicitly encouraging dispersion improves the performance of smaller
models, offering a path toward closing the gap with larger models.

2 The Embedding Condensation Phenomenon

Consider a sequence of N tokens and let 20 = 2\, ... 2]T € RV*d denote the token

embeddings after layer [ in a transformer. In the eyes of physicists, Z(Y) can be interpreted as
N particles in a d-dimensional space, and transformer layers are external impacts on the particle
system. A theory paper [[7] has mathematically proven that these embeddings tend to cluster to a
single point as [ — oo, but limited empirical evidence has been provided.

In this work, we empirically analyze the spread of Z(Y across depth [ and across model scales, and
identify what we term the embedding condensation phenomenon.

2.1 Quantifying layer-by-layer embedding spread in transformers

Let zi(l) € R< denote the embedding of token i after layer /, we measure the spread of embeddings

. o T ) O @ 20T
using pairwise cosine similarities cossim ( 2;”, 2’ | = W
2 Mz

ALBERT-large-v2 ..

Cosine similarities lie in [—1, 1], with | sesmmmeve
a value of 1 indicating complete
directional alignment, —1 indicating
opposite directions, and 0 indicating
orthogonality.
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For each layer [, we compute pairwise . .- -l ] T — I -

similarities {cossim(z:fl)7 ZJ(-l))}
across all token pairs after feeding
the input sequence to the transformer. ke = s
The feSUlting Values form a Larger models are more resistant to the embedding condensation phenomenon.
distribution that we visualize as a

histogram for each layer. By stacking Figure 1: Smaller models (e.g., ALBERT-base, GPT2)
these histograms across depth, we exhibit the embedding condensation phenomenon, as token
create a heatmap that highlights the cosine similarities become increasingly positive as the
progression of embedding spread embeddings proceed to deeper layers. Larger models
layer by layer. (e.g., ALBERT-xxlarge, GPT2-x1) are less vulnerable
to embedding condensation, suggesting that broader
representation spread is a key property of larger models,
and potentially correlated with model performance.

extremely
significant
condensation

less severe
condensation

In this work, every heatmap is created
using a population average over
n = 100 randomly selected input
sequences from wikitext-103 [8].
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We have experimented with different types of input text (pubmed_qa [9], imdb [10]], and squad [11]),
and the trends remain highly independent of the dataset.

2.2 Embedding condensation and its implication

Applying the above analysis to multiple transformer families reveals a clear model-size-dependent
trend. As shown in Figure[T} smaller models such as ALBERT-base and GPT2 exhibit a sharp upward
drift of cosine similarity distributions with depth. The embeddings become increasingly aligned,
and in GPT2 the distribution collapses almost entirely near 1, indicating a near-perfect directional
alignment. ALBERT-base shows the same tendency, though its collapse remains less extreme. We
refer to this degeneracy as embedding condensation.

In contrast, larger models such as ALBERT-xxlarge and GPT2-x1 maintain relatively non-extreme
cosine similarities across all layers, indicating that they are naturally more resistant to embedding
condensation. We refer to this behavior as embedding dispersion.

This geometric  view Larger  Smaller
highlights an important ... .. SOEREEEEREREREND

implication: condensation Transformer Layer Z.
reduces the diversity

of directions in which m«mqszw[]D[]DDDD[]DDDDDDDD

tokens can be represented, ( Transformer Layer 1 . T
effectively Narrowing e cokens D D D 000000000000 D w5 - W8 o o e promyanc
the model’ S expressive gap between smaller models
capacity  (Figure [J).
Dispersion, on the Figure 2: Conceptual illustration of embedding condensation.
other hand, preserves

representational breadth, which may underlie the superior performance of large-scale models. These
observations motivate the following hypothesis.

Embedding
Condensation
Phenomenon

¥

and larger models?

Token 1
Token 2
Token
Token

HYPOTHESIS: DISPERSION UNDERLIES THE POWER OF LARGER MODELS.

Embedding condensation reduces the expressiveness of small transformers by collapsing token
representations into narrow cones. We hypothesize that by counteracting condensation and
encouraging dispersion during training, smaller models can recover properties seen in larger
models, thereby narrowing the performance gap without increasing the number of parameters.

3 Dispersion Losses for Transformer Embeddings

Our hypothesis motivates the design of auxiliary objectives that explicitly promote embedding
dispersion during training. For this purpose, we propose to augment the training loss with a dispersion
loss as a regularizer, which gives £ = Liwain + Adisp * Ldisp-

We implemented four variants of Lg;sp, €ach capturing dispersion through a different geometric lens.
The formulations of these variants are summarized in Table[[|and illustrated in Figure 3]

Table 1: Variants of dispersion losses for transformers. For the Orthogonalization variant, the
distance margin is fixed to % since we use angular distance, where % corresponds to orthogonality
and thus serves as the ideal margin. For ¢5-repel and Angular spread, we adopt the log-sum-exp
trick for numerical stability, which differs from log(mean(exp(-))) only by an additive constant. For
£o-repel, a norm regularization term is added to prevent unbounded expansion of embeddings.

For generative modeling in For improving generalization performance of
Variant diffusion-based models smaller language models
formulation [12] formulation (ours) term definition
Decorrelation Sn Cov?,m SIECovE,, Cov? Zd Ze Z,= %2()2)
ly-repel logE; jlexp(—D(z;,2;)/7)] log Zf? lexp(—=D(2, 2)/7)] + Anoml| Z 13 D(zi,2j) = |Zi. — Z. ;I3
Angular spread  logE; j[exp(—D(z;, ;) /7)) log 37 7 [exp( D(z;,z)/7)] D(z;, 7)) = arccos(cossim(zi,z;))

ks
__ arccos(cossim(zi,z;))
D(z, 25) = =05

Orthogonalization  E; ;[max(0,e — D(2;,2;))?] IEI#J [max(O 1 — D(z,2)))%
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, disperse s \‘ disperse \".
- L { o :

y disperse L2 " obtuse angle,
5T e

do nothing
—  lo-repel

—*  norm regularization

C——

—> Decorrelation

<= Angular spread <—— Orthogonalization

Figure 3: Illustration of how the four dispersion loss variants respectively promote
representation dispersion. (a) Decorrelation loss suppresses off-diagonal covariance, encouraging
different feature dimensions to remain uncorrelated. (b) ¢s-repel loss drives pairwise separation
in Euclidean space, while the norm regularization prevents unbounded expansion. (c) Angular
spread loss enforces uniform angular dispersion by spreading out all pairs along the sphere. (d)
Orthogonalization loss selectively spreads out vectors forming acute angles while leaving cobtuse
ones unchanged.

4 Empirical Results

We mid-train GPT-2 models for 200M tokens on wikitext-103 starting from pre-trained weights.
Full pre-training from scratch is computationally expensive, which we leave for future investigations.

4.1 Dispersion loss counteracts the embedding condensation phenomenon

Our dispersion losses effectively e oo
counteract the embedding :- e "
condensation phenomenon (FigureED.
While pre-trained GPT2 exhibits =« %
severe condensation (similarities
collapse to 1 in deeper layers) and
standard mid-training provides minimal improvement, all four dispersion variants significantly
restore the natural non-extreme cosine similarities characteristic of larger models.

Wi trained GPT2 Wid-rained 6Pz Vid-rainod avT2
ot loss + repel dututlons + Angulr spresd gt sk + Orhogonalzation
10

Figure 4: Dispersion losses counteract condensation.

4.2 Dispersion loss improves model performance in mid-training

Dispersion losses consistently improve downstream performance (Table[2). Over a diverse set of 10
language tasks, all four dispersion variants outperform the baseline with default cross-entropy loss.
Improvements are consistent in most tasks, with particularly strong gains in LAMBADA. These results
validate our hypothesis: counteracting condensation through geometric regularization improves
language understanding, bringing smaller models closer to larger counterparts.

5 Conclusion

We identified embedding condensation as a key limitation of smaller transformers and demonstrated
that dispersion losses effectively counteract this phenomenon. In our future endeavors, we will (1)
identify better text corpses than wikitext-103 that may be more beneficial during mid-training, and
(2) extend our experiments to pre-training from scratch, as a more direct and definitive investigation.

Table 2: Using dispersion losses during mid-training improve GPT2 performance on language tasks.

M Mid-training Zero-shot Few-shot (1)
odel Average?
Train Variant ANLIgyT LAMBADAopenaiT OpenbookQAT PIQAT TrustfulQAT WinoGrandel ARCeasy? ARCchailengel MedMCQAT —MMLUT

GPT2 X — 34.4 30.0 16.0 62.0 40.4 532 432 17.2 252 252 34.68
v Defaultloss  35.0(,06) 344,44 162(102) 6220102 42.7(423) 532¢00) 44412y 172¢000) 23.6(_16) 25.5(10.3) 35.44(,0.76)
Decorrelation  35.2(1 5  35.0(15.0) 158(_02) 61.8(_02) 425021 52.6(_06) 43.6(404) 17.8106) 25.6(10.4) 25.8(40.6) 35.57(40.80)
La-repel 350106) 362(16.2) 16.6(106) 61.6(_0.4) 454(;5.0) 558(126) 45.0(118) 18.4(110) 24.0(_12) 24.8(_0.4) 36.28( 1 60)
Orthogonalization 35.6(, ;)  34.6(,.4¢) 162(40.2) 62.010.0) 43.0(126) 532000 430(—0.2) 18.0¢108) 25.0(—0.2) 25.6(10.4) 35.63(40.95)
Angular spread  35.4(10)  34.8(,45) 164104y 61.0_10) 4320425 5504180 442100 178(06) 24.8(_0.4) 254(10.2) 35.80(41.12)

GPT2-m X — 334 40.6 36.4 18.8 66.4 40.6 526 49.8 204 252 38.42
v Defaultloss  33.2( o) 43.2(,55) 36.6(102) 190(102) 68.0(11¢ 4.2 36) 53.60.1.0) 488 1) 1960 o5) 25.1( 1) 39.13( 071
Decorrelation  33.4(.0) 454 45 38.6(122) 18.8(100) 66.4(10.0) 438(132) 544118 48018 196(_08) 254(10.2) 3939 (10.07)
La-repel 33.6102) 444138 38.0(+16) 18.8(100) 672(105) 44.2,36) 52.8(102) 48.0_18) 19.8_06) 25.3(10.1) 39-21(40.79)
Orthogonalization 33.2(_g2) 452014 37.6(41.2) 18.6(_0.2) 678114 43.6(13.0) 532(406) 48.6(_1.2) 20.0(_g.4) 25.0_0.2) 39.28(10.56)
Angularspread  33.4(100)  45.0(144) 394300 19204 674310 43.8(132) 522(_04) 50.0102) 20.2(_02) 25.4(10.2) 39:60(1.15)

GPT2-1 X — 334 47.6 19.6 714 389 59.0 53.8 224 26.6 25.5 39.83

GPT2-x1 X — 36.2 49.8 22.8 72.6 38.0 57.8 584 242 27.2 25.1 41.21
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