

DATR: DDI-AWARE THERAPEUTIC STRUCTURE RECONSTRUCTION FOR SAFER MEDICATION RECOMMENDATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Medication recommendation systems play a critical role in clinical decision support, where ensuring both predicting accuracy and safety, particularly drug-drug interaction (DDI) avoidance, is essential. While recent studies have explored drug molecular structures to enhance accuracy, they often overlook the semantic gap between chemical structures and therapeutic outcomes, leading to suboptimal recommendation. Moreover, existing DDI mitigation strategies typically operate in a post-hoc manner, limiting their ability to proactively prevent DDI. In this work, we propose **DDI-Aware Therapeutic Structure Reconstruction** (DATR), a novel framework that jointly models drug structures, therapeutic intent, and safety profiles. DATR conditionally encodes drug structures based on ATC-derived therapeutic labels, enabling intent-aware representation learning, and introduces a selectivity potential DDI constraint to proactively reduce interaction risk. Experiments on two real-world datasets and evaluations by clinical experts demonstrate that DATR achieves superior performance in recommendation accuracy and DDI reduction. Code is available at <https://anonymous.4open.science/r/DATR-7EA8>.

1 INTRODUCTION

The rapid digitalization of healthcare has significantly transformed clinical practice, with medication recommendation systems emerging as pivotal tools for enhancing decision-making processes (Dagliati et al., 2021; Garriga et al., 2022). By leveraging computational techniques to analyze electronic health records (EHRs), patient medical histories, and pharmacological profiles, they can assist in selecting effective medication regimens tailored to individual patient needs (Macias et al., 2023). For these systems, their success hinges on two critical factors: **accuracy**, to ensure clinically relevant recommendations with therapeutic efficacy, and **safety**, to prevent adverse outcomes such as drug-drug interactions (DDIs) (Han et al., 2022; Bougiatiotis et al., 2020; Chiang et al., 2020).

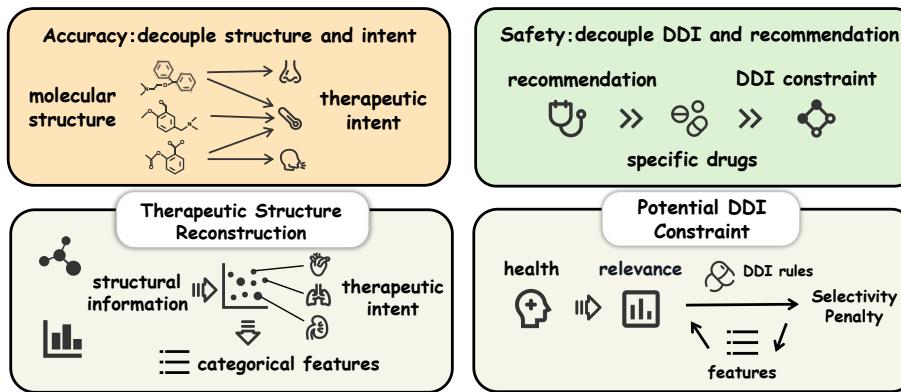
For accuracy, capturing the association between drugs and patients' health conditions is of critical importance. To this end, instance-based methods (Zhang et al., 2017) establish associations between drug labels and the patient's current visit record, while longitudinal approaches such as (Shang et al., 2019; Wu et al., 2022) further incorporate historical visits to capture temporal dependencies. Recent advances have increasingly leveraged drug molecular structure information to enrich drug feature representations, achieving improved accuracy (Yang et al., 2021b; 2023; Kuang & Xie, 2024). Though this approach has demonstrated promise, it often assumes a direct correspondence between molecular structures and therapeutic outcomes, overlooking the semantic gap between these two feature spaces (Wen et al., 2023; Xu et al., 2025). In practice, identical structures may mediate divergent therapeutic effects in different clinical contexts, e.g, aspirin's dual use in antithrombosis and analgesia (Fuster & Sweeny, 2011). As a result, such systems may struggle to align structural determinants of efficacy with individualized treatment contexts, thereby compromising recommendation accuracy.

Growing attention has been given to the risk of DDIs in safety aspect. Earlier works achieve preliminary DDI control through implicitly modeling via knowledge graphs (Gong et al., 2021) or reinforcement processing (Zhang et al., 2017). To further improve controllability, recent studies

¹In this paper, "medication" and "drug" are used interchangeably to refer to substances used for the treatment of diseases.

54 impose explicit DDI-related losses to penalize interacting drugs in the recommendation outcomes
 55 (Yang et al., 2021b; 2023; Kuang & Xie, 2024), effectively alleviating the DDI events. However,
 56 these methods are inherently post-hoc, treating DDI mitigation as a separate, corrective step rather
 57 than an integral part of the recommendation logic. This decoupling between recommendation and
 58 interaction control prevents the model from making clinical optimal decisions considering therapeutic
 59 effect and DDIs, introducing a bottleneck in balancing accuracy and safety. Moreover, these penalties
 60 rely heavily on specific drug pairs observed during training, which hinders the model’s capacity to
 61 avoid recommending drugs with high interaction potential, especially when specific interacting pairs
 62 have not been explicitly encountered in the training, leading to insufficient control of DDIs.

63 Considering these factors, in this work we propose **DDI-Aware Therapeutic Structure Reconstruction**
 64 (DATR) framework to integrate drug structural information, therapeutic intent and safety profiles into
 65 a unified modeling framework to jointly enhance accuracy and safety. To derive therapeutic intent,
 66 we first collect drug categorical labels of the Anatomical Therapeutic Chemical (ATC) Classification
 67 System (Schellekens et al., 2011). To extract intent-aware structural determinants, we introduce a
 68 Therapeutic Structure Reconstruction method (illustrated in Figure 1), which employs conditional
 69 probabilistic encoding to map structural information into a latent space based on therapeutic context.
 70 Categorical therapeutic structural features of each intent are subsequently sampled from the latent
 71 space based on the constructed conditional probabilities. This novel method ensures the precise
 72 extraction of therapeutic determinants within drug structures across varying efficacy contexts, thereby
 73 establishing more reliable association between drugs and patient-specific conditions.



54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1

108
109
110
2 RELATED WORKS111
112
113
114
115
116
117
118
119
120
121
122
123
Medication Recommendation. Existing approaches of medication recommendation can be broadly categorized into instance-based, longitudinal and structure-based methods. Instance-based methods, such as LEAP (Zhang et al., 2017), focus on patient information from the current visit. These approaches often struggle to account for evolving health conditions. Longitudinal approaches address this limitation by leveraging historical records to model temporal dependencies in patient health. For example, GAMENet (Shang et al., 2019) augments memory networks with a DDI graph to enhance both safety and accuracy. COGNet (Wu et al., 2022) selects from the patient’s historical prescription records to recommend new medications, while MICRON (Yang et al., 2021a) emphasizes medication change prediction by analyzing differences between consecutive visits. These models improve personalization but lack detailed consideration of drug molecular structures. Models like SafeDrug (Yang et al., 2021b) and MoleRec (Yang et al., 2023) incorporate molecular graph encoders to explicitly model drug structural information and control DDIs. Furthermore, SHAPE (Liu et al., 2023) introduces adaptive mechanisms to handle variable visit lengths and DrugDoctor (Kuang & Xie, 2024) leverages cross-attention for historical influence modeling.124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
Deep-learning-based molecular representations. Deep learning has facilitated the creation of machine-readable continuous representations of molecular structures (Wigh et al., 2022), which were traditionally represented using discrete formats such as SMILES (Weininger, 1988) or InChI (Heller et al., 2013). For example, (Gilmer et al., 2017; Guo et al., 2023; Hamilton et al., 2017) employ GNN to effectively capture the spatial relationships and structural dependencies between atoms and bonds in molecular graphs. (Hou et al., 2022) proposed a bidirectional-LSTM to identify key structural components in the SMILES sequence. Transformer (Vaswani et al., 2017) architectures have also demonstrated strong performance on SMILES-based and graph-based molecular modeling through global self-attention mechanisms (Luong & Singh, 2024; Maziarka et al., 2024). Furthermore, Variational Autoencoders (VAEs) (Kingma, 2013) have seen increasing adoption in molecular representation learning due to their ability to capture smooth and regularized latent spaces, which facilitates downstream tasks such as novel molecules generation and property optimization (Gómez-Bombarelli et al., 2018; Wang et al., 2022; Martinelli, 2022). Motivated by VAEs’ potential to extract general features in continuous latent space to support semantic alignment and conditional reconstruction, in this work we design a conditional VAE-style method to integrate molecular structure and therapeutic intent into a unified representation.139
140
141
3 PROBLEM FORMULATION142
143
144
145
146
147
148
149
150
151
152
153
Electronic Health Record (EHR). An EHR is a structured representation of a patient’s medical history, encompassing information from multiple clinical visits. For a patient x , the EHR is represented as a sequence $\mathcal{V}^{(x)} = [v^{(1)}, v^{(2)}, \dots, v^{(N_x)}]$, where N_x is the total number of visits for the patient, and $v^{(i)}$ represents the details of the i -th visit. Each visit $v^{(i)}$ consists of three main components: $v^{(i)} = [\mathbf{v}_d^{(i)}, \mathbf{v}_p^{(i)}, \mathbf{v}_m^{(i)}]$. Here, $\mathbf{v}_d^{(i)} \in \{0, 1\}^{|D|}$ is a multi-hot vector representing the diagnoses from the set $D = \{d_1, d_2, \dots, d_{|D|}\}$. Similarly, $\mathbf{v}_p^{(i)} \in \{0, 1\}^{|P|}$ is a multi-hot vector representing the procedures (e.g., surgeries or therapies) from the set $P = \{p_1, p_2, \dots, p_{|P|}\}$. Finally, $\mathbf{v}_m^{(i)} \in \{0, 1\}^{|M|}$ is a multi-hot vector representing the medications prescribed during the visit, with $M = \{m_1, m_2, \dots, m_{|M|}\}$ denoting the set of all medications, where a value of 1 indicates that the corresponding medication was prescribed.154
155
156
DDI Graph. DDI graph is represented as a binary symmetric adjacency matrix $\mathbf{A} \in \{0, 1\}^{|M| \times |M|}$. Each entry $\mathbf{A}_{ij} = 1$ indicates known harmful interactions between medications m_i and m_j .157
158
159
160
161
Medication Combination Recommendation. At time step t , given the longitudinal diagnosis sequence $\mathbf{v}_d^t = [\mathbf{v}_d^{(1)}, \mathbf{v}_d^{(2)}, \dots, \mathbf{v}_d^{(t)}]$, procedure sequence: $\mathbf{v}_p^t = [\mathbf{v}_p^{(1)}, \mathbf{v}_p^{(2)}, \dots, \mathbf{v}_p^{(t)}]$ and medication sequence: $\mathbf{v}_m^{t-1} = [\mathbf{v}_m^{(1)}, \mathbf{v}_m^{(2)}, \dots, \mathbf{v}_m^{(t-1)}]$, as well as the DDI graph \mathbf{A} , our objective is to learn a drug combination recommendation function $f(\cdot)$ that generates a multi-label output $\hat{\mathbf{m}}^{(t)} \in \{0, 1\}^{|M|}$. Specifically, $\hat{\mathbf{m}}^{(t)} = f(\mathbf{v}_d^t, \mathbf{v}_p^t, \mathbf{v}_m^{t-1})$.

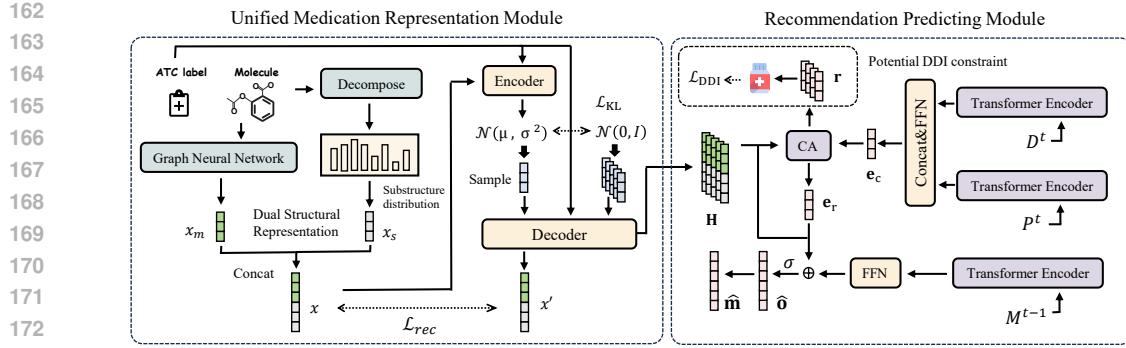


Figure 2: Overview of DATR. The model firstly obtains the unified feature for each medication category by integrating substructure-level and molecule-level therapeutic structural features, \mathbf{x}_s and \mathbf{x}_m , through conditional reconstruction based on ATC categorical labels. Then, patient’s current health status \mathbf{e}_c is encoded from current visit and interacts with stacked \mathbf{h} of all medication categories to generate recommendations and impose potential DDI constraint. “CA” denotes Cross Attention.

4 METHOD

As shown in Figure 2, DATR is composed of: 1) **Unified Medication Representation Module** generating therapeutic structural features for each ATC therapeutic category from both substructure and molecule level. 2) **Recommendation Generating Module** encoding longitudinal health conditions of patients and making predictions base on the condition and medication representations, while integrating potential DDI constraints.

4.1 UNIFIED MEDICATION REPRESENTATION MODULE

Substructure-level Structural Representation. Considering the varying substructure compositions among medications within the same ATC therapeutic category, we first extract a structural profile at the substructure level. Specifically, we decompose each medication into a set of chemical substructures utilizing *breaking retrosynthetically interesting chemical substructures* (BRICS) (Degen et al., 2008) method. Based on the decomposition results, we construct a substructure probability distribution vector $\mathbf{x}_s \in \mathbb{R}^d$, for each medication, where the i -th entry is defined as $\mathbf{x}_s[i] = \frac{f(s_i)}{\sum_{j=1}^d f(s_j)}$, in which $f(s_i)$ denotes the frequency of substructure s_i within the given medication molecule, and d is the total number of distinct substructures across the medications.

Molecule-level Structural Representation. While several recent studies have focused primarily on substructure-level representations (Kuang & Xie, 2024; Yang et al., 2023), we argue that modeling molecular structures holistically remains essential. This is especially relevant for biological macromolecule drugs such as insulin whose therapeutic efficacy depends on their overall structural conformation rather than discrete subcomponents (Tanford & Reynolds, 2003; Perrett, 2007; Jones & Thornton, 1996; Petersen & Shulman, 2018).

We employ a GNN (Xu et al., 2018) to encode the molecular graph of each medication. Each molecule is represented as a graph $G = (V, E)$, where V represents atoms (nodes) and E represents bonds (edges). The node features $\mathbf{h}_i \in \mathbb{R}^d$ correspond to atomic properties, and edge features $\mathbf{e}_{ij} \in \mathbb{R}^d$ represent bond types. The node update at layer $l + 1$ is given by:

$$\mathbf{h}_i^{(l+1)} = \text{MLP}((1 + \epsilon^{(l)})\mathbf{h}_i^{(l)} + \sum_{j \in \mathcal{N}(i)} \mathbf{h}_j^{(l)} + \sum_{(i,j) \in E} \mathbf{e}_{ij}), \quad (1)$$

where $\epsilon^{(l)}$ is a learnable scalar that controls the relative weight of a node’s own features in the aggregation, $\mathbf{h}_i^{(l)}$ is the feature vector of node i at layer l , and $\mathcal{N}(i)$ denotes the neighbors of node i . After L layers of message passing, the final molecule-level representation is obtained via global sum pooling of node features as $\mathbf{x}_m = \sum_{i \in V} \mathbf{h}_i^{(L)} \in \mathbb{R}^d$.

216 **Therapeutic Structure Reconstruction.** We first obtain dual-level structural representations through
 217 $\mathbf{x} = [\mathbf{x}_s, \mathbf{x}_m] \in \mathbb{R}^{2d}$, then we further embed them together with their corresponding therapeutic
 218 intent to extract therapeutic structural determinants. To bridge the semantic gap between molecular
 219 structures and therapeutic categories, we introduce a latent vector \mathbf{z} to model the key underlying
 220 factors that govern how drug structures contribute to specific therapeutic efficacy. The conditional
 221 generative process is expressed as:

$$222 \quad 223 \quad 224 \quad p(\mathbf{x}|\mathbf{y}) = \int p(\mathbf{x}, \mathbf{z}|\mathbf{y})d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \mathbf{y})p(\mathbf{z}|\mathbf{y})d\mathbf{z}, \quad (2)$$

225 where \mathbf{y} denotes the embeddings of the ATC therapeutic class. A variational distribution $q(\mathbf{z}|\mathbf{x}, \mathbf{y})$
 226 to is introduced to approximate the true posterior $p(\mathbf{z}|\mathbf{x}, \mathbf{y})$. Then we employ the Kullback-Leibler
 227 (KL) divergence $KL(q(\mathbf{z}|\mathbf{x}, \mathbf{y}) || p(\mathbf{z}|\mathbf{x}, \mathbf{y}))$ to optimize this approximation, which leads to a tractable
 228 variational lower bound on $\log p(\mathbf{x}|\mathbf{y})$, given by:

$$229 \quad 230 \quad \mathcal{L}(\mathbf{x}, \mathbf{y}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \mathbf{y})}[\log p(\mathbf{x}|\mathbf{z}, \mathbf{y})] - KL(q(\mathbf{z}|\mathbf{x}, \mathbf{y}) || p(\mathbf{z}|\mathbf{y})). \quad (3)$$

231 This conditional ELBO serves as the reconstruction objective in our framework.

232 To ensure the continuity of the latent space and the simplicity of computation, we set the conditional
 233 prior $p(\mathbf{z}|\mathbf{y})$ to a standard Gaussian distribution $\mathcal{N}(\mathbf{0}, \mathbf{I})$. We parameterize the variational posteriors
 234 as Gaussian distributions

$$235 \quad 236 \quad q_\phi(\mathbf{z} | \mathbf{x}, \mathbf{y}) = \mathcal{N}(\mathbf{z}; \mu(\mathbf{x}, \mathbf{y}), \sigma^2(\mathbf{x}, \mathbf{y})), \quad (4)$$

237 where $\mu(\cdot)$ and $\sigma(\cdot)$ are outputs of learnable neural network encoders. As the KL divergence between
 238 Gaussian distributions is analytically tractable, the second term in Equation 3 can be
 239 computed as follows:

$$240 \quad 241 \quad 242 \quad 243 \quad \mathcal{L}_{KL} = -KL(q(\mathbf{z}|\mathbf{x}, \mathbf{y}) || p(\mathbf{z}|\mathbf{y})) = -\frac{1}{2} \sum_{i=1}^k (1 + \log(\sigma_i^2) - \mu_i^2 - \sigma_i^2), \quad (5)$$

244 in which k denotes the dimension of \mathbf{z} . Given the parameterized latent distribution, we can perform
 245 sampling to obtain instances of the latent vector \mathbf{z} . To enable gradient-based optimization, we apply
 246 the reparameterization trick (Kingma, 2013) to obtain $\mathbf{z} = \mu(\mathbf{x}, \mathbf{y}) + \sigma(\mathbf{x}, \mathbf{y}) \cdot \epsilon$, where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

247 To instantiate $p(\mathbf{x}|\mathbf{z}, \mathbf{y})$, we use a neural network decoder $f(\mathbf{z}, \mathbf{y})$ that predicts the reconstructed $\mathbf{x}' =$
 248 $f(\mathbf{z}, \mathbf{y})$ given instance of \mathbf{z} and \mathbf{y} . Maximizing $\log p(\mathbf{x}|\mathbf{z}, \mathbf{y})$ is therefore equivalent to minimizing
 249 the mean squared error (MSE) between \mathbf{x} and \mathbf{x}' . The first term in equation 3 can be denoted as:

$$250 \quad 251 \quad \mathcal{L}_{rec} = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \mathbf{y})}[\log p(\mathbf{x}|\mathbf{z}, \mathbf{y})] \sim -\mathbb{E}[\|\mathbf{x} - \hat{\mathbf{x}}\|^2] \quad (6)$$

252 Finally, for each ATC category with its therapeutic label embedding \mathbf{y} , we sample latent vector \mathbf{z} from
 253 the conditional prior $p(\mathbf{z}|\mathbf{y})$ and obtain the reconstructed therapeutic substructure features $\mathbf{x} \in \mathbb{R}^d$
 254 through learned $f(\mathbf{z}, \mathbf{y})$. Then we stack them as matrix $\mathbf{H} = [\mathbf{x}^1; \mathbf{x}^2; \dots; \mathbf{x}^{|M|}] \in \mathbb{R}^{|M| \times 2d}$.

257 4.2 RECOMMENDATION PREDICTION MODULE

258 **Patient Health Condition Encoding.** We utilize three learnable embedding matrices \mathbf{E}_d , \mathbf{E}_p , and
 259 \mathbf{E}_m to encode the diagnosis sequence $\mathbf{v}_d^{(t)}$, the procedure sequence $\mathbf{v}_p^{(t)}$ and the medication procedure
 260 sequence $\mathbf{v}_m^{(t-1)}$. These embedded sequences are then passed through three transformer encoders
 261 (Vaswani et al., 2017), denoted as $T(\cdot)$, to capture the dependencies across each visit, resulting in the
 262 following encoded representations for the current visit:

$$263 \quad 264 \quad 265 \quad \mathbf{h}_d^{(t)} = T(\mathbf{E}_d \mathbf{v}_d^{(t)}), \mathbf{h}_p^{(t)} = T(\mathbf{E}_p \mathbf{v}_p^{(t)}), \mathbf{h}_m^{(t-1)} = T(\mathbf{E}_m \mathbf{v}_m^{(t-1)}). \quad (7)$$

266 The patient's current health condition at time t is obtained by concatenating the encoded diagnosis
 267 and procedure representations through a feed-forward network: $\mathbf{e}_c = FFN([\mathbf{h}_d^{(t)}, \mathbf{h}_p^{(t)}]) \in \mathbb{R}^{2d}$.
 268 Previous medication usage condition is denoted by $\mathbf{e}_m = FFN(\mathbf{h}_m^{(t-1)}) \in \mathbb{R}^{|M|}$.

270 **Potential DDI constraint.** We integrate DDI knowledge by first assessing the therapeutic relevance
 271 of each medication category k in the context of the patient’s current health condition \mathbf{e}_c . Specifically,
 272 we compute cross-attention weights as a vector $\mathbf{r} \in [0, 1]^{|\mathcal{M}|}$:

$$274 \quad \mathbf{r} = \text{softmax}\left(\frac{(\mathbf{e}_c \mathbf{W}_q)(\mathbf{H} \mathbf{W}_k)^T}{\sqrt{d}}\right), \quad (8)$$

276 where \mathbf{W}_q and \mathbf{W}_k are linear transformation matrix. Each element r_i indicating the therapeutic
 277 relevance score corresponding to drug category i . For two drugs exhibiting high therapeutic relevance
 278 but demonstrating adverse interaction, it is critical to reduce their joint relevance to mitigate potential
 279 DDI risks while the drug with higher therapeutic relevance in the interacting pair should be prioritized
 280 and retained in the regimen to preserve maximal treatment outcomes. To achieve this, we incorporate
 281 \mathbf{r} into a global selectivity penalty formally expressed as:

$$282 \quad \mathcal{L}_{\text{DDI}} = \sum_{i=1}^{|\mathcal{M}|} \sum_{j=i+1}^{|\mathcal{M}|} \mathbf{A}_{ij} \cdot r_i \cdot r_j \cdot [(1 - r_i)^\alpha \sigma(\beta(r_j - r_i)) + (1 - r_j)^\alpha \sigma(\beta(r_i - r_j))]. \quad (9)$$

286 Here, the term $\mathbf{A}_{ij} \cdot r_i \cdot r_j$ penalizes joint relevance of drug pairs (i, j) with known interactions
 287 ($\mathbf{A}_{ij} > 0$). The asymmetry-inducing terms $(1 - r_i)^\alpha \sigma(\beta(r_j - r_i))$ and $(1 - r_j)^\alpha \sigma(\beta(r_i - r_j))$
 288 where σ denotes sigmoid activation function, encourage the retention of more therapeutically relevant
 289 drug while suppressing its interacting counterpart. The parameters α and β control the sharpness and
 290 directional sensitivity of this penalty.

291 **Recommendation Prediction.** We leverage patient-specific and safety-informed relevance scores
 292 \mathbf{r} to derive a context vector $\mathbf{e}_r = \mathbf{r} \cdot (\mathbf{H} \mathbf{W}_v) \in \mathbb{R}^d$, which summarizes the relevant therapeutic
 293 landscape for the patient. The final prediction probability $\hat{\mathbf{o}}$ is obtained by:

$$294 \quad \hat{\mathbf{o}} = \sigma(\mathbf{e}_r \mathbf{H}^T + \mathbf{e}_m). \quad (10)$$

295 Following previous work (Shang et al., 2019; Yang et al., 2021b), we treat the final prediction of each
 296 medication as an independent task and use the BCE loss for recommendation optimization:

$$298 \quad \mathcal{L}_{\text{BCE}} = - \sum_{i=1}^{|\mathcal{M}|} [m_i \log(\hat{o}_i) + (1 - m_i) \log(1 - \hat{o}_i)]. \quad (11)$$

301 The model is trained end-to-end by optimizing a total loss function defined as

$$302 \quad \mathcal{L} = \mathcal{L}_{\text{rec}} + \mathcal{L}_{\text{KL}} + \mathcal{L}_{\text{BCE}} + \gamma \mathcal{L}_{\text{DDI}}, \quad (12)$$

304 where γ is a hyperparameter to regulate the influence of DDI constraint. The multi-label medication
 305 combination output $\hat{\mathbf{m}}^{(t)} \in \{0, 1\}^{|\mathcal{M}|}$ can be derived from $\hat{\mathbf{o}}$ through thresholding.

307 5 EXPERIMENTS

309 In this section, we conduct extensive experiments to make a comprehensive evaluation of our
 310 proposed method and answer the following four questions: **RQ1:** How does the performance of
 311 the proposed DATR compare to that of existing medication recommendation methods? **RQ2:** Does
 312 DATR effectively mitigate DDIs while maximizing therapeutic outcomes? **RQ3:** How do the different
 313 components of DATR contribute to its performance in terms of both accuracy and safety? **RQ4:** How
 314 do the hyperparameters affect the recommendation performance and safety of DATR?

316 5.1 EXPERIMENT SETUP

318 **Dataset.** We utilized electronic health record data from two real-world EHR datasets, specifically
 319 MIMIC-III (Johnson et al., 2016) and MIMIC-IV (Johnson et al., 2023). In line with prior studies
 320 (Shang et al., 2019; Yang et al., 2021b), the datasets were processed and randomly split into training,
 321 validation, and testing sets with a ratio of 4:1:1. Details of dataset can be found in Appendix C.2.

322 **Evaluation Metrics.** We use four commonly adopted metrics in medication recommendation (Shang
 323 et al., 2019; Yang et al., 2021b; 2023; 2021a): Drug-Drug-Interaction Rate (DDI), Jaccard Similarity
 324 Score (Jaccard), F1-score, and Precision-Recall Area Under Curve (PRAUC). DDI is a safety-related

metric that calculates the rate of predicted combinations that involve two or more drugs with a positive relationship in the DDI matrix. The other metrics, Jaccard, F1, and PRAUC, are commonly used to assess the accuracy of recommendation systems in general recommendation literature. Specifically, higher values of Jaccard, PRAUC, and F1 indicate improved accuracy, while a lower DDI value suggests more secure.

Baselines. We compare the proposed DATR with the following 10 baseline methods. Instance-based methods: standard logistic regression (LR), LEAP (Zhang et al., 2017). Longitudinal modeling methods: GAMENet (Shang et al., 2019), MICRON (Yang et al., 2021a), COGNet (Wu et al., 2022), SHAPE (Liu et al., 2023), RAREMed (Zhao et al., 2024). Molecular structure informed methods: SafeDrug (Yang et al., 2021b), MoleRec (Yang et al., 2023), DrugDoctor (Kuang & Xie, 2024). Detailed introduction of baselines can be found in Appendix C.5.

Implementation Details. The hyperparameters of all baseline models are selected based on their performance on the validation set. For our proposed DATR model, hyperparameters are tuned via grid search to ensure optimal performance. Specifically, we set the embedding dimension of the Transformer encoder to 128, with 4 attention heads and 2 layers. The drug molecular encoder is implemented using a 3-layer Graph Isomorphism Network (GIN) (Xu et al., 2018), with each layer having an embedding dimension of 128. Each drug’s molecular graph is represented using node features of dimension 9 and edge features of dimension 3. The transformation functions q_ϕ and q_ψ are implemented as two-layer biased linear projections. We train the model for 70 epochs. The hyperparameters are set as $\alpha = 1.0$, $\beta = 4$, and $\gamma = 0.1$. Optimization is performed using the AdamW optimizer (Loshchilov, 2017) with a learning rate of 1e-4 and a weight decay of 1e-3. All experiments are conducted on an NVIDIA A100 GPU with 80 GB of memory.

5.2 OVERALL PERFORMANCE COMPARISON (RQ1)

Table 1 summarizes the overall performance of all methods. The results highlight distinct trends among the different approaches and underscore the strengths of the proposed DATR method. Methods like LR and LEAP, which focus solely on the current visit’s patient status, consistently exhibit the lowest performance across most metrics. Longitudinal-based methods, such as GAMENet, demonstrate improved prediction accuracy compared to the baseline methods, indicating the value of incorporating patient history. RAREMed appears to achieve a lower DDI rate by recommending fewer medications, which might implicitly reduce the likelihood of interactions. SafeDrug and MoleRec leverage drug structural information to improve prediction, while introducing explicit loss function to mitigate DDI. SHAPE and DrugDoctor achieve better prediction results by learning visit-level knowledge while DrugDoctor, in particular, stands out as the runner-up in most accuracy metrics for both datasets by integrating molecular structural information.

Table 1: Performance of DATR on MIMIC-III and MIMIC-IV datasets. The best and the runner-up results in each column are highlighted in **bold** and underlined, respectively. Performance metrics are presented as mean with standard deviation in subscript.

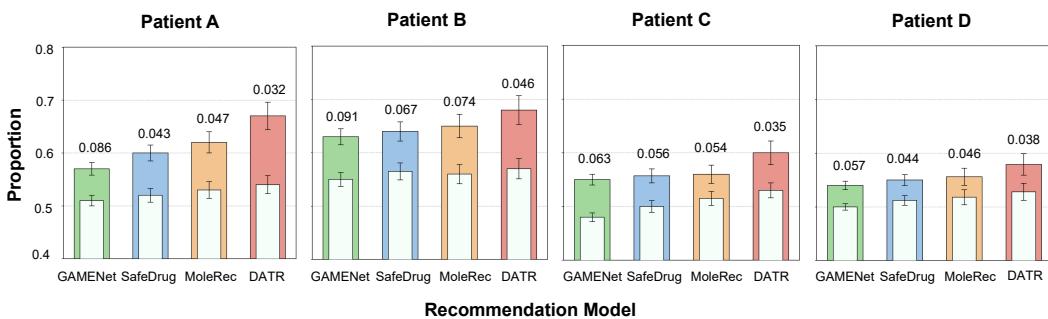
Method	MIMIC-III				MIMIC-IV			
	Jaccard \uparrow	PRAUC \uparrow	F1 \uparrow	DDI \downarrow	Jaccard \uparrow	PRAUC \uparrow	F1 \uparrow	DDI \downarrow
LR	0.4935 \pm 0.005	0.7634 \pm 0.004	0.6512 \pm 0.005	0.0788 \pm 0.002	0.4152 \pm 0.006	0.6783 \pm 0.005	0.5651 \pm 0.006	0.0732 \pm 0.002
LEAP	0.4521 \pm 0.007	0.6581 \pm 0.006	0.6152 \pm 0.007	0.0720 \pm 0.003	0.3909 \pm 0.008	0.5542 \pm 0.007	0.5439 \pm 0.008	0.0550 \pm 0.002
GAMENet	0.5210 \pm 0.004	0.7780 \pm 0.003	0.6762 \pm 0.004	0.0781 \pm 0.002	0.4401 \pm 0.005	0.6833 \pm 0.004	0.5933 \pm 0.005	0.0718 \pm 0.002
COGNet	0.5109 \pm 0.005	0.7665 \pm 0.004	0.6615 \pm 0.005	0.0737 \pm 0.002	0.4313 \pm 0.006	0.6712 \pm 0.005	0.5850 \pm 0.006	0.0866 \pm 0.003
RAREMed	0.5342 \pm 0.003	0.7820 \pm 0.002	0.6938 \pm 0.003	0.0530 \pm 0.001	0.4620 \pm 0.004	0.6965 \pm 0.003	0.6152 \pm 0.004	0.0510 \pm 0.001
MICRON	0.5119 \pm 0.005	0.7690 \pm 0.004	0.6676 \pm 0.005	0.0610 \pm 0.002	0.4495 \pm 0.006	0.6753 \pm 0.005	0.6033 \pm 0.006	0.0502 \pm 0.002
SHAPE	0.5348 \pm 0.001	0.7791 \pm 0.003	0.6885 \pm 0.004	0.0850 \pm 0.003	0.4659 \pm 0.005	0.6928 \pm 0.004	0.6171 \pm 0.005	0.0917 \pm 0.003
SafeDrug	0.5255 \pm 0.004	0.7732 \pm 0.003	0.6804 \pm 0.004	0.0688 \pm 0.002	0.4560 \pm 0.005	0.6858 \pm 0.004	0.6098 \pm 0.005	0.0689 \pm 0.002
MoleRec	0.5303 \pm 0.002	0.7795 \pm 0.003	0.6844 \pm 0.004	0.0692 \pm 0.002	0.4502 \pm 0.005	0.6867 \pm 0.004	0.6040 \pm 0.005	0.0699 \pm 0.002
DrugDoctor	0.5422 \pm 0.003	0.7813 \pm 0.002	0.6973 \pm 0.003	0.0603 \pm 0.002	0.4703 \pm 0.004	0.6988 \pm 0.003	0.6190 \pm 0.004	0.0705 \pm 0.002
DATR	0.5506\pm0.003	0.7905\pm0.002	0.7073\pm0.003	0.0366\pm0.002	0.4783\pm0.002	0.7020\pm0.002	0.6216\pm0.003	0.0425\pm0.001

Our proposed DATR method consistently and significantly outperforms all other evaluated methods across both the MIMIC-III and MIMIC-IV datasets. It achieves the highest Jaccard, PRAUC, and F1 scores, indicating superior predictive accuracy in identifying relevant medications. For instance, on MIMIC-III, DATR’s Jaccard score is approximately 1.7% higher than the runner-up (DrugDoctor).

378 Crucially, DATR also achieves the lowest DDI rate, demonstrating its exceptional effectiveness
 379 in recommending safer medication combinations. On MIMIC-III, DATR reduces the DDI rate by
 380 approximately 39% compared to the runner-up with the lowest DDI (RAREMed), and by over
 381 60% compared to DrugDoctor. This strong performance across both accuracy and safety metrics
 382 highlights the effectiveness of DATR’s approach, which uniquely integrates drug molecular structural
 383 information, therapeutic intent and learned safety profiles.

385 5.3 CASE STUDY (RQ2)

387 To intuitively illustrate the advantages of DATR in mitigating DDIs while maximizing therapeutic
 388 outcomes, we randomly selected four patient visits from the test set and conducted a detailed comparative
 389 analysis of recommendation results across four models: GAMENet, SafeDrug, MoleRec, and
 390 DATR. As shown in Figure 3, we invited a panel of 20 clinical experts to evaluate the recommended
 391 medication lists generated by each model.



403 Figure 3: Comparison of four models on four sample patient visits. Inner bar: proportion of
 404 drugs overlapping with ground-truth prescriptions; outer bar: proportion of drugs judged effective
 405 by clinicians. Numbers above bars indicate DDI rate. DATR achieves the best performance on
 406 effectiveness and safety.

407 From the case study, we observe that DATR consistently achieves a higher proportion of clinically
 408 validated drugs, while maintaining a lower DDI rate compared to baseline models. Notably, although
 409 certain baseline models, such as SafeDrug and MoleRec, exhibit comparable overlap with ground-
 410 truth prescriptions, they often include drug combinations with higher interaction risks or lower
 411 expert-judged efficacy. These results underscore DATR’s ability to generate recommendations that
 412 are not only aligned with historical treatment patterns but also robust to adverse interactions and
 413 clinically meaningful, thereby enhancing its potential utility in real-world decision support systems.

414 During our detailed analysis of the expert evaluations, we noticed a recurring pattern: many drugs
 415 that clinicians judged as effective but that were not present in the ground-truth prescriptions were
 416 therapeutically interchangeable with medications that were prescribed. This highlights the strength
 417 of our proposed therapeutic structure reconstruction method in capturing treatment semantics by
 418 modeling drug structure through therapeutic context. Looking ahead, explicitly incorporating the
 419 notion of efficacy equivalence into future medication recommendation frameworks may further
 420 enhance clinical applicability in scenarios such as drug shortages, patient-specific contraindications,
 421 or treatment optimization. Detailed analysis can be found in Appendix E.2.

423 5.4 ABLATION STUDY (RQ3)

425 To verify the effectiveness of each component of DATR, we design several ablation models. “ $w/o x_m$ ”
 426 removes the molecule-level structural representation in therapeutic structure reconstruction. “ $w/o x_s$ ”
 427 removes the substructure-level structural representation in therapeutic structure reconstruction. “ w/o
 428 e_m ” removes the previous medication usage condition in the recommendation predicting process. To
 429 further demonstrate the benefit of therapeutic structure reconstruction, in “ $R \rightarrow T$ ” we substituted it
 430 with a standard Transformer and a pooling layer, and compared the results.

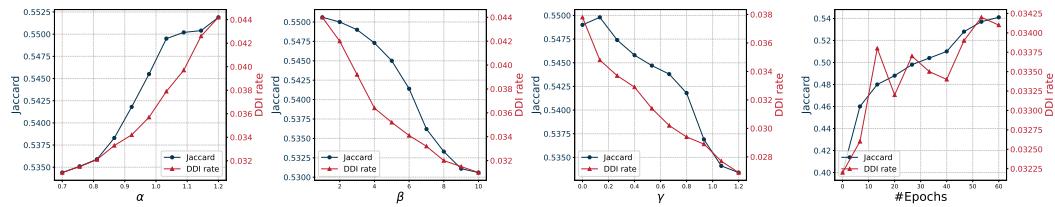
431 Table 2 presents the performance of the different variants of DATR. Removing either the molecular-
 432 level representation h_m or the substructure-level representation h_s leads to a noticeable decline in

432 recommendation accuracy, underscoring the necessity of capturing drug molecular information from
 433 both holistic and fragment-based perspectives. Among all ablations, the most significant performance
 434 degradation occurs in the "R→T" setting, demonstrating the effectiveness of the proposed therapeutic
 435 structure reconstruction in integrating structural features with therapeutic intent.

436 Furthermore, omitting historical medication
 437 embeddings (e_m) also results in a reduction in
 438 accuracy, suggesting that previous medication
 439 usage provides valuable contextual signals for
 440 current drug recommendation. In terms of
 441 safety, all ablated variants exhibit an increased
 442 DDI rate compared to the full model, which
 443 emphasizes the importance of unified drug
 444 modeling. Nevertheless, the DDI rates of all
 445 ablated variants remain relatively low, which empirically illustrates the robustness of our proposed
 446 potential DDI constraint mechanism.

448 5.5 HYPERPARAMETER STUDY (RQ4)

450 We conducted a dedicated study to meticulously investigate the influence of hyperparameters on the
 451 performance of DATR on the MIMIC-III. Specifically, we considered four key hyperparameters: the
 452 sharpness exponent α and directional sensitivity coefficient β of the DDI constraint, the DDI loss
 453 weight (γ) and the number of training epochs $\#Epochs$.



463 Figure 4: Hyperparameter effects on model performance.

465 Figure 4 illustrates the impact of different hyperparameters on the model's recommendation accuracy
 466 and safety. Increasing α attenuates the penalization applied by the DDI constraint, enhancing accuracy
 467 but concurrently lessening the rigor of DDI mitigation. Amplifying β heightens the DDI constraint's
 468 sensitivity to the varying relevance of interacting drugs, favoring DDI avoidance but diminishing
 469 accuracy. Both Jaccard index and DDI rate show a declining trend as γ increases. Notably, a
 470 modest γ can benefit recommendation accuracy, potentially reflecting physicians' consideration
 471 of DDIs in real-world prescriptions. During the training process, the DDI rate fluctuates upwards
 472 as recommendation accuracy increases, reflecting the influence of DDIs present inherently in the
 473 dataset. Nevertheless, the overall DDI rate remains low, demonstrating the advantage of our global
 474 consideration of potential DDI.

477 6 CONCLUSION

479 In this paper, we tackled the critical challenge of simultaneously improving both the effectiveness
 480 and safety of medication recommendation systems. We proposed DATR, a novel framework that
 481 seamlessly integrates drug molecular structures, therapeutic intent derived from the ATC system,
 482 and DDI safety profiles into a unified modeling paradigm. Extensive experiments on two real-world
 483 EHR datasets demonstrate that DATR consistently outperforms state-of-the-art baselines. It not only
 484 achieves higher accuracy in recommending clinically effective medication combinations but also
 485 significantly reduces the incidence of potential drug–drug interactions, offering a promising step
 toward safer and more reliable clinical decision support.

486 REFERENCES
487

488 ST Alrashood. Carbamazepine. *Profiles of drug substances, excipients and related methodology*, 41:
489 133–321, 2016.

490 Konstantinos Bougiatiotis, Fotis Aisopos, Anastasios Nentidis, Anastasia Krithara, and Georgios
491 Paliouras. Drug-drug interaction prediction on a biomedical literature knowledge graph. In
492 *Artificial Intelligence in Medicine: 18th International Conference on Artificial Intelligence in*
493 *Medicine, AIME 2020, Minneapolis, MN, USA, August 25–28, 2020, Proceedings 18*, pp. 122–132.
494 Springer, 2020.

495 Wen-Hao Chiang, Li Shen, Lang Li, and Xia Ning. Drug-drug interaction prediction based on
496 co-medication patterns and graph matching. *International Journal of Computational Biology and*
497 *Drug Design*, 13(1):36–57, 2020.

498 Arianna Dagliati, Alberto Malovini, Valentina Tibollo, and Riccardo Bellazzi. Health informatics and
499 ehr to support clinical research in the covid-19 pandemic: an overview. *Briefings in bioinformatics*,
500 22(2):812–822, 2021.

502 Jorg Degen, Christof Wegscheid-Gerlach, Andrea Zaliani, and Matthias Rarey. On the art of compiling
503 and using 'drug-like' chemical fragment spaces. *ChemMedChem*, 3(10):1503, 2008.

504 Valentin Fuster and Joseph M Sweeny. Aspirin: a historical and contemporary therapeutic overview.
505 *Circulation*, 123(7):768–778, 2011.

507 E Garbe, J Röhmel, and U Gundert-Remy. Clinical and statistical issues in therapeutic equivalence
508 trials. *European journal of clinical pharmacology*, 45:1–7, 1993.

510 Roger Garriga, Javier Mas, Semhar Abraha, Jon Nolan, Oliver Harrison, George Tadros, and Aleksan-
511 dar Matic. Machine learning model to predict mental health crises from electronic health records.
512 *Nature medicine*, 28(6):1240–1248, 2022.

513 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
514 message passing for quantum chemistry. In *International conference on machine learning*, pp.
515 1263–1272. PMLR, 2017.

516 Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
517 Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
518 Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
519 representation of molecules. *ACS central science*, 4(2):268–276, 2018.

521 Fan Gong, Meng Wang, Haofen Wang, Sen Wang, and Mengyue Liu. Smr: medical knowledge graph
522 embedding for safe medicine recommendation. *Big Data Research*, 23:100174, 2021.

523 Zhichun Guo, Chunhui Zhang, Yujie Fan, Yijun Tian, Chuxu Zhang, and Nitesh V Chawla. Boosting
524 graph neural networks via adaptive knowledge distillation. In *Proceedings of the AAAI Conference*
525 *on Artificial Intelligence*, volume 37, pp. 7793–7801, 2023.

527 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
528 *Advances in neural information processing systems*, 30, 2017.

529 Ke Han, Peigang Cao, Yu Wang, Fang Xie, Jiaqi Ma, Mengyao Yu, Jianchun Wang, Yaoqun Xu,
530 Yu Zhang, and Jie Wan. A review of approaches for predicting drug–drug interactions based on
531 machine learning. *Frontiers in pharmacology*, 12:814858, 2022.

533 Stephen Heller, Alan McNaught, Stephen Stein, Dmitrii Tchekhovskoi, and Igor Pletnev. Inchi—the
534 worldwide chemical structure identifier standard. *Journal of cheminformatics*, 5:1–9, 2013.

535 Yuanyuan Hou, Shiyu Wang, Bing Bai, HC Stephen Chan, and Shuguang Yuan. Accurate physical
536 property predictions via deep learning. *Molecules*, 27(5):1668, 2022.

538 Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
539 Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a
freely accessible critical care database. *Scientific data*, 3(1):1–9, 2016.

540 Alistair EW Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout, Steven Horng,
 541 Tom J Pollard, Sicheng Hao, Benjamin Moody, Brian Gow, et al. Mimic-iv, a freely accessible
 542 electronic health record dataset. *Scientific data*, 10(1):1, 2023.

543

544 Susan Jones and Janet M Thornton. Principles of protein-protein interactions. *Proceedings of the*
 545 *National Academy of Sciences*, 93(1):13–20, 1996.

546 Diederik P Kingma. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*, 2013.

547

548 Yabin Kuang and Minzhu Xie. Drugdoctor: enhancing drug recommendation in cold-start scenario
 549 via visit-level representation learning and training. *Briefings in Bioinformatics*, 25(6):bbae464,
 550 2024.

551 Sicen Liu, Xiaolong Wang, Jingcheng Du, Yongshuai Hou, Xianbing Zhao, Hui Xu, Hui Wang,
 552 Yang Xiang, and Buzhou Tang. Shape: A sample-adaptive hierarchical prediction network for
 553 medication recommendation. *IEEE Journal of Biomedical and Health Informatics*, 2023.

554 I Loshchilov. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.

555

556 Kha-Dinh Luong and Ambuj Singh. Application of transformers in cheminformatics. *Journal of*
 557 *Chemical Information and Modeling*, 64(11):4392–4409, 2024.

558

559 Charles G Macias, Kenneth E Remy, and Amie J Barda. Utilizing big data from electronic health
 560 records in pediatric clinical care. *Pediatric Research*, 93(2):382–389, 2023.

561

562 Dominic D Martinelli. Generative machine learning for de novo drug discovery: A systematic review.
 563 *Computers in Biology and Medicine*, 145:105403, 2022.

564

565 Łukasz Maziarka, Dawid Majchrowski, Tomasz Danel, Piotr Gaiński, Jacek Tabor, Igor Podolak,
 566 Paweł Morkisz, and Stanisław Jastrzębski. Relative molecule self-attention transformer. *Journal*
 567 *of Cheminformatics*, 16(1):3, 2024.

568

569 Terje R Pedersen and Jonathan A Tobert. Simvastatin: a review. *Expert opinion on pharmacotherapy*,
 570 5(12):2583–2596, 2004.

571

572 David Perrett. From ‘protein’ to the beginnings of clinical proteomics. *PROTEOMICS–Clinical*
 573 *Applications*, 1(8):720–738, 2007.

574

575 Max C Petersen and Gerald I Shulman. Mechanisms of insulin action and insulin resistance.
 576 *Physiological reviews*, 2018.

577

578 Huub Schellekens, Ety Klinger, Stefan Mühlebach, Jean-Francois Brin, Gert Storm, and Daan JA
 579 Crommelin. The therapeutic equivalence of complex drugs. *Regulatory Toxicology and Pharma-*
 580 *cology*, 59(1):176–183, 2011.

581

582 A Scriabine and W Van den Kerckhoff. Pharmacology of nimodipine. a review. *Annals of the new*
 583 *York Academy of Sciences*, 522:698–706, 1988.

584

585 Junyuan Shang, Cao Xiao, Tengfei Ma, Hongyan Li, and Jimeng Sun. Gamenet: Graph augmented
 586 memory networks for recommending medication combination. In *proceedings of the AAAI*
 587 *Conference on Artificial Intelligence*, volume 33, pp. 1126–1133, 2019.

588

589 Charles Tanford and Jacqueline Reynolds. *Nature’s robots: a history of proteins*. OUP Oxford, 2003.

590

591 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 592 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*
 593 *systems*, 30, 2017.

594

595 Mingyang Wang, Zhe Wang, Huiyong Sun, Jike Wang, Chao Shen, Gaoqi Weng, Xin Chai, Honglin
 596 Li, Dongsheng Cao, and Tingjun Hou. Deep learning approaches for de novo drug design: An
 597 overview. *Current opinion in structural biology*, 72:135–144, 2022.

598

599 David Weininger. Smiles, a chemical language and information system. 1. introduction to methodol-
 600 ogy and encoding rules. *Journal of chemical information and computer sciences*, 28(1):31–36,
 601 1988.

594 Jun Wen, Xiang Zhang, Everett Rush, Vidul A Panickan, Xingyu Li, Tianrun Cai, Doudou Zhou,
 595 Yuk-Lam Ho, Lauren Costa, Edmon Begoli, et al. Multimodal representation learning for predicting
 596 molecule–disease relations. *Bioinformatics*, 39(2):btad085, 2023.

597

598 Daniel S Wigh, Jonathan M Goodman, and Alexei A Lapkin. A review of molecular representation in
 599 the age of machine learning. *Wiley Interdisciplinary Reviews: Computational Molecular Science*,
 600 12(5):e1603, 2022.

601 Rui Wu, Zhaopeng Qiu, Jiacheng Jiang, Guilin Qi, and Xian Wu. Conditional generation net for
 602 medication recommendation. In *Proceedings of the ACM Web Conference 2022*, pp. 935–945,
 603 2022.

604 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 605 networks? *arXiv preprint arXiv:1810.00826*, 2018.

606

607 Wenzhe Xu, Xiaorong Liu, Jie Wang, Fan Zhang, Dongfeng Hu, and Liansong Zong. Uamrl: multi-
 608 granularity uncertainty-aware multimodal representation learning for drug-target affinity prediction.
 609 *Bioinformatics*, 41(10):btaf512, 2025.

610

611 Chaoqi Yang, Cao Xiao, Lucas Glass, and Jimeng Sun. Change matters: Medication change prediction
 612 with recurrent residual networks. *arXiv preprint arXiv:2105.01876*, 2021a.

613

614 Chaoqi Yang, Cao Xiao, Fenglong Ma, Lucas Glass, and Jimeng Sun. Safedrug: Dual molec-
 615 ular graph encoders for recommending effective and safe drug combinations. *arXiv preprint*
 616 *arXiv:2105.02711*, 2021b.

617

618 Nianzu Yang, Kaipeng Zeng, Qitian Wu, and Junchi Yan. Molerec: Combinatorial drug recom-
 619 mendation with substructure-aware molecular representation learning. In *Proceedings of the ACM Web
 Conference 2023*, pp. 4075–4085, 2023.

620

621 Yutao Zhang, Robert Chen, Jie Tang, Walter F Stewart, and Jimeng Sun. Leap: learning to prescribe
 622 effective and safe treatment combinations for multimorbidity. In *proceedings of the 23rd ACM
 SIGKDD international conference on knowledge Discovery and data Mining*, pp. 1315–1324,
 623 2017.

624

625 Zihao Zhao, Yi Jing, Fuli Feng, Jiancan Wu, Chongming Gao, and Xiangnan He. Leave no patient
 626 behind: Enhancing medication recommendation for rare disease patients. In *Proceedings of the
 627 47th International ACM SIGIR Conference on Research and Development in Information Retrieval*,
 628 pp. 533–542, 2024.

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A NOTATION**
649650
651 **Table 3: Summary of main notations.**
652

653 Symbol	654 Description	655 Dimension
656 x	657 Index of a patient	658 –
659 $\mathcal{V}^{(x)}$	660 EHR sequence of patient x	661 $[v^{(1)}, \dots, v^{(N_x)}]$
662 N_x	663 Number of visits of patient x	664 \mathbb{N}
665 $v^{(i)}$	666 i -th visit record	667 –
668 $\mathbf{v}_d^{(i)}$	669 Diagnosis multi-hot vector at visit i	670 $\{0, 1\}^{ D }$
671 $\mathbf{v}_p^{(i)}$	672 Procedure multi-hot vector at visit i	673 $\{0, 1\}^{ P }$
674 $\mathbf{v}_m^{(i)}$	675 Medication multi-hot vector at visit i	676 $\{0, 1\}^{ M }$
677 D, P, M	678 Sets of diagnoses, procedures, medications	679 $ D , P , M $
680 t	681 Current time step / visit index	682 \mathbb{N}
683 \mathbf{v}_d^t	684 Diagnosis sequence up to visit t	685 $[\mathbf{v}_d^{(1)}, \dots, \mathbf{v}_d^{(t)}]$
686 \mathbf{v}_p^t	687 Procedure sequence up to visit t	688 $[\mathbf{v}_p^{(1)}, \dots, \mathbf{v}_p^{(t)}]$
689 \mathbf{v}_m^{t-1}	690 Medication sequence up to visit $t - 1$	691 $[\mathbf{v}_m^{(1)}, \dots, \mathbf{v}_m^{(t-1)}]$
692 \mathbf{A}	693 DDI adjacency matrix	694 $\{0, 1\}^{ M \times M }$
695 \mathbf{A}_{ij}	696 Indicator of interaction between m_i, m_j	697 $\{0, 1\}$
698 $f(\cdot)$	699 Medication recommendation function	700 $\{0, 1\}^{ M }$
701 $\hat{\mathbf{m}}^{(t)}$	702 Predicted medication combination at visit t	703 $\{0, 1\}^{ M }$
704 \mathbf{x}_s	705 Substructure-level structural distribution	706 \mathbb{R}^d
707 \mathbf{x}_m	708 Molecule-level structural representation	709 \mathbb{R}^d
710 \mathbf{x}	711 Concatenated structural feature $[\mathbf{x}_s, \mathbf{x}_m]$	712 \mathbb{R}^{2d}
713 d	714 Dimension of structural feature vectors	715 \mathbb{N}
716 $G = (V, E)$	717 Molecular graph (atoms and bonds)	718 –
719 $\mathbf{h}_i^{(l)}$	720 Node (atom) feature at layer l	721 \mathbb{R}^d
722 \mathbf{e}_{ij}	723 Edge (bond) feature	724 \mathbb{R}^d
725 L	726 Number of GNN layers	727 \mathbb{N}
728 \mathbf{y}	729 ATC therapeutic label embedding	730 \mathbb{R}^{d_y}
731 \mathbf{z}	732 Latent variable for therapeutic structure	733 \mathbb{R}^k
734 k	735 Dimension of latent variable \mathbf{z}	736 \mathbb{N}
737 $q_\phi(\mathbf{z} \mid \mathbf{x}, \mathbf{y})$	738 Variational posterior	739 $\mathcal{N}(\mu, \sigma^2)$
739 $p(\mathbf{z} \mid \mathbf{y})$	740 Conditional prior of \mathbf{z}	741 $\mathcal{N}(\mathbf{0}, \mathbf{I})$
741 $f(\mathbf{z}, \mathbf{y})$	742 Decoder for structure reconstruction	743 \mathbb{R}^{2d}
743 $\hat{\mathbf{x}}$	744 Reconstructed structural feature	745 \mathbb{R}^{2d}
745 \mathcal{L}_{rec}	746 Reconstruction loss	747 \mathbb{R}
747 \mathcal{L}_{KL}	748 KL divergence term	749 \mathbb{R}
750 $\mathbf{E}_d, \mathbf{E}_p, \mathbf{E}_m$	751 Embedding matrices for codes	752 $\mathbb{R}^{(D , P , M) \times d}$
752 $\mathbf{h}_d^{(t)}$	753 Encoded diagnosis feature at visit t	754 \mathbb{R}^d
754 $\mathbf{h}_p^{(t)}$	755 Encoded procedure feature at visit t	756 \mathbb{R}^d
756 $\mathbf{h}_m^{(t-1)}$	757 Encoded medication feature up to $t - 1$	758 \mathbb{R}^d
758 \mathbf{e}_c	759 Current health condition representation	760 \mathbb{R}^{2d}
760 \mathbf{e}_m	761 Historical medication usage representation	762 $\mathbb{R}^{ M }$
763 \mathbf{H}	764 Stacked therapeutic structural features	765 $\mathbb{R}^{ M \times 2d}$
765 $\mathbf{W}_q, \mathbf{W}_k, \mathbf{W}_v$	766 Projection matrices in cross-attention	767 Appropriate sizes
767 \mathbf{r}	768 Therapeutic relevance scores	769 $[0, 1]^{ M }$
769 r_i	770 Relevance of medication i to current condition	771 $[0, 1]$
771 \mathbf{e}_r	772 Context vector aggregated by \mathbf{r}	773 \mathbb{R}^d
773 $\hat{\mathbf{o}}$	774 Predicted medication probabilities	775 $[0, 1]^{ M }$
776 α	777 Sharpness exponent in selectivity penalty	778 \mathbb{R}_+
778 β	779 Directional sensitivity coefficient	780 \mathbb{R}_+
780 γ	781 Weight of DDI loss	782 \mathbb{R}_+
782 \mathcal{L}_{BCE}	783 Binary cross-entropy loss	784 \mathbb{R}

702 B DISCLOSURE ON THE USE OF LARGE LANGUAGE MODELS

704 Throughout the research and writing process for this paper, we utilized a Large Language Model
 705 (LLM) to assist with specific technical and linguistic tasks. We provide this statement to transparently
 706 detail its role.

- 708 • **Manuscript Writing and Polishing:** The LLM served as an advanced grammar and style checker.
 709 We used it to refine sentence structures, enhance the flow and clarity of our arguments, and ensure
 710 consistent terminology. The intellectual contribution, including the formulation of the problem, the
 711 proposed methodology, and the interpretation of our findings, originates entirely from the authors.
- 712 • **LaTeX and Table Formatting:** The LLM was employed as a technical tool to generate LaTeX code
 713 for the presentation of our results, particularly for typesetting complex tables. This streamlined the
 714 formatting process but did not influence the content or design of the tables themselves.
- 715 • **Experimental Code Implementation:** During the implementation of our experiments, the LLM
 716 acted as a coding assistant. Its role was to generate boilerplate code for standard tasks (e.g., file
 717 I/O, argument parsing) and to provide syntactical guidance for specific Python libraries. All core
 718 algorithmic logic and experimental designs were developed by the authors. Furthermore, any code
 719 snippet suggested by the LLM was rigorously tested, and often modified, by the authors before
 720 integration into the final codebase.

721 All LLM-generated outputs, both text and code, were carefully reviewed, verified, and edited by
 722 the authors to ensure their accuracy and appropriateness. The conceptualization of the research, the
 723 design of the proposed model, the experimental setup, and the interpretation of the results were
 724 performed solely by the human authors, who bear full responsibility for the content of this work.

726 C DETAILS ON DATA AND EXPERIMENT SETUP

727 C.1 INTRODUCTION OF ATC SYSTEM

730 The Anatomical Therapeutic Chemical (ATC) Classification System is a widely recognized inter-
 731 national standard for classifying drugs based on their organ or system of action and their chemical,
 732 pharmacological, and therapeutic properties (Schellekens et al., 2011; Garbe et al., 1993). It is
 733 maintained by the World Health Organization (WHO) Collaborating Centre for Drug Statistics
 734 Methodology (WHOCC). The ATC system provides a hierarchical structure with five distinct levels,
 735 offering increasingly specific classifications from broad anatomical groups to individual chemical
 736 substances. Each ATC code uniquely identifies a drug or group of drugs within this hierarchical
 737 framework. The increasing specificity of the levels allows for a detailed categorization that reflects
 738 both the therapeutic application and, at lower levels, the chemical nature of the drug. Table 4 sum-
 739 marizes the distribution of codes and pharmaceuticals across these levels, along with their semantic
 740 meanings.

741 In this work, we leverage the ATC Classification
 742 System, specifically focusing on ATC4
 743 codes. The reason for choosing ATC4 is its
 744 ability to bridge the gap between therapeutic
 745 intent and chemical structure. While higher
 746 levels (ATC1-3) primarily focus on anatomical
 747 and therapeutic groupings, Level 4 begins
 748 to incorporate chemical subgrouping (e.g.,
 749 A01AA: Fluorine for dental prophylaxis, re-
 750 flecting a chemical element used for a specific
 751 therapeutic purpose). This level provides a
 752 good balance, allowing us to align the semantic
 753 categories of drug use (therapeutic intent)
 754 with a representation that has closer ties to the
 755 underlying chemical structures compared to higher ATC levels, which are purely based on therapeutic
 or anatomical classifications. By utilizing ATC4, we can better capture the therapeutic determinants
 embedded within drug structures in an intent-aware manner, which is crucial for the Conditional

741 Table 4: Distribution of ATC Levels by Codes and
 742 Pharmaceuticals. Codes, Pharma., and Semantic
 743 respectively represent the number of codes at each
 744 level, the number of pharmaceuticals, and their cor-
 745 responding meanings.

Level	Codes	Pharma.	Semantic
Level 1	14	14	Anatomical group
Level 2	94	94	Therapeutic group
Level 3	267	262	Therapeutic subgroup
Level 4	889	819	Chemical subgroup
Level 5	5067	4363	Chemical substance

756 Therapeutic Structure Reconstruction proposed in our DATR framework (as discussed in Section 4).
 757 This allows us to address the semantic gap between chemical structures and therapeutic outcomes
 758 more effectively.

760 C.2 DETAILS ON DATASETS

762 We conduct experiments on two widely used real-world electronic health record (EHR) datasets,
 763 MIMIC-III (Johnson et al., 2016) and MIMIC-IV (Johnson et al., 2023). Both datasets contain
 764 de-identified longitudinal hospitalization records collected from Beth Israel Deaconess Medical
 765 Center, enabling the construction of patient-level clinical trajectories for medication recommendation.

766 **Data preprocessing.** For each dataset, we extract chronological sequences of patient visits, where
 767 each visit consists of: (i) *diagnoses*, recorded as ICD-9 codes in MIMIC-III and ICD-10 codes in
 768 MIMIC-IV; (ii) *procedures*, recorded as ICD-9-CM for MIMIC-III and ICD-10-PCS for MIMIC-
 769 IV; and (iii) *prescribed medications*. Following standard practice, all medications are mapped to
 770 their corresponding ATC codes through publicly available mapping resources, enabling a unified
 771 therapeutic categorization across datasets.

772 **Patient-level splitting.** To avoid information leakage across different visits of the same patient
 773 and to ensure realistic model evaluation, we adopt a *patient-level* data split. Specifically, patients
 774 are randomly partitioned into training, validation, and test sets with a ratio of 4:1:1, and all visits
 775 from a given patient appear exclusively in one split. This ensures that the model is evaluated on
 776 entirely unseen patients, which better reflects the intended clinical deployment scenario and aligns
 777 with established practices in EHR-based predictive modeling.

779 **Dataset statistics.** Table 5 summarizes the
 780 key statistics of the processed datasets, includ-
 781 ing the total number of patients and visits, vo-
 782 cabulary sizes of diagnoses, procedures, and
 783 medications, and the average number of events
 784 per visit. Notably, MIMIC-III and MIMIC-
 785 IV differ substantially in coding systems (ICD-
 786 9 vs. ICD-10) and data sparsity, providing a
 787 natural testbed for evaluating the robustness
 788 and generalization capability of our proposed
 789 framework.

790 These comprehensive statistics highlight the
 791 heterogeneity and complexity of EHR data, underscoring the importance of models capable of
 792 generalizing across diverse clinical settings and coding systems.

794 C.3 THE DETAILED FEATURES FOR ATOMS, BONDS AND MOLECULAR GLOBAL

796 Table 5: Statistics of processed data.

Item	MIMIC-III	MIMIC-IV
# of visits / # of patients	14949/6344	19461/7567
dis. / proc. space size	1959/1440	3973/1338
med. space size	112/141	212/302
avg. / max # of visits	4.92/29	7.28/42
avg. / max # of diag.	13.79/39	13.39/39
avg. / max # of proc.	4.40/28	2.57/28
avg. / max # of med.	26.23/63	13.31/70

797 Table 6: Overview of atom (node) and bond (edge) features.

Atomic Features (V)	Bond Features (E)
Atomic Number	Bond Type
Chirality	Bond Stereo
Degree	Conjugation
Formal Charge	–
Number of Hydrogens	–
Radical Electrons	–
Hybridization	–
Aromaticity	–
Ring Membership	–

808 A comprehensive overview of the selected atom and bond input features is presented in Table 6. The
 809 initial step involves the conversion of the SMILES string into a graph structure using the RDKit

810 package. This package is employed not only for constructing molecular graphs but also for computing
 811 atomic and bond-level features, which serve as critical inputs for subsequent modeling.
 812

813 C.4 DETAILS ON EVALUATION METRICS 814

815 For a given patient visit, let M denote the complete set of possible medications in the formulary. The
 816 ground truth set of prescribed medications is represented by a binary vector $\mathbf{y} \in \{0, 1\}^{|M|}$, where
 817 $\mathbf{y}_i = 1$ if medication $i \in M$ was prescribed, and $\mathbf{y}_i = 0$ otherwise. Similarly, the set of medications
 818 recommended by the model is represented by a binary vector $\hat{\mathbf{y}} \in \{0, 1\}^{|M|}$. Jaccard, F1 and PRAUC
 819 are calculated as follows:

$$820 \text{Jaccard} = \frac{\{i : \mathbf{y}_i = 1\} \cap \{j : \hat{\mathbf{y}}_j = 1\}}{\{i : \mathbf{y}_i = 1\} \cup \{j : \hat{\mathbf{y}}_j = 1\}}, \quad (13)$$

$$823 F_1 = \frac{2R \times P}{R + P}, \quad (14)$$

825 where the recall and precision are formulated as
 826

$$828 R = \frac{\{i : \mathbf{y}_i = 1\} \cap \{j : \hat{\mathbf{y}}_j = 1\}}{\{i : \mathbf{y}_i = 1\}}, \quad P = \frac{\{i : \mathbf{y}_i = 1\} \cap \{j : \hat{\mathbf{y}}_j = 1\}}{\{j : \hat{\mathbf{y}}_j = 1\}}. \quad (15)$$

$$830 \text{PRAUC} = \sum_{k=1}^{|M|} P_k (R_k - R_{k-1}), \quad (16)$$

834 For DDI, we calculate DDI rate as follows:

$$836 \text{DDI} = \frac{\sum_{l,k \in \{i : \hat{\mathbf{y}}_i = 1\}} A_{lk}}{\sum_{l,k \in \{i : \hat{\mathbf{y}}_i = 1\}} 1}, \quad (17)$$

839 where A represents DDI graph define in section 3.

840 C.5 DETAILS ON BASELINES 841

842 To comprehensively evaluate our proposed method, we compare it with a variety of representative
 843 baseline models as follows:

844 **LR (Logistic Regression):** A classical linear model that independently predicts medications based
 845 on the current visit's features, without considering temporal dependencies or inter-visit information.

846 **LEAP** (Zhang et al., 2017): An LSTM-based sequence modeling approach that encodes each visit as
 847 a temporal instance and predicts the next medication set. It captures sequential patterns within the
 848 patient's historical medical records but does not explicitly model drug-drug interactions or molecular
 849 features.

850 **GAMENet** Shang et al. (2019): Combines Graph Convolutional Networks (GCNs) and memory
 851 networks to jointly learn from Electronic Health Records (EHRs) and a Drug-Drug Interaction (DDI)
 852 graph. It constructs a dynamic memory bank of historical visits to support accurate and safe drug
 853 recommendation.

854 **MICRON** (Yang et al., 2021a): Proposes a conditional recurrent residual network that captures
 855 inter-visit dynamics and variations in drug usage patterns. It models both temporal continuity and
 856 abrupt changes in medication behaviors across visits.

857 **COGNet** (Wu et al., 2022): Reformulates medication prediction as a sequence generation task. It
 858 incorporates a copy-or-predict mechanism to selectively replicate medications from past visits or
 859 generate new drugs based on current health status.

860 **SHAPE** (Liu et al., 2023): Introduces a lightweight intra-visit encoder to effectively model the
 861 relationships among medical events within a visit. It generates expressive visit-level representations
 862 to enhance the downstream prediction of medications.

RAREMed (Zhao et al., 2024): Utilizes two self-supervised pretraining tasks to learn visit-aware patient embeddings. It focuses on capturing individual-specific medication needs and complex interrelations among clinical codes, which improves model generalization in low-resource scenarios.

SafeDrug (Yang et al., 2021b): Integrates pharmacological knowledge by incorporating molecular structure embeddings into the recommendation framework. It jointly optimizes for therapeutic effectiveness and safety by penalizing adverse drug interactions during training.

MoleRec (Yang et al., 2023): Enhances drug recommendation accuracy by aligning patients' health conditions with relevant molecular substructures. It employs hierarchical attention to identify and leverage key molecular fragments related to a patient's clinical context.

DrugDoctor (Kuang & Xie, 2024): Models the causal impact of historical prescriptions on patient outcomes using a cross-attention mechanism. It accounts for both temporal treatment effects and structural similarities among drugs to inform medication selection.

Overall, the existing medication recommendation methods can be broadly categorized into three methodological families, each with distinct advantages and limitations. Instance-based approaches (e.g., LR) rely solely on the information contained in the current visit and thus offer computational simplicity and strong performance when intra-visit features dominate; however, they fail to capture longitudinal treatment patterns. Longitudinal sequence-based methods (e.g. GAMENet, MICRON, COGNet, RAREMed) explicitly incorporate temporal dependencies across visits, enabling more accurate modeling of patient trajectories, though they often lack fine-grained pharmacological knowledge and may struggle with safety considerations. Molecular-structure-informed models (e.g., SafeDrug, MoleRec, DrugDoctor) integrate structural or chemical information to strengthen pharmacological reasoning and improve safety, yet they typically treat molecular structure and therapeutic intent as separate, unaligned modalities. These methodological distinctions highlight the need for a unified framework capable of jointly modeling temporal patterns, structural information, and therapeutic semantics, which is an objective that DATR is designed to address.

D DETAILS ON METHOD

D.1 PROOF

We derive the conditional lower bound in our conditional reconstruction module. Let $q(\mathbf{z} | \mathbf{x}, \mathbf{y})$ be a variational distribution that approximates the true posterior $p(\mathbf{z} | \mathbf{x}, \mathbf{y})$. Consider the Kullback–Leibler (KL) divergence between these two distributions:

$$\text{KL}(q(\mathbf{z} | \mathbf{x}, \mathbf{y}) \| p(\mathbf{z} | \mathbf{x}, \mathbf{y})) = \mathbb{E}_{q(\mathbf{z} | \mathbf{x}, \mathbf{y})} \left[\log \frac{q(\mathbf{z} | \mathbf{x}, \mathbf{y})}{p(\mathbf{z} | \mathbf{x}, \mathbf{y})} \right]. \quad (18)$$

Using Bayes' rule, the true posterior can be expressed as

$$p(\mathbf{z} | \mathbf{x}, \mathbf{y}) = \frac{p(\mathbf{x}, \mathbf{z} | \mathbf{y})}{p(\mathbf{x} | \mathbf{y})}, \quad (19)$$

and hence

$$\log p(\mathbf{z} | \mathbf{x}, \mathbf{y}) = \log p(\mathbf{x}, \mathbf{z} | \mathbf{y}) - \log p(\mathbf{x} | \mathbf{y}). \quad (20)$$

Substituting this into the KL divergence yields

$$\text{KL}(q(\mathbf{z} | \mathbf{x}, \mathbf{y}) \| p(\mathbf{z} | \mathbf{x}, \mathbf{y})) = \mathbb{E}_{q(\mathbf{z} | \mathbf{x}, \mathbf{y})} [\log q(\mathbf{z} | \mathbf{x}, \mathbf{y}) - \log p(\mathbf{z} | \mathbf{x}, \mathbf{y})] \quad (21)$$

$$= \mathbb{E}_{q(\mathbf{z} | \mathbf{x}, \mathbf{y})} [\log q(\mathbf{z} | \mathbf{x}, \mathbf{y}) - \log p(\mathbf{x}, \mathbf{z} | \mathbf{y}) + \log p(\mathbf{x} | \mathbf{y})]. \quad (22)$$

Note that $\log p(\mathbf{x} | \mathbf{y})$ does not depend on \mathbf{z} and can thus be taken outside the expectation:

$$\text{KL}(q(\mathbf{z} | \mathbf{x}, \mathbf{y}) \| p(\mathbf{z} | \mathbf{x}, \mathbf{y})) = -\mathbb{E}_{q(\mathbf{z} | \mathbf{x}, \mathbf{y})} [\log p(\mathbf{x}, \mathbf{z} | \mathbf{y})] + \mathbb{E}_{q(\mathbf{z} | \mathbf{x}, \mathbf{y})} [\log q(\mathbf{z} | \mathbf{x}, \mathbf{y})] + \log p(\mathbf{x} | \mathbf{y}). \quad (23)$$

Rearranging terms gives

$$\log p(\mathbf{x} | \mathbf{y}) = \text{KL}(q(\mathbf{z} | \mathbf{x}, \mathbf{y}) \| p(\mathbf{z} | \mathbf{x}, \mathbf{y})) + \mathbb{E}_{q(\mathbf{z} | \mathbf{x}, \mathbf{y})} [\log p(\mathbf{x}, \mathbf{z} | \mathbf{y})] - \mathbb{E}_{q(\mathbf{z} | \mathbf{x}, \mathbf{y})} [\log q(\mathbf{z} | \mathbf{x}, \mathbf{y})]. \quad (24)$$

918 Using the factorization $p(\mathbf{x}, \mathbf{z} \mid \mathbf{y}) = p(\mathbf{x} \mid \mathbf{z}, \mathbf{y}) p(\mathbf{z} \mid \mathbf{y})$, we obtain
 919

$$920 \log p(\mathbf{x} \mid \mathbf{y}) = \text{KL}(q(\mathbf{z} \mid \mathbf{x}, \mathbf{y}) \parallel p(\mathbf{z} \mid \mathbf{x}, \mathbf{y})) + \mathbb{E}_{q(\mathbf{z} \mid \mathbf{x}, \mathbf{y})} [\log p(\mathbf{x} \mid \mathbf{z}, \mathbf{y})] - \text{KL}(q(\mathbf{z} \mid \mathbf{x}, \mathbf{y}) \parallel p(\mathbf{z} \mid \mathbf{y})). \quad (25)$$

922 We define the conditional evidence lower bound (ELBO) as
 923

$$924 \mathcal{L}(\mathbf{x}, \mathbf{y}) = \mathbb{E}_{q(\mathbf{z} \mid \mathbf{x}, \mathbf{y})} [\log p(\mathbf{x} \mid \mathbf{z}, \mathbf{y})] - \text{KL}(q(\mathbf{z} \mid \mathbf{x}, \mathbf{y}) \parallel p(\mathbf{z} \mid \mathbf{y})), \quad (26)$$

925 so that the identity
 926

$$927 \log p(\mathbf{x} \mid \mathbf{y}) = \mathcal{L}(\mathbf{x}, \mathbf{y}) + \text{KL}(q(\mathbf{z} \mid \mathbf{x}, \mathbf{y}) \parallel p(\mathbf{z} \mid \mathbf{x}, \mathbf{y})) \quad (27)$$

928 holds exactly. Since the KL divergence is always non-negative, we have
 929

$$930 \log p(\mathbf{x} \mid \mathbf{y}) \geq \mathcal{L}(\mathbf{x}, \mathbf{y}), \quad (28)$$

931 which is the conditional ELBO used in the main text.
 932

933 D.2 DETAILED DESIGN ANALYSIS OF THE POTENTIAL DDI CONSTRAINT

935 The selective nature of our potential DDI constraint, as formulated in Equation 9, is
 936 critically enabled by the asymmetric sigmoid term, $\sigma(\beta(r_j - r_i))$. This term introduces a differential
 937 penalty based on the relative therapeutic relevance of an interacting drug pair (i, j) . Specifically, the
 938 suppression applied to drug i is heavily dependent on its relevance score r_i compared to that of drug
 939 j , r_j . When $r_j < r_i$, the sigmoid term approaches 0, leading to significant penalization of the less
 940 relevant drug j . Conversely, when $r_j > r_i$, the term approaches 1, applying a minimal penalty to the
 941 more essential drug j . This nuanced behavior can be formally understood by analyzing the gradient
 942 of the DDI loss with respect to the relevance score r_i :

$$943 \frac{\partial \mathcal{L}_{\text{DDI}}}{\partial r_i} \propto A_{ij} r_j [\alpha(1 - r_i)^{\alpha-1} \sigma(\cdot) + (1 - r_j)^\alpha \beta \sigma(\cdot)(1 - \sigma(\cdot))] \quad (29)$$

945 The structure of this gradient yields three clinically valuable properties that allow the model to balance
 946 safety and efficacy in a principled manner:
 947

- 948 • **Progressive Suppression:** The $(1 - r_i)^{\alpha-1}$ term ensures that the penalty gradient is largest for drugs
 949 with lower therapeutic relevance ($r_i \rightarrow 0$) and diminishes significantly for essential drugs ($r_i \rightarrow 1$),
 950 thereby preserving their inclusion in the final recommendation.
- 951 • **Directional Sensitivity:** The term $\sigma(\cdot)(1 - \sigma(\cdot))$, which corresponds to the derivative of the sigmoid
 952 function, imparts directional sensitivity. The gradient is maximized when $r_j \approx r_i$, which represents
 953 the region of greatest clinical uncertainty where a decision between two interacting drugs is most
 954 critical. The penalty's influence decreases as the relevance scores diverge, focusing the model's
 955 attention on borderline cases.
- 956 • **Interaction-Aware Scaling:** The inclusion of the DDI matrix term A_{ij} and the relevance score r_j
 957 ensures that the overall penalty is scaled proportionally to both the known severity of the interaction
 958 and the therapeutic importance of the interacting drug.

959 E SUPPLEMENTARY EXPERIMENTS

960 E.1 SIGNIFICANCE ANALYSIS OF DATR

964 To further validate the robustness and statistical significance of DATR's superior performance,
 965 we conducted pairwise significance tests comparing DATR against all baseline models across all
 966 evaluation metrics on both MIMIC-III and MIMIC-IV datasets. Specifically, we employed paired
 967 t-tests with a significance level of $p < 0.01$ to assess whether the improvements achieved by DATR
 968 are statistically significant rather than arising from random fluctuations.

969 The analysis confirms that DATR's improvements in Jaccard, PRAUC, and F1 scores are statistically
 970 significant compared to all baseline methods across both datasets. For example, on MIMIC-III, the
 971 Jaccard improvements over DrugDoctor and RAREMed yield p -values less than 0.01, reinforcing the
 972 reliability of the observed gains. Furthermore, DATR achieves a substantially lower DDI rate than all

972 baselines, with the reduction being statistically significant across repeated runs. Notably, the DDI
 973 rate of DATR on MIMIC-III is significantly lower than that of RAREMed (which previously had the
 974 best safety performance), with $p < 0.001$.

975 These significance tests provide strong evidence that the performance gains of DATR are consistent
 976 and meaningful, highlighting the advantage of its integrated modeling of patient longitudinal history,
 977 molecular structural information, and safety constraints.

979 E.2 CASE STUDY ANALYSIS

982 Table 7 presents two visit records and corresponding recommendation results of patients X and
 983 Y in MIMIC-III test set. For patient X, DATR successfully recommended Nimodipine, a drug
 984 known to play a critical role in the treatment of subarachnoid hemorrhage (Scriabine & Van den
 985 Kerckhoff, 1988), while simultaneously avoiding the recommendation of Amiodarone to avoid
 986 DDI with Nimodipine. Notably, DATR further suggested Carbamazepine, which was not present
 987 in the original prescription, but is potentially effective for managing postconcussion syndrome
 988 (Alrashood, 2016). This highlights DATR’s capability to uncover latent associations between drug
 989 candidates and patient-specific health conditions. For patient Y, DATR precisely recommended
 990 Simvastatin in response to the diagnosis of hypercholesterolemia (Pedersen & Tobert, 2004), while
 991 not recommending auxiliary ulcers-preventing drug Omeprazole in consideration of potential DDIs.

992 Table 7: Recommended results for two patients.

994 Category	995 Patient X	996 Jaccard: 0.5682	997 DDI: 0
998 Diagnosis	999 Postconcussion syndrome, Cerebral artery occlusion, Subarachnoid hemorrhage, 1000 Acute kidney failure, Retention of urine, Hypertensive chronic kidney disease.		
1001 Procedure	1002 Insertion of indwelling urinary catheter, Venous catheterization.		
1003 Medication	1004 Neomycin, Cefotaxime, Chlorhexidine, Nimodipine , Heparin, Glyceryl trinitrate, Sultiamine, Amiodarone , Potassium chloride, Furosemide...		
1005 DATR	1006 Neomycin, Cefotaxime, Nimodipine , Heparin, Glyceryl trinitrate, Sultiamine, Potassium chloride, Furosemide, Carbamazepine, Mannitol...		
1007 Category	1008 Patient Y	1009 Jaccard: 0.5721	1010 DDI: 0
1011 Diagnosis	1012 Subendocardial infarction, Coronary atherosclerosis, Hypertension, Asthma, Hypercholesterolemia.		
1013 Procedure	1014 Insertion of coronary artery stent, heart cardiac catheterization, Coronary arteriography. Insertion of transvenous pacemaker system.		
1015 Medication	1016 Ditazole, Simvastatin , Paracetamol, Practolol, Potassium, Omeprazole , Chloride, Thonzylamine, Tilidine, Sultiamine, Oxitriptan, Zafirlukast, Captopril...		
1017 DATR	1018 Ditazole, Simvastatin , Practolol, Potassium, Chloride, Thonzylamine, Sultiamine, Oxitriptan, Zafirlukast, Captopril, Oxyphenisatine...		

1019 To provide a concrete illustration of how DATR bridges the semantic gap between molecular structure
 1020 and therapeutic outcomes, we present a detailed case study that contrasts DATR’s recommendations
 1021 with those of DrugDoctor for Patient Y to highlight the practical benefits of our proposed framework.

1022 The clinical context for Patient Y, summarized in Table 7, necessitates medications for both hyper-
 1023 cholesterolemia (e.g., Simvastatin) and gastric protection (e.g., Omeprazole). The recommendations
 1024 generated by DrugDoctor and DATR are compared in Table 8. This comparison reveals a critical
 1025 difference in safety-aware therapeutic reasoning.

1026 DrugDoctor correctly identifies the need for Simvastatin and Omeprazole, aligning with the ground-
 1027 truth prescriptions. However, their co-administration poses a potential drug-drug interaction risk,
 1028 which the model fails to mitigate. In stark contrast, DATR avoids this risk by not recommending
 1029 Omeprazole. Crucially, DATR proposes **Oxyphenisatine** as a safe and effective substitute. This
 1030 decision showcases the core strength of our therapeutic structure reconstruction module. By condi-
 1031 tioning on ATC categories, DATR is able to infer that Oxyphenisatine (ATC: A02BX) shares the same
 1032 primary *therapeutic intent* gastric protection as Omeprazole (ATC: A02BC), despite their structural

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Table 8: Comparison of medication recommendations for Patient Y. DATR achieves a higher Jaccard score and a zero DDI rate by substituting the potentially interacting Omeprazole with a safer alternative.

Model	Recommendations	Jaccard	DDI Rate
DrugDoctor	Simvastatin, Omeprazole , Captopril, Paracetamol, Ditazole, Practolol, Potassium Chloride, Zafirlukast...	0.5613	0.0139
DATR	Simvastatin , Captopril, Ditazole, Practolol, Potassium Chloride, Zafirlukast, Thonzylamine, Sultiame, Oxitriptan, Oxyphenisatine ...	0.5721	0.0000

differences. Within the context of the patient’s cardiovascular conditions, Oxyphenisatine’s safety profile is more suitable as it does not have a known significant interaction with Simvastatin.

This case study exemplifies DATR’s ability to move beyond simple pattern matching. It not only predicts clinically relevant medications but also performs intelligent, safety-driven substitutions, thereby effectively bridging the gap between identifying a therapeutic need and selecting the most appropriate chemical entity for the patient.

E.3 GENERALIZATION TO NEW DRUGS AND RARE DISEASES

A key challenge in clinical AI is generalizing to scenarios with limited data, such as those involving new medications (a zero-shot problem) or rare diseases (a low-resource problem). DATR is architecturally designed to handle such cases.

E.3.1 GENERALIZATION TO NEW DRUGS

DATR’s framework can be extended to newly approved drugs, even in a zero-shot setting without historical prescription data, by leveraging the hierarchical ATC classification system. A new drug can be immediately integrated into the model by mapping it to an existing ATC4 category based on its therapeutic indication (e.g., A01AA for fluorine dental prophylaxis), enabling the immediate application of learned therapeutic-structural patterns from that class.

Furthermore, when the molecular structure of the new drug is available, DATR’s conditional VAE can generate a novel, intent-aware representation by encoding the new structure under the conditioning of its assigned ATC category. This class-centric approach facilitates powerful cross-drug knowledge transfer, allowing the model to leverage the learned latent distribution for an entire therapeutic class to reason about therapeutically equivalent alternatives. As demonstrated in our case studies, this capability allows DATR to successfully recommend such alternatives when exact matches are unavailable, highlighting its strong generalization capacity within therapeutic categories. This capability is crucial for recommending a new drug as a substitute for an older one, or vice-versa, based on therapeutic intent rather than direct historical co-occurrence.

E.3.2 PERFORMANCE ON RARE DISEASES

For rare diseases, where direct disease-drug prescription data is sparse, DATR’s approach of modeling therapeutic mechanisms via ATC categories provides a significant advantage over methods that rely on memorizing specific prescription pairs. By focusing on the underlying therapeutic need, the model can infer appropriate treatments even if it has seen few or no prior instances of that specific disease.

To empirically validate this, we evaluated DATR’s performance on a subset of the rarest diseases in the MIMIC-III dataset (each with ≤ 5 occurrences). As shown in Table 9, DATR consistently outperforms all baseline models, demonstrating its superior ability to generalize in low-resource settings.

1080 Table 9: Performance comparison (Jaccard Score) on five rare diseases from the MIMIC-III test set.
 1081 DATR consistently achieves the highest score, indicating robust generalization.
 1082

1083 ICD-9	1084 Condition Name	1085 DATR	1086 SafeDrug	1087 MoleRec	1088 DrugDoctor
1085 42610	1086 Atrioventricular block	0.412	0.328	0.351	0.387
1085 6265	1086 Stress incontinence	0.396	0.310	0.333	0.371
1085 83500	1086 Closed dislocation of hip	0.403	0.317	0.342	0.382
1085 80841	1086 Closed fracture of ilium	0.388	0.301	0.322	0.365
1085 34202	1086 Flaccid hemiplegia	0.418	0.335	0.362	0.401
Average		0.402	0.319	0.343	0.382

1092 E.4 SENSITIVITY ANALYSIS ON VAE LOSS WEIGHTING

1094 To assess the sensitivity of our model to the balance between the reconstruction and KL divergence
 1095 losses within our therapeutic structure reconstruction module, we conducted an experiment on their
 1096 relative weighting. We denote two hyperparameters, μ and ν , to scale the reconstruction loss (\mathcal{L}_{rec})
 1097 and the KL divergence loss (\mathcal{L}_{KL}), respectively. During this analysis, all other hyperparameters were
 1098 held constant at their optimal values ($\alpha = 1.0, \beta = 4, \gamma = 0.1$).

1099 The results, summarized in Table 10, demonstrate that DATR’s performance is highly stable across the
 1100 tested weight configurations. The optimal performance was achieved with the standard VAE setting
 1101 of $\mu = 1.0$ and $\nu = 1.0$, which aligns with common practices in variational inference. Crucially,
 1102 all tested configurations yielded Jaccard scores within 0.35% of the optimal value, underscoring
 1103 the model’s robustness. This stability suggests that the framework is not overly sensitive to the
 1104 precise balance between reconstruction fidelity and latent space regularization, which simplifies
 1105 hyperparameter tuning.

1106 Table 10: Impact of VAE loss weights on model performance. The model shows high stability, with
 1107 minimal performance degradation when deviating from the standard $\mu = 1.0, \nu = 1.0$ configuration.
 1108

1109	1110 μ (\mathcal{L}_{rec})	1111 ν (\mathcal{L}_{KL})	1112 Jaccard	1113 DDI Rate
1111	1.0	1.0	0.5506	0.0366
1112	0.8	1.0	0.5489	0.0372
1113	1.0	0.8	0.5492	0.0370
1114	1.2	1.0	0.5488	0.0374
1115	1.0	1.2	0.5495	0.0371

1117 E.5 COMPLEXITY ANALYSIS

1119 We report the model complexity of DATR and several baseline methods in terms of parameter count,
 1120 training time, and test time in Table 11. Although DATR introduces a multi-level representation
 1121 mechanism and therapeutic structure reconstruction, its total parameter count (5.98M) remains lower
 1122 than MoleRec (6.62M), and comparable to GAMENet (3.82M) and SafeDrug (1.56M). In terms of
 1123 computational efficiency, DATR achieves a favorable balance: it requires a moderate training time
 1124 (9.13 hours) and test time (0.64 minutes per evaluation), which is faster than MoleRec and GAMENet,
 1125 while only marginally slower than SafeDrug.

1126 Notably, both MoleRec and DATR exhibit relatively larger model sizes due to the use of Transformer-
 1127 based architectures. However, the inherent parallelism of the Transformer enables efficient training
 1128 and inference, which offsets the computational overhead introduced by the increased parameter count.
 1129 These results demonstrate that the proposed framework maintains reasonable computational cost
 1130 despite its structural enhancements, making it practical for real-world deployment in clinical decision
 1131 support settings.

1132 To investigate the trade-off between computational efficiency and performance, we implemented
 1133 a GNN freezing strategy, motivated by similar findings in MoleRec (Yang et al., 2023). In this
 configuration, the GNN parameters are frozen after an initial training phase, thereby excluding them

1134 Table 11: Model complexity comparison in terms of parameter count, training time (hours), and test
 1135 time (minutes; summed over 10 runs).

1137 Model	1138 Parameters	1139 Training Time (h)	1140 Test Time (min)
1139 GAMENet	1140 3,816,843	1141 8.24	1142 1.21
1140 SafeDrug	1141 1,558,438	1142 4.62	1143 0.44
1141 MoleRec	1142 6,623,543	1143 10.61	1144 0.88
1142 DATR	1143 5,978,378	1144 9.13	1145 0.64

1144 from subsequent gradient updates. The results, summarized in Table 12, demonstrate a significant
 1145 reduction in resource requirements: the number of trainable parameters decreases by approximately
 1146 35.3%, and the training time is reduced by 31.6%. This efficiency gain is achieved with only a
 1147 marginal performance trade-off, observing a slight decrease in the Jaccard score (from 0.5506 to
 1148 0.5458) and a minor increase in the DDI rate.

1150 Table 12: Performance and efficiency comparison of the full DATR model versus a configuration
 1151 with a frozen GNN encoder. The frozen GNN significantly reduces the parameter count and training
 1152 time with a minimal impact on performance.

1154 Configuration	1155 Parameters	1156 Training Time	1157 Jaccard	1158 DDI Rate
1155 Full DATR	1156 5.98M	1157 9.13h	1158 0.5506	1159 0.0366
1156 Frozen GNN	1157 3.87M	1158 6.24h	1159 0.5458	1160 0.0382

F BROADER IMPACT

1162 DATR’s strong empirical performance hinges heavily on the proposed Therapeutic Structure Recon-
 1163 struction method, which provides a new paradigm for learning drug representations that are both
 1164 semantically rich and clinically meaningful. By conditioning structural encoding on therapeutic
 1165 context, it offers a principled way to connect molecular features with clinical use, which could have
 1166 broader implications for drug discovery and development. For example, this approach may assist in
 1167 identifying DDI risks for novel chemical entities or support drug repurposing efforts by highlighting
 1168 structural properties relevant across therapeutic areas.

1169 Moreover, in our detailed analysis of the expert evaluations from the case study, we observed that
 1170 DATR frequently recommends drugs that, while absent from the original prescriptions, are judged
 1171 by clinicians as therapeutically effective. These drugs are often interchangeable with those actually
 1172 prescribed in terms of clinical efficacy. This not only validates the effectiveness of the Therapeutic
 1173 Structure Reconstruction method in capturing nuanced therapeutic semantics, but also provides new
 1174 insights for developing more practical and clinically aligned medication recommendation systems.

1175 **(1) Improving recommendation precision through fine-grained equivalence modeling.** Incorpor-
 1176 ating therapeutic substitutability into model design allows for a finer-grained understanding of
 1177 drug efficacy beyond rigid matching to historical prescriptions. This flexibility enables the model
 1178 to capture latent therapeutic intent and suggest clinically plausible alternatives, particularly when
 1179 drugs share similar mechanisms of action or therapeutic outcomes. Such an approach can improve
 1180 the precision and realism of recommendations, bringing them closer to actual clinical reasoning
 1181 processes and enhancing their practical utility.

1182 **(2) Enhancing safety through equivalence-guided substitution.** Beyond accuracy, efficacy-
 1183 equivalence modeling also introduces a safety-aware dimension to recommendation. When certain
 1184 drugs pose elevated DDI risks, they are contraindicated due to patient-specific factors, or are less
 1185 tolerable, substitutability-aware systems can proactively suggest safer alternatives that preserve
 1186 therapeutic goals. This opens the door to adaptive and personalized risk mitigation strategies, such as
 1187 swapping out high-risk combinations or implementing treatment de-escalation in chronic care, thus
 1188 improving both the robustness and trustworthiness of clinical decision support.

1188
1189 Integrating these capabilities into future recommender architectures may help bridge the gap between
1190 algorithmic optimization and real-world clinical needs, ultimately advancing the usability, safety, and
1191 adaptability of AI-driven medication recommendation in diverse healthcare settings.

1192 G LIMITATION

1193

1194 Despite these promising results, several limitations remain. First, DATR depends on the availability
1195 and reliability of ATC classifications to model therapeutic intent. While comprehensive and widely
1196 used, the ATC system may not cover novel or off-label medications accurately. Future work may
1197 utilize embeddings learned from large-scale clinical notes or real-world prescription patterns to infer
1198 therapeutic intent even for underrepresented or novel drugs. Second, the quality of DDI mitigation
1199 relies heavily on the completeness and timeliness of the underlying DDI knowledge base, which is
1200 inherently dynamic. Future work could explore adaptive mechanisms for updating the DDI matrix or
1201 even learning interaction risks directly from data, thereby improving the robustness and applicability
1202 of the framework in real-world clinical settings.

1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241