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Abstract

In recent years, vision-language models such as CLIP and VideoLLaMA have demonstrated
the ability to express visual data in semantically rich textual representations, making them
highly effective for downstream tasks. Given their cross-modal semantic representation
power, leveraging such models for video anomaly detection (VAD) holds significant promise.
In this work, we introduce Semantic VAD (SemVAD), a novel methodology for weakly super-
vised video anomaly detection (wVAD) that effectively fuses visual and semantic features
obtained from pretrained vision-language models, specifically VideoLLaMA 3 and CLIP.
Our approach enhances performance and explainability in anomaly detection. Additionally,
we analyze the sensitivity of recent state-of-the-art models to randomness in training initial-
ization and introduce a more comprehensive evaluation framework to assess their robustness
to small changes in training such as the seed of random number generator. This framework
aims to provide a more rigorous and holistic assessment of model performance, ensuring a
deeper understanding of their reliability and reproducibility in wVAD.

1 Introduction

In recent years, weakly supervised anomaly detection (wVAD) has gained increasing attention due to its
potential applications in automated surveillance and content moderation systems. The majority of existing
research has focused on contrastive learning-based approaches, where video content is segmented and trans-
formed into visual embeddings, followed by training a neural network using multiple-instance learning (MIL)
(Sultani et all [2018). Some recent studies have explored alternative strategies, including pseudo-labeling
instead of MIL (Karim et al., 2024]). However, MIL-based methods have remained the dominant approach
in the field, demonstrating their effectiveness in handling weakly labeled video anomaly detection tasks.

MIL-based methods exhibit a sensitivity drawback, where model convergence is highly dependent on weight
initialization. This issue arises from the inherent characteristics of the MIL framework, namely the random
selection of video clips . Consequently, model performance may vary considerably depending on the choice
of the random seed.

Recently, pretrained vision-language models (VLMs) have gained significant attention due to their ability to
learn rich visual representations with semantic understanding (Radford et al., 2021)), (Zhang et al.| [2023)),
(Cheng et all 2024), (Zhang et al., 2025). CLIP(Radford et al., 2021), has gained significance in recent
wVAD literature (Wu et all [2024)(Joo et all [2023) and has been primarily used as backbone for feature
extraction due to its strong visual representation. Although CLIP is trained on image-text pairs, researchers
have introduced feature encoding techniques to incorporate temporal dependencies, such as Temporal Self-
Attention (TSA) (Pu et all) [2024) and the Local-Global Temporal Adapter (LGT-Adapter) (Wu et al.l
2024]).

However, recent advancements in vision-language models have led to the development of video-language
models that can directly process and understand video content. In this study, we aim to adopt the MIL
framework in conjunction with VLMs to generate descriptive annotations for anomalies occurring in video
streams and utilize these descriptions to enhance the performance and explainability in wVAD. Our key
contributions are as follows:
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1. We propose Semantic VAD (SemVAD) featuring a novel feature fusion architecture that integrates
semantic and visual features extracted by video-language models (Section , which distinguishes
our method from the existing methods that use LLM/VLM for unsupervised VAD (Yang et al.,
2024; |Zanella et al.| 2024) or weakly supervised (Pu et al., 2024; Joo et al. [2023} [Lv et al., 2023;
Wu et al.l 2024) VAD.

2. We introduce an evaluation criterion for assessing the robustness of wVAD systems to randomness
in training initialization (Section [4.2)).

3. We demonstrate improved performance and explainability over recent state-of-the-art methods in
both coarse-grained and fine-grained anomaly detection tasks (Sections 4.5)).

2 Related Work

2.1 Weakly supervised video anomaly detection

Sultani et al. (Sultani et al., 2018) introduced the Multiple Instance Learning (MIL) framework, laying the
groundwork for weakly supervised video anomaly detection (wVAD). MIST followed the MIL framework
and used an encoder-based method that fine-tunes a feature encoder based on the generated pseudo-labels.
Subsequent work improved performance via temporal aggregation. RTFM (Tian et al., [2021) proposed a
Multi-Scale-Temporal Network (MTN) to better aggregate temporal features. Later methods like MGFN
(Chen et al,, |2023) and S3R (Wu et al., 2022) incorporated dictionary and feature magnitude learning to
advance wVAD. Although alternative approaches have been explored, such as the use of k-NN distances to
generate pseudo-labels (Karim et al., |2024)), MIL remains a prevalent choice due to the effectiveness of its
aggregation techniques.

Recently, large language models have motivated LLM based anomaly detection, especially in unsupervised
VAD, focusing on model reasoning (Yang et al., 2024) and training-free approaches. LAVAD (Zanella et al.,
2024)) proposes a training-free, fully unsupervised pipeline that converts video into language and lets an LLM
do the temporal reasoning. Frames are captioned by a VLM; captions are cleaned with cross-modal similarity;
then prompting aggregates temporal evidence and yields anomaly scores—no fine-tuning or domain data
required. While the strengths are simplicity and zero annotation cost, limitations include sensitivity to
caption noise and reliance on general-purpose captioners/LLMs, which can miss subtle anomalies or bias
toward “textually salient” events. Holmes-VAD (Zhang et al.| 2024) is another LLM based model that
proposed to train a Multi-Modal LLM on VAD-Instruct50k, a large instruction-tuning corpus built with
semi-automatic single-frame annotations, through human effort and LLM-generated explanations.

Prompt-learning remain popular in wVAD (Pu et al., 2024} |Joo et al.| 2023} [Lv et al.,|2023; [Wu et al., 2024).
CLIP-TSA (Joo et al., 2023) used CLIP features and temporal self-attention to model short- and long-term
dependencies. UMIL (Lv et al., [2023) introduced an Unbiased MIL framework leveraging CLIP features
to reduce bias and improve wVAD. PeldVAD(Pu et al., 2024)) introduced prompt learning to discriminate
between nominal and anomalous segments. VADClip (Wu et al., 2024} recently introduced the Local-Global
Temporal Adapter (LGT-Adapter), combining windowed self-attention with lightweight GCNs to capture
fine-grained and long-range temporal dependencies, significantly boosting detection performance.

None of the existing LLM/VLM-based methods for unsupervised VAD (Yang et al., 2024} |Zanella et al.l
2024) or weakly supervised (Pu et al., 2024} |Joo et al.l [2023; [Lv et all [2023; [Wu et all [2024) VAD fuses
visual and semantic features from videos like SemVAD.

2.2 Vision language models

VLMs have become central to bridging visual understanding with natural language reasoning. Among the
most foundational works is CLIP (Radford et al., [2021)), which introduced a contrastive learning framework
that aligns images and text in a shared embedding space. Trained on hundreds of millions of image-text
pairs, CLIP enables zero-shot transfer by embedding both modalities using separate encoders and learning
to maximize their similarity for matching pairs. Its generalizability across various downstream tasks, such as



Under review as submission to TMLR

image retrieval, classification, and video understanding, has made it a cornerstone of multi-modal learning
and a powerful feature extractor in weakly supervised setups.

More recent models have expanded this paradigm into temporally complex and generative domains. Sora
(Liu et al., 2024)) shifts the focus from understanding to generation by producing high-fidelity videos directly
from text prompts. Through diffusion-based modeling, Sora can generate coherent and realistic video se-
quences, marking a leap in cross-modal synthesis and showcasing how language can condition fine-grained
spatiotemporal outputs. Meanwhile, Video-LLaMA (Zhang et al.| [2023),(Zhang et al., 2025|) integrates large
language models with video encoders to enable multimodal reasoning over sequential visual data. It builds
on instruction-tuned LLMs and pretrained vision backbones to handle tasks like video question answering
and temporal captioning, combining perception with structured language reasoning.

3 Method

3.1 Problem Definition and Method Overview
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Figure 1: Overview of the SemVAD architecture, which leverages captions generated by a multi-modal
language model through fusion with extracted vision features and outputs anomaly score for the given
anomaly classes.

SemVAD introduces a video anomaly detection (VAD) architecture designed to harness the capabilities of
recent multimodal language models by integrating them with established vision feature extractors such as
CLIP, I3D, and Uniformer. The overall architectural pipeline of SemVAD is depicted in Figure

Let V denote the set of all videos, where each video V' € V may contain either normal content or an anomaly
belonging to one of M predefined anomaly classes. Each video V' is divided into N non-overlapping clips,
denoted as {v1,va,...,un}. The wVAD setting assumes that only video-level labels are available during
training. Specifically, given a video V, if all frames are free of abnormal events, the video is labeled as
normal y = 0. Conversely, if at least one frame contains an anomaly, the video is labeled as abnormal y = 1.
The objective of a wVAD system is to learn a model capable of predicting frame-level anomaly scores for
coarse-grained (normal vs. anomalous) and fine-grained (anomaly classes) decisions, despite being trained
solely on video-level annotations.

In this work, we semantically enhance the CLIP (Radford et al. 2021)) (visual) features used in VADCLIP
(Wu et al., |2024) by integrating a caption C; for each clip v; obtained by the multi-modal language model,
VideoLLaMA 3 and postprocessing. A novel two-phase fusion module consisting of attention and convolu-
tion mixer steps is proposed for seamless integration. We further enhance the model’s temporal reasoning
and anomaly localization capabilities by training the model with a novel semantic-alignment loss function in
addition to the Local-Global Temporal (LGT) Adapter and the dual-branch MIL-align framework of VAD-
CLIP. A detailed overview of the proposed Semantic VAD (SemVAD) method is shown in Figure [2[ with
novel modules and VADCLIP modules highlighted in red and blue, respectively.

3.2 Extraction of semantic features using VideoLLaMA 3

For each clip v; in a video V', we generate a caption C; to describe the content of the clip. To incorporate
temporal context, a window of three consecutive clips v;_1,v;,v;41 is passed to VideoLLaMA 3 with the
following prompt:
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Figure 2: Overview of the SemVAD architecture, which builds upon the VADCLIP (Wu et al., [2024) frame-
work by incorporating semantically rich captions to enhance visual representations. Descriptive captions,
generated via VideoLLaMA 3, are fused with CLIP visual features through a two-phase fusion module
comprising an attention mechanism and a convolutional mixer. Additionally, SemVAD introduces a novel
class-specific alignment 108s £sem (¢, t(m))7 Pif 93, which encourages caption embeddings ¢; to align with class-
specific prompts t(™). Components highlighted in blue represent the original VADCLIP pipeline while red
modules denote the proposed contributions in SemVAD.

“You are given three consecutive clips. Describe what is happening in the
middle clip using the preceding and the following clip as context.”

The three-clip window is slid across the sequence of N clips in the video, with padding of one clip at the
beginning and end as needed. Each caption is then embedded into a numerical vector 7; € R? using the
CLIP text encoder, where @ is the dimension of the feature vector. We also incorporate a system-level

prompt provided in appendix

During training, an important goal is to encourage captions that are likely to contain anomalies to be pushed
towards their corresponding class labels. To this end, we first derive a generalized caption representation for
each anomaly class. The generalized caption for each class serves as a prototype or centroid which captures
the key semantic features that characterize anomalies within that class. Let m = 0 represent the normal class
and m = 1,..., M represent the anomaly classes. Figure [3]shows the complete pipeline to obtain generalized
caption C™) for each class from the generated captions C;. First, the set of class-specific captions C(™) is
formed from all clips that belong to videos labeled with the m-th anomaly class. Similarly, let C(°) represent
the set of captions from all clips in videos labeled as normal.

For each unique word w appearing in the caption corpus, we define the class-specific score P, (w) as follows:
count(w,C©)

count (w, U%:l C(m)) +e

count (w, C(™))
P, = , > 0; P =
(w) count(w,C(O)) +e m O(w)

(1)

where count(w, C(m)) denotes the number of times the word w appears in the set of captions C™), and e is
a small constant to avoid division by zero.
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Figure 3: Class-Specific Prompt Extraction Pipeline: Captions C; are generated for each clip v; using
VideoLLaMA 3 model. After filtering, words are ranked by class-specific scores P, (w), and top words are
embedded via CLIP. For anomaly classes, words are re-ranked using cosine similarity; for the normal class,
top words are selected directly. Final class prompts are encoded to obtain CLIP text features T,.

For each class m, each word w is first ranked according to its score P,,(w). The top 2% of words with the
highest scores are selected to represent salient linguistic features for the m-th anomaly class. Each selected
word is then embedded into a vector representation using the CLIP text encoder. These word embeddings
are then compared to the CLIP-encoded representation of the m-th anomaly class label via cosine similarity.
Based on this similarity, the words are re-ranked, and the top S most semantically relevant words are selected.

For the normal class, the cosine similarity step is omitted due to the inadequacy of the phrase "normal" as
a semantically meaningful or descriptive label in the CLIP embedding space. Instead, the top S words are
selected directly based on their Py(w) scores, following the same ranking procedure described earlier. The
final set of S words for each class m are concatenated using a space delimiter to form the generalized caption
C(™) . This phrase is then passed through the CLIP text encoder to obtain a numerical representation
T(m € RO.

3.3 Vision-Caption Fusion

We propose a two-phase fusion module designed to integrate caption features T' = [T;] of a video with visual
features F' = [F;] € RV*P obtained from the CLIP visual encoder. The fusion process begins by aggregating
caption features globally through an attention mechanism conditioned on the visual features. This is followed
by a convolution mixer module that fuses the attended features along the local temporal dimension. This is
similar to local-global aggregation in WSVAD [Wu et al.| (2022),Wu et al.| (2024),Chen et al.| (2023).

3.3.1 Attention-Based Fusion

In the first phase, as illustrated in Figure the CLIP visual features F' and the caption features T for a video
are passed through separate learnable linear projection layers, denoted as L, and L., to obtain projected
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visual and textual features, f € R¥*P and ¢t € RV*P | where D is the feature dimensionality and N is the
number of clips per video.

Next, cross-modal attention is computed between the projected visual features f and textual features ¢.
The resulting attention scores are used to aggregate the textual features based on their similarity with the
visual modality. The aggregated caption features are then added to the visual embeddings, followed by
layer normalization and a feed-forward network. This results in the attention-fused feature representation,
denoted as 2t ¢ RNXD,

SN ﬂ N, Attention Feature :
T :
r— |

NxD softmax t S—HCW attn | !
Eer) 27 2 I ) el a7 o]

Figure 4: Illustration of the attention-based vision-caption fusion module.

In our cross-modal attention setup, we treat vision features f as queries and text features ¢ as keys. Rather
than employing the standard QKV attention, we found that reusing the keys as values (QKK attention)
consistently yielded better performance (see Appendix . While avoiding an additional projection for
values, QKK seems to preserve semantic alignment, acting as a form of regularization in the fusion process.

3.3.2 Convolution Mixer

Next, the attention-fused text features ¢2*" are stacked with the projected visual features f; to produce a
combined representation Xstack = [gstack] ¢ R2XNXD " ag shown in Figure 5} A 2D convolutional layer with
a kernel size of 2 x 3 is applied to this stacked tensor, with both the input and output channels set to D.
This convolution operation, which fuses the features across the modality (stack) and temporal dimensions, is
followed by the GELU activation function. Necessary padding is applied along the temporal axis to preserve
the clip length. The output of this operation is denoted as X" € R¥*P  which is subsequently passed

Concat

I
1
I
I
N I
Linear : —— —
| | eren [P |
i [£] € BE=D|| Fmie € V=D |- | o jused ¢ paven
I

Temporal Convolution !
. I

- J Mixer i
I

I

[f] e RY<P

STACK

[t‘nﬁﬂl e RN%D i

Figure 5: Illustration of the convolution mixer module.

through a linear layer to obtain the convolution-mixed features F™* = [fmix] ¢ RNxD,

Finally, the visual features f; and f™* are concatenated along the feature dimension to produce the fused
representation Ffused = [ffused] ¢ RNX2D " which is then used as input to the LGT adapter. In Section
we further explore the effect of each module on the performance of our model. The fused features are
then passed through the LGT temporal aggregator before computing the coarse-grained (binary: normal vs.
anomaly) P;® and fine-grained (multi-class for also detecting anomaly type) Pifg classification probabilities,
as in (Wu et al., 2024)).

3.4 Loss Function

We build upon the commonly used top-K Multiple Instance Learning (MIL) loss, £ (Wu et all |2024)), to
supervise the learning of coarse-grained anomaly scores. In addition, we incorporate the multi-class MIL
alignment loss /s, for fine-grained anomaly scores and the contrastive loss £t for pushing normal class away
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from anomaly classes, both originally introduced in VADCLIP (Wu et al., |2024)). These losses encourage
the projected representation t; of anomaly class labels to diverge from both the normal class embedding and
embeddings of other anomaly classes

To further enhance class-specific alignment, we introduce an additional loss term that explicitly aligns the
projected caption embedding t; towards its corresponding anomaly class embedding ¢ for top-K anoma-
lous clips, which is obtained by applying the linear caption projection layer L. to the caption embedding
T(m) . This is achieved by MIL alignment using the fine-grained (multiclass) probability scores Pifg, thereby
reinforcing the semantic consistency between the caption and its target anomaly class.

Since we know the label m for each video in the training set, in the probability matrix [Pifg] € [0, 1)VxM

select the m-th column to get s, € [0,1]V.

we

Let {i1,...,ix} = argmaxy {s,,} denote the indices of the top-K clips with the highest probabilities in s,
and t;, € RP k=1,..., K, denote the corresponding feature vectors.

Next, we compute the average cosine distance gy, between the semantic embedding (™) of class m and the
semantic embedding ¢;,. The overall training loss is given by the sum of four loss functions:

trg(m

lsem = avgql — —F—
- { [t [ £

k_l,...,K}, 0= lyemn + Leg + Cig + Less.

4 Experiments

4.1 Datasets

We evaluate and compare the proposed method on two widely used datasets in video anomaly detection:
UCF-Crime (Sultani et al.,|2018]) and XD-Violence (Wu et al.||2020)). For consistency and fairness, we utilize
only the visual modality and discard any accompanying audio information. Both datasets provide weakly
labeled training videos, making them suitable for wVAD.

4.2 Evaluation Metrics

Following prior work, for coarse-grained (normal vs. anomalous) anomaly detection, we use the area under
the receiver operating characteristic curve (AUC) for UCF-Crime and average precision (AP) for XD-Violence
to ensure comparability with existing methods. Moreover, for fine-grained (multi-class) anomaly detection,
we use mean average precision (mAP) following Wu et al. (Wu et al.), 2024)).

While most wVAD studies report only the "best" AUC or AP, our experiments reveal significant performance
variability arising from the stochastic nature of training, particularly in contrastive loss settings like multiple
instance learning (MIL). MIL-based models are highly sensitive to random initialization and sampling, often
resulting in chaotically fluctuating performance (Figure .

At the beginning of training, randomly initialized parameters yield arbitrary anomaly scores for video clips
{v;}. When the top-K clips are selected for training supervision, there is a substantial risk that they lack
true anomalies, leading to optimization toward suboptimal minima. This instability mainly stems from the
random initialization of network weights at training start and the stochastic pairing of normal and anomalous
segments during MIL-based contrastive learning.

Figureshows the performance variability of the state-of-the-art VADCLIP (Wu et al.|[2024)) under different
random seeds on UCF-Crime. Performance depends not only on model weight initialization but also on
the stochastic pairing of video segments (Data Seed). While the best AUC was originally reported as
88.02% in (Wu et all [2024), our experimentation with several seed pairs reveal notable deviations and
even a better AUC (88.24%) than reported. Figure demonstrates the non-smooth AUC variations of
our proposed SemVAD method on UCF-Crime. Wild performance variations (Figure and Figure
display the impracticality of optimizing random seed as if it was a hyperparameter. Hence, evaluating the
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Figure 6: Effect of random seeds on VAD performance.

performance of wVAD methods in terms of best performance as a function of random seed does not provide
a fair comparison, where the best achievable performance is likely never known.

To address this, we adopt a more robust evaluation strategy by training each model with ten random seeds
and reporting the mean and standard deviation of performance metrics. This provides a more reliable and
reproducible assessment of model effectiveness and stability.

4.3 Implementation Details

We adopt the VADCLIP pipeline and utilize the CLIP (ViT-B/16) architecture as the backbone. We set the
percentage x of selected keywords to be 10%, as higher values do not increase performance while requiring
more compute during the cosine similarity step. Tableshows the impact of top % keywords on performance
when tested on UCF-Crime.

Table 1: Effect of using top % keywords on performance when tested on UCF-Crime.

% ) 10 30 50
Auc % | 87.09 | 87.21 | 87.22 | 87.19

The parameter S, representing the number of top-ranked words used, is determined by the maximum number
of characters that can be accommodated within the CLIP text encoder’s token limit of 77, following the
sorting of words by their cosine similarity to class labels.

Training is carried out on an NVIDIA RTX 4090 GPU, using similar hyperparameter settings to original
VADCLIP implementation. Specifically, we use a learning rate of 2 x 10~° for both the UCF-Crime and
XD-Violence datasets. The batch size is set to 64 for UCF-Crime and 128 for XD-Violence, respectively.

4.4 Results

We evaluate the performance of our proposed method, SemVAD, against four recent state-of-the-art
models—CLIP-TSA (Joo et al.| |2023)), PEL4VAD (Pu et al., [2024)), UR-DMU(Zhou et al., [2023) and VAD-
CLIP (Wu et al.l 2024)—as well as the earlier baseline approach by Sultani et al. (Deep MIL) (Sultani et al.,
2018). For a fair and robust comparison, we train each model using 10 different random seeds and report
the mean performance along with the standard deviation.

Coarse-Grained Performance: As shown in Table [2] SemVAD achieves the highest mean AUC among
all methods evaluated, outperforming the state-of-the-art VADCLIP by 0.95% AUC while maintaining a
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Table 2: Coarse-grained performance comparison on UCF-Crime and XD-Violence datasets. Mean and
standard deviation (SD), and the performance with the known best-performing seed are presented.

UCF-CRIME XD-VIOLENCE

Method Mean AUC(%) (SD) | Best Seed AUC(%) | Mean AP(%) (SD) | Best Seed AP (%)
RTFM (Tian ot al,[2021) N/A 85.66 N/A 78.27
S3R(Wu et al] [2022) N/A 85.99 N/A 80.47
UMIL(Lv et al} [2023) N/A 86.75 N/A N/A
Deep MIL(Sultani et al., 2018) 75.58 (0.77) 77.92 73.24 (1.22) 75.18
UR-DMU (Zhou et al.| [2023) 85.52 (0.744) 86.75 79.22 (1.206) 82.41
CLIP-TSA (Joo et al., 12023) 85.02 (0.466) 87.58 79.83 (1.05) 82.17
PELAVAD(Pu et al}, 2024) 85.21 (0.366) 86.76 84.21 (0.31) 85.59
VADCLIP(Wu et al., [2024) 86.26 (0.918) 88.02 83.20 (1.53) 84.51
SemVAD 87.21 (0.462) 88.48 84.66 (1.26) 86.55

relatively low standard deviation. This highlights both the effectiveness and stability of our approach.
Notably, SemVAD also outperforms the reported best results of existing methods on both datasets. A similar
trend is observed for the XD-Violence dataset, where SemVAD achieves the highest mean AP score of 84.66%,
outperforming the most recent state-of-the-art method, PEL4VAD, by 0.45% and surpassing VADCLIP by
1.46%. It is also notable that, despite having a lower mean performance, PEL4VAD demonstrates the lowest
standard deviation.

Fine-grained Performance: We conduct fine-grained evaluations using mean average precision (mAP)
across five Intersection-over-Union (IoU) thresholds: 0.1, 0.2, 0.3, 0.4, and 0.5. We report the average
mAP across these thresholds, referred to as mean average mAP, and the corresponding standard deviation
across 10 different training seeds. Table [3| shows that SemVAD achieves an mean average mAP of 8.1%,
outperforming VADCLIP by 1.15% when tested on UCF-CRIME. Similarly, a substantial improvement
is observed with XD-Violence, with a mean average mAP of 31.615%, representing a 9.12% increase over
VADCLIP. These results demonstrate that the semantic features of SemVAD help even more with fine-grained
anomaly detection compared to coarse-grained anomaly detection.

Table 3: Fine-grained (multi-class) performance comparisons on UCF-CRIME and XD-VIOLENCE. * rep-
resents results without averaging over ten seeds as presented in (Wu et al., |2024).

mAP I0U%

Method 0.1 0.2 0.3 0.4 0.5 | Mean Avg mAP % | SD

UCF-CRIME Deep MIL* | 5.73 4.41 2.69 1.93 1.44 3.24 N/A
AVVD* 10.27 7.01 6.25 3.42 3.29 6.05 N/A

VADCLIP | 12.32 8.91 6.25 4.29 2.99 6.95 1.44

SemVAD | 15.49 | 10.625 | 7.35 4.27 2.92 8.1 1.19

XD-VIOLENCE | Deep MIL* | 22.72 | 15.57 9.98 6.20 3.78 11.65 N/A
AVVD* 30.51 | 25.75 | 20.18 | 14.83 | 9.79 20.21 N/A
VADCLIP | 33.47 | 26.89 | 21.50 | 16.31 | 12.0 22.03 1.932

SemVAD | 44.41 | 36.95 | 29.91 | 24.34 | 19.07 31.15 1.29

4.5 Explainability

In Section we report a significant improvement in fine-grained anomaly detection performance compared
to recent state-of-the-art methods. This can be attributed to the fact that the generated captions Cj

encapsulate anomaly-specific information. Keywords such as "shooting’, "fire’, and "pushing’, among others,
provide contextually relevant cues to the anomaly detector.

Figure afc) shows that captions C; effectively describe normal and anomalous segments, aiding inter-
pretability. Figure d) illustrates a misclassification— "Burglary”, "Stealing", and "Robbery"—due to se-
mantic overlap in captions (e.g., "attempt’, "break"), highlighting both the strengths and limitations of
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Figure 7: Explainability of fine-grained anomaly detection through VideoLLaMA 3 generated captions.
Height denotes the coarse-grained anomaly score while the color indicates anomaly type.

caption-based reasoning. However, the distinction between "Burglary”’, "Stealing', and "Robbery" is natu-
rally minimal.

To quantify the explainability performance, we manually annotated short clips from two videos per class in
the UCF-Crime dataset, resulting in a total of 26 annotated videos. Captions generated by SemVAD for each
video are then compared with the annotations using the cosine similarity score, yielding an average similarity
score of 0.77. Table 4| shows some example scores together with the predicted captions human annotations.
The annotations and predicted captions are given in the Appendix.

Table 4: VLM Generated Captions Compared to Human annotations

Video id VLM Generated | Cosine Similarity Score | Human Annotated Label
Robbery056 A.2.1 0.92 A.3.1
Explosion021 A.2.2 0.92 A.3.2
Robbery020 A.2.3 0.42 A.3.3

Shoplifting006 A.2.4 0.45 A.3.4]

4.6 Computational Cost

We also assess computational efficiency, as models like VideoLLaMA 3 are resource-intensive. Inference delay
varies with caption length; we evaluated performance over 100 16-frame clips, passing through the entire
SemVAD pipeline on an RTX 4090 (Table [5)).

Table 5: Runtime analysis of SemVAD

Mean time/clip (sec) Standard deviation Frames/clip Estimated frames/second runtime
1.126 0.243 16 14.2

We see that on average it takes approximately 1.126 seconds to generate an anomaly score for a given clip
with a standard deviation of 0.243 seconds, which implies that the detector can process frames at a rate
of 14.2 frames per second on average, which indicates it can be used real-time in many practical scenarios.
We also provide a detailed runtime breakdown. Table |§| shows that the total inference per 16-frame clip is
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1.126s on an RTX 4090. Of this, only 0.014s is due to our fusion + detection model, while 1.112s stems from
VideoLLaMA-3 caption generation. The overhead therefore comes almost entirely from captioning.

Table 6: Module-wise runtime analysis (per 16-frame clip).

Module Time (s) Fraction
VideoLLaMA-3 captioning 1.112s 98.8%
Fusion + detection model 0.014s 1.2%
Total 1.126 100%

To contextualize the cost of captioning, we compare it with prior approaches that rely on both traditional
(RGB + optical flow features from I3D or CLIP visual encoders) and new VLM-based approaches in Table
Extracting I3D RGB+Flow features typically requires 20ms per clip on similar GPUs, while CLIP visual
encoding is much faster (15ms/clip). Our captioning cost (1.112s) is thus substantially heavier than CLIP
and I3D. However, unlike I3D+flow and CLIP, captions provide semantic interpretability. Recently, there has
been growing interest in using VLMs and LLMs to generate anomaly scores without training, e.g., LAVAD
Zanella et al.| (2024]) which uses a VLM (BLIP2) and an LLM (Llama-2) together to generate anomaly scores
for videos. As seen in Table |7}, LAVAD takes 3.9 seconds, much more than captioning in SemVAD with
VideoLLaMa-3.

Table 7: Runtime comparison across models (per 16-frame clip).

Model Time (s) Task

I3D RGB + Flow (two-stream) 20ms CNN-based vision features
CLIP visual encoder 15ms Transformer-based vision features
SemVAD fusion + detection 14ms Vision + caption fusion and detection
VideoLLaMA-3 captions 1.112s VLM-based semantic captions
LAVAD 3.9s Training-free VLM+LLM for detection

Table 8: Compute speed and memory usage comparison between Video-llama-3-7b and Video-llama-3-2b

UCF-CRIME | UCF-CRIME .
Coarse-grained | Fine-grained Time (s) | GPU Memory
VideoLlama-3-2b 86.34 6.68 0.72 5.6 GB
VideoLlama-3-7b 87.26 7.42 1.112 17.3 GB

presents a comparative evaluation of Video-LLaMA-3-7B and its lightweight counterpart, Video-LLaMA-3-
2B. When integrated into the trained SemVAD framework, the 2B model exhibits a modest reduction of
0.92% and a 0.74% in coarse grained and fine grained performance respectively relative to the 7B variant,
while achieving a substantial efficiency gain of approximately 392 ms per inference at a substantially lower
memory cost. This improvement enables real-time operation at 22 fps, compared to 14 fps with the larger
model. These findings highlight that caption generation constitutes the primary computational bottleneck,
thereby underscoring the value of lightweight captioning models for deployment in resource-constrained set-
tings. Nevertheless, the rapid advancement of hardware and the growing adoption of large language models
(LLMs) in this domain suggest that the use of larger models may soon become practically feasible.

4.7 Transferability

In this section, we evaluate the transferability of models trained on distinct datasets. UCF-Crime represents
a real-world anomaly detection dataset consisting primarily of low-resolution, static surveillance footage
across a wide variety of scenarios. In contrast, XD-Violence is composed largely of clips from movies and
films, which typically feature higher-resolution, dynamic, and non-static scenes. Due to these substantial

11
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differences in data characteristics, models trained on one dataset generally exhibit limited transferability to
the other.

However, SemVAD aims to mitigate this gap by incorporating semantic captions, thereby leveraging semantic
similarities across datasets to enhance generalization. As shown in Table [9] SemVAD achieves superior

Table 9: Transferability analysis between SemVAD and VADCLIP.

Training Data | Testing Data | Training Data | Testing Data

UCF-Crime XD-Violence | XD-Violence UCF-Crime
SemVAD AP: 71.66% AUC: 84.66%
VADCLIP AP: 66.66% AUC: 81.1%

transferability compared to the baseline VADCLIP, highlighting the effectiveness of incorporating semantic
information from video captions in bridging the domain gap between heterogeneous datasets.

4.8 Ablation Study

In addition to incorporating video captions C; into the model, we propose three key modules: an atten-
tion fusion mechanism, a convolutional mixer, and a contrastive class-specific loss (sem). To evaluate the
contribution of each component, we conduct a comprehensive ablation study. Table presents the im-
pact of each module on the mean AUC for UCF-Crime, computed over 10 different random seeds. We
observe that directly concatenating the caption features T; with the CLIP vision-encoded features F; yields
a 0.25% improvement over the VADCLIP baseline. Introducing the attention fusion module further enhances
performance by 0.142%. The addition of the convolutional mixer results in a substantial gain of 0.438%,
underscoring its significant contribution to overall model effectiveness. Finally, incorporating the fsem, loss
provides an additional performance increase of 0.132%, leading to the highest mean AUC of 87. 212%.

Table 10: Ablation study showing the contribution of each proposed component on UCF-Crime. Performance
is reported as the mean AUC (%) over 10 random seeds.

Modules Mean ROC  Performance

AUC (%) Increase (%)
Caption (C;)  Attention Fusion Convolution Mixer  fsem
v 86.50 +0.25
v v 86.642 +0.142
v v v 87.08 +0.438
v v v v 87.212 +0.132

4.8.1 Variance in captions

Our model generates video captions using greedy decoding, which produces deterministic captions for each
video. To investigate the impact of caption variability on performance, we conduct experiments with increased
randomness by adjusting the temperature and top_ p parameters.

Table 11: Impact of caption variability on performance.

UCFCRIME Coarse-grained AUC

UCFCRIME Fine-grained mAP

Temperature = top_p = 0.3 86.2 5.48
Temperature = top_p = 0.7 85.85 4.99
Greedy Decoding 87.26 8.1

As shown in Table introducing higher randomness through elevated temperature and top_p values re-
sults in a noticeable reduction in performance compared to greedy decoding, indicating that deterministic

captions are more effective for this task.

12
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5 Limitations and Future Directions

The use of a VLM for streaming video may cause some computational burden, especially for resource-
constrained systems. Specifically, VideoLLaMA 3, which is used in the experiments, requires a GPU. Hence,
the proposed method is not suitable for a standard computer or an edge device, and more efficient methods
for resource-constrained systems can be a promising research direction. However, as discussed in Section 4.5,
the proposed method can run near real-time (14.2 fps) on a reasonable computer with and NVIDIA RTX
4090 GPU.

In Section [£.2] we address the issue of stochastic variability affecting MIL-based methods, identifying two
primary contributing factors: the random pairing of anomalous and nominal videos within each training
batch and the random initialization of model weights at the onset of training. While a comprehensive inves-
tigation into enhancing the robustness of such models warrants dedicated research, one potential approach
to mitigating this variability is to limit stochasticity during the early phases of training.

Although it is difficult to fully control the random pairing of normal and anomalous segments, a feasible
alternative is to select the top-k segments based on their cosine similarity to nominal features at the beginning
of training. This method can potentially mitigate the instability introduced by random weight initialization.

To further address this issue, we incorporate a o-greedy strategy, commonly used in reinforcement learning.
For each training batch comprising b samples—consisting of an equal number of anomalous and normal
instances (i.e., b/2 each)—we introduce a control parameter o, initialized to 1. At each training iteration, o
is updated according to the exponential decay rule:

Onew = 0.99 % 0.

A random value « is then sampled uniformly from the interval [0, 1]. If o < o, the top-k anomalous segments
in each anomaly-containing video are selected based on the average cosine distance between the segment and
all other nominal segments within the batch. Segments exhibiting the highest cosine distances are considered
anomalous. Conversely, if & > o, segment selection reverts to the standard MIL procedure, where segments
are chosen based on the model’s classification scores.

This approach allows the model to rely on cosine similarity during the early stages of training, when model
predictions are unreliable, and gradually transitions to using its own predictions as training progresses.

Table 12: Performance comparison between SemVAD and VADCLIP when trained using the o-greedy
method.

SemVAD VADCLIP
Mean AUC (%) (SD) | Mean AUC (%) (SD)
o-greedy | 87.08 (0.248) 86.12 (0.694)
Regular | 87.21 (0.462) 86.26 (0.917)

Table [12] presents a performance comparison between the o-greedy approach and standard MIL training on
both SemVAD and the vanilla VADCLIP framework using the UCF-CRIME dataset. The results indicate
that the o-greedy strategy contributes to more stable training, as evidenced by a reduction in standard devia-
tion, albeit with a slight trade-off in the mean performance. Although the pairing of anomalous and nominal
videos within each batch remains stochastic, leveraging cosine similarity as a selection criterion—while not
always optimal—offers additional stability during the training process.

6 Conclusion

In this work, we propose SemVAD, a novel framework for weakly supervised video anomaly detection (wVAD)
that integrates semantically rich captions generated by a multimodal language model with visual represen-
tations extracted from CLIP. By introducing a two-phase fusion architecture, comprising attention-based
feature alignment and a convolutional mixer—along with a class-specific semantic alignment loss, we demon-
strate significant performance gains with a reasonable computational cost.

13
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Our experimental results establish SemVAD as a new state-of-the-art in wVAD. Specifically, SemVAD con-
sistently surpasses recent benchmarks such as VADCLIP and PEL4VAD, achieving higher coarse-grained
detection accuracy and substantially improving fine-grained anomaly localization. The integration of seman-
tic captions contributes not only to enhanced performance but also to explainability, as natural language
descriptions provide interpretable cues about detected anomalies. Furthermore, our transferability study
highlights that SemVAD is also better equipped to generalize across data domains, as we observe increased
transferability of learned knowledge across two distinct datasets.

The common practice of evaluating performance using the "best" known seeds for random number generators
is also criticized. We showed that due to the underlying characteristics of MIL-based training, there is a wild
fluctuation in the performance of state-of-the-art methods as a function of randomness seed. For a more
reliable comparison and more reproducible results, we propose to evaluate the wVAD methods in terms of
mean and standard deviation of performance over a number of runs with different seeds.
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A Appendix

A.1 System Prompt

"Look at the video carefully. Describe the activity is abnormal or criminal (e.g., fighting, robbery, burglary,
vandalism, assault, road accident, shooting, abuse, or other unusual violent actions). If no anomaly is present,
describe the scene as normal daily activity (e.g., walking, standing, shopping, driving). Keep your description
short."

A.2 VLM Responses
A.2.1

Two men are robbing a store while the security guard tries to stop them. One of the men pulls out a gun
and points it at the guard, demanding money. The guard complies and hands over the cash.

A.2.2

A person is filming an explosion at a gas station. The explosion occurs and the building is destroyed.

A.2.3

In the video, a man wearing a yellow shirt is standing in front of an ATM machine and using his cell phone.
Another man wearing a brown coat enters the scene and sits on the floor next to him. The man in the brown
coat then grabs the yellow-shirted man’s collar and pulls out a gun, pointing it at him. The yellow-shirted
man appears to be complying with the demands of the man with the gun.
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A.2.4

A group of people are gathered around a man who is sitting on a chair. They are talking to him and he is
holding a cup in his hand. The man is wearing a blue hat. There is also a woman standing nearby.

A.3 Human Annotations

A3.1

Two armed men rob a store while a security guard tries to intervene.

A.3.2

An explosion destroys a gas station.

A.3.3

A man at an ATM is threatened by another man with a gun during a robbery.

A3.4

A man in a jewelry store grabs a necklace and runs out of the store.

A.4 QKV Attention instead of QKK

In Section we adopt a QKK attention mechanism in place of the conventional QKV formulation.
Empirical evidence: When testing with UCF-Crime, we observed higher performance on both coarse
grained and fine-grained performance using QKK. We expand this by including results with XD-Violence,
where QKV obtains AP = 83.13 and fine-grained mAP = 31.57. These results confirm that QKK is compet-
itive with or slightly superior to QKV. Table [13| shows the comparison between the two approaches. QKK
approach surpasses QKV on both coarse grained metrics except fine-grained performance on XD-Violence
that is slightly higher with QKV.

Table 13: QKV vs QKK Comparison

UCF-CRIME UCF-CRIME XD-Violence XD-Violence
Coarse-grained | Fine-grained | Coarse-grained | Fine-grained
QKV 86.91 8.05 83.13 31.57
QKK 87.21 8.13 84.66 31.15

Theoretical rationale: In cross-modal fusion, the caption embeddings are already semantically aligned
(VideoLLaMA — CLIP text space). Using ¢; as both V and K avoids redundancy with a smaller model
(without additional parameters for V' projection), which helps with regularizing the model for better gener-
alization performance.

A.5 VAD Clip loss

Binary Cross-Entropy Loss (Lpe). This loss supervises the coarse-grained anomaly detection branch
by comparing the predicted video-level anomaly score with the video label:

Lyce = —[ylog(p) + (1 — y) log(1 — p)], (2)

where y € {0, 1} is the video-level label (0 for normal and 1 for abnormal), and p is the predicted video-level
anomaly score obtained by aggregating the top-K frame-level anomaly scores. This loss encourages correct
discrimination between normal and anomalous videos.
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Noise-Contrastive / Alignment Loss (L,..). This loss aligns video features with the correct anomaly
text embedding:
exp(sm/T)
;= , Lpee=—1o 3
Di Zj eXp(Sj/T) nce g(py)ﬂ ( )
where s,, is the similarity between the video representation and the m-th text class embedding, 7 is a
temperature parameter, p,, is the predicted probability of class m, and y is the ground-truth anomaly class
index, while j are all classes other than m. This loss enforces high similarity between the video and its
correct textual anomaly category.

Contrastive Text Separation Loss (L.s). This loss enforces separation between the normal class em-
bedding and abnormal class embeddings:

c
Lets = Z max (0, cos(t;,zo, t;,:m)), (4)
m=1

’

where t;,:o is the text embedding of the normal class, t,_,, is the embedding of the m-th abnormal class,
cos(-, ) denotes cosine similarity, and C is the number of abnormal classes. This loss pushes normal and
abnormal semantic representations apart in the embedding space.

Overall Objective. The final training objective is given by:
L= Lbce + ane + )\Lctsa (5)

where X is a weighting factor that controls the contribution of the contrastive text separation loss. The
values for 7 and A are set to the defaults form |[Wu et al.| (2024).

A.6 Broader Impacts

The improved performance and explainability of proposed VAD method can benefit the society in public
safety (through surveillance of public areas) and internet safety (through moderating content posted on the
internet). Crimes or dangerous activities in public areas can be automatically detected for alerting public
safety professionals. Similarly, videos with harmful content can be detected before being published on the
internet. The explainability feature of the proposed method can help professionals to trust the video Al
more. Nevertheless, like all video surveillance technologies, the proposed VAD method should be used in an
ethical way , particularly in terms of data privacy, fairness, and responsible use.
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