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Abstract

Large Language Models (LLMs) often hallucinate, limiting their reliability in sensitive
applications. In black-box settings, several self-consistency-based techniques have been
proposed for hallucination detection. We empirically show that these methods perform nearly
as well as a supervised (black-box) oracle, leaving limited room for further gains within this
paradigm. To address this limitation, we explore cross-model consistency checking between
the target model and an additional verifier LLM. With this extra information, we observe
improved oracle performance compared to purely self-consistency-based methods. We then
propose a budget-friendly, two-stage detection algorithm that calls the verifier model only
for a subset of cases. It dynamically switches between self-consistency and cross-consistency
based on an uncertainty interval of the self-consistency classifier. We provide a geometric
interpretation of consistency-based hallucination detection methods through the lens of
kernel mean embeddings, offering deeper theoretical insights. Extensive experiments on
QA-style hallucination detection benchmarks show that this approach maintains high
detection performance while significantly reducing computational cost.

1 Introduction

Large Language Models (LLMs) have demonstrated impressive abilities in question answering, summarization,
and explanation. However, hallucinations—plausible but incorrect content-remain a persistent issue. These
errors create significant challenges for both human users and tool-using or agentic applications, as the fluent
presentation of false information makes verification nearly as difficult as solving the task from scratch.

A key challenge is detecting hallucinations in black-box scenarios, where we can access only an LLM’s outputs
but not its intermediate states—an especially relevant concern when using closed-source commercial APIs.
An important intuition is that self-consistency—mutual entailment between multiple stochastically sampled
high-temperature generations from the LLM for the same question—is lower when the model is hallucinating
compared to when it provides a correct answer. As Tolstoy wrote in Anna Karenina, “All happy families
are alike; every unhappy family is unhappy in its own way.” Mechanistically, this LLM behavior can be
understood as follows, from the fact that LLMs are pretrained as statistical language models. If the model
confidently knows the answer, then probability should be concentrated on that answer. If, on the other hand,
the model does not know all or part of the answer, its statistical pretraining will bias it towards creating
what is essentially a posterior distribution on answers or parts of answers that seem plausible.

Following this philosophy, prior work Manakul et al.| (2023); |[Farquhar et al.| (2024)); |Kuhn et al.| (2023); [Lin
et al.| (2023); Nikitin et al.| (2024) has proposed various methods that leverage self-consistency. However,
it remains unclear how much further they can be improved. Thus, we investigate whether we are already
near the performance ceiling, given the limited information available in a black-box setting. Using a unified
formalization of self-consistency-based methods, we design a method that trains graph neural networks
to approximate the ceiling performance of this method family. Notably, we find that existing methods are
already close to this ceiling, suggesting little room for further improvement within this paradigm.

This highlights the need to go beyond self-consistency alone. Thus, we consider the case where an additional
model serves as a verifier, and we incorporate consistency checking between answers generated by the target
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model and the verifier. This approach provides information that self-consistency alone cannot capture.
For example, agreement between the two models increases confidence in a response’s correctness, while
disagreement suggests that at least one model is likely hallucinating. Through experiments, we observe
a significant gain in the approximated ceiling performance when both self-consistency and cross-model
consistency are taken into account, interestingly, even when the verifier is weaker than the target model.
Additionally, we find that linearly combining self-consistency with cross-model consistency can achieve
performance very close to this ceiling.

Finally, we address the computational overhead introduced by the verifier model. We propose a budget-aware
method that performs cross-model consistency checking for only a specified fraction of questions, keeping
the computation budget controllable. This method consists of two stages (illustrated in Fig. [1): first,
it performs self-consistency checking; then, it selectively applies cross-model consistency checking only
when self-consistency falls in a middle range, where judgment is less reliable. We provide a geometric
interpretation of this approach through the lens of kernel mean embeddings, offering theoretical insights into
its effectiveness. Through extensive experiments across three datasets and 20 target-verifier combinations,
we demonstrate that this adaptive mechanism can achieve high detection performance while significantly
reducing computational costs. Additionally, we provide practical suggestions on selecting verifier models
based on different budget constraints.

We note that this work focuses on hallucination detection in QA settings, following prior work on black-
box consistency-based methods. While recent benchmarks have begun to evaluate hallucinations in other
generation tasks such as summarization and long-form generation, evaluation in these settings is generally
more challenging, as it is harder to compare a model’s output with a ground-truth answer when both are long
and open-ended. Determining whether two long passages are semantically consistent or whether a specific
detail constitutes a hallucination is inherently ambiguous. Some evaluation, e.g., that of [Manakul et al/
, even requires manual annotation of hallucinations, which can be expensive, time-consuming, and
subjective. In contrast, QA has a more well-defined target. Therefore, we focus on QA-style benchmarks as a
standard and controlled setting for studying consistency-based signals.

2 Related Work

There are works that explore white-box detection methods, such as Duan et al.| (2024)); Varshney et al.| (2023,
which require token-level logits, or [Yin et al| (2024); |Zou et al.| (2023); Agrawal et al|(2023]), which rely on
intermediate representations. White-box methods are less suitable for certain scenarios, such as closed-source
commercial APIs. In this work, we focus exclusively on black-box hallucination detection, where we do not
have access to the internal workings of the LLM. In this scenario, the primary approach involves checking the
consistency between multiple samples of the LLM’s answers Manakul et al.| (2023)); Farquhar et al.| (2024)); [Kuhn|
let al|(2023); Lin et al.(2023)); Nikitin et al. (2024). These works rely on sampling multiple answers to the same
question from the LLM and using an NLI (Natural Language Inference) model to determine whether they are
semantically equivalent. The NLI judgments are then processed in various ways to decide whether a hallucina-
tion has occurred. Details of these methods are discussed in Section[d] [Manakul et al.| (2023)); [Kuhn et al] (2023)
also explore alternative methods for judging semantic equivalence, which are either less effective (e.g., n-gram)
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or computationally expensive (e.g., using an LLM). Zhang et al.| (2023) identify limitations in self-consistency-
based methods and propose leveraging question perturbation and cross-model response consistency (comparing
an LLM’s responses with those from an additional verifier LLM) to improve performance. While their approach
improves results, introducing a verifier model adds computational overhead. In this work, we systematically
explore the possibility of achieving computational efficiency when combining self-consistency and cross-model
consistency. Note that the question perturbation technique from [Zhang et al.| (2023)) is orthogonal to our
approach and could potentially be incorporated to achieve better results. Another line of work involves directly
asking LLMs to judge the uncertainty of their answers Mielke et al.| (2022)); Tian et al.| (2023b)); Kadavath et al.
(2022); ILin et al.| (2022), which typically requires additional finetuning/calibration and does not fit within the
black-box scenario. Without any modification to the original LLMs, their verbalized confidence is often inaccu-
rate | Xiong et al.| (2023)). The inherent conflict between calibration and hallucination, as theoretically shown in
Kalai & Vempalal (2024)), further highlights the limitations of this approach. There are also works addressing
hallucination mitigation, such as using RAG |Asai et al.| (2023); |Gao et al.| (2022), inference-time intervention
Li et al.| (2024)), or fine-tuning [Lee et al.| (2022); [Tian et al.| (2023a)), which is beyond the scope of this paper.

3 Preliminaries

In the task of hallucination detection, we have a target LLM, denoted by M,, for which we aim to detect
hallucinations. We are given a set of questions {g;}! ;. Given a set of questions {¢;} ;, the model generates
answers, a; =M;(q;, 7), under a specified temperature 7. The ground truth annotation h; indicates whether
a; is a hallucination (h; = 1) or factual (h; = 0). The objective is to predict whether a; is a hallucination,
with our prediction denoted by h;.

To achieve this, many methods are designed to output a value, v;, that captures specific characteristics (e.g.,
the uncertainty of the answer). A higher value of v; suggests that a; is more likely to be a hallucination. The
prediction h; is then determined based on a threshold applied to v;, where the choice of threshold dictates
the final classification.

To evaluate the performance of a hallucination detection method, we focus on two widely accepted metrics
computed given outputs {v;}7_; and ground truths {h;}?_: (1) AUROC, area under the receiver operating
characteristic curve. is a classic performance measure in binary classification. It captures the trade-off
between the true positive rate and the false positive rate across various thresholds, providing an aggregate
measure of the model’s ability to distinguish between the two classes. (2) AURAC, the area under the
“rejection accuracy” curve |[Farquhar et al.|(2024)). It is designed for scenarios where a hallucination detection
method is employed to refuse answering questions that the model is most likely to hallucinate on. Rejection
accuracy measures the model’s accuracy on the X% of questions with the lowest v; values (least likely to
hallucinate), and the area under this curve summarizes performance across all values of X.

4 From Self-consistency to Cross-Consistency

4.1 Self-consistency based detection

Prior work Manakul et al. (2023); [Farquhar et al.| (2024); Kuhn et al.| (2023); [Lin et al.| (2023); Nikitin
et al.| (2024) has introduced various methods leveraging self-consistency. However, the extent to which these
methods can be further improved remains unclear. To explore this, we develop a method to approximate the
ceiling performance for any approach that utilizes self-consistency and compare it against the performance of
existing methods.

Unified formalization of self-consistency-based methods. We first present a unified formalization of the
existing methods. Recall that the goal is to determine whether each M(q;) is a hallucination. All these methods
rely on additionally sampling m answers from the LLM M for question ¢; under a high temperature 7/, which is
typically much higher than 7, the temperature used to generate a;. For example, in |[Farquhar et al.| (2024)), the
settings are 7 = 0.1 and 7/ = 1.0. Let {ag,j 7', denote the set of these additionally sampled answers. These
methods then use an entailment estimator (e.g., deberta-v2-xlarge-mnli), denoted by £. The estimator £
takes two answers as input and outputs a value between 0 and 1, indicating the degree of entailment between
the two answers, where 1 means full entailment. Using £, a self-entailment matrix P! is constructed as:
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Figure 2: Comparison between AUROC of existing methods and the approximated ceiling performance on
SQuAD ((a)—(c)) and TriviaQA ((d)—(f)). The best method performs very close to the oracle, indicating
that we are approaching the performance limit. Similar results for AURAC are in Fig. E}

m

Pt = [€(al 5, al )] 1<j<m,1<k<m, where each element is the entailment value for a pair of answers in {a} JEyip

7,79
Existing methods can then be formalized as some function f applied to the self-entailment matrix P! which
outputs a scalar. The focus of prior work lies in designing various forms of f. Specifically, (1) SE(P™!), the
Semantic Entropy [Farquhar et al.| (2024]), uses a binarized version of Piself to identify which answers belong to
the same semantic set and then computes the entropy over these semantic sets. (2) MPD(Ps°!) Lin et al.[(2023);
Manakul et al.| (2023)) is simply the mean pairwise distance, computed as 1 — Mean(P:e!). (3) EigV(P:!) |Lin
et al. (2023) is defined as the sum of the eigenvalues of the graph Laplacian of P, (4) Ecc(P#e!) Lin et al.
(2023) measures the eccentricity of the answers leveraging the eigenvectors of the graph Laplacian of P!, (5)
KLE(Pfelf), the Kernel Language Entropy [Nikitin et al.| (2024), involves applying the von Neumann entropy
to a graph kernel derived from Piself. For all these methods, a higher output indicates greater uncertainty

among {a,’m j-1, making the corresponding low-temperature answer a; more likely to be a hallucination.

The underlying assumption is that Pfelf contains exploitable information related to Bi, the ground truth
hallucination annotation. This prompts the question: how much information does P*!f actually encode about
h;? To explore this, we aim to identify the optimal function f that maps P! to the hallucination label.
This leads to the following formulation:

f= argfmin]E[l(f(Pse”), m), (1)

where [ is a loss function that measures the discrepancy between the output value and the actual label.

Approximating the ceiling performance with GCN models. To search for f , we frame it as a learning
problem. Since the task is ultimately binary classification based on the matrix P!, graph neural networks
are well-suited due to their ability to process matrix structures and express a wide range of functions. We
use a two-layer Graph Convolutional Network (GCN) to represent f. The model is trained with BCE
loss on sampled pairs of P*°!f and h. We then evaluate AUROC and AURAC of the resulting model as
an approximation of the ceiling performance. The training and test samples are drawn independently to
account for the finiteness of the data, ensuring that the evaluation reflects the model’s ability of capturing
a generalizable relationship between P! and h, rather than that of overfitting the training data.
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Figure 3: Comparison between approximated ceiling performances using only P*! (gray) and those using
both Ps!f and P, The x-axis shows the target model, and the colors indicate the verifier model, as
shown in the legend. We observe a clear improvement when a verifier model is used.

Results. In Figs. [2 and [7} we compare the performance of existing methods with the ceiling performance
approximated using the aforementioned approach across various settings. We consider three different LLMs:
Llama-2-13b-chat, Llama-3-70B-Instruct, and Mixtral-8x7B-Instruct-v0.1, as well as two datasets:
SQuAD and TriviaQA. In the plots, the x-axis represents different methods with varying hyperparameters.
The best-performing method varies across different settings, with MPD, KLE, and EigV consistently showing
relatively strong performance. Notably, in each setting, the top method closely approaches the approximated
ceiling, indicating that existing methods already make near-maximal use of P*!, particularly when sufficient
validation data is available to optimize method and hyperparameter selection.

4.2 Incorporating cross-model consistency

As noted in the previous subsection, existing methods bring us very close to the ceiling performance for
self-consistency alone. The question now is: how can we push beyond this limit? In the black-box scenario,
our options are constrained by the lack of access to any internal model information. |Zhang et al.| (2023
has explored another potential approach: leveraging outputs from other LLMs to improve hallucination
detection through cross-model comparisons. A minimal case involves using one additional model as a verifier.
This added layer of information can help further refine hallucination detection. For example, if two models
significantly disagree on their answers, at least one is likely hallucinating.

4.2.1 Improvement in the ceiling performance

We explore how much gain cross-model consistency checking can possibly bring. We denote the verifier model
as M,. Similar to the self-consistency case, a natural extension is to encode the cross-model consistency
information in a matrix: P% = [E(a; ;,b; ;)]1<j<m,1<k<m, where {b] ; }" | are m answers sampled from
M, under temperature 7’ for question ¢;. Thus, Pf*°% captures the pairwise entailment relationships
between the answers generated by the target M; and the verifier M,,.

Remark 4.1 (Cross entailment). To build intuition, consider the setting of a very strong verifier model that
always returns a sample from the ground truth. Then, if the entailment model returns a calibrated posterior
probability of entailment, it is easy to see that Mean(Pf°%) is the probability of entailment between an M,
sample and a ground truth sample. In other words, it can be interpreted as the probability of correctness. As
the verifier weakens, we hypothesize that the Mean(P£ ) retains significant correlation with the probability
of correctness, and observe this in practice.

Building on the formalization in Section we aim to determine how much information can be extracted
when both P*°!f and P are used to predict the ground truth hallucination label. To achieve this, we
search for a function f that takes both P!f and P°% as input. Given the pairwise nature of the data,
we again leverage Gl?N models to represent the function. Specifically, we combine P*!f and P into a
Pse PCI‘OSS

peross 0 ] which encodes the underlying structure of the data as pairwise relationships

single matrix: [
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Figure 4: A simple weighted average of self-consistency and cross-consistency-based metrics,

(1 — M)MPD(P*!f) + A\MPD(P°%), can achieve performance close to that of the oracle method.
Plots for AURAC are in Fig. [8in Appx.

between answers. We then apply a GCN to this combined matrix and train the model to fit the ground truth

labels h. Finally, we evaluate the resulting model to approximate the ceiling performance achievable with
both P!f and Peross,

We now compare the approximated ceiling performances achieved using only P*°'f to those achieved using
both P! and P in Fig. [3 The x-axis represents the target model, and the colors indicate the verifier
model used. Gray bars correspond to the scenario where only P*°'f is used, i.e., no verifier model is involved.
The results demonstrate a clear improvement in performance, measured by both AUROC and AURAC,
when a verifier model is introduced. Interestingly, this improvement is observed even in cases where the
target model itself is quite strong. For example, on TriviaQA, adding a weaker verifier model can still
enhance detection performance when Llama-3-70B-Instruct is used as the target model. This highlights
the potential of leveraging cross-model consistency, as even a less powerful verifier can provide complementary
insights that enhance hallucination detection.

4.2.2 Linearly combining MDPs closely approaches the ceiling

Although the function the GCN implements to achieve ceiling performance is unknown, interestingly, we find
that a simple extension of existing methods can perform almost equally well. We leverage MPD introduced
earlier, which can be naturally extended to P as MPD(P“°®) = 1—Mean(P°%). The combined
approach uses a weighted average: (1 — A\)MPD(P*!f) + AMPD(P°*), where )\ is a hyperparameter. As
shown in Fig. [ with an appropriate choice of ), this method achieves performance very close to the
approximated ceiling performance.

5 Budget-Aware Hallucination Detection with A Verifier Model
From the previous section, we observe that performance improves significantly when self-consistency checking
is combined with cross-model consistency checking. However, this approach can introduce substantial
computational overhead, especially when the verifier is a large model. For instance, with a 7B target model
and a 70B verifier model, cross-model consistency adds 10 times the computation.

To address this issue, we propose a method to control computational overhead. As illustrated in Fig.
The key idea is to perform cross-model consistency checking only when it is most necessary. Intuitively,
when self-consistency scores are extremely high or low, it is likely—though not guaranteed—that the model’s
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Algorithm 1 Budget-aware two-stage detection

Input: question g, target model My, verifier model M., number of samples m, temperature 7, entailment estimator
&, thresholds t1,to,t".

{a;- ™, < the m responses sampled from M for the question g under temperature 7’ > First stage
IJSel — [5(0,;7 a;c)]lgjgmﬁlgkgm and 3561f < MPD(Pself)
if s <, then return h = False > no hallucination
else if s*f > ¢* then return h = True > hallucination
else

{b}}jL, < the m responses sampled from M, for the question ¢; under temperature 7’ > Second stage

PSS [E(af, br)]1<i<m,1<k<m and s°% <— MPD(P°*) return h = False if s{"°*° < t; else True
end if

Figure 5: Geometric interpretation in mean embedding spaces of
No Hallucination “target" (p) and “verifier" distributions (u,). Self-consistency is
<“t’ Pl = Lty measured via the norm of the target model’s mean embedding, and
SR cross-consistency via the dot product between mean embeddings.
Stage one detects hallucination using |||, with no hallucination
outside the green sphere of radius /1 — ¢; and hallucination inside
the red sphere of radius /1 — ¢,. Between these, a hyperplane
defined by p, and to separates hallucination (dashed red) and no
hallucination (dashed green) zones.

output is non-hallucinatory or hallucinatory, respectively. In such cases, performing cross-model consistency
checking may not be necessary under limited computational budgets. Instead, cross-model consistency should
focus on cases with intermediate self-consistency scores, where our judgment is more uncertain. This is
formalized in Alg. [I The parameter p specifies the fraction of instances for which cross-model consistency
checking will be performed. The parameter ¢; is the threshold for MPD(P*°'f) below which the output
is deemed non-hallucinatory. Based on t;, we choose to compute ¢*, the threshold for MPD(P*!) above
which the output is classified as hallucinatory, such that only p of the MPD(P*!) scores fall between ¢,
and t*. For these intermediate cases, judgments are made based on cross-model consistency MPD(Pcross)
using a threshold t2E| Note that we use MPD to measure inconsistency from P*f due to its simplicity,
ease of extension to P°°% (unlike, e.g., KLE, which is specifically designed for P*! but not immediately
well-defined for P°°%) and the fact that it contains sufficient information for achieving ceiling performance,
as discussed in Sec. [£.2.2] Future work could explore other metrics.

Geometric Interpretation in Mean Embedding Space. We provide a geometric interpretation

of our hallucination detection. For each prompt x we can observe the conditional distribution of the

target model m(ylz) and the verifier 7,(ylz). In particular we observe =Y """ 6ya, y¢ ~ m(.|z) and

ng
n% Doty Oyr, g ~ my(.]x). We assume that the symmetrizedﬂ entailment kernel & : Y x Y — [0,1] to be

a reproducing kernel. The mean embeddings Muandet et al. (2017) of target, verifier and ground truth
are respectively p; = = >0 E(y8,.), oy = = >0 EN(yY, ), and pf = 2 3 E(yr,.) We can write the

Na 1= Ny 1= n*
self-consistency in terms of norms of mean embeddings : ||u¢||? = % > €' (yiyt) = 1=MPD(P>") and the
cross-consistency (pt, fy) = ﬁ >, €'y yj) =1 — MPD(P**). Fig. gives a geometric interpretation
of our two stage algorithm in means embedding spaces. If the “target” model norm of mean embedding is
higher than a threshold y/1 — ¢; no hallucination is detected and for a norm less than a threshold /1 — t* is
detected. For the uncertainty area between the two spheres, the verifier mean embedding defines with the
threshold 1 — ¢2 a hyperplane that divides this area in no hallucination (above) and hallucination (below).

1We threshold MPD(P°s%) directly in the second stage (instead of a linear combination as in Sec. since (a) it saves
a hyperparameter and (b) we are able to approach the GCN-based performance ceiling without it.

2 A common strategy adopted in prior work [Manakul et al.| (2023); |[Farquhar et al.| (2024); Nikitin et al|(2024); |[Kuhn et al.
(2023); |Lin et al.| (2023) is to construct a symmetric entailment matrix by averaging entailment scores in both directions—e.g.,
using 0.56(a;7]., “;,k) + 0'58(”‘2,1@7 a;’j) for both entries (j, k) and (k,j). Note that, for MPD, using either the asymmetric or
symmetric version yields the same result.
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Evaluating AUROC/AURAC for Algorithm [1} Recall that, in the conventional scenario, the AUROC
and AURAC metrics are defined for a system that outputs a single value for binary classification. To compute
these metrics, we vary the threshold used to produce the label from the output. In such cases, for both ROC
and RAC curves, each X-value corresponds to a single Y-value. For example, in ROC, one false positive
rate corresponds to one true positive rate, allowing us to obtain a single curve by varying the threshold and
then compute the area under it. However, the situation is more complex for our Algorithm [T} which, given a
fixed hyperparameter p, ultimately outputs binary labels but involves two thresholds, ¢; and t5. Different
combinations of ¢; and t2 can yield the same X-value but different Y-values, resulting in a plot that resembles
a thick band rather than a single curve. Thus, the area under the curve is not well-defined. The way these
thresholds are adjusted relative to each other significantly affects the Y values for a given X. To derive a
meaningful performance measure for our algorithm, we establish the relationship between the two thresholds
using a validation set. Specifically, on this set, we iterate over a grid of threshold combinations, running the
algorithm to obtain all X,Y pairs. For each small interval of X, we identify the threshold combinations that
maximize Y. Next, we use a separate test set, where we only evaluate the good combinations identified from
the validation step and compute the resulting AUROC/AURAC. We note that prior work [Lin et al.| (2023);
Nikitin et al.| (2024) also relies on a validation set for tuning hyperparameters.

We now prove that the above procedure for selecting the two thresholds from data achieves a test-time
AUROC close to the optimal value achieved on the validation set. Our theorem below applies more generally
to any method that uses data to select from a finite set of threshold values.

Theorem 5.1 (AUROC Generalization). Suppose we are given npegy i.1.d. samples from the non-hallucinating
distribution and npes .1.d. samples from the hallucinating distribution, and sets of candidate thresholds
T = {tjl}ljzll and Ty = {tﬁ LE' for stages 1 and 2 respectively. Suppose we use this data to choose a mapping
t1,ta = A(pra) from desired probability of false alarm level ppa € [0,1] to thresholds t1 € Ti,ta € Ta,
mazximizing the probability of detection on the validation data. Let Ay,qi(A) be the AUROC using thresholds

2
given by A. Then, with probability at least (1 — ﬁ) , the test AUROC satisfies Agest(A) > Apai(A) — 2¢
log(|T1])+log(|T2])

min(nneg,Mpos)

and the test |pi5l — pral < €, where e =

See proof in App. |Al This theorem implies we need to have npeg, pos = €2 (log(|71]) + log(]72])) to guarantee
the test AUROC is close to the convex-hull-AUROC on validation data. In Section [6] we validate through
experiments that the selected thresholds transfer well to the test data.

6 Experiments

Datasets. We consider datasets widely used in research on hallucination detection Kuhn et al.| (2023);
Farquhar et al.[(2024); Lin et al.| (2023); |[Nikitin et al.| (2024)): TriviaQA [Joshi et al.| (2017)) for trivia knowledge,
SQuAD |Rajpurkar et al.|(2016) for general knowledge, and Natural Questions Kwiatkowski et al.| (2019),
derived from real user queries to Google Search.

Models. We consider: Llama-3-70B-Instruct, Llama-2-70b-chat-hf Llama-2-13b-chat,
Mixtral-8x7B-Instruct-v0.1 and merlinite-7b, resulting in 20 target-verifier pairs. Following prior works
Lin et al.|(2023); [Kuhn et al|(2023); Nikitin et al.| (2024)), we use deberta-v2-xlarge-mnli as the entailment
estimator, taking the post-softmax probability of the ‘Entailment’ label as the output (ranging from 0 to 1).

Evaluation. We set 7= 0.1,7/ = 1.0,m = 10 El To obtain the ground truth annotations for hallucination,
we use GPT-4 as the judge ﬂ Performance is measured in terms of AUROC and AURAC as described in
Section @ Since this requires a validation set, we compare two scenarios: (1) the validation set consists of the
same questions as the test set but with independently sampled random answers, and (2) the validation set
consists of different questions from the same dataset. In both scenarios, the sizes of the validation and test

3We note that m = 10 is the most common choice in the literature [Manakul et al.| (2023); |[Farquhar et al|(2024); Kuhn et al.
(2023)); [Lin et al.| (2023); [Nikitin et al.| (2024). As noted in |Lin et al.| (2023), while performance generally improves as m increases,
the gain plateaus once m exceeds a small value (e.g., between 3 and 5, as shown in their Figure 4). Additionally, increasing m
also raises the computational cost. Therefore, we fix m = 10 in our experiments.

4An analysis of GPT-4’s use in labeling hallucinations, compared with human annotators, can be found in [Farquhar et al.
(2024))). Specifically, in the supplementary material (“Note 6: Assessing Model Accuracy”), the authors show that two human
raters agreed with each other at roughly the same rate (92%) as they agreed with GPT-4 on average (93%). This suggests that
GPT-4’s evaluations are, on average, reasonably close to those of human raters.
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Figure 6: We plot AUROC against the relative additional cost for SQuAD (top), TriviaQA (middle), and
NQ (bottom). Solid curves represent results where the validation set consists of independent samples for
the same questions, while dashed curves correspond to validation sets consisting of answers for different
questions. The dotted horizontal line indicates the approximate ceiling performance using GNN. The curves
are mostly convex, indicating that a small number of cross-model consistency checks contribute to most
of the performance gain. This demonstrates that our approach can achieve high performance with very low
cost, further evidenced in Table[l] Results for AURAC are in Fig. @

sets are 400. First scenario represents an oracle setting, as the thresholds rely on the ground truth for the
same questions. The second scenario reflects a practical setting where a separate set of questions is used to
determine thresholds. We repeat the test with 5 random seeds and report the average result along with the
standard deviation.

Estimation of computational overhead. Given that Alg. [1] focuses on budget awareness, it is important
to consider both performance and budget in our evaluation. To quantify the additional computational cost
introduced in Alg. [I] compared to the case where only self-consistency is used, we define a metric called
relative additional cost:

FLOPs(Alg. [[)— FLOPs(only self-consistency checking)
FLOPs(only self-consistency checking)

)

which can be estimated as pf\\,[t v using the formula from [Kaplan et al.| (2020) (detailed derivation in App. 7
N; and N, represent the number of non-embedding parameters in the target and verifier models, respectively.
p accounts for the fact that the verifier model is queried for only a fraction p of the questions in Alg.

Performance vs. cost. In Figs. [6] (AUROC) and [9] (AURAC) (App. [C.2)), we plot the detection
performance against the estimated relative additional cost when varying p. A general trend is that when
the verifier model is stronger than the target model (e.g., when the target is merlinite-7b and the
verifier is Llama-3-70B-Instruct), increasing the computational budget p—Dby allowing more verifier
calls—monotonically improves performance. However, with a weaker verifier (e.g., when the target is
Llama-3-70B-Instruct and the verifier is Llama-2-13b-chat), we observe an increasing-decreasing trend,
where an intermediate number of verifier calls achieves the best results. This aligns with the intuition from
Fig. [ where intermediate weights on self-consistency cross-model-consistency are optimal, indicating that
even a weaker verifier can contribute meaningfully to detection when an appropriate balance is maintained.
We include an example in App. [C-2] showing a case where the output of the weak verifier is better than
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Table 1: The minimum p (percentage of verifier calls) required to achieve % of the maximal AUROC gain
(denoted as p(a)) when Llama-3-70B-Instruct is the verifier, for different values of a. We report the average
results across all target models on SQuUAD (S), TriviaQA (T) and Natural Questions (N). The last column
shows the maximal AUROC gain (Apax)-

p(70) | p(80) | p(90) | p(95) Amax

S | 48547 | 625111 | 83.045 | 86.545 | 0.1.0.03
T | 43015 | 53.022 | 70545 | 785110 | 011002
N | 39546 | 52.010 | 65.06 | 72.0x6 | 0.07x0.00

that of the target model. In all cases, our method—which incorporates an additional verifier—outperforms
the self-consistency-only baselines (i.e., the point at “relative additional cost = 0” in Fig. |§|, and other
self-consistency-based methods shown in Fig. [2)).

Our approach can achieve high performance with very low computational cost. The curves in
Fig. [f] are convex, indicating that a small number of cross-model consistency checks contributing to most of
the improvement in performance. To further illustrate this, we examine the minimum p required to achieve
different percentages of performance gains when using Llama-3-70B-Instruct as the verifier in Table [I]
Notably, compared to querying the verifier for all questions, we can reduce the cost by 13.5%-28% while
retaining 95% of the gain (Apax) in performance.

Selection of the verifier. Llama-3-70B-Instruct (blue), consistently achieves the best results when
the computational budget is large. However, Mixtral-8x7B-Instruct-v0.1 (purple), stands out for its
exceptional performance with a very small cost. This efficiency can be attributed to its MoE based
design—despite having 46.7B total parameters, it only uses 12.9B parameters per token.

Transferability of thresholds. The gap between the scenarios where the validation set contains the same
questions or different questions is overall small (dashed vs. solid lines, Fig @, suggesting that the selection of
thresholds transfers well to different questions, making the approach practical.

Comparison with approximated ceiling performance. The gap between our approach and the ceiling
performance approximated using supervised learning with GCNs (described in Sec. horizontal dashed
line, Fig @ is generally small. This indicates that our method effectively utilizes the verifier’s information
despite not always querying it.

7 Conclusion and Discussion

In this paper, we empirically analyzed consistency-based methods for hallucination detection. Based
on this analysis, we introduced a budget-aware two-stage approach that leverages both self-consistency
and cross-model consistency with a given verifier. Our method reduces computational cost by selectively
querying the verifier. Extensive experiments demonstrate that it achieves strong performance with minimal
computation, notably reducing computation by up to 28% while retaining 95% of the maximal performance
gain. One limitation is that our approach currently requires a validation set to determine thresholds; future
work may explore ways to remove this dependency.

While our experiments are conducted on QA datasets, the proposed framework itself is task-agnostic. Both
self-consistency and cross-model consistency operate purely on distributions of semantic entailment judgments.
The ceiling analysis and the two-stage detection method do not rely on properties unique to QA, but instead
on the distribution of entailment relations among sampled responses. As a result, we expect similar saturation
phenomena and verifier-based gains to arise in other generation settings where semantic equivalence can be
assessed.
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A Proof of Theorem [5.]]

A classifier C maps points to binary predictions. The pp(C) is the probability that positive samples are
mapped to 1, and pra(C) is the probability that negative samples are mapped to 1. Hence

Z Xneg

nneg

where X9, X% are the labels of the positive and negative samples, respectively. These are each i.i.d.
Bernoulli random variables.

The Hoeffding inequality can be directly applied:
Pr(|pp —pp| > €) < 2exp (—Qegnneg)

and similarly for pr4. Now, we want a uniform bound that holds simultaneously for all possible threshold
combinations. The number of these are |71||72].

Define events 5  and £ ]F 2 to be the events that the estimated probabilities under the jth, kth threshold are
within e, i.e.

Eie = o (t;, 1) — po(t;, 1) < e
gf]? = |ﬁFA(t]17ti) _pFA(tjlvti” S €.

Let’s use the union bound across the j, k, we don’t need it across FA /D, since these are independent.
Pr (2L 0fZL €50 ERD) = (1= 2Tl Tl exp (~26n0eq)) (1= 21Tl|Tel exp (~2¢20,0,))

In other words,

log(|Th]) + log(|21)

min(Npeg, Npos)

i

max max(|pp(t5,18) — po(tj, t7)|, [Dra(ty, 1) — pra(tj, t7)]) < \/
2
with probability at least (1 — mfw) . Since this holds simultaneously for all threshold combinations, if

we take the training-convex-hull area, the test AUC from using the frontier of that hull will be at most 2¢
smaller.

B Kernel Mean Embedding View of Consistency Methods for Hallucination Detection

In what follows, we suppose that we have also access to the ground the truth 7*(y|z) and observe

m i Oyl ~ ().
Proposition B.1. The optimal weight \ for combining self and cross consistencies to approximates the
consistency of the target with the ground truth satisfies:

amin (s Me + (1= Npaw) = (o )| < min V21 = (e, At + (1= N o)),

Hence it is enough to solve: maxyejo,1){th, Mt + (1 — A)pay). Using an entropic regularization of this objective

% vHMv/) T i(1 i—1 )
thwve[orﬂ]a:}‘jt"'wv=1<u wtut + v ’u > 8( ,E{Zt }wj( Og wj )
J U

exp( <Ht=EH ) )

exp( (Mt«:*) )+exp( (m;;u*) ) .

we obtain \* =
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[ty Ape + (1= N pro) = (e, )] = [, 17 — (A 4 (1 = A o)) |
< el = (Ape + (1= X)) |

< V201 = (e, Mt + (1= M),

last inequality follows from ||| < 1, ||pel] < 1, [|pol] < 1 and ||Ape + (1 — N py))|] < 1 (since the kernel € is
bounded by 1).

Hence to minimize this inequality it is enough to solve for :

oA 1— Aty
;g[%ﬁ]w fe 4+ (1= A po)

we can add to this an entropy regularizer

s —€ (1 —1
wt,wue[(ﬁ]aﬁHrwv:lQ‘ Wt + W o) (e%: }WJ( Og Wj )
Jje{tw

exp( (#t»: ) )
(M,u*>)
€

exp( (ILU;_N* ) )

which gives us that: A\ = w; = oxp (LB ) o i Ty -

)andwvzl—/\:

(py, p™)
( HUEM

exp( +exp

C Experimental Details

We conducted our experiments on eight RTX A6000 GPUs.

C.1 Estimation of computation cost

To compute the budget, we use the estimation formula derived in [Kaplan et al.|(2020]), Table 1, which states
that the number of FLOPs per token is approximately 2N for models with sufficiently large dimensions,
where N represents the number of non-embedding parameters in the model. Then, for each question, the
computation cost of cross-model consistency checking can be expressed as:

mquNverifier + m2la2Ndebertaa (2)

where [, is the number of tokens in the question, and [, is the number of tokens in each answer (assuming all
m answers share the same length), Nyep; fiers Ndeberta are the number of parameters of the verifier model and
the entailment estimator (i.e., deberta-v2-xlarge-mnli), respectively. This estimation remains challenging
due to the variability in the lengths of questions and answers, which depend on each specific question and
model. To simplify this, we consider the scaling limit, where—assuming no restrictions—the lengths of
questions and answers scale to the respective context lengths of the models processing them (since tokens
exceeding the context length are dropped). Notably, the context length of deberta-v2-xlarge-mnli is only
512, while the context lengths of verifier models range from 4,096 to 128,000. Using this, we compute the
ratio of the second term to the first term in Equation , which is mi—;é}i{ie"”i}”:, in the limit where both lengths
reach their maximum. We find that this ratio is no greater than 0.087 in the largest case in our settings,
indicating a negligible contribution of the second term in the limit. Thus, we omit the second term to simplify
the estimated additional computation per question to ml;2Nyer;fier. Similarly, we can derive the estimation
for the cost of self-consistency checking as ml;2Ny.rget. Based on this simplification, the metric additional

PNverifier
N,

relative cost can be estimated as , where p accounts for the fact that the verifier model is queried

target

for only a fraction p of the questions in Algorithm

C.2 Additional Results

Figure [7] shows the comparison between the performance of existing methods and the approximated ceiling
performance in terms of AURAC. We observe a pattern consistent with that in Figure [2|
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Figure 7: Comparison between the performance of existing methods and the approximated ceiling performance
on the SQuAD ((a)—(c)) and TriviaQA ((d)—(f)) datasets. Here, performance is measured in terms of
AURAC. We observe a pattern consistent with the discussion in Figure
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cross-consistency-based metrics, (1 —

AMPD(Ps#) + AMPD(P°%), can achieve performance close to that of the oracle method.

Figure [§] shows the AURAC performance against A when using a weighted average of self-consistency and
cross-consistency-based metrics, (1 — A\)MPD(P*¢!f) 4- A\MPD(P¢os).

Figure [0 shows the AUROC performance of the two-stage detection method under varying computational

budgets.
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Figure 9: AURAC vs. relative additional cost for SQuAD (top), TriviaQA (middle), and Natural Questions
(bottom).

We also provide an example where the weak verifier model’s outputs are better than those of the target
models. In this case, the self-consistency-based MPD is 0.183, while the cross-model-consistency-based MPD
is 0.922.

Question: who is the original singer of fool if you think it’s over
Correct answer: Chris Rea.

10 answers from the target model (Llama-3-70B-Instruct):

Elkie Brooks is the original singer of "Fool (If You Think It’s Over)".

The original singer of "Fool (If You Think It’s Over)" is Chris Rea.

Elkie Brooks
Elkie Brooks
Elkie Brooks
Elkie Brooks
Elkie Brooks
Elkie Brooks
Elkie Brooks
Elkie Brooks

is the original singer of "Fool If You Think It’s Over".

is the
is the
is the
is the
is the
is the

is the

original singer of "Fool If You Think It’s Over".
original singer of "Fool If You Think It’s Over".
original singer of "Fool If You Think It’s Over".
original singer of "Fool If You Think It’s Over".
original singer of "Fool If You Think It’s Over".
original singer of "Fool If You Think It’s Over".

original singer of "Fool If You Think It’s Over".

10 answers from the verifier model (Mixtral-8x7B-Instruct-v0.1):

o The original singer of "Fool If You Think It’s Over" is Chris Rea.
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e The original singer of "Fool If You Think It’s Over" is Chris Rea.

o The original singer of "Fool If You Think It’s Over" is Chris Rea. He wrote and performed the song,
which was released in 1978 as part of his album "Whatever Happened to Benny Santini?" The song
gained popularity over the years and has been covered by various artists, including Elton John.

e The original singer of "Fool If You Think It’s Over" is Chris Rea.

e The original singer of "Fool If You Think It’s Over" is Chris Rea. This song is one of his most popular
tracks and was released in 1978 as part of his album "Whatever Happened to Benny Santini?"

e The original singer of "Fool If You Think It’s Over" is Chris Rea.
e Chris Rea
e The original singer of "Fool If You Think It’s Over" is Chris Rea.

e The original singer of "Fool if You Think It’s Over" is Chris Rea. He wrote and recorded the song
for his 1978 album, "Whatever Happened to Benny Santini?". The song has since been covered by
various artists, but Rea’s version remains the most well-known and popular.

e The original singer of "Fool If You Think It’s Over" is Chris Rea.
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