
Dispersing Embeddings in Transformer Layers
Improves Generalization of Language Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large language models achieve remarkable performance through ever-increasing1

parameter counts, yet scaling imposes steep computational costs. We2

observed a geometric phenomenon called embedding condensation, where token3

representations collapse into narrow cones as they propagate through smaller4

models. Through systematic measurements across multiple transformer families,5

we show that small models such as ALBERT-base and GPT-2 exhibit severe6

condensation, whereas large models maintain embedding dispersion. This suggests7

that superior performance partly arises from sustained representational diversity.8

We formulate four losses that explicitly encourage embedding dispersion during9

training. Experiments demonstrate that these losses mitigate condensation, recover10

dispersion patterns seen in larger models, and yield consistent performance gains11

across 10 benchmarks, offering a principled path toward improving smaller12

transformers without additional parameters.13

1 Introduction14

The remarkable success of large-scale transformer models has fundamentally transformed natural15

language processing, with performance consistently improving as parameter counts scale from16

millions to hundreds of billions [1, 2, 3]. However, this scaling paradigm presents significant17

practical challenges: larger models require substantial computational resources [4, 5, 6], making18

them inaccessible for many applications. This motivates a critical question: Can we identify and19

replicate the key properties that make large models effective, thus improving smaller models without20

simply adding more parameters?21

Recent theoretical work has shown that transformer embeddings mathematically tend to cluster22

toward a single point as depth approaches infinity [7], but the empirical manifestation of this23

phenomenon and its relationship to model performance remain underexplored. In this work, we24

provide a comprehensive empirical analysis of what we term embedding condensation: the tendency25

for token representations in smaller transformer models to collapse into narrow directional cones as26

they propagate through deeper layers. Through systematic measurement of pairwise cosine similarities27

across multiple transformer families, we demonstrate that smaller models (e.g., GPT2, ALBERT-base)28

exhibit severe condensation, with token representations becoming increasingly aligned and losing29

representational diversity (Figure 1). In contrast, larger models (e.g., GPT2-xl, ALBERT-xxlarge)30

naturally maintain embedding dispersion, which we define as diverse representation directions that31

preserve expressive capacity.32

This geometric perspective reveals a fundamental insight: condensation may be a key bottleneck33

limiting the expressiveness of smaller transformers. We hypothesize that the superior performance34

of large-scale models is partly a consequence of their ability to maintain representational breadth,35

Submitted to 1st Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



suggesting that counteracting condensation could narrow the performance gap between small and36

large models without increasing parameter count.37

To test this hypothesis, we propose four variants of dispersion losses that explicitly encourage38

embedding dispersion during training, serving as auxiliary objectives that promote representational39

diversity. Our empirical evaluation demonstrates that these losses successfully counteract embedding40

condensation in smaller models, restoring representational dispersion. More importantly, this41

geometric improvement leads to overall performance gains on average across 10 language42

understanding benchmarks when applied to GPT2 during mid-training.43

The key contributions of this work are listed below.44

1. We provide an empirical characterization of embedding condensation across transformer45

scales, revealing a clear size-dependent geometric phenomenon.46

2. We formulate four geometrically motivated dispersion loss variants that counteract47

condensation through different mechanisms. Compared to their existing counterparts in the48

literature, our implementations include specific design choices to maintain training stability49

and reduce parameter search space.50

3. We demonstrate that explicitly encouraging dispersion improves the performance of smaller51

models, offering a path toward closing the gap with larger models.52

2 The Embedding Condensation Phenomenon53

Consider a sequence of N tokens and let Z(l) = [z
(l)
1 , . . . , z

(l)
N ]⊤ ∈ RN×d denote the token54

embeddings after layer l in a transformer. In the eyes of physicists, Z(l) can be interpreted as55

N particles in a d-dimensional space, and transformer layers are external impacts on the particle56

system. A theory paper [7] has mathematically proven that these embeddings tend to cluster to a57

single point as l → ∞, but limited empirical evidence has been provided.58

In this work, we empirically analyze the spread of Z(l) across depth l and across model scales, and59

identify what we term the embedding condensation phenomenon.60

2.1 Quantifying layer-by-layer embedding spread in transformers61

Let z(l)i ∈ Rd denote the embedding of token i after layer l, we measure the spread of embeddings62

using pairwise cosine similarities cossim
(
z
(l)
i , z

(l)
j

)
=

z
(l)⊤
i ·z(l)

j

∥z(l)
i ∥·∥z(l)

j ∥
.63

Figure 1: Smaller models (e.g., ALBERT-base, GPT2)
exhibit the embedding condensation phenomenon, as token
cosine similarities become increasingly positive as the
embeddings proceed to deeper layers. Larger models
(e.g., ALBERT-xxlarge, GPT2-xl) are less vulnerable
to embedding condensation, suggesting that broader
representation spread is a key property of larger models,
and potentially correlated with model performance.

Cosine similarities lie in [−1, 1], with64

a value of 1 indicating complete65

directional alignment, −1 indicating66

opposite directions, and 0 indicating67

orthogonality.68

For each layer l, we compute pairwise69

similarities {cossim(z(l)i , z
(l)
j )}70

across all token pairs after feeding71

the input sequence to the transformer.72

The resulting values form a73

distribution that we visualize as a74

histogram for each layer. By stacking75

these histograms across depth, we76

create a heatmap that highlights the77

progression of embedding spread78

layer by layer.79

In this work, every heatmap is created80

using a population average over81

n = 100 randomly selected input82

sequences from wikitext-103 [8].83

2



We have experimented with different types of input text (pubmed_qa [9], imdb [10], and squad [11]),84

and the trends remain highly independent of the dataset.85

2.2 Embedding condensation and its implication86

Applying the above analysis to multiple transformer families reveals a clear model-size-dependent87

trend. As shown in Figure 1, smaller models such as ALBERT-base and GPT2 exhibit a sharp upward88

drift of cosine similarity distributions with depth. The embeddings become increasingly aligned,89

and in GPT2 the distribution collapses almost entirely near 1, indicating a near-perfect directional90

alignment. ALBERT-base shows the same tendency, though its collapse remains less extreme. We91

refer to this degeneracy as embedding condensation.92

In contrast, larger models such as ALBERT-xxlarge and GPT2-xl maintain relatively non-extreme93

cosine similarities across all layers, indicating that they are naturally more resistant to embedding94

condensation. We refer to this behavior as embedding dispersion.95

Figure 2: Conceptual illustration of embedding condensation.

This geometric view96

highlights an important97

implication: condensation98

reduces the diversity99

of directions in which100

tokens can be represented,101

effectively narrowing102

the model’s expressive103

capacity (Figure 2).104

Dispersion, on the105

other hand, preserves106

representational breadth, which may underlie the superior performance of large-scale models. These107

observations motivate the following hypothesis.108

HYPOTHESIS: DISPERSION UNDERLIES THE POWER OF LARGER MODELS.
Embedding condensation reduces the expressiveness of small transformers by collapsing token
representations into narrow cones. We hypothesize that by counteracting condensation and
encouraging dispersion during training, smaller models can recover properties seen in larger
models, thereby narrowing the performance gap without increasing the number of parameters.

109

3 Dispersion Losses for Transformer Embeddings110

Our hypothesis motivates the design of auxiliary objectives that explicitly promote embedding111

dispersion during training. For this purpose, we propose to augment the training loss with a dispersion112

loss as a regularizer, which gives L = Ltrain + λdisp · Ldisp.113

We implemented four variants of Ldisp, each capturing dispersion through a different geometric lens.114

The formulations of these variants are summarized in Table 1 and illustrated in Figure 3.115

Table 1: Variants of dispersion losses for transformers. For the Orthogonalization variant, the
distance margin is fixed to 1

2 since we use angular distance, where 1
2 corresponds to orthogonality

and thus serves as the ideal margin. For ℓ2-repel and Angular spread, we adopt the log-sum-exp
trick for numerical stability, which differs from log(mean(exp(·))) only by an additive constant. For
ℓ2-repel, a norm regularization term is added to prevent unbounded expansion of embeddings.

Variant
For generative modeling in For improving generalization performance of

diffusion-based models smaller language models
formulation [12] formulation (ours) term definition

Decorrelation
∑

m,n Cov2mn

∑m̸=n
m,n Cov2mn Cov2 =

Z⊤
c Zc

d−1 , Zc =
Z−µd(Z)
σd(Z)

ℓ2-repel logEi,j [exp(−D(zi, zj)/τ)] log
∑i̸=j

i,j [exp(−D(zi, zj)/τ)] + λnorm∥Z∥22 D(zi, zj) = ∥Zi,: −Z:,j∥22
Angular spread logEi,j [exp(−D(zi, zj)/τ)] log

∑i̸=j
i,j [exp(−D(zi, zj)/τ)] D(zi, zj) =

arccos(cossim(zi,zj))
π

Orthogonalization Ei,j [max(0, ϵ−D(zi, zj))
2] Ei̸=j

i,j [max(0, 1
2 −D(zi, zj))

2] D(zi, zj) =
arccos(cossim(zi,zj))

π

3



Figure 3: Illustration of how the four dispersion loss variants respectively promote
representation dispersion. (a) Decorrelation loss suppresses off-diagonal covariance, encouraging
different feature dimensions to remain uncorrelated. (b) ℓ2-repel loss drives pairwise separation
in Euclidean space, while the norm regularization prevents unbounded expansion. (c) Angular
spread loss enforces uniform angular dispersion by spreading out all pairs along the sphere. (d)
Orthogonalization loss selectively spreads out vectors forming acute angles while leaving cobtuse
ones unchanged.

4 Empirical Results116

We mid-train GPT-2 models for 200M tokens on wikitext-103 starting from pre-trained weights.117

Full pre-training from scratch is computationally expensive, which we leave for future investigations.118

4.1 Dispersion loss counteracts the embedding condensation phenomenon119

Figure 4: Dispersion losses counteract condensation.

Our dispersion losses effectively120

counteract the embedding121

condensation phenomenon (Figure 4).122

While pre-trained GPT2 exhibits123

severe condensation (similarities124

collapse to 1 in deeper layers) and125

standard mid-training provides minimal improvement, all four dispersion variants significantly126

restore the natural non-extreme cosine similarities characteristic of larger models.127

4.2 Dispersion loss improves model performance in mid-training128

Dispersion losses consistently improve downstream performance (Table 2). Over a diverse set of 10129

language tasks, all four dispersion variants outperform the baseline with default cross-entropy loss.130

Improvements are consistent in most tasks, with particularly strong gains in LAMBADA. These results131

validate our hypothesis: counteracting condensation through geometric regularization improves132

language understanding, bringing smaller models closer to larger counterparts.133

5 Conclusion134

We identified embedding condensation as a key limitation of smaller transformers and demonstrated135

that dispersion losses effectively counteract this phenomenon. In our future endeavors, we will (1)136

identify better text corpses than wikitext-103 that may be more beneficial during mid-training, and137

(2) extend our experiments to pre-training from scratch, as a more direct and definitive investigation.138

Table 2: Using dispersion losses during mid-training improve GPT2 performance on language tasks.
Model Mid-training Zero-shot Few-shot (1) Average↑

Train Variant ANLIR2↑ LAMBADAopenai↑ OpenbookQA↑ PIQA↑ TrustfulQA↑ WinoGrande↑ ARCeasy↑ ARCchallenge↑ MedMCQA↑ MMLU↑
GPT2 ✗ — 34.4 30.0 16.0 62.0 40.4 53.2 43.2 17.2 25.2 25.2 34.68

✓ Default loss 35.0(+0.6) 34.4(+4.4) 16.2(+0.2) 62.2(+0.2) 42.7(+2.3) 53.2(+0.0) 44.4(+1.2) 17.2(+0.0) 23.6(−1.6) 25.5(+0.3) 35.44(+0.76)

Decorrelation 35.2(+0.8) 35.0(+5.0) 15.8(−0.2) 61.8(−0.2) 42.5(+2.1) 52.6(−0.6) 43.6(+0.4) 17.8(+0.6) 25.6(+0.4) 25.8(+0.6) 35.57(+0.89)

ℓ2-repel 35.0(+0.6) 36.2(+6.2) 16.6(+0.6) 61.6(−0.4) 45.4(+5.0) 55.8(+2.6) 45.0(+1.8) 18.4(+1.2) 24.0(−1.2) 24.8(−0.4) 36.28(+1.60)

Orthogonalization 35.6(+1.2) 34.6(+4.6) 16.2(+0.2) 62.0(+0.0) 43.0(+2.6) 53.2(+0.0) 43.0(−0.2) 18.0(+0.8) 25.0(−0.2) 25.6(+0.4) 35.63(+0.95)

Angular spread 35.4(+1.0) 34.8(+4.8) 16.4(+0.4) 61.0(−1.0) 43.2(+2.8) 55.0(+1.8) 44.2(+1.0) 17.8(+0.6) 24.8(−0.4) 25.4(+0.2) 35.80(+1.12)

GPT2-m ✗ — 33.4 40.6 36.4 18.8 66.4 40.6 52.6 49.8 20.4 25.2 38.42

✓ Default loss 33.2(−0.2) 43.2(+2.6) 36.6(+0.2) 19.0(+0.2) 68.0(+1.6) 44.2(+3.6) 53.6(+1.0) 48.8(−1.0) 19.6(−0.8) 25.1(−0.1) 39.13(+0.71)

Decorrelation 33.4(+0.0) 45.4(+4.8) 38.6(+2.2) 18.8(+0.0) 66.4(+0.0) 43.8(+3.2) 54.4(+1.8) 48.0(−1.8) 19.6(−0.8) 25.4(+0.2) 39.39(+0.97)

ℓ2-repel 33.6(+0.2) 44.4(+3.8) 38.0(+1.6) 18.8(+0.0) 67.2(+0.8) 44.2(+3.6) 52.8(+0.2) 48.0(−1.8) 19.8(−0.6) 25.3(+0.1) 39.21(+0.79)

Orthogonalization 33.2(−0.2) 45.2(+4.6) 37.6(+1.2) 18.6(−0.2) 67.8(+1.4) 43.6(+3.0) 53.2(+0.6) 48.6(−1.2) 20.0(−0.4) 25.0(−0.2) 39.28(+0.86)

Angular spread 33.4(+0.0) 45.0(+4.4) 39.4(+3.0) 19.2(+0.4) 67.4(+1.0) 43.8(+3.2) 52.2(−0.4) 50.0(+0.2) 20.2(−0.2) 25.4(+0.2) 39.60(+1.18)

GPT2-l ✗ — 33.4 47.6 19.6 71.4 38.9 59.0 53.8 22.4 26.6 25.5 39.83
GPT2-xl ✗ — 36.2 49.8 22.8 72.6 38.0 57.8 58.4 24.2 27.2 25.1 41.21

4



References139

[1] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,140

Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language141

models. arXiv preprint arXiv:2001.08361, 2020.142

[2] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza143

Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom144

Hennigan, Jacob Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia145

Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent146

Sifre. Training compute-optimal large language models. In Advances in Neural Information147

Processing Systems, 2022.148

[3] Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher,149

Xavier Amatriain, and Jianfeng Gao. Large language models: A survey. arXiv preprint150

arXiv:2402.06196, 2024.151

[4] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,152

Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam153

Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and154

Luke Zettlemoyer. Opt: Open pre-trained transformer language models. arXiv preprint155

arXiv:2205.01068, 2022.156

[5] Abhimanyu Dubey, Aaron Grattafiori, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,157

Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Angela Fan, Anirudh Goyal,158

Aurelien Rodriguez, , et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783,159

2024.160

[6] OpenAI. Introducing gpt-5. OpenAI Blog, 2025.161

[7] Borjan Geshkovski, Cyril Letrouit, Yury Polyanskiy, and Philippe Rigollet. A mathematical162

perspective on transformers. Bulletin of the American Mathematical Society, 62(3):427–479,163

2025.164

[8] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture165

models. International Conference on Learning Representations, 2017.166

[9] Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. Pubmedqa: A167

dataset for biomedical research question answering. In Proceedings of the 2019 Conference on168

Empirical Methods in Natural Language Processing and the 9th International Joint Conference169

on Natural Language Processing (EMNLP-IJCNLP), pages 2567–2577, 2019.170

[10] Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher171

Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual172

Meeting of the Association for Computational Linguistics: Human Language Technologies,173

pages 142–150, 2011.174

[11] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions175

for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical176

Methods in Natural Language Processing, pages 2383–2392, 2016.177

[12] Runqian Wang and Kaiming He. Diffuse and disperse: Image generation with representation178

regularization. arXiv preprint arXiv:2506.09027, 2025.179

5


	Introduction
	The Embedding Condensation Phenomenon
	Quantifying layer-by-layer embedding spread in transformers
	Embedding condensation and its implication

	Dispersion Losses for Transformer Embeddings
	Empirical Results
	Dispersion loss counteracts the embedding condensation phenomenon
	Dispersion loss improves model performance in mid-training

	Conclusion

