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Abstract

Unsupervised Pathology Detection (UPD) has recently received considerable attention in
medical image diagnosis. However, the lack of publicly available benchmark datasets for
UPD makes researchers fall back on datasets that were originally created for other tasks.
These datasets may exhibit domain shift that acts as a confounding variable, fooling ob-
servers into believing that the models excel at detecting pathologies, while a significant
part of the model’s performance is detecting the domain shift. In this short paper, we show
on the example of the Hyper-Kvasir dataset, how confounding variables can dramatically
skew the actual performance of pathology detection methods.
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1. Introduction

Recently, UPD was successfully applied to a multitude of different tasks in medical image
diagnosis, such as lesion detection in brain MRI [1], finding pathologies in chest X-rays, or
detecting polyps in colonoscopy videos [3; 6; 5; 7]. The reasons to use UPD are compelling,
especially in the medical domain: UPD methods do not require difficult and costly to obtain
labels and train with “normal” data only, which is theoretically vastly available. Publicly
available data, however, is sparse, and the lack of benchmark datasets pushes researchers
to instead use datasets that were originally not designed for UPD. These datasets might
contain confounding variables that can skew the actual performance of evaluated models.
One confounding variable that UPD methods are especially susceptible to is domain shift
because samples from other domains are per definition anomalous as well.

Hyper-Kvasir (HK) [2] was used in several studies to evaluate new UPD methods [3; 6;
5; 7]. It is a large dataset for gastrointestinal (GI) endoscopy containing around one million
images and video frames. In HK, normal samples are extracted from videos filmed while the
endoscope navigates through the GI tract. The appearance of samples containing polyps,
however, differs dramatically from the normal ones, with the endoscope camera capturing
unique angles, focusing on the polyp, and the image exhibiting different lighting conditions.
In this work, we show that this domain shift between images with and without polyps is the
main reason for the good image-level performance of pathology detection models on this
dataset.
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Figure 1: Normal (a) and anomal (b) images and their reconstructions by f-AnoGAN.

2. Experiments

Data and Pre-processing We followed [3; 6; 5; 7] in their selection of training- and
test-set samples from HK. The images are resized to 128 × 128 pixels and scaled into the
range [0,1]. As described in [2], an image of the endoscope guidance system appears in the
bottom left corner of many normal samples. We mask this part of every sample with black
pixels as similar post-processing is already done in the anomalous test-set images.

Implementation Details We use the dense Autoencoder (AE) [1] and f-AnoGAN [4]
architectures to perform our experiments. The implementation of f-AnoGAN is only slightly
adapted to handle the increased resolution. We train both models for 10,000 iterations with
the original optimization parameters. The anomaly map is computed as the pixel-wise
absolute error r = |x− x̂| between the input image x and its reconstruction x̂. As anomaly
score we use the average over all pixels in the anomaly map.

Results Across 4 runs, AE and f-AnoGAN reach a competitive area under the receiver
operating characteristics curve (AUROC) of 0.918 ± 0.002 and 0.912 ± 0.006 respectively.
For the first experiment, we ignore polyp pixel reconstruction errors in calculating the
anomaly scores. Performance drops only marginally to 0.899 ± 0.005 and 0.888 ± 0.009
respectively, showing that the residuals of these pixels barely affect performance. Next, we
compare the anomaly scores of normal vs anomal images to the reconstruction errors of
normal vs anomal pixels in polyp images. Figure 2 reveals that, while normal samples have
overall lower anomaly scores, the polyp regions are only slightly worse reconstructed than
the normal pixels. Lastly, we can see in Figure 1 that for anomal samples, f-AnoGAN does
not reconstruct the input images without polyps, but generates images that are not related
to the input in terms of their content.

3. Conclusion

The above experiments provide compelling evidence that the good image-level performance
of unsupervised pathology detection methods on the Hyper-Kvasir dataset mainly relates to
the domain shift between images with and without polyps and not to the actual presence of
polyps. Especially, it is unclear if a better performing model is a stronger polyp detector, or
simply better at detecting the domain shift. In clinical practice, a good-performing model on
the HK dataset is still likely to produce many false positive and false negative predictions.
We therefore urge the community to pay close attention to confounding variables when
evaluating new methods.
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Figure 2: Histograms of (a) anomaly scores of normal and abnormal samples and (b) of
reconstruction errors of equally sampled normal and anomal pixels of abnormal
samples. Results from AE. We observed identical behaviour with f-AnoGAN.

References

[1] C. Baur, S. Denner, B. Wiestler, N. Navab, and S. Albarqouni. Autoencoders for
unsupervised anomaly segmentation in brain mr images: a comparative study. Medical
Image Analysis, 69:101952, 2021.

[2] H. Borgli, V. Thambawita, P. H. Smedsrud, S. Hicks, D. Jha, S. L. Eskeland, K. R.
Randel, K. Pogorelov, M. Lux, D. T. D. Nguyen, D. Johansen, C. Griwodz, H. K.
Stensland, E. Garcia-Ceja, P. T. Schmidt, H. L. Hammer, M. A. Riegler, P. Halvorsen,
and T. de Lange. HyperKvasir, a comprehensive multi-class image and video dataset
for gastrointestinal endoscopy. Scientific Data, 7(1):283, 2020.

[3] Y. Chen, Y. Tian, G. Pang, and G. Carneiro. Deep one-class classification via interpo-
lated gaussian descriptor. arXiv preprint arXiv:2101.10043, 2021.
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