
Under review as a conference paper at ICLR 2022

STABILITY REGULARIZATION FOR
DISCRETE REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a method for training neural network models with discrete stochastic
variables. The core of the method is stability regularization, which is a regu-
larization procedure based on the idea of noise stability developed in Gaussian
isoperimetric theory in the analysis of Gaussian functions. Stability regularization
is a method to make the output of continuous functions of Gaussian random vari-
ables close to discrete, that is binary or categorical, without the need for significant
manual tuning. The method allows control over the extent to which a Gaussian
function’s output is close to discrete, thus allowing for a continued flow of gradient.
The method can be used standalone or in combination with existing continuous
relaxation methods. We validate the method in a broad range of settings, showing
competitive performance against the state-of-the-art.

1 INTRODUCTION

0.0 0.2 0.4 0.6 0.8 1.0

Steps 1e6

−80

−75

−70

−65

−60

−55

−50

−45

Lo
g

Pr
ob

ab
ili

ty

Stability Reg.
Gumbel-Softmax

Figure 1: Training curves in MNIST
structured prediction with a ResNet
model with a 3x7 dimensional bi-
nary latent space. Gumbel-Softmax
diverges later in training (τ = 0.5).

Neural networks are universal approximators of continuous
functions. Often, however, discrete computations are desirable,
whether for the intermediate neurons and their representations
(Oord et al., 2017), the parameters (Courbariaux et al.), or
the outputs. Current methods for training neural networks
require differentiability which means that it is not straightfor-
ward to train neural networks with discrete variables. This
has led to the development of several approximate methods
(Williams, 1992; Jang et al., 2017; Bengio et al., 2013; Tucker
et al., 2017; Pervez et al., 2020) with various trade-offs of bias,
variance, and complexity. In this work we focus on neural
networks with discrete intermediate representations. Building
upon techniques from the analysis of functions in Gaussian
spaces (Janson et al., 1997), and specifically the notion of sta-
bility of Gaussian functions, we propose a novel regularization
strategy on representations that yields precise and hassle-free
discrete representations.

Several approaches have been introduced in the literature for learning discrete representations with
backpropagation. The simplest approach is the Straight-Through estimator (Bengio et al., 2013),
which essentially ignores the intermediate discrete function allowing the gradients to flow. Another
popular choice is the Gumbel-Softmax (Maddison et al., 2017; Jang et al., 2017), which replaces the
discrete categorical variables with relaxed stochastic continuous ones. In both approaches the discrete
variables are replaced by approximations and the model is biased with respect to the original discrete
objective. When employed with complex architectures, Straight-Through and Gumbel-Softmax
estimators often underperform due to this bias, as in figure 1. The reason is that with continuous
relaxation methods there is a tension between obtaining better optima and objective function values,
and obtaining discrete representations. Importantly, the more complex the optimization (or the model)
is the greater as well is the pressure towards non-discrete solutions, thus increasing bias further.
Adding to the complexity of obtaining discrete representations, with current methods there is no direct
incentive for the optimization procedure to obtain discrete representations: with Gumbel-Softmax the
extent of how close-to-discrete a representation is obtained is controlled by a temperature variable,
which must be manually tuned.

1

Under review as a conference paper at ICLR 2022

Unbiased estimators like REINFORCE (Williams, 1992) – and reduced variance extensions like
REBAR (Tucker et al., 2017) and RELAX (Grathwohl et al., 2018) – have also been explored.
However, these methods tend to be computationally expensive, which limits their usefulness for
complex models. All in all, whether due to bias, high variance, high computational complexity, or
the need for manual tuning, there remains a need for alternative methods for obtaining hassle-free
discrete representations with neural networks, especially when increasing their complexity.

In this work we present a regularization procedure for discrete representations, which can be used
either as a standalone method, or in combination with existing continuous relaxation or straight-
through estimators. In its standalone form, the method replaces a discrete variable by a parameterized
continuous function whose output (say a sigmoid or softmax function) corresponds to the discrete
variable, and which is then regularized to produce discrete outputs. In combination with continuous
relaxations such as Gumbel-Softmax, the method can be used to regularize the logits input to the
sampling procedure to serve as an implicit temperature control by making the logits noise stable.

We achieve this by resting upon the notion of noise stability developed in the analysis of Gaussian
functions (Borell, 1985; Mossel & Neeman, 2012). Roughly speaking, the noise stability of a
Gaussian function is a measure of its resilience to noise. Given a Gaussian function f and correlated
Gaussian variables ε, ε′ ∈ Rd, noise stability of f is defined as Stab = Eε,ε′ [f(ε)f(ε′)]. Borell’s
isoperimetric theorem (Borell, 1985), states that for bounded functions of some fixed volume with
range [0, 1], noise stability is maximized by functions that are indicator functions of half spaces. Given
that half space indicators maximize noise stability in Gaussian space, we suggest that optimizing
stability is a very simple and effective method of transforming Gaussian inputs to binary vectors, thus
simplifying the process of obtaining discrete representations.

In summary, we demonstrate how the concept of noise stability can be used to regularize stochastic
neural networks with Gaussian variables to train hassle-free neural networks with discrete (Bernoulli
or categorical) variables.

In the following, we first give a short introduction to noise stability in Gaussian analysis. We
then motivate our proposal for using noise stability to regularize Gaussian functions for learning
discrete representations. We validate by experiments in the Neural Variational Inference framework
to learning graph structured latent spaces, learning discrete (deterministic) autoencoders, clustering
with Gaussian Mixture VAEs, gating ResNets, and structured prediction.

2 NOISE STABILITY OF GAUSSIAN FUNCTIONS

2.1 STABILITY AND GAUSSIAN ISOPERIMETRY

Noise Stability of a Gaussian function f : Rn → R is defined for a noise parameter ρ ∈ (0, 1) as
Stabρ[f] = Eε,ε′ [f(ε)f(ε′)], (1)

ε′ = ρε+
√
1− ρ2ε′′ (2)

where ε, ε′ are called ρ-correlated Gaussian pairs and ε, ε′′ ∼ N (0, 1), are samples from the standard
normal distribution. Stability is defined here in terms of standard normal Gaussian variables, but it is
easily extended to any distribution of independent Gaussian variables by reparameterization, given
the mean and standard deviation. For the special case where f = 1A, the indicator function of a set
A, stability measures the probability that both ε and ε′ remain within A.

Stabρ[f] = P[ε ∈ A ∧ ε′ ∈ A], (3)

By Borell’s Gaussian isoperimetric theorem (Borell, 1985; Mossel & Neeman, 2012), stability is
related to the Gaussian isoperimetric inequality. According to Gaussian isoperimetric inequality,
geometric objects with minimum boundary (i.e., surface area) in Gaussian space with fixed Gaussian
volume (i.e., E[f] for f the object’s indicator function) are half spaces.
Theorem 1 (Borell Isoperimetric Theorem (Borell, 1985)). For fixed ρ ∈ (0, 1) and f ∈ L2(Rn)
in Gaussian space with range [0, 1] and fixed volume E[f] = α, Stabρ[f] is maximized by f = 1H
where 1H is an indicator function of a half space with volume α.

As a consequence, given a parameterized bounded Gaussian function, maximizing the stability makes
the function f approach the indicator function of some half space as illustrated in figure 2.

2

Under review as a conference paper at ICLR 2022

Figure 2: Increasing stability (left to right) makes a function stable to ρ-correlated noisy version of x
as it approaches a Gaussian halfspace while keeping a fixed Gaussian volume.

For further details on noise stability in the context of Gaussian analysis of functions we refer the
interested reader to (O’Donnell, 2014).

3 STABILITY REGULARIZATION

Stability regularization can be used either as a standalone method or in combination with Gumbel-
Softmax style continuous relaxation.

3.1 REGULARIZATION FOR DISCRETE VARIABLES

We start from a continuous model, say a neural network with L layers or modules, f = fL◦· · ·◦f1(x).
Next, we describe how to employ stability regularization so that any arbitrary intermediate function
fl(z; θ) with bounded output learns to output discrete variables. Given input z for fl we estimate the
stability of fl and, thereafter, maximize it by adding it to the loss objective as a regularizing term.

For a single input vector z ∈ Rk, following the definition of stability in equation (1), we sample
ρ-correlated Gaussian variables ε, ε′ as in equation (2). We then evaluate fl twice: once for z + ε
and once for z + ε′. The expectation of their product, Eε,ε′ [fl(z + ε)fl(z + ε′)] is the stability,
Stabρ[fl(z)]. Maximizing the stability for a single input z, Stabρ[fl(z)] for a fixed ρ ∈ (0, 1), the
function fl approaches an indicator as described by Borell’s theorem.

In a batch setting, we compute a Monte Carlo estimate of the expected stability over the input,
that is Ez[Stabρ[fl(z)]], by sampling one ρ-correlated Gaussian pair per batch element. Given
z, ε, ε′ ∈ Rn×k, so that εi and ε′i are ρ-correlated Gaussian, the estimate is computed as

Ez[Stabρ[fl(z)]] ≈
1

n

∑
i

fl(zi + εi)fl(zi + ε′i), (4)

where n is the batch size and the arithmetic operations are done element-wise. To maximize stability
we sum or average the estimate in equation (4) across dimension and add the result as an additional
regularization term to the loss function with which we train the model.

3.2 MEAN-CENTERED STABILITY REGULARIZATION

The regularization makes the function stable relative to correlated Gaussian noise by moving the
inputs zi further apart. In some cases the inputs can become too far separated which can hurt
optimization if left uncontrolled. For such problematic cases we introduce mean-centered stability
regularization which preserves the expected value of fl given the input zi ensuring that the induced
separation remains limited.

The idea behind mean-centered stability regularization is compute the stability of fl − E[fl] so that
maximizing stability reorients the separating hyperplane without changing the Gaussian volume of the
corresponding halfspace. According to Borell’s theorem maximizing stability of fl for any fixed E[fl]
causes it to approach a Gaussian halfspace indicator (figure 2). Since it can be expensive to compute
the expectation of a neural network, we maximize the difference of two stability computations: Given
parameters ρ1, ρ2, ρ2 < ρ1 we optimize Stabρ1 [fl]− Stabρ2 [fl]. We can show that this objective is
equal to Stabρ1−ρ2 [fl − E[f]] to first order with an error that is quadratic in ρ1, ρ2.

Proposition 1. Given a Gaussian function f : Rn → [0, 1] and parameters ρ1, ρ2 ∈ (0, 1),
Stabρ1−ρ2 [f − E[f]] = Stabρ1 [f]− Stabρ2 [f] +O(ρ2(ρ2 − ρ1)).

3

Under review as a conference paper at ICLR 2022

Algorithm 1 Stability Regularization
Require: Input z ∈ Rn×k; stability layer fl with range (0, 1)m; noise parameter ρ ∈ (0, 1); stability

constraint α ∈ (0, 1)
1: Sample ε, ε′ ∈ Rn×k ρ-correlated Gaussian vectors.
2: Compute y1 = fl(z + ε), y2 = fl(z + ε′)
3: Estimate average stability over batch per dimension as S = 1

n

∑
i y1,iy2,i.

4: Apply stability constraint per dimension: S = clip(S, 0, α).
5: Sum S across dimensions and optimize by gradient descent

Algorithm 2 Stability Regularization with Mean Centering
Require: Input z ∈ Rn×k; stability layer fl with range (0, 1)m; noise parameter ρ1, ρ2 ∈ (0, 1),

ρ2 < ρ1
1: Sample (ε1, ε

′
1) ρ1-correlated and (ε2, ε

′
2) ρ2-correlated Gaussian vectors from Rn×k.

2: Compute y1 = fl(z + ε1)fl(z + ε′1), y2 = fl(z + ε2)fl(z + ε′2)
3: Estimate average stability over batch per dimension as S = 1

n

∑
i(y1,i − y2,i).

4: Sum S across dimensions and optimize by gradient descent

See appendix A for a proof.

For stability regularization without mean centering we clip the stability at a maximum value to prevent
the network output from becoming overly saturated. In figure 2 this would correspond to the points
becoming far from the boundary leading to saturation and slowdown of optimization. Without mean
centering, a constraint on stability limits how far the points can be from the boundary improving
optimization.

Borell’s theorem guarantees that the function f will converge to a halfspace for any ρ. We did not
observe the method to be sensitive to ρ in our experiments.

The precise procedures are described in algorithms 2 and 1.

Stability Regularized Layers. The stability regularized neural network layers can be any arbitrary
bounded output neural network layer, possibly even a layer of activations without learned parameters.
We use sigmoid activations for Bernoulli and softmax for categorical variables.

Probabilistic Models and Gumbel-Softmax. We use stability regularization alongside Gumbel
noise in probabilistic models such as VAEs where it is important to be able to compute log probabilities
of obtained samples. Given a block of layers fl with a Gumbel softmax (or Gumbel sigmoid)
activation, i.e., fl = GumbelSoftmax(logits), we compute stability using a standard softmax or
sigmoid without adding the Gumbel noise as Stabρ[Softmax(logits)] and use the Gumbel softmax
output as input to the downstream network.

The optimization procedure with continuous relaxations provides no incentive to encourage discrete
representation. The consequence is that such methods work better when there is little pressure from
the optimization pressure to be non-discrete, as happens with larger latent space dimension. With
smaller bottleneck latent spaces, however, there is greater optimization pressure to be continuous
and the optimization with continuous relaxations becomes harder because of the need to manually
tune the temperature. With stability regularization the regularization procedure is a form of implicit
temperature control and the extent of how discrete a representation becomes is controlled by the
extent of regularization.

Computational Complexity. Stability regularization is easy to implement and adds some extra
computations due to the extra evaluations for correlated Gaussians. We emphasize that any extra
computation is local to the stability layer fl. The rest of the network is unaffected. Depending
on the application, there usually exist only a few such layers in a large model, in which case the
stability computation is a small fraction of the total cost and we do not observe a noticeable increase
in computational cost in our experiments.

4

Under review as a conference paper at ICLR 2022

4 RELATED WORK

A number of methods have appeared in the literature for training neural networks with discrete
variables. The methods can broadly be divided into two categories: score function based methods,
and pathwise gradient methods (Mohamed et al., 2019).

Score function based methods are usually unbiased – the prototypical example being REINFORCE
(Williams, 1992). The simplest form of these methods has high variance and a number of approaches
to reduce the variance of the REINFORCE estimator have appeared. NVIL (Mnih & Gregor,
2014) subtracts a learned MLP baseline from the REINFORCE estimator to reduce variance, while
MuProp (Gu et al., 2016) subtracts a sample-dependent baseline based on the first order Taylor series
expansion. REBAR (Tucker et al., 2017) combines the REINFORCE estimator with continuous
relaxation baseline, while RELAX (Grathwohl et al., 2018) generalizes the REBAR control variate to
one parameterized by a neural network. Yin et al. propose ARSM, a finite difference estimator with
adaptive evaluation.

Pathwise gradient methods make use of the functional form of the operations that are applied to
the discrete random samples, and consequentially tend to have lower variance than score-function
methods (Mohamed et al., 2019). However, since gradients through discrete nodes are not defined,
approximations have to be made, which makes such estimates biased in general. Continuous relaxation
estimators replace discrete nodes with continuous stochastic variables. Gumbel-Softmax (Maddison
et al., 2017; Jang et al., 2017) is an example of this, which relaxes the Gumbel-Max parameterization
of discrete variables. (Potapczynski et al., 2020) extend Gumbel-Softmax to Gaussian variables.

0.0 0.2 0.4 0.6 0.8 1.0

Activations
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Pr
ob

ab
ili
ty

0.0 0.2 0.4 0.6 0.8 1.0

Activations
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ili
ty

Figure 3: A toy regression exam-
ple. The Gaussian function’s mean
output approaches the target proba-
bility of 0.8 with and without stabil-
ity regularization. The histograms
show the outputs clustering around
the target without regularization
(top) and approaching binary values
with regularization (bottom) which
average to 0.8.

Straight-Through estimators (Bengio et al., 2013) are another
category of biased estimators, which provide hard samples in
the forward pass but skip the discrete node in the backward
pass. Straight-through estimators can also be combined with
continuous relaxation estimators (Jang et al., 2017) to provide
hard samples. In DARN (Gregor et al., 2014) develop another
pathwise gradient estimator to be unbiased for quadratic func-
tions but is shown to be a lower bias Straight-Through estimator
in (Pervez et al., 2020). FouST (Pervez et al., 2020) also em-
ploys similar correlated samples but in the context of variance
reduction in Bernoulli-input networks.

5 EXPERIMENTS

We validate our stability regularization procedure on a number
of tasks with Bernoulli and categorical variables to show its ef-
fectiveness and wide applicability. First, with a simple example
we show that stability regularization can indeed be used to learn
Bernoulli random variables with Gaussian functions and that
we can control the extent of saturation (or of how close a func-
tion is to being Boolean) by constraining stability to some fixed
upper bound. We then demonstrate experiments on 1) latent
structure recovery with Neural Relational Inference (Kipf et al.,
2018) 2) autoencoders with Bernoulli variables and generative
models for images, 3) Gaussian mixture VAEs for unsupervised
clustering and 4) conditional computing, where individual lay-
ers of a ResNet model can be dynamically switched off to save
computation.

5.1 A TOY DISCRETE REGRESSION EXAMPLE

As a simple illustration of stability regularization we train a small two-layer neural network with
sigmoid output and standard normal input to output binary values. We train the neural network using
a regression objective so that the expected output of the network matches a target t, i.e., minimizing
(E[f(z)]− t)2 with and without stability regularization on f . The results for a run with a target of

5

Under review as a conference paper at ICLR 2022

Table 1: Categorical VAE experiment with stability regularization showing negative best validation
ELBO (best of 5 runs) where τ is the Gumbel-softmax temperature.

Method Gumbel-Softmax Straight-Through

τ = 0.1 τ = 0.5 τ = 1 τ = 1.5 τ = 2

Without Stab Reg. 107 107.7 114 122.7 132.4 116.7
With Stab Reg. 107.4 106.8 112.8 116.8 122.7 111.9

0.8 is shown in figure 3. As shown, without regularization the outputs cluster around the target, as is
expected with regression, while with regularization the network outputs binary values with the mean
output matching the regression target.

5.2 CATEGORICAL VAE

Table 2: Regularization
coefficient with categor-
ical VAE with Gumbel-
Softmax at τ = 2

Value -V. ELBO

80 124.6
100 122.7
120 122.2
150 123.1

No Reg. 132.4

To judge the effect of stability regularization we perform experiments
with categorical VAE on dynamically binarized MNIST. We train the
VAE using Gumbel-Softmax and Straight-Through both with and with-
out stability regularization. The aim is to show that traditional gradient
estimators benefit from stability regularization and that stability regu-
larization can be interpreted as performing implicit temperature control
when used with continuous relaxation.

We use VAE with the following architecture. The encoder has one layer
of 200 units and the ELU non-linearity. The decoder has one layer of 400
units followed by the ELU non-linearity. The stochastic layer consists of
100 categorical variables with 2 categories and is implemented as a single
layer of 200 units computing the logits for each of the categories. For
stability regularization we use exactly the same architecture; in particular
we do not use a separate stability layer and regularization is performed directly on the logits. This is
a restriction but has the advantage that the methods remain directly comparable and also that the KL
divergences are easily computable because of independence.

We train all experiments for 500 epochs. The input is binarized in each batch by sampling Bernoulli
values independently for each pixel by treating the pixel value as the probability. We train using
Adam with a learning rate of 1e-4. For Gumbel-Softmax we use temperatures in {0.1, 0.5, 1.0}.
The stability regularization coefficients are chosen from {20, 50, 100}. The parameter ρ is set to
0.9. Straight-Through is implemented by sampling 1-hot vectors according to logits and passing the
gradient to the softmax (instead of the logits) in the backward pass.

Comparisons with Gumbel-Softmax and Straight-Through with and without stability regularization
are shown in Table 1. We see that stability regularization improves the Straight-Through trained
model significantly (∼5 nats) and the Gumbel-Softmax trained models when the temperature is higher
(∼ 10 nats at τ = 2). This shows evidence for our suggestion that stability regularization provides
implicit temperature control with continuous relaxation.

To study the effect of the regularization term coefficient on training we show validation ELBO for cat-
egorical VAE trained with Gumbel-softmax with fixed temperature set to 2 and stability regularization
with various coefficient values in Table 2. Coefficient values are chosen from {80, 100, 120, 150}.
The table shows that training performance is relatively stable (within ±1 nats) across a range of
coefficient values. Compared with the range of ELBO values obtained when changing the temperature
in Table 1, we conclude that the action of the regularization coefficient is different from that of the
temperature.

5.3 GRAPH STRUCTURED LATENT SPACES

We perform experiments with Neural Relational Inference (Kipf et al., 2018), which is a variational
autoencoder model to recover interactions and learn dynamics given observational data. The latent
space of the NRI VAE model is graph structured, and the encoder and decoder are graph neural
networks. To obtain sample interaction graphs in the latent space, NRI models use Gumbel-Softmax
to sample edges producing a graph sample and to propagate gradients through the latent graph. For
the NRI experiments, we use stability regularization along with Gumbel-Softmax.

6

Under review as a conference paper at ICLR 2022

Table 3: NRI Physics Simulation Accuracy. * indicates
result different from number reported.

Model Springs Charged Kuramoto

5 Objects

Supervised 99.9±0.0 95.0±0.3 99.7±0.0

NRI-GS 99.9±0.0 82.1±0.6 93.9*
NRI-GS+Stab 99.9±0.0 88.1±0.2 95.3±0.1

10 Objects

Supervised 98.8±0.0 94.6±0.2 97.1±0.1

NRI-GS 98.4±0.0 70.8±0.4 66.5*
NRI-GS+Stab 98.4±0.0 75.0±1.0 68.7±0.6

Physics Simulation Experiments The
first set of NRI experiments are physics
simulations from the original NRI proposal
Kipf et al. (2018). This has three types
of systems of 1) particles connected by
springs, 2) charged particles and 3) phase-
coupled oscillators with the Kuramoto
model (Kuramoto, 1975). Synthetic data
was generated using the authors’ code with
50k training and 10k validation and test
samples each. For each type of system we
have further two types of experiments with
either 5 or 10 objects.

We compare the NRI physics experiments
with and without stability regularization.
For this experiment we used the same baseline model with no new parameters and the stability
regularization is used with a softmax applied to the logit parameters going into the Gumbel-Softmax.
For this experiment we used stability regularization without mean centering, a ρ value of 0.9, and a
constraint of 0.9 for the sum of stability across the softmax dimensions. We add the stability loss to
the optimization objective with a multiplied by a factor of 100.

For the 5 and 10 particles springs experiments, we match the NRI baseline, which already matches
the supervised baseline. For the 5 and 10 charged particles experiments we get a significant im-
provement with stability regularization, achieving an accuracy improvement of about 6% and 5%.

Table 4: Comparing with Paulus et al. (2021)
in latent spanning tree recovery with 3,5 and
10 steps, w.r.t. test ELBO, precision, recall.

Method ELBO Pr Re

T=10

Top|V |-1 -2100 41 41
Top|V |-1+Stab -1766 92 92
SpTree -1080 91 91
SpTree+Stab -1175 89.3 89.3

T=5

SpTree -516 82.3 82.3
SpTree+Stab -501 82.6 82.6

T=3

SpTree -221 65.9 65.9
SpTree+Stab -196 70.52 70.52

For the Kuramoto oscillator experiments, we achieve
accuracy improvements of 1.5% to 2% over 5 and 10
oscillator experiments. Here we note that the orig-
inally reported accuracy values for the Kuramoto
model are higher (96% and 75.7%) but we were un-
able to reproduce the numbers in our experiments.
The Kuramoto values we report were obtained by
running the provided code against which we com-
pare our method. We note that the improvements are
obtained solely by including stability regularization
without model changes.

Latent Tree Structure Recovery We perform fur-
ther experiments with NRI on latent spanning tree
recovery proposed by Paulus et al. (2021). Here a
dataset is generated by sampling a tree over 10 ver-
tices, embedding the vertices and applying a force
directed graph drawing algorithm (Fruchterman &
Reingold, 1991). The dataset consists of particle lo-
cations at each step obtained by applying the drawing algorithm for T steps. Paulus et al. (2021)
develop a NRI method for sampling tree structured latent spaces and show improved performance
with structure recovery compared with sampling independent edges as in the baseline NRI model and
Top |V | − 1 selection where V is the vertex set. Their conclusion is that latent tree sampling works
better than the baseline for T=10 iterations.

Using the authors’ code we performed experiments with shorter T=3,5 and T=10 step trajectories
with the spanning tree and Top |V | − 1 sampling with and without stability regularization. In general,
recovering the interaction structure is harder when shorter trajectories are observed. We used mean
centered stability regularization with a one layer stability network, which we took as the last linear
layer of the encoder network. We used ρ1 = 0.9, ρ2 ∈ {0.89, 0.8, 0.5}. We ran random search over
the Gumbel-Softmax temperature and learning rate and ran the experiments for multiple random
seeds for the best hyperparameters found by the search.

We first focus on the spanning tree methods, which resemble the true latent structure of the data.
Including stability regularization matches performance at T=5,10 steps, and improve with T=3 steps

7

Under review as a conference paper at ICLR 2022

from around 66% to 70%. What is more interesting, when focusing on the Top |V | − 1 method for
T = 10, we find that having stability regularization we can match the spanning tree method with over
90% precision and recall. This is remarkable considering that the latent space is that of a spanning
tree, and that using a Top |V | − 1 without regularization from Paulus et al. (2021) scores a 41%
accuracy. When reducing the number of steps, however, the Top |V | − 1 does not have the capacity
to infer the latent structure, attaining only a low precision and recall of 35% for the best validation
score.

For this experiment we find that stability regularization made the method significantly less sensitive
to hyperparameters and random seed. We conclude that with stability regularization helps in the low
data limit for this task or when the latent space has less structure than the ground truth alongside
making the method less sensitive to hyperparameters and random seed.

5.4 UNSUPERVISED CLUSTERING WITH GAUSSIAN MIXTURE VAES

To show an application of stability regularization to categorical variables we turn to
Gaussian mixture VAEs and use them for unsupervised clustering for MNIST and
OMNIGLOT. We use a very simple generative model where the mean and variance
of the Gaussian mixture components are functions of a sampled categorical variable.

Table 5: Unsupervised classification accuracy for
MNIST

Model Accuracy

AAE (Makhzani et al.) 95.9
GMVAE (Dilokthanakul et al.) 92.7
SB-VAE (Nalisnick & Smyth) 92.35

Stab. Reg. (20 Clusters) 93.3

In particular, we do not marginalize over the
categorical variable and resort to sampling only.

b ∼ p(b) = Categorical(η)
z ∼ p(z|b) = N (µθ1(b), σθ2(b))

x ∼ p(x|z)

where µθ1 , σθ2 are MLP networks with categor-
ical input. We use the following approximate
posterior.

z ∼ q(z|x) = N (µφ1(x), σφ2(x))

b ∼ q(b|z) = Categorical(gφ3
(z))

The networks in p(x|z), q(z|x) are ResNets with two ResNet blocks, while gφ3
is implemented as an

MLP. The categorical variable is implemented as a softmax at the output of a stability network in gφ3
,

which we regularize to produce categorical outputs. Computing KL divergence requires probabilities
for the categories, which we approximate using a separate two-layer MLP with softmax output,
trained to regress over the categorical outputs. To train the model we maximize the ELBO plus the
auxiliary stability and regression objectives. We do not use Gumbel Softmax and use standalone
stability regularization for the categorical variables.

We obtain an average unsupervised classification accuracy on MNIST of 93.3% (see table 5). Label
assignment is done using the label of the maximum probability example in a cluster. We observe
that while relying on a simple model, we obtain classification accuracy that is better than or close to
more complex models from the state-of-the-art. We provide generation examples from 15 clusters for
MNIST and OMNIGLOT in figure 7 in the appendix.

5.5 GATING RESNETS

As an application of Boolean variables to gating, we consider the task of selectively turning off layers
of a deep ResNet using gates. We chose the adaptive inference network architecture, which builds
on a ResNet-110 architecture for CIFAR-10 (Veit & Belongie, 2017). The architecture incorporates
Boolean variables to serve as gates, which are trained using Gumbel-Softmax. The architecture also
allows setting a target rate at which individual layers can be turned off.

We use the authors’ PyTorch implementation1 and replace the Gumbel-Softmax training with stan-
dalone stability regularization. We use the average activation over the batch as a probability estimate
in algorithm 1 and stop stability gradients at the stability block input. We use the default settings
of parameters found in the implementation. With target rates of 0.5 and 0.6 we were able to obtain

1https://github.com/andreasveit/convnet-aig

8

https://github.com/andreasveit/convnet-aig

Under review as a conference paper at ICLR 2022

accuracy values of 92.86 and 93.31 for the baseline implementation with Gumbel-Softmax training.
For our stability regularization method we obtain accuracy values of 93.2 and 93.46 with the rate set
to 0.5 and 0.6. While the improvements are modest, the already high accuracies makes any further in-
crease hard. With additional tweaks, Veit & Belongie (2017) report a higher accuracy of 94.24. In the
above experiments, however, we use the published implementation with the default hyperparameters.

0 50 100 150 200 250

0

50

100

150

200

250

0 50 100 150 200 250 300

0

50

100

150

200

250

300

0 50 100 150 200 250

0

50

100

150

200

250

Figure 4: CIFAR-10 recon-
structions with a 16x16x4
binary latent space (top);
generated samples with a
pixelCNN prior on the la-
tent space per class (mid-
dle); and conditional sam-
ples from a single class (bot-
tom)

We conclude that stability regularization can also be deployed for
dynamically switchable layers in deep architectures.

5.6 DISCRETE
AUTOENCODERS AND GENERATIVE MODELING FOR IMAGES

As an application of stability regularization, we train discrete autoen-
coders on natural images solely with binary latent variables, where
the encoder and decoder are deep ResNets. We use a Gaussian output
model for the decoder. After training the discrete autoencoder we train
a PixelCNN prior over the binary latent variables to get a generative
model. This is similar to the setup used by Oord et al. (2017), with the
difference that we do not quantize, instead we use standalone stability
regularization to obtain a discrete latent space.

To generate new samples, we first sample a binary latent variable vector
from the PixelCNN prior model, which is then fed to the decoder to
generate samples. We train the model on CIFAR-10 with 50k 32x32
labeled images and STL-10 with 100k 96x96 unlabeled images. For
CIFAR-10 and STL-10 we use binary latent spaces of dimensions
16x16x4 and 24x24x4 respectively. This corresponds to a bit-size
reduction of 32×32×3×8

16×16×4 = 24 times for CIFAR-10 and 96 times for
STL-10.

Sampled images from the models trained on CIFAR-10 and STL-10 are
shown in figure 4 and B.1 in the appendix. We also train a conditional
PixelCNN prior model for CIFAR-10 by using the CIFAR-10 training
labels. Samples from the conditional model are shown in figure 4. The
generations show that the model is able to capture global information
better than a PixelCNN model trained on raw images. For the CIFAR-
10 unconditional model we obtain an FID score of 64.3 which is a
slight improvement over the value reported by Ostrovski et al. for a
PixelCNN model trained on raw images. For the conditional CIFAR-
10 model we obtain an FID score of 54.3. A comparison of FID scores
for various models on CIFAR-10 is in table 6 in the appendix. The FID
scores were obtained on a highly compressed representation with a
standard PixelCNN. The scores can likely be improved by using lower
compression or an improved PixelCNN but we do not explore this in
this work.

6 CONCLUSION

We presented a new method for regularizing stochastic Gaussian neural networks, so that to train
accurately and hassle-free models with Boolean and categorical stochastic variables. For this, we
rely upon the notion of noise stability developed in the analysis of Gaussian functions, which is
maximized by functions that are indicator functions of half spaces. We validate successfully stability
regularization on a wide array of experiments and settings, where Boolean and categorical random
variables are required, including physics simulations with graph latent variable models, Gaussian
mixture models for clustering, gating applications for large neural networks, and autoencoders.
Importantly, we find that stability regularization requires limited tuning compare to other continuous
relaxation methods, making it a strong contender for models with discrete variables in practice.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Jyoti Aneja, Alexander Schwing, Jan Kautz, and Arash Vahdat. NCP-VAE: Variational autoencoders
with noise contrastive priors. URL http://arxiv.org/abs/2010.02917.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International Conference on Machine Learning, pp. 214–223. PMLR, 2017. ISSN: 2640-3498.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Christer Borell. Geometric bounds on the ornstein-uhlenbeck velocity process. 70(1):1–13, 1985.
Publisher: Springer.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to +1 or
-1. URL http://arxiv.org/abs/1602.02830.

Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, Matthew C. H. Lee, Hugh Salimbeni,
Kai Arulkumaran, and Murray Shanahan. Deep unsupervised clustering with gaussian mixture
variational autoencoders. URL http://arxiv.org/abs/1611.02648.

Thomas MJ Fruchterman and Edward M. Reingold. Graph drawing by force-directed placement. 21
(11):1129–1164, 1991. Publisher: Wiley Online Library.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder, and David Duvenaud. Backpropagation
through the void: Optimizing control variates for black-box gradient estimation. In ICLR 2018 :
International Conference on Learning Representations 2018, 2018.

Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, and Daan Wierstra. Deep AutoRegres-
sive networks. In ICML, 2014.

Shixiang Gu, Sergey Levine, Ilya Sutskever, and Andriy Mnih. MuProp: Unbiased backpropagation
for stochastic neural networks. In ICLR (Poster), 2016.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
ICLR 2017 : International Conference on Learning Representations 2017, 2017.

Svante Janson et al. Gaussian hilbert spaces, volume 129. Cambridge university press, 1997.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. 2018. URL http://arxiv.org/abs/1802.04687.

Yoshiki Kuramoto. Self-entrainment of a population of coupled non-linear oscillators. In International
symposium on mathematical problems in theoretical physics, pp. 420–422. Springer, 1975.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. In ICLR 2017 : International Conference on Learning
Representations 2017, 2017.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adversarial
autoencoders.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In
Proceedings of The 31st International Conference on Machine Learning, pp. 1791–1799, 2014.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte Carlo Gradient
Estimation in Machine Learning. arXiv:1906.10652 [cs, math, stat], June 2019. URL http:
//arxiv.org/abs/1906.10652. arXiv: 1906.10652.

Elchanan Mossel and Joe Neeman. Robust optimality of gaussian noise stability. 2012. URL
https://arxiv.org/abs/1210.4126v3.

Eric Nalisnick and Padhraic Smyth. Stick-breaking variational autoencoders. URL http://arxiv.
org/abs/1605.06197.

10

http://arxiv.org/abs/2010.02917
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1611.02648
http://arxiv.org/abs/1802.04687
http://arxiv.org/abs/1906.10652
http://arxiv.org/abs/1906.10652
https://arxiv.org/abs/1210.4126v3
http://arxiv.org/abs/1605.06197
http://arxiv.org/abs/1605.06197

Under review as a conference paper at ICLR 2022

Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel Recurrent Neural Networks.
In ICML, 2016.

Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural Discrete Representation
Learning. In NIPS, 2017.

Georg Ostrovski, Will Dabney, and Rémi Munos. Autoregressive quantile networks for generative
modeling. URL http://arxiv.org/abs/1806.05575.

Max B. Paulus, Dami Choi, Daniel Tarlow, Andreas Krause, and Chris J. Maddison. Gradient
estimation with stochastic softmax tricks. 2021. URL http://arxiv.org/abs/2006.
08063.

Adeel Pervez, Taco Cohen, and Efstratios Gavves. Low bias low variance gradient estimates for
boolean stochastic networks. ICML, 2020.

Andres Potapczynski, Gabriel Loaiza-Ganem, and John P Cunningham. Invertible gaussian reparam-
eterization: Revisiting the gumbel-softmax. 2020.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep con-
volutional generative adversarial networks. URL http://arxiv.org/abs/1511.06434.

Tapani Raiko, Mathias Berglund, Guillaume Alain, and Laurent Dinh. Techniques for learning binary
stochastic feedforward neural networks. arXiv preprint arXiv:1406.2989, 2014.

George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha Sohl-Dickstein. Rebar:
Low-variance, unbiased gradient estimates for discrete latent variable models. In Advances in
Neural Information Processing Systems, pp. 2627–2636, 2017.

Arash Vahdat and Jan Kautz. NVAE: A deep hierarchical variational autoencoder. 2020. URL
http://arxiv.org/abs/2007.03898.

Andreas Veit and Serge Belongie. Convolutional networks with adaptive inference graphs. 2017.
URL http://arxiv.org/abs/1711.11503.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Mingzhang Yin, Yuguang Yue, and Mingyuan Zhou. ARSM: Augment-REINFORCE-swap-merge
estimator for gradient backpropagation through categorical variables. pp. 10.

11

http://arxiv.org/abs/1806.05575
http://arxiv.org/abs/2006.08063
http://arxiv.org/abs/2006.08063
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/2007.03898
http://arxiv.org/abs/1711.11503

Under review as a conference paper at ICLR 2022

A PROOF OF PROPOSITION 1

Proof. We use the following expression of stability in terms of the Hermite expansion of f .

Stabρ[f] =
∑
α

ρ|α|f̂(α)2, (5)

where α is a multi-index indexing the Hermite polynomial basis hα, and f̂(α) is the coefficient of f
in the Hermite expansion of f corresponding to the basis function hα (O’Donnell, 2014).

Given parameters ρ1, ρ2 ρ2 < ρ1, we have

Stabρ1−ρ2 [f − E[f]] =
∑

α:|α|>0

(ρ1 − ρ2)|α|f̂(α)2, (6)

where we use the fact that E[f] = f̂(0). Also

Stabρ1 [f]− Stabρ2 [f] =
∑

α:|α|>0

(ρ
|α|
1 − ρ

|α|
2)f̂(α)2 (7)

= Stabρ1−ρ2 [f − E[f]] +O(ρ2(ρ2 − ρ1)) (8)

B FURTHER EXPERIMENTAL DETAILS

B.1 DISCRETE AUTOENCODERS

For CIFAR-10 we downsample once using strided convolutions in the encoder. After the downsam-
pling the encoder has 3 ResNet blocks with 80 feature maps. This is followed by the stability network
which has two convolutions layers followed by two ResNet blocks all with 80 features maps followed
by a convolutional layer with 4 features maps. We upsample using transposed convolutions in the
decoder followed by 3 ResNets blocks.

For STL-10 we downsample twice using strided convolutions in the encoder. After the first downsam-
pling we use one convolutional layer followed by a ResNet block. After the second downsampling
we use 6 ResNet block. This is followed by the stability network which has two convolutions layers
followed by two ResNet blocks all with 80 features maps followed by a convolutional layer with 4
features maps. We use 3 ResNet blocks with 80 feature maps. The first upsampling operation in the
decoder followed by 7 ResNets blocks with 80 features maps. The second upsampling operation in
the decoder followed by 2 ResNets blocks with 64 features maps.

Table 6: FID scores for CIFAR-10

Model FID

PixelCNN (Ostrovski et al.; Oord et al., 2016) 65.93
PixelIQN (Ostrovski et al.) 49.46
DCGAN (Radford et al.; Arjovsky et al., 2017) 37.11
NVAE (Vahdat & Kautz, 2020; Aneja et al.) 51.10

Discrete AE+Stab. Reg. 64.39
Discrete AE+Stab. Reg. (cond.) 54.40

The output model in both cases is Gaussian.

We use ρ ∈ {0.8, 0.9, 0.95} and a stability constraint of 0.6. To evaluate we threshold the output of
the stability network at 0.5 so that greater values become 1 and the rest 0. We train with Adam with a
learning rate of 8e-5.

12

Under review as a conference paper at ICLR 2022

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

0 100 200 300 400

0

100

200

300

400

Figure 5: STL-10 reconstructions with a 24x24x4 binary latent space (left); generated samples with a
pixelCNN prior on the latent space (right).

B.2 STRUCTURED PREDICTION

As further validation of stability regularization to train models with Boolean variables we experiment
with the MNIST structured prediction task where the goal is to generate one half of the image given
the other half. This task was used in Raiko et al. (2014); Tucker et al. (2017) to test and compare
various gradient estimators for Boolean latent variables. We use the dynamically binarized dataset
for this task. We use an MLP architecture we 2 layers of 200 tanh units in the encoder and decoder
and similarly a stability block with 2 layers of 200 tanh units. The output of the encoder is fed to the
stability block and the output of the stability block goes into the encoder. To evaluate we threshold
the output of the stability block so that the decoder only sees Boolean values during evaluation. We
compare validation log likelihood curves with a single sample against Gumbel-Softmax, Rebar and
MuProp for which we use code from the Rebar code repository. Since our model has more parameters
due to the stability block, we use encoder and decoder architectures of 250 tanh units for these models
to make the comparison fairer. We show validation curves in figure 6.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Steps 1e6

−70

−68

−66

−64

−62

−60

Lo
g

Pr
ob

ab
ili

ty

Stability Reg.
Gumbel-Softmax
Rebar
Dynamic Rebar
MuProp

Figure 6: Validation curves for structured prediction on dynamic MNIST
We find that, in terms of validation likelihood, Rebar performs worse than Gumbel-Softmax with the
dynamic MNIST dataset on this task while stability regularization outperforms all others by a large
margin.

B.3 FURTHER ABLATIONS

B.3.1 NOISE PARAMETER

We study the effect of the noise parameter ρ on VAE performance. Using the same setup as in Section
5.2 and using Gumbel-Softmax with a fixed temperature of 1, we train models with ρ parameters
in {0.5, 0.6, 0.8, 0.9}. We run the experiment for 300 epochs instead of 500 as in Section 5.2. The
results shown in Table 7 indicate that the performance is minimally affected by varying choices of ρ
all runs achieving a validation ELBO of about -113.8.

13

Under review as a conference paper at ICLR 2022

Table 7: Negative validation ELBO when varying ρ with categorical VAE with Gumbel-Softmax at
τ = 1

ρ -V. ELBO

0.5 113.8
0.6 113.9
0.8 113.8
0.9 113.7

B.3.2 GUMBEL NOISE IN REGULARIZATION

When computing the stability regularization objective alongside Gumbel-Softmax we evaluate the
stability layer without Gumbel noise in the experiments, using a plain softmax as the output of the
stability layer. Gumbel noise is still used for the input to the downstream decoder network.

Here we study the effect of using Gumbel Noise also in the stability computation. We use the same
setup as in Section 5.2 and use stability regularization with Gumbel noise for various temperatures.
The results are shown in Table 8. Here we find that for stability computation with Gumbel noise we get
an improvement of about 2 nats for higher temperatures τ = 1.5, 2. Whereas for lower temperatures
we get on-par or marginally worse performance. We conclude that under specific conditions Gumbel
noise in regularization can lead to a small benefit, but the overall effect is marginal.

Table 8: Categorical VAE experiment with stability regularization using Gumbel noise for stability.
Showing negative validation ELBO.

Method Gumbel-Softmax

τ = 0.1 τ = 0.5 τ = 1 τ = 1.5 τ = 2

Without Stab Reg. 107 107.7 114 122.7 132.4
Stab Reg. 107.4 106.8 112.8 116.8 122.7
Stab Reg.+Gumbel Noise 107.4 107.3 112.9 114.4 120.1

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

Figure 7: Unsupervised clustering with a Gaussian Mixture VAE trained with stability regularization.
The images show 15 clusters (one per row) and corresponding generated images for MNIST (left)
and OMNIGLOT (right).

14

	Introduction
	Noise Stability of Gaussian Functions
	Stability and Gaussian Isoperimetry

	Stability Regularization
	Regularization for Discrete Variables
	Mean-Centered Stability Regularization

	Related Work
	Experiments
	A Toy Discrete Regression Example
	Categorical VAE
	Graph Structured Latent Spaces
	Unsupervised Clustering with Gaussian Mixture VAEs
	Gating ResNets
	Discrete Autoencoders and Generative Modeling for Images

	Conclusion
	Proof of Proposition 1
	Further Experimental Details
	Discrete Autoencoders
	Structured Prediction
	Further Ablations
	Noise Parameter
	Gumbel Noise in Regularization

