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ABSTRACT

Medication recommendation systems play a critical role in clinical decision sup-
port, where ensuring both predicting accuracy and safety, particularly drug-drug
interaction (DDI) avoidance, is essential. While recent studies have explored drug
molecular structures to enhance accuracy, they often overlook the semantic gap
between chemical structures and therapeutic outcomes, leading to suboptimal rec-
ommendation. Moreover, existing DDI mitigation strategies typically operate in a
post-hoc manner, limiting their ability to proactively prevent DDI. In this work, we
propose DDI-Aware Therapeutic Structure Reconstruction (DATR), a novel frame-
work that jointly models drug structures, therapeutic intent, and safety profiles.
DATR conditionally encodes drug structures based on ATC-derived therapeutic
labels, enabling intent-aware representation learning, and introduces a selectivity
potential DDI constraint to proactively reduce interaction risk. Experiments on
two real-world datasets and evaluations by clinical experts demonstrate that DATR
achieves superior performance in recommendation accuracy and DDI reduction.
Code is available at https://anonymous.4open.science/r/DATR-7EA8.

1 INTRODUCTION

The rapid digitalization of healthcare has significantly transformed clinical practice, with medication
1 recommendation systems emerging as pivotal tools for enhancing decision-making processes
(Dagliati et al., 2021; Garriga et al., 2022). By leveraging computational techniques to analyze
electronic health records (EHRs), patient medical histories, and pharmacological profiles, they can
assist in selecting effective medication regimens tailored to individual patient needs (Macias et al.,
2023). For these systems, their success hinges on two critical factors: accuracy, to ensure clinically
relevant recommendations with therapeutic efficacy, and safety, to prevent adverse outcomes such as
drug-drug interactions (DDIs) (Han et al., 2022; Bougiatiotis et al., 2020; Chiang et al., 2020).

For accuracy, capturing the association between drugs and patients’ health conditions is of critical
importance. To this end, instance-based methods (Zhang et al., 2017) establish associations between
drug labels and the patient’s current visit record, while longitudinal approaches such as (Shang et al.,
2019; Wu et al., 2022) further incorporate historical visits to capture temporal dependencies. Recent
advances have increasingly leveraged drug molecular structure information to enrich drug feature
representations, achieving improved accuracy (Yang et al., 2021b; 2023; Kuang & Xie, 2024). Though
this approach has demonstrated promise, it often assumes a direct correspondence between molecular
structures and therapeutic outcomes, overlooking the semantic gap between these two feature spaces
(Wen et al., 2023; Xu et al., 2025). In practice, identical structures may mediate divergent therapeutic
effects in different clinical contexts, e.g, aspirin’s dual use in antithrombosis and analgesia (Fuster &
Sweeny, 2011). As a result, such systems may struggle to align structural determinants of efficacy
with individualized treatment contexts, thereby compromising recommendation accuracy.

Growing attention has been given to the risk of DDIs in safety aspect. Earlier works achieve
preliminary DDI control through implicitly modeling via knowledge graphs (Gong et al., 2021) or
reinforcement processing (Zhang et al., 2017). To further improve controllability, recent studies

1In this paper, "medication" and "drug" are used interchangeably to refer to substances used for the treatment
of diseases.
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impose explicit DDI-related losses to penalize interacting drugs in the recommendation outcomes
(Yang et al., 2021b; 2023; Kuang & Xie, 2024), effectively alleviating the DDI events. However,
these methods are inherently post-hoc, treating DDI mitigation as as a separate, corrective step rather
than an integral part of the recommendation logic. This decoupling between recommendation and
interaction control prevents the model from making clinical optimal decisions considering therapeutic
effect and DDIs, introducing a bottleneck in balancing accuracy and safety. Moreover, these penalties
rely heavily on specific drug pairs observed during training, which hinders the model’s capacity to
avoid recommending drugs with high interaction potential, especially when specific interacting pairs
have not been explicitly encountered in the training, leading to insufficient control of DDIs.

Considering these factors, in this work we propose DDI-Aware Therapeutic Structure Reconstruction
(DATR) framwork to integrate drug structural information, therapeutic intent and safety profiles into
a unified modeling framework to jointly enhance accuracy and safety. To derive therapeautic intent,
we first collect drug categorical labels of the Anatomical Therapeutic Chemical (ATC) Classification
System (Schellekens et al., 2011). To extract intent-aware structural determinants, we introduce a
Therapeutic Structure Reconstruction method (illustrated in Figure 1), which employs conditional
probabilistic encoding to map structural information into a latent space based on therapeutic context.
Categorical therapeutic structural features of each intent are subsequently sampled from the latent
space based on the constructed conditional probabilities. This novel method ensures the precise
extraction of therapeutic determinants within drug structures across varying efficacy contexts, thereby
establishing more reliable association between drugs and patient-specific conditions.
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Figure 1: Methods proposed to jointly improve accuracy and safety of medication recommendation

Furthermore, DATR introduces a potential DDI constraint to proactively mitigate adverse interactions
while maximizing therapeutic outcomes. As shown in Figure 1, the categorical features derived from
reconstruction are utilized to quantify the relevance of each drug category to the health condition
of patient. Then we design an asymmetry-inducing selectivity penalty on the joint relevance of
interacting drug pairs from prior DDI knowledge, which explicitly constrains potential DDI risks with
selective retention of more therapeutically relevant drug. By making the DDI constraint contingent on
each drug’s contextualized therapeutic relevance, our approach proactively steers the recommendation
process towards clinical optimal decisions, thereby achieving a deeper integration of safety and
efficacy. Meanwhile, DATR can avoid dependency on specific drug pairs in the training data due to
the global consideration of all drug pairs for potential interacting risks.

Our contributions can be summarized as follows:

• We propose a novel framework, DATR, to bridge the semantic gap between chemical structures
and clinical outcomes while inherently integrating safety considerations into the recommendation
process by jointly modeling drug molecular structures, therapeutic intent, and safety profiles.

• We introduce a therapeutic structure reconstruction method to extract therapeutic structural deter-
minants and design a potential DDI constraint mechanism that imposes a selectivity penalty on
joint relevance of interacting drugs to enable proactive DDI avoidance.

• Extensive experiments on two real-world benchmark datasets empirically validate the effectiveness
of our approach, which achieves state-of-the-art results in recommendation accuracy and safety.
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2 RELATED WORKS

Medication Recommendation. Existing approaches of medication recommendation can be broadly
categorized into instance-based, longitudinal and structure-based methods. Instance-based methods,
such as LEAP (Zhang et al., 2017), focus on patient information from the current visit. These
approaches often struggle to account for evolving health conditions. Longitudinal approaches address
this limitation by leveraging historical records to model temporal dependencies in patient health.
For example, GAMENet (Shang et al., 2019) augments memory networks with a DDI graph to
enhance both safety and accuracy. COGNet (Wu et al., 2022) selects from the patient’s historical
prescription records to recommend new medications, while MICRON (Yang et al., 2021a) emphasizes
medication change prediction by analyzing differences between consecutive visits. These models
improve personalization but lack detailed consideration of drug molecular structures. Models like
SafeDrug (Yang et al., 2021b) and MoleRec (Yang et al., 2023) incorporate molecular graph encoders
to explicitly model drug structural information and control DDIs. Furthermore, SHAPE (Liu et al.,
2023) introduces adaptive mechanisms to handle variable visit lengths and DrugDoctor (Kuang &
Xie, 2024) leverages cross-attention for historical influence modeling.

Deep-learning-based molecular representations. Deep learning has facilitated the creation of
machine-readable continuous representations of molecular structures (Wigh et al., 2022), which
were traditionally represented using discrete formats such as SMILES (Weininger, 1988) or InChI
(Heller et al., 2013). For example, (Gilmer et al., 2017; Guo et al., 2023; Hamilton et al., 2017)
employ GNN to effectively capture the spatial relationships and structural dependencies between
atoms and bonds in molecular graphs. (Hou et al., 2022) proposed a bidirectional-LSTM to identify
key structural components in the SMILES sequence. Transformer (Vaswani et al., 2017) architectures
have also demonstrated strong performance on SMILES-based and graph-based molecular modeling
through global self-attention mechanisms (Luong & Singh, 2024; Maziarka et al., 2024). Furthermore,
Variational Autoencoders (VAEs) (Kingma, 2013) have seen increasing adoption in molecular repre-
sentation learning due to their ability to capture smooth and regularized latent spaces, which facilitates
downstream tasks such as novel molecules generation and property optimization (Gómez-Bombarelli
et al., 2018; Wang et al., 2022; Martinelli, 2022). Motivated by VAEs’ potential to extract general
features in continuous latent space to support semantic alignment and conditional reconstruction, in
this work we design a conditional VAE-style method to integrate molecular structure and therapeutic
intent into a unified representation.

3 PROBLEM FORMULATION

Electronic Health Record (EHR). An EHR is a structured representation of a patient’s medical
history, encompassing information from multiple clinical visits. For a patient x, the EHR is rep-
resented as a sequence V(x) = [v(1), v(2), . . . , v(Nx)], where Nx is the total number of visits for
the patient, and v(i) represents the details of the i-th visit. Each visit v(i) consists of three main
components: v(i) = [v

(i)
d ,v

(i)
p ,v

(i)
m ]. Here, v(i)

d ∈ {0, 1}|D| is a multi-hot vector representing the
diagnoses from the set D = {d1, d2, . . . , d|D|}. Similarly, v(i)

p ∈ {0, 1}|P | is a multi-hot vector
representing the procedures (e.g., surgeries or therapies) from the set P = {p1, p2, . . . , p|P |}. Finally,
v
(i)
m ∈ {0, 1}|M | is a multi-hot vector representing the medications prescribed during the visit, with

M = {m1,m2, . . . ,m|M |} denoting the set of all medications, where a value of 1 indicates that the
corresponding medication was prescribed.

DDI Graph. DDI graph is represented as a binary symmetric adjacency matrix A ∈ {0, 1}|M |×|M |.
Each entry Aij = 1 indicates known harmful interactions between medications mi and mj .

Medication Combination Recommendation. At time step t, given the longitudinal diagnosis
sequence vtd =

[
v
(1)
d ,v

(2)
d , . . . ,v

(t)
d

]
, procedure sequence: vtp =

[
v
(1)
p ,v

(2)
p , . . . ,v

(t)
p

]
and med-

ication sequence: vt−1
m =

[
v
(1)
m ,v

(2)
m , . . . ,v

(t−1)
m

]
, as well as the DDI graph A, our objective

is to learn a drug combination recommendation function f(·) that generates a multi-label output
m̂(t) ∈ {0, 1}|M |. Specifically, m̂(t) = f(vtd,v

t
p,v

t−1
m ).
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Figure 2: Overview of DATR. The model firstly obtains the unified feature for each medication
category by integrating substructure-level and molecule-level therapeutic structural features, xs and
xm, through conditional reconstruction based on ATC categorical labels. Then, patient’s current
health status ec is encoded from current visit and interacts with stacked h of all medication categories
to generate recommendations and impose potential DDI constraint. "CA" denotes Cross Attention.

4 METHOD

As shown in Figure 2, DATR is composed of: 1) Unified Medication Representation Module
generating therapeutic structural features for each ATC therapeutic category from both substructure
and molecule level. 2) Recommendation Generating Module encoding longitudinal health condi-
tions of patients and making predictions base on the condition and medication representations, while
integrating potential DDI constraints.

4.1 UNIFIED MEDICATION REPRESENTATION MODULE

Substructure-level Structural Representation. Considering the varying substructure compositions
among medications within the same ATC therapeutic category, we first extract a structural profile at the
substructure level. Specifically, we decompose each medication into a set of chemical substructures
utilizing breaking retrosynthetically interesting chemical substructures (BRICS) (Degen et al., 2008)
method. Based on the decomposition results, we construct a substructure probability distribution
vector xs ∈ Rd, for each medication, where the i-th entry is defined as xs[i] =

f(si)∑
j=1df(sj)

, in which
f(si) denotes the frequency of substructure siwithin the given medication molecule, and d is the total
number of distinct substructures across the medications.

Molecule-level Structural Representation. While several recent studies have focused primarily
on substructure-level representations (Kuang & Xie, 2024; Yang et al., 2023), we argue that mod-
eling molecular structures holistically remains essential. This is especially relevant for biological
macromolecule drugs such as insulin whose therapeutic efficacy depends on their overall structural
conformation rather than discrete subcomponents (Tanford & Reynolds, 2003; Perrett, 2007; Jones &
Thornton, 1996; Petersen & Shulman, 2018).

We employ a GNN (Xu et al., 2018) to encode the molecular graph of each medication. Each molecule
is represented as a graph G = (V,E), where V represents atoms (nodes) and E represents bonds
(edges). The node features hi ∈ Rd correspond to atomic properties, and edge features eij ∈ Rd
represent bond types. The node update at layer l + 1 is given by:

h
(l+1)
i = MLP((1 + ϵ(l))h

(l)
i +

∑
j∈N (i)

h
(l)
j +

∑
(i,j)∈E

eij), (1)

where ϵ(l) is a learnable scalar that controls the relative weight of a node’s own features in the
aggregation, h(l)

i is the feature vector of node i at layer l, and N (i) denotes the neighbors of node i.
After L layers of message passing, the final molecule-level representation is obtained via global sum
pooling of node features as xm =

∑
i∈V h

(L)
i ∈ Rd.

4
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Therapeutic Structure Reconstruction. We first obtain dual-level structural representations through
x = [xs,xm] ∈ R2d, then we further embed them together with their corresponding therapeutic
intent to extract therapeutic structural determinants. To bridge the semantic gap between molecular
structures and therapeutic categories, we introduce a latent vector z to model the key underlying
factors that govern how drug structures contribute to specific therapeutic efficacy. The conditional
generative process is expressed as:

p(x|y) =
∫

p(x, z|y)dz =

∫
p(x|z,y)p(z|y)dz, (2)

where y denotes the embeddings of the ATC therapeutic class. A variational distribution q(z|x,y)
to is introduced to approximate the true posterior p(z|x,y). Then we employ the Kullback-Leibler
(KL) divergence KL(q(z|x,y) || p(z|x,y)) to optimize this approximation, which leads to a tractable
variational lower bound on log p(x | y), given by:

L(x,y) = Eq(z|x,y)[log p(x|z,y)]−KL(q(z|x,y) || p(z|y)). (3)

This conditional ELBO serves as the reconstruction objective in our framework.

To ensure the continuity of the latent space and the simplicity of computation, we set the conditional
prior p(z|y) to a standard Gaussian distribution N (0, I). We parameterize the variational posteriors
as Gaussian distributions

qϕ(z | x,y) = N (z;µ(x,y), σ2(x,y)), (4)

where µ(·) and σ(·) are outputs of learnable neural network encoders. As the KL divergence between
Gaussian distributions is analytically tractable, the second term in Equation equation 3 can be
computed as follows:

LKL = −KL(q(z|x,y) || p(z|y)) = −1

2

k∑
i=1

(
1 + log(σ2

i )− µ2
i − σ2

i

)
, (5)

in which k denotes the dimension of z. Given the parameterized latent distribution, we can perform
sampling to obtain instances of the latent vector z. To enable gradient-based optimization, we apply
the reparameterization trick (Kingma, 2013) to obtain z = µ(x,y) + σ(x,y) · ϵ, where ϵ ∼ N (0, I).

To instantiate p(x|z,y), we use a neural network decoder f(z,y) that predicts the reconstructed x′ =
f(z,y) given instance of z and y. Maximizing log p(x|z,y) is therefore equivalent to minimizing
the mean squared error (MSE) between x and x′. The first term in equation 3 can be denoted as:

Lrec = Eq(z|x,y)[log p(x|z,y)] ∼ −E[∥x− x̂∥2] (6)

Finally, for each ATC category with its therapeutic label embedding y, we sample latent vector z from
the conditional prior p(z|y) and obtain the reconstructed therapeutic substructure features x ∈ Rd
through learned f(z,y). Then we stack them as matrix H =

[
x1;x2; . . . ;x|M|

]
∈ R|M |×2d.

4.2 RECOMMENDATION PREDICTION MODULE

Patient Health Condition Encoding. We utilize three learnable embedding matrices Ed, Ep, and
Em to encode the diagnosis sequence v(t)

d , the procedure sequence v(t)
p and the medication procedure

sequence v
(t−1)
m . These embedded sequences are then passed through three transformer encoders

(Vaswani et al., 2017), denoted as T(·), to capture the dependencies across each visit, resulting in the
following encoded representations for the current visit:

h
(t)
d = T(Edv

(t)
d ),h(t)

p = T(Epv(t)
p ),h(t−1)

m = T(Emv(t−1)
m ). (7)

The patient’s current health condition at time t is obtained by concatenating the encoded diagnosis
and procedure representations through a feed-forward network: ec = FFN(

[
h
(t)
d ,h

(t)
p

]
) ∈ R2d.

Previous medication usage condition is denoted by em = FFN(h
(t−1)
m ) ∈ R|M |.

5
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Potential DDI constraint. We integrate DDI knowledge by first assessing the therapeutic relevance
of each medication category k in the context of the patient’s current health condition ec. Specifically,
we compute cross-attention weights as a vector r ∈ [0, 1]|M |:

r = softmax(
(ecWq)(HWk)

T

√
d

), (8)

where Wq and Wk are linear transformation matrix. Each element ri indicating the therapeutic
relevance score corresponding to drug category i. For two drugs exhibiting high therapeutic relevance
but demonstrating adverse interaction, it is critical to reduce their joint relevance to mitigate potential
DDI risks while the drug with higher therapeutic relevance in the interacting pair should be prioritized
and retained in the regimen to preserve maximal treatment outcomes. To achieve this, we incorporate
r into a global selectivity penalty formally expressed as:

LDDI =

|M |∑
i=1

|M |∑
j=i+1

Aij · ri · rj · [(1− ri)
ασ(β(rj − ri)) + (1− rj)

ασ(β(ri − rj))] . (9)

Here, the term Aij · ri · rj penalizes joint relevance of drug pairs (i, j) with known interactions
(Aij > 0). The asymmetry-inducing terms (1 − ri)

ασ(β(rj − ri)) and (1 − rj)
ασ(β(ri − rj))

where σ denotes sigmoid activation function, encourage the retention of more therapeutically relevant
drug while suppressing its interacting counterpart. The parameters α and β control the sharpness and
directional sensitivity of this penalty.

Recommendation Prediction. We leverage patient-specific and safety-informed relevance scores
r to derive a context vector er = r · (HWv) ∈ Rd, which summarizes the relevant therapeutic
landscape for the patient. The final prediction probability ô is obtained by:

ô = σ(erH
T + em). (10)

Following previous work (Shang et al., 2019; Yang et al., 2021b), we treat the final prediction of each
medication as an independent task and use the BCE loss for recommendation optimization:

LBCE = −
|M |∑
i=1

[mi log(ôi) + (1−mi) log(1− ôi)] . (11)

The model is trained end-to-end by optimizing a total loss function defined as

L = Lrec + LKL + LBCE + γLDDI, (12)

where γ is a hyperparameter to regulate the influence of DDI constraint. The multi-label medication
combination output m̂(t) ∈ {0, 1}|M| can be derived from ô through thresholding.

5 EXPERIMENTS

In this section, we conduct extensive experiments to make a comprehensive evaluation of our
proposed method and answer the following four questions: RQ1: How does the performance of
the proposed DATR compare to that of existing medication recommendation methods? RQ2: Does
DATR effectively mitigate DDIs while maximizing therapeutic outcomes? RQ3: How do the different
components of DATR contribute to its performance in terms of both accuracy and safety? RQ4: How
do the hyperparameters affect the recommendation performance and safety of DATR?

5.1 EXPERIMENT SETUP

Dataset. We utilized electronic health record data from two real-world EHR datasets, specifically
MIMIC-III (Johnson et al., 2016) and MIMIC-IV (Johnson et al., 2023). In line with prior studies
(Shang et al., 2019; Yang et al., 2021b), the datasets were processed and randomly split into training,
validation, and testing sets with a ratio of 4:1:1. Details of dataset can be found in Appendix C.2.

Evaluation Metrics. We use four commonly adopted metrics in medication recommendation (Shang
et al., 2019; Yang et al., 2021b; 2023; 2021a): Drug-Drug-Interaction Rate (DDI), Jaccard Similarity
Score (Jaccard), F1-score, and Precision-Recall Area Under Curve (PRAUC). DDI is a safety-related

6
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metric that calculates the rate of predicted combinations that involve two or more drugs with a positive
relationship in the DDI matrix. The other metrics, Jaccard, F1, and PRAUC, are commonly used to
assess the accuracy of recommendation systems in general recommendation literature. Specifically,
higher values of Jaccard, PRAUC, and F1 indicate improved accuracy, while a lower DDI value
suggests more secure.

Baselines. We compare the proposed DATR with the following 10 baseline methods. Instance-based
methods: standard logistic regression (LR), LEAP (Zhang et al., 2017). Longitudinal modeling
methods: GAMENet (Shang et al., 2019), MICRON (Yang et al., 2021a), COGNet (Wu et al., 2022),
SHAPE (Liu et al., 2023), RAREMed (Zhao et al., 2024). Molecular structure informed methods:
SafeDrug (Yang et al., 2021b), MoleRec (Yang et al., 2023), DrugDoctor (Kuang & Xie, 2024).
Detailed introduction of baselines can be found in Appendix C.5.

Implementation Details. The hyperparameters of all baseline models are selected based on their
performance on the validation set. For our proposed DATR model, hyperparameters are tuned via
grid search to ensure optimal performance. Specifically, we set the embedding dimension of the
Transformer encoder to 128, with 4 attention heads and 2 layers. The drug molecular encoder is
implemented using a 3-layer Graph Isomorphism Network (GIN) (Xu et al., 2018), with each layer
having an embedding dimension of 128. Each drug’s molecular graph is represented using node
features of dimension 9 and edge features of dimension 3. The transformation functions qϕ and
qψ are implemented as two-layer biased linear projections. We train the model for 70 epochs. The
hyperparameters are set as α = 1.0, β = 4, and γ = 0.1. Optimization is performed using the
AdamW optimizer (Loshchilov, 2017) with a learning rate of 1e-4 and a weight decay of 1e-3. All
experiments are conducted on an NVIDIA A100 GPU with 80 GB of memory.

5.2 OVERALL PERFORMANCE COMPARISON (RQ1)

Table 1 summarizes the overall performance of all methods. The results highlight distinct trends
among the different approaches and underscore the strengths of the proposed DATR method. Methods
like LR and LEAP, which focus solely on the current visit’s patient status, consistently exhibit
the lowest performance across most metrics. Longitudinal-based methods, such as GAMENet,
demonstrate improved prediction accuracy compared to the baseline methods, indicating the value of
incorporating patient history. RAREMed appears to achieve a lower DDI rate by recommending fewer
medications, which might implicitly reduce the likelihood of interactions. Safedrug and MoleRec
leverage drug structural information to improve prediction, while introducing explicit loss function
to mitigate DDI. SHAPE and DrugDoctor achieve better prediction results by learning visit-level
knowledge while DrugDoctor, in particular, stands out as the runner-up in most accuracy metrics for
both datasets by integrating molecular structural information.

Table 1: Performance of DATR on MIMIC-III and MIMIC-IV datasets. The best and the runner-up
results in each column are highlighted in bold and underlined, respectively. Performance metrics are
presented as mean with standard deviation in subscript.

MIMIC-III MIMIC-IV

Method Jaccard ↑ PRAUC ↑ F1 ↑ DDI ↓ Jaccard ↑ PRAUC ↑ F1 ↑ DDI ↓

LR 0.4935±0.005 0.7634±0.004 0.6512±0.005 0.0788±0.002 0.4152±0.006 0.6783±0.005 0.5651±0.006 0.0732±0.002
LEAP 0.4521±0.007 0.6581±0.006 0.6152±0.007 0.0720±0.003 0.3909±0.008 0.5542±0.007 0.5439±0.008 0.0550±0.002

GAMENet 0.5210±0.004 0.7780±0.003 0.6762±0.004 0.0781±0.002 0.4401±0.005 0.6833±0.004 0.5933±0.005 0.0718±0.002
COGNet 0.5109±0.005 0.7665±0.004 0.6615±0.005 0.0737±0.002 0.4313±0.006 0.6712±0.005 0.5850±0.006 0.0866±0.003
RAREMed 0.5342±0.003 0.7820±0.002 0.6938±0.003 0.0530±0.001 0.4620±0.004 0.6965±0.003 0.6152±0.004 0.0510±0.001
MICRON 0.5119±0.005 0.7690±0.004 0.6676±0.005 0.0610±0.002 0.4495±0.006 0.6753±0.005 0.6033±0.006 0.0502±0.002
SHAPE 0.5348±0.001 0.7791±0.003 0.6885±0.004 0.0850±0.003 0.4659±0.005 0.6928±0.004 0.6171±0.005 0.0917±0.003

SafeDrug 0.5255±0.004 0.7732±0.003 0.6804±0.004 0.0688±0.002 0.4560±0.005 0.6858±0.004 0.6098±0.005 0.0689±0.002
MoleRec 0.5303±0.002 0.7795±0.003 0.6844±0.004 0.0692±0.002 0.4502±0.005 0.6867±0.004 0.6040±0.005 0.0699±0.002
DrugDoctor 0.5422±0.003 0.7813±0.002 0.6975±0.003 0.0603±0.002 0.4703±0.004 0.6988±0.003 0.6190±0.004 0.0705±0.002

DATR 0.55060.55060.5506±0.0030.0030.003 0.79050.79050.7905±0.0020.0020.002 0.70730.70730.7073±0.0030.0030.003 0.03660.03660.0366±0.0020.0020.002 0.47830.47830.4783±0.0020.0020.002 0.70200.70200.7020±0.0020.0020.002 0.62160.62160.6216±0.0030.0030.003 0.04250.04250.0425±0.0010.0010.001

Our proposed DATR method consistently and significantly outperforms all other evaluated methods
across both the MIMIC-III and MIMIC-IV datasets. It achieves the highest Jaccard, PRAUC, and F1
scores, indicating superior predictive accuracy in identifying relevant medications. For instance, on
MIMIC-III, DATR’s Jaccard score is approximately 1.7% higher than the runner-up (DrugDoctor).
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Crucially, DATR also achieves the lowest DDI rate, demonstrating its exceptional effectiveness
in recommending safer medication combinations. On MIMIC-III, DATR reduces the DDI rate by
approximately 39% compared to the runner-up with the lowest DDI (RAREMed), and by over
60% compared to DrugDoctor. This strong performance across both accuracy and safety metrics
highlights the effectiveness of DATR’s approach, which uniquely integrates drug molecular structural
information, therapeutic intent and learned safety profiles.

5.3 CASE STUDY (RQ2)

To intuitively illustrate the advantages of DATR in mitigating DDIs while maximizing therapeutic
outcomes, we randomly selected four patient visits from the test set and conducted a detailed compar-
ative analysis of recommendation results across four models: GAMENet, SafeDrug, MoleRec, and
DATR. As shown in Figure 3, we invited a panel of 20 clinical experts to evaluate the recommended
medication lists generated by each model.

GAMENet SafeDrug MoleRec DATR GAMENet SafeDrug MoleRec DATR GAMENet SafeDrug MoleRec DATR GAMENet SafeDrug MoleRec DATR

Recommendation Model

Pr
op

or
tio

n

0.5

0.6

0.7

0.8

0.4

Patient A Patient B Patient C Patient D

0.086
0.043

0.047

0.032 0.046

0.091 0.067 0.074

0.063 0.056 0.054
0.035

0.038

0.057 0.044 0.046

Figure 3: Comparison of four models on four sample patient visits. Inner bar: proportion of
drugs overlapping with ground-truth prescriptions; outer bar: proportion of drugs judged effective
by clinicians. Numbers above bars indicate DDI rate. DATR achieves the best performance on
effectiveness and safety.

From the case study, we observe that DATR consistently achieves a higher proportion of clinically
validated drugs, while maintaining a lower DDI rate compared to baseline models. Notably, although
certain baseline models, such as SafeDrug and MoleRec, exhibit comparable overlap with ground-
truth prescriptions, they often include drug combinations with higher interaction risks or lower
expert-judged efficacy. These results underscore DATR’s ability to generate recommendations that
are not only aligned with historical treatment patterns but also robust to adverse interactions and
clinically meaningful, thereby enhancing its potential utility in real-world decision support systems.

During our detailed analysis of the expert evaluations, we noticed a recurring pattern: many drugs
that clinicians judged as effective but that were not present in the ground-truth prescriptions were
therapeutically interchangeable with medications that were prescribed. This highlights the strength
of our proposed therapeutic structure reconstruction method in capturing treatment semantics by
modeling drug structure through therapeutic context. Looking ahead, explicitly incorporating the
notion of efficacy equivalence into future medication recommendation frameworks may further
enhance clinical applicability in scenarios such as drug shortages, patient-specific contraindications,
or treatment optimization. Detailed analysis can be found in Appendix E.2.

5.4 ABLATION STUDY (RQ3)

To verify the effectiveness of each component of DATR, we design several ablation models. "w/o xm"
removes the molecule-level structural representation in therapeutic structure reconstruction. "w/o xs"
removes the substructure-level structural representation in therapeutic structure reconstruction. "w/o
em" removes the previous medication usage condition in the recommendation predicting process. To
further demonstrate the benefit of therapeutic structure reconstruction, in "R→T" we substituted it
with a standard Transformer and a pooling layer, and compared the results.

Table 2 presents the performance of the different variants of DATR. Removing either the molecular-
level representation hm or the substructure-level representation hs leads to a noticeable decline in

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

recommendation accuracy, underscoring the necessity of capturing drug molecular information from
both holistic and fragment-based perspectives. Among all ablations, the most significant performance
degradation occurs in the "R→T" setting, demonstrating the effectiveness of the proposed therapeutic
structure reconstruction in integrating structural features with therapeutic intent.

Table 2: Ablation study on MIMIC-III dataset.

Model Jaccard PRAUC F1 DDI

w/o hm 0.5267±0.001 0.7811±0.003 0.6931±0.001 0.0426±0.001
w/o hs 0.5312±0.001 0.7828±0.003 0.6992±0.001 0.0407±0.001
w/o em 0.5319±0.003 0.7825±0.002 0.6983±0.002 0.0453±0.001
R→T 0.5117±0.002 0.7528±0.001 0.6702±0.001 0.0463±0.001
DATR 0.55060.55060.5506±0.0030.0030.003 0.79050.79050.7905±0.0020.0020.002 0.70730.70730.7073±0.0030.0030.003 0.03660.03660.0366±0.0020.0020.002

Furthermore, omitting historical medication
embeddings (em) also results in a reduction in
accuracy, suggesting that previous medication
usage provides valuable contextual signals for
current drug recommendation. In terms of
safety, all ablated variants exhibit an increased
DDI rate compared to the full model, which
emphasizes the importance of unified drug
modeling. Nevertheless, the DDI rates of all
ablated variants remain relatively low, which empirically illustrates the robustness of our proposed
potential DDI constraint mechanism.

5.5 HYPERPARAMETER STUDY (RQ4)

We conducted a dedicated study to meticulously investigate the influence of hyperparameters on the
performance of DATR on the MIMIC-III. Specifically, we considered four key hyperparameters: the
sharpness exponent α and directional sensitivity coefficient β of the DDI constraint, the DDI loss
weight (γ) and the number of training epochs #Epochs.
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Figure 4: Hyperparameter effects on model performance.

Figure 4 illustrates the impact of different hyperparameters on the model’s recommendation accuracy
and safety. Increasing α attenuates the penalization applied by the DDI constraint, enhancing accuracy
but concurrently lessening the rigor of DDI mitigation. Amplifying β heightens the DDI constraint’s
sensitivity to the varying relevance of interacting drugs, favoring DDI avoidance but diminishing
accuracy. Both Jaccard index and DDI rate show a declining trend as γ increases. Notably, a
modest γ can benefit recommendation accuracy, potentially reflecting physicians’ consideration
of DDIs in real-world prescriptions. During the training process, the DDI rate fluctuates upwards
as recommendation accuracy increases, reflecting the influence of DDIs present inherently in the
dataset. Nevertheless, the overall DDI rate remains low, demonstrating the advantage of our global
consideration of potential DDI.

6 CONCLUSION

In this paper, we tackled the critical challenge of simultaneously improving both the effectiveness
and safety of medication recommendation systems. We proposed DATR, a novel framework that
seamlessly integrates drug molecular structures, therapeutic intent derived from the ATC system,
and DDI safety profiles into a unified modeling paradigm. Extensive experiments on two real-world
EHR datasets demonstrate that DATR consistently outperforms state-of-the-art baselines. It not only
achieves higher accuracy in recommending clinically effective medication combinations but also
significantly reduces the incidence of potential drug–drug interactions, offering a promising step
toward safer and more reliable clinical decision support.
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A NOTATION

Table 3: Summary of main notations.

Symbol Description Dimension

x Index of a patient –
V(x) EHR sequence of patient x [v(1), . . . , v(Nx)]
Nx Number of visits of patient x N
v(i) i-th visit record –
v
(i)
d Diagnosis multi-hot vector at visit i {0, 1}|D|

v
(i)
p Procedure multi-hot vector at visit i {0, 1}|P |

v
(i)
m Medication multi-hot vector at visit i {0, 1}|M|

D,P,M Sets of diagnoses, procedures, medications |D|, |P |, |M |
t Current time step / visit index N
vt
d Diagnosis sequence up to visit t [v

(1)
d , . . . ,v

(t)
d ]

vt
p Procedure sequence up to visit t [v

(1)
p , . . . ,v

(t)
p ]

vt−1
m Medication sequence up to visit t− 1 [v

(1)
m , . . . ,v

(t−1)
m ]

A DDI adjacency matrix {0, 1}|M|×|M|

Aij Indicator of interaction between mi,mj {0, 1}
f(·) Medication recommendation function {0, 1}|M|

m̂(t) Predicted medication combination at visit t {0, 1}|M|

xs Substructure-level structural distribution Rd

xm Molecule-level structural representation Rd

x Concatenated structural feature [xs,xm] R2d

d Dimension of structural feature vectors N
G = (V,E) Molecular graph (atoms and bonds) –
h
(l)
i Node (atom) feature at layer l Rd

eij Edge (bond) feature Rd

L Number of GNN layers N

y ATC therapeutic label embedding Rdy

z Latent variable for therapeutic structure Rk

k Dimension of latent variable z N
qϕ(z | x,y) Variational posterior N (µ, σ2)
p(z | y) Conditional prior of z N (0, I)
f(z,y) Decoder for structure reconstruction R2d

x̂ Reconstructed structural feature R2d

Lrec Reconstruction loss R
LKL KL divergence term R

Ed,Ep,Em Embedding matrices for codes R(|D|,|P |,|M|)×d

h
(t)
d Encoded diagnosis feature at visit t Rd

h
(t)
p Encoded procedure feature at visit t Rd

h
(t−1)
m Encoded medication feature up to t− 1 Rd

ec Current health condition representation R2d

em Historical medication usage representation R|M|

H Stacked therapeutic structural features R|M|×2d

Wq,Wk,Wv Projection matrices in cross-attention Appropriate sizes
r Therapeutic relevance scores [0, 1]|M|

ri Relevance of medication i to current condition [0, 1]
er Context vector aggregated by r Rd

ô Predicted medication probabilities [0, 1]|M|

α Sharpness exponent in selectivity penalty R+

β Directional sensitivity coefficient R+

γ Weight of DDI loss R+

LBCE Binary cross-entropy loss R
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B DISCLOSURE ON THE USE OF LARGE LANGUAGE MODELS

Throughout the research and writing process for this paper, we utilized a Large Language Model
(LLM) to assist with specific technical and linguistic tasks. We provide this statement to transparently
detail its role.

• Manuscript Writing and Polishing: The LLM served as an advanced grammar and style checker.
We used it to refine sentence structures, enhance the flow and clarity of our arguments, and ensure
consistent terminology. The intellectual contribution, including the formulation of the problem, the
proposed methodology, and the interpretation of our findings, originates entirely from the authors.

• LaTeX and Table Formatting: The LLM was employed as a technical tool to generate LaTeX code
for the presentation of our results, particularly for typesetting complex tables. This streamlined the
formatting process but did not influence the content or design of the tables themselves.

• Experimental Code Implementation: During the implementation of our experiments, the LLM
acted as a coding assistant. Its role was to generate boilerplate code for standard tasks (e.g., file
I/O, argument parsing) and to provide syntactical guidance for specific Python libraries. All core
algorithmic logic and experimental designs were developed by the authors. Furthermore, any code
snippet suggested by the LLM was rigorously tested, and often modified, by the authors before
integration into the final codebase.

All LLM-generated outputs, both text and code, were carefully reviewed, verified, and edited by
the authors to ensure their accuracy and appropriateness. The conceptualization of the research, the
design of the proposed model, the experimental setup, and the interpretation of the results were
performed solely by the human authors, who bear full responsibility for the content of this work.

C DETAILS ON DATA AND EXPERIMENT SETUP

C.1 INTRODUCTION OF ATC SYSTEM

The Anatomical Therapeutic Chemical (ATC) Classification System is a widely recognized inter-
national standard for classifying drugs based on their organ or system of action and their chemical,
pharmacological, and therapeutic properties (Schellekens et al., 2011; Garbe et al., 1993). It is
maintained by the World Health Organization (WHO) Collaborating Centre for Drug Statistics
Methodology (WHOCC). The ATC system provides a hierarchical structure with five distinct levels,
offering increasingly specific classifications from broad anatomical groups to individual chemical
substances. Each ATC code uniquely identifies a drug or group of drugs within this hierarchical
framework. The increasing specificity of the levels allows for a detailed categorization that reflects
both the therapeutic application and, at lower levels, the chemical nature of the drug. Table 4 sum-
marizes the distribution of codes and pharmaceuticals across these levels, along with their semantic
meanings.

Table 4: Distribution of ATC Levels by Codes and
Pharmaceuticals. Codes, Pharma., and Semantic re-
spectively represent the number of codes at each
level, the number of pharmaceuticals, and their cor-
responding meanings.

Level Codes Pharma. Semantic

Level 1 14 14 Anatomical group
Level 2 94 94 Therapeutic group
Level 3 267 262 Therapeutic subgroup
Level 4 889 819 Chemical subgroup
Level 5 5067 4363 Chemical substance

In this work, we leverage the ATC Classifica-
tion System, specifically focusing on ATC4
codes. The reason for choosing ATC4 is its
ability to bridge the gap between therapeutic
intent and chemical structure. While higher
levels (ATC1-3) primarily focus on anatomi-
cal and therapeutic groupings, Level 4 begins
to incorporate chemical subgrouping (e.g.,
A01AA: Fluorine for dental prophylaxis, re-
flecting a chemical element used for a specific
therapeutic purpose). This level provides a
good balance, allowing us to align the seman-
tic categories of drug use (therapeutic intent)
with a representation that has closer ties to the
underlying chemical structures compared to higher ATC levels, which are purely based on therapeutic
or anatomical classifications. By utilizing ATC4, we can better capture the therapeutic determinants
embedded within drug structures in an intent-aware manner, which is crucial for the Conditional
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Therapeutic Structure Reconstruction proposed in our DATR framework (as discussed in Section 4).
This allows us to address the semantic gap between chemical structures and therapeutic outcomes
more effectively.

C.2 DETAILS ON DATASETS

We conduct experiments on two widely used real-world electronic health record (EHR) datasets,
MIMIC-III (Johnson et al., 2016) and MIMIC-IV (Johnson et al., 2023). Both datasets contain
de-identified longitudinal hospitalization records collected from Beth Israel Deaconess Medical
Center, enabling the construction of patient-level clinical trajectories for medication recommendation.

Data preprocessing. For each dataset, we extract chronological sequences of patient visits, where
each visit consists of: (i) diagnoses, recorded as ICD-9 codes in MIMIC-III and ICD-10 codes in
MIMIC-IV; (ii) procedures, recorded as ICD-9-CM for MIMIC-III and ICD-10-PCS for MIMIC-
IV; and (iii) prescribed medications. Following standard practice, all medications are mapped to
their corresponding ATC codes through publicly available mapping resources, enabling a unified
therapeutic categorization across datasets.

Patient-level splitting. To avoid information leakage across different visits of the same patient
and to ensure realistic model evaluation, we adopt a patient-level data split. Specifically, patients
are randomly partitioned into training, validation, and test sets with a ratio of 4:1:1, and all visits
from a given patient appear exclusively in one split. This ensures that the model is evaluated on
entirely unseen patients, which better reflects the intended clinical deployment scenario and aligns
with established practices in EHR-based predictive modeling.

Table 5: Statistics of processed data.

Item MIMIC-III MIMIC-IV

# of visits / # of patients 14949/6344 19461/7567
dis. / proc. space size 1959/1440 3973/1338
med. space size 112/141 212/302
avg. / max # of visits 4.92/29 7.28/42
avg. / max # of diag. 13.79/39 13.39/39
avg. / max # of proc. 4.40/28 2.57/28
avg. / max # of med. 26.23/63 13.31/70

Dataset statistics. Table 5 summarizes the
key statistics of the processed datasets, includ-
ing the total number of patients and visits, vo-
cabulary sizes of diagnoses, procedures, and
medications, and the average number of events
per visit. Notably, MIMIC-III and MIMIC-
IV differ substantially in coding systems (ICD-
9 vs. ICD-10) and data sparsity, providing a
natural testbed for evaluating the robustness
and generalization capability of our proposed
framework.

These comprehensive statistics highlight the
heterogeneity and complexity of EHR data, underscoring the importance of models capable of
generalizing across diverse clinical settings and coding systems.

C.3 THE DETAILED FEATURES FOR ATOMS, BONDS AND MOLECULAR GLOBAL

Table 6: Overview of atom (node) and bond (edge) features.

Atomic Features (V) Bond Features (E)
Atomic Number Bond Type
Chirality Bond Stereo
Degree Conjugation
Formal Charge –
Number of Hydrogens –
Radical Electrons –
Hybridization –
Aromaticity –
Ring Membership –

A comprehensive overview of the selected atom and bond input features is presented in Table 6. The
initial step involves the conversion of the SMILES string into a graph structure using the RDKit
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package. This package is employed not only for constructing molecular graphs but also for computing
atomic and bond-level features, which serve as critical inputs for subsequent modeling.

C.4 DETAILS ON EVALUATION METRICS

For a given patient visit, let M denote the complete set of possible medications in the formulary. The
ground truth set of prescribed medications is represented by a binary vector y ∈ {0, 1}|M |, where
yi = 1 if medication i ∈ M was prescribed, and yi = 0 otherwise. Similarly, the set of medications
recommended by the model is represented by a binary vector ŷ ∈ {0, 1}|M |. Jaccard, F1 and PRAUC
are calculated as follows:

Jaccard =
{i : yi = 1} ∩ {j : ŷj = 1}
{i : yi = 1} ∪ {j : ŷi = 1}

, (13)

F1 =
2R× P

R+ P
, (14)

where the recall and precision are formulated as

R =
{i : yi = 1} ∩ {j : ŷj = 1}

{i : yi = 1}
, P =

{i : yi = 1} ∩ {j : ŷj = 1}
{j : ŷj = 1}

. (15)

PRAUC =

|M |∑
k=1

Pk(Rk −Rk−1), (16)

For DDI, we calculate DDI rate as follows:

DDI =

∑
l,k∈{i:ŷi=1} Alk∑
l,k∈{i:ŷi=1} 1

, (17)

where A represents DDI graph define in section 3.

C.5 DETAILS ON BASELINES

To comprehensively evaluate our proposed method, we compare it with a variety of representative
baseline models as follows:

LR (Logistic Regression): A classical linear model that independently predicts medications based
on the current visit’s features, without considering temporal dependencies or inter-visit information.

LEAP (Zhang et al., 2017): An LSTM-based sequence modeling approach that encodes each visit as
a temporal instance and predicts the next medication set. It captures sequential patterns within the
patient’s historical medical records but does not explicitly model drug-drug interactions or molecular
features.

GAMENet Shang et al. (2019): Combines Graph Convolutional Networks (GCNs) and memory
networks to jointly learn from Electronic Health Records (EHRs) and a Drug-Drug Interaction (DDI)
graph. It constructs a dynamic memory bank of historical visits to support accurate and safe drug
recommendation.

MICRON (Yang et al., 2021a): Proposes a conditional recurrent residual network that captures
inter-visit dynamics and variations in drug usage patterns. It models both temporal continuity and
abrupt changes in medication behaviors across visits.

COGNet (Wu et al., 2022): Reformulates medication prediction as a sequence generation task. It
incorporates a copy-or-predict mechanism to selectively replicate medications from past visits or
generate new drugs based on current health status.

SHAPE (Liu et al., 2023): Introduces a lightweight intra-visit encoder to effectively model the
relationships among medical events within a visit. It generates expressive visit-level representations
to enhance the downstream prediction of medications.
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RAREMed (Zhao et al., 2024): Utilizes two self-supervised pretraining tasks to learn visit-aware
patient embeddings. It focuses on capturing individual-specific medication needs and complex
interrelations among clinical codes, which improves model generalization in low-resource scenarios.

SafeDrug (Yang et al., 2021b): Integrates pharmacological knowledge by incorporating molecular
structure embeddings into the recommendation framework. It jointly optimizes for therapeutic
effectiveness and safety by penalizing adverse drug interactions during training.

MoleRec (Yang et al., 2023): Enhances drug recommendation accuracy by aligning patients’ health
conditions with relevant molecular substructures. It employs hierarchical attention to identify and
leverage key molecular fragments related to a patient’s clinical context.

DrugDoctor (Kuang & Xie, 2024): Models the causal impact of historical prescriptions on patient
outcomes using a cross-attention mechanism. It accounts for both temporal treatment effects and
structural similarities among drugs to inform medication selection.

Overall, the existing medication recommendation methods can be broadly categorized into three
methodological families, each with distinct advantages and limitations. Instance-based approaches
(e.g., LR) rely solely on the information contained in the current visit and thus offer computational
simplicity and strong performance when intra-visit features dominate; however, they fail to capture
longitudinal treatment patterns. Longitudinal sequence-based methods (e.g. GAMENet, MICRON,
COGNet, RAREMed) explicitly incorporate temporal dependencies across visits, enabling more
accurate modeling of patient trajectories, though they often lack fine-grained pharmacological
knowledge and may struggle with safety considerations. Molecular-structure-informed models
(e.g., SafeDrug, MoleRec, DrugDoctor) integrate structural or chemical information to strengthen
pharmacological reasoning and improve safety, yet they typically treat molecular structure and
therapeutic intent as separate, unaligned modalities. These methodological distinctions highlight the
need for a unified framework capable of jointly modeling temporal patterns, structural information,
and therapeutic semantics, which is an objective that DATR is designed to address.

D DETAILS ON METHOD

D.1 PROOF

We derive the conditional lower bound in our conditional reconstruction module. Let q(z | x,y) be
a variational distribution that approximates the true posterior p(z | x,y). Consider the Kullback–
Leibler (KL) divergence between these two distributions:

KL
(
q(z | x,y) ∥ p(z | x,y)

)
= Eq(z|x,y)

[
log

q(z | x,y)
p(z | x,y)

]
. (18)

Using Bayes’ rule, the true posterior can be expressed as

p(z | x,y) = p(x, z | y)
p(x | y)

, (19)

and hence
log p(z | x,y) = log p(x, z | y)− log p(x | y). (20)

Substituting this into the KL divergence yields

KL
(
q(z | x,y) ∥ p(z | x,y)

)
= Eq(z|x,y) [log q(z | x,y)− log p(z | x,y)] (21)

= Eq(z|x,y) [log q(z | x,y)− log p(x, z | y) + log p(x | y)] . (22)

Note that log p(x | y) does not depend on z and can thus be taken outside the expectation:

KL
(
q(z | x,y) ∥ p(z | x,y)

)
= −Eq(z|x,y)

[
log p(x, z | y)

]
+Eq(z|x,y)

[
log q(z | x,y)

]
+log p(x | y).

(23)
Rearranging terms gives

log p(x | y) = KL
(
q(z | x,y) ∥ p(z | x,y)

)
+Eq(z|x,y)

[
log p(x, z | y)

]
−Eq(z|x,y)

[
log q(z | x,y)

]
.

(24)
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Using the factorization p(x, z | y) = p(x | z,y) p(z | y), we obtain

log p(x | y) = KL
(
q(z | x,y) ∥ p(z | x,y)

)
+ Eq(z|x,y)

[
log p(x | z,y)

]
−KL

(
q(z | x,y) ∥ p(z | y)

)
.

(25)

We define the conditional evidence lower bound (ELBO) as

L(x,y) = Eq(z|x,y)
[
log p(x | z,y)

]
−KL

(
q(z | x,y) ∥ p(z | y)

)
, (26)

so that the identity

log p(x | y) = L(x,y) + KL
(
q(z | x,y) ∥ p(z | x,y)

)
(27)

holds exactly. Since the KL divergence is always non-negative, we have

log p(x | y) ≥ L(x,y), (28)

which is the conditional ELBO used in the main text.

D.2 DETAILED DESIGN ANALYSIS OF THE POTENTIAL DDI CONSTRAINT

The selective nature of our potential DDI constraint, as formulated in Equation equation 9, is
critically enabled by the asymmetric sigmoid term, σ(β(rj − ri)). This term introduces a differential
penalty based on the relative therapeutic relevance of an interacting drug pair (i, j). Specifically, the
suppression applied to drug i is heavily dependent on its relevance score ri compared to that of drug
j, rj . When rj < ri, the sigmoid term approaches 0, leading to significant penalization of the less
relevant drug j. Conversely, when rj > ri, the term approaches 1, applying a minimal penalty to the
more essential drug j. This nuanced behavior can be formally understood by analyzing the gradient
of the DDI loss with respect to the relevance score ri:

∂LDDI

∂ri
∝ Aijrj

[
α(1− ri)

α−1σ(·) + (1− rj)
αβσ(·)(1− σ(·))

]
(29)

The structure of this gradient yields three clinically valuable properties that allow the model to balance
safety and efficacy in a principled manner:

• Progressive Suppression: The (1− ri)
α−1 term ensures that the penalty gradient is largest for drugs

with lower therapeutic relevance (ri → 0) and diminishes significantly for essential drugs (ri → 1),
thereby preserving their inclusion in the final recommendation.

• Directional Sensitivity: The term σ(·)(1− σ(·)), which corresponds to the derivative of the sigmoid
function, imparts directional sensitivity. The gradient is maximized when rj ≈ ri, which represents
the region of greatest clinical uncertainty where a decision between two interacting drugs is most
critical. The penalty’s influence decreases as the relevance scores diverge, focusing the model’s
attention on borderline cases.

• Interaction-Aware Scaling: The inclusion of the DDI matrix term Aij and the relevance score rj
ensures that the overall penalty is scaled proportionally to both the known severity of the interaction
and the therapeutic importance of the interacting drug.

E SUPPLEMENTARY EXPERIMENTS

E.1 SIGNIFICANCE ANALYSIS OF DATR

To further validate the robustness and statistical significance of DATR’s superior performance,
we conducted pairwise significance tests comparing DATR against all baseline models across all
evaluation metrics on both MIMIC-III and MIMIC-IV datasets. Specifically, we employed paired
t-tests with a significance level of p < 0.01 to assess whether the improvements achieved by DATR
are statistically significant rather than arising from random fluctuations.

The analysis confirms that DATR’s improvements in Jaccard, PRAUC, and F1 scores are statistically
significant compared to all baseline methods across both datasets. For example, on MIMIC-III, the
Jaccard improvements over DrugDoctor and RAREMed yield p-values less than 0.01, reinforcing the
reliability of the observed gains. Furthermore, DATR achieves a substantially lower DDI rate than all
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baselines, with the reduction being statistically significant across repeated runs. Notably, the DDI
rate of DATR on MIMIC-III is significantly lower than that of RAREMed (which previously had the
best safety performance), with p < 0.001.

These significance tests provide strong evidence that the performance gains of DATR are consistent
and meaningful, highlighting the advantage of its integrated modeling of patient longitudinal history,
molecular structural information, and safety constraints.

E.2 CASE STUDY ANALYSIS

Table 7 presents two visit records and corresponding recommendation results of patients X and
Y in MIMIC-III test set. For patient X, DATR successfully recommended Nimodipine, a drug
known to play a critical role in the treatment of subarachnoid hemorrhage (Scriabine & Van den
Kerckhoff, 1988), while simultaneously avoiding the recommendation of Amiodarone to avoid
DDI with Nimodipine. Notably, DATR further suggested Carbamazepine, which was not present
in the original prescription, but is potentially effective for managing postconcussion syndrome
(Alrashood, 2016). This highlights DATR’s capability to uncover latent associations between drug
candidates and patient-specific health conditions. For patient Y, DATR precisely recommended
Simvastatin in response to the diagnosis of hypercholesterolemia (Pedersen & Tobert, 2004), while
not recommending auxiliary ulcers-preventing drug Omeprazole in consideration of potential DDIs.

Table 7: Recommended results for two patients.

Category Patient X Jaccard: 0.5682 DDI: 0

Diagnosis Postconcussion syndrome, Cerebral artery occlusion, Subarachnoid hemorrhage,
Acute kidney failure, Retention of urine, Hypertensive chronic kidney disease.

Procedure Insertion of indwelling urinary catheter, Venous catheterization.
Medication Neomycin, Cefotaxime, Chlorhexidine, Nimodipine, Heparin, Glyceryl trini-

trate, Sultiame, Amiodarone, Potassium chloride, Furosemide...
DATR Neomycin, Cefotaxime, Nimodipine, Heparin, Glyceryl trinitrate, Sultiame,

Potassium chloride, Furosemide, Carbamazepine, Mannitol...

Category Patient Y Jaccard: 0.5721 DDI: 0

Diagnosis Subendocardial infarction, Coronary atherosclerosis, Hypertension, Asthma,
Hypercholesterolemia.

Procedure Insertion of coronary artery stent, heart cardiac catheterization, Coronary arteri-
ography. Insertion of transvenous pacemaker system.

Medication Ditazole, Simvastatin, Paracetamol, Practolol, Potassium, Omeprazole, Chlo-
ride, Thonzylamine, Tilidine, Sultiame, Oxitriptan, Zafirlukast, Captopril...

DATR Ditazole, Simvastatin, Practolol, Potassium, Chloride, Thonzylamine, Sultiame,
Oxitriptan, Zafirlukast, Captopril, Oxyphenisatine...

To provide a concrete illustration of how DATR bridges the semantic gap between molecular structure
and therapeutic outcomes, we present a detailed case study that contrasts DATR’s recommendations
with those of DrugDoctor for Patient Y to highlight the practical benefits of our proposed framework.

The clinical context for Patient Y, summarized in Table 7, necessitates medications for both hyperc-
holesterolemia (e.g., Simvastatin) and gastric protection (e.g., Omeprazole). The recommendations
generated by DrugDoctor and DATR are compared in Table 8. This comparison reveals a critical
difference in safety-aware therapeutic reasoning.

DrugDoctor correctly identifies the need for Simvastatin and Omeprazole, aligning with the ground-
truth prescriptions. However, their co-administration poses a potential drug-drug interaction risk,
which the model fails to mitigate. In stark contrast, DATR avoids this risk by not recommending
Omeprazole. Crucially, DATR proposes Oxyphenisatine as a safe and effective substitute. This
decision showcases the core strength of our therapeutic structure reconstruction module. By condi-
tioning on ATC categories, DATR is able to infer that Oxyphenisatine (ATC: A02BX) shares the same
primary therapeutic intent gastric protection as Omeprazole (ATC: A02BC), despite their structural
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Table 8: Comparison of medication recommendations for Patient Y. DATR achieves a higher Jaccard
score and a zero DDI rate by substituting the potentially interacting Omeprazole with a safer
alternative.

Model Recommendations Jaccard DDI Rate
DrugDoctor Simvastatin, Omeprazole, Captopril, Paracetamol, Ditazole,

Practolol, Potassium Chloride, Zafirlukast...
0.5613 0.0139

DATR Simvastatin, Captopril, Ditazole, Practolol, Potassium
Chloride, Zafirlukast, Thonzylamine, Sultiame, Oxitriptan,
Oxyphenisatine...

0.5721 0.0000

differences. Within the context of the patient’s cardiovascular conditions, Oxyphenisatine’s safety
profile is more suitable as it does not have a known significant interaction with Simvastatin.

This case study exemplifies DATR’s ability to move beyond simple pattern matching. It not only
predicts clinically relevant medications but also performs intelligent, safety-driven substitutions,
thereby effectively bridging the gap between identifying a therapeutic need and selecting the most
appropriate chemical entity for the patient.

E.3 GENERALIZATION TO NEW DRUGS AND RARE DISEASES

A key challenge in clinical AI is generalizing to scenarios with limited data, such as those involv-
ing new medications (a zero-shot problem) or rare diseases (a low-resource problem). DATR is
architecturally designed to handle such cases.

E.3.1 GENERALIZATION TO NEW DRUGS

DATR’s framework can be extended to newly approved drugs, even in a zero-shot setting without
historical prescription data, by leveraging the hierarchical ATC classification system. A new drug
can be immediately integrated into the model by mapping it to an existing ATC4 category based
on its therapeutic indication (e.g., A01AA for fluorine dental prophylaxis), enabling the immediate
application of learned therapeutic-structural patterns from that class.

Furthermore, when the molecular structure of the new drug is available, DATR’s conditional VAE can
generate a novel, intent-aware representation by encoding the new structure under the conditioning of
its assigned ATC category. This class-centric approach facilitates powerful cross-drug knowledge
transfer, allowing the model to leverage the learned latent distribution for an entire therapeutic
class to reason about therapeutically equivalent alternatives. As demonstrated in our case studies,
this capability allows DATR to successfully recommend such alternatives when exact matches
are unavailable, highlighting its strong generalization capacity within therapeutic categories. This
capability is crucial for recommending a new drug as a substitute for an older one, or vice-versa,
based on therapeutic intent rather than direct historical co-occurrence.

E.3.2 PERFORMANCE ON RARE DISEASES

For rare diseases, where direct disease-drug prescription data is sparse, DATR’s approach of modeling
therapeutic mechanisms via ATC categories provides a significant advantage over methods that rely
on memorizing specific prescription pairs. By focusing on the underlying therapeutic need, the model
can infer appropriate treatments even if it has seen few or no prior instances of that specific disease.

To empirically validate this, we evaluated DATR’s performance on a subset of the rarest diseases
in the MIMIC-III dataset (each with ≤5 occurrences). As shown in Table 9, DATR consistently
outperforms all baseline models, demonstrating its superior ability to generalize in low-resource
settings.
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Table 9: Performance comparison (Jaccard Score) on five rare diseases from the MIMIC-III test set.
DATR consistently achieves the highest score, indicating robust generalization.

ICD-9 Condition Name DATR SafeDrug MoleRec DrugDoctor
42610 Atrioventricular block 0.412 0.328 0.351 0.387
6265 Stress incontinence 0.396 0.310 0.333 0.371
83500 Closed dislocation of hip 0.403 0.317 0.342 0.382
80841 Closed fracture of ilium 0.388 0.301 0.322 0.365
34202 Flaccid hemiplegia 0.418 0.335 0.362 0.401

Average 0.402 0.319 0.343 0.382

E.4 SENSITIVITY ANALYSIS ON VAE LOSS WEIGHTING

To assess the sensitivity of our model to the balance between the reconstruction and KL divergence
losses within our therapeutic structure reconstruction module, we conducted an experiment on their
relative weighting. We denote two hyperparameters, µ and ν, to scale the reconstruction loss (Lrec)
and the KL divergence loss (LKL), respectively. During this analysis, all other hyperparameters were
held constant at their optimal values (α = 1.0, β = 4, γ = 0.1).

The results, summarized in Table 10, demonstrate that DATR’s performance is highly stable across the
tested weight configurations. The optimal performance was achieved with the standard VAE setting
of µ = 1.0 and ν = 1.0, which aligns with common practices in variational inference. Crucially,
all tested configurations yielded Jaccard scores within 0.35% of the optimal value, underscoring
the model’s robustness. This stability suggests that the framework is not overly sensitive to the
precise balance between reconstruction fidelity and latent space regularization, which simplifies
hyperparameter tuning.

Table 10: Impact of VAE loss weights on model performance. The model shows high stability, with
minimal performance degradation when deviating from the standard µ = 1.0, ν = 1.0 configuration.

µ (Lrec) ν (LKL) Jaccard DDI Rate
1.0 1.0 0.5506 0.0366
0.8 1.0 0.5489 0.0372
1.0 0.8 0.5492 0.0370
1.2 1.0 0.5488 0.0374
1.0 1.2 0.5495 0.0371

E.5 COMPLEXITY ANALYSIS

We report the model complexity of DATR and several baseline methods in terms of parameter count,
training time, and test time in Table 11. Although DATR introduces a multi-level representation
mechanism and therapeutic structure reconstruction, its total parameter count (5.98M) remains lower
than MoleRec (6.62M), and comparable to GAMENet (3.82M) and SafeDrug (1.56M). In terms of
computational efficiency, DATR achieves a favorable balance: it requires a moderate training time
(9.13 hours) and test time (0.64 minutes per evaluation), which is faster than MoleRec and GAMENet,
while only marginally slower than SafeDrug.

Notably, both MoleRec and DATR exhibit relatively larger model sizes due to the use of Transformer-
based architectures. However, the inherent parallelism of the Transformer enables efficient training
and inference, which offsets the computational overhead introduced by the increased parameter count.
These results demonstrate that the proposed framework maintains reasonable computational cost
despite its structural enhancements, making it practical for real-world deployment in clinical decision
support settings.

To investigate the trade-off between computational efficiency and performance, we implemented
a GNN freezing strategy, motivated by similar findings in MoleRec (Yang et al., 2023). In this
configuration, the GNN parameters are frozen after an initial training phase, thereby excluding them
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Table 11: Model complexity comparison in terms of parameter count, training time (hours), and test
time (minutes; summed over 10 runs).

Model Parameters Training Time (h) Test Time (min)
GAMENet 3,816,843 8.24 1.21
SafeDrug 1,558,438 4.62 0.44
MoleRec 6,623,543 10.61 0.88
DATR 5,978,378 9.13 0.64

from subsequent gradient updates. The results, summarized in Table 12, demonstrate a significant
reduction in resource requirements: the number of trainable parameters decreases by approximately
35.3%, and the training time is reduced by 31.6%. This efficiency gain is achieved with only a
marginal performance trade-off, observing a slight decrease in the Jaccard score (from 0.5506 to
0.5458) and a minor increase in the DDI rate.

Table 12: Performance and efficiency comparison of the full DATR model versus a configuration
with a frozen GNN encoder. The frozen GNN significantly reduces the parameter count and training
time with a minimal impact on performance.

Configuration Parameters Training Time Jaccard DDI Rate
Full DATR 5.98M 9.13h 0.5506 0.0366
Frozen GNN 3.87M 6.24h 0.5458 0.0382

F BROADER IMPACT

DATR’ strong empirical performance hinges heavily on the proposed Therapeutic Structure Recon-
struction method, which provides a new paradigm for learning drug representations that are both
semantically rich and clinically meaningful. By conditioning structural encoding on therapeutic
context, it offers a principled way to connect molecular features with clinical use, which could have
broader implications for drug discovery and development. For example, this approach may assist in
identifying DDI risks for novel chemical entities or support drug repurposing efforts by highlighting
structural properties relevant across therapeutic areas.

Moreover, in our detailed analysis of the expert evaluations from the case study, we observed that
DATR frequently recommends drugs that, while absent from the original prescriptions, are judged
by clinicians as therapeutically effective. These drugs are often interchangeable with those actually
prescribed in terms of clinical efficacy. This not only validates the effectiveness of the Therapeutic
Structure Reconstruction method in capturing nuanced therapeutic semantics, but also provides new
insights for developing more practical and clinically aligned medication recommendation systems.

(1) Improving recommendation precision through fine-grained equivalence modeling. Incor-
porating therapeutic substitutability into model design allows for a finer-grained understanding of
drug efficacy beyond rigid matching to historical prescriptions. This flexibility enables the model
to capture latent therapeutic intent and suggest clinically plausible alternatives, particularly when
drugs share similar mechanisms of action or therapeutic outcomes. Such an approach can improve
the precision and realism of recommendations, bringing them closer to actual clinical reasoning
processes and enhancing their practical utility.

(2) Enhancing safety through equivalence-guided substitution. Beyond accuracy, efficacy-
equivalence modeling also introduces a safety-aware dimension to recommendation. When certain
drugs pose elevated DDI risks, they are contraindicated due to patient-specific factors, or are less
tolerable, substitutability-aware systems can proactively suggest safer alternatives that preserve
therapeutic goals. This opens the door to adaptive and personalized risk mitigation strategies, such as
swapping out high-risk combinations or implementing treatment de-escalation in chronic care, thus
improving both the robustness and trustworthiness of clinical decision support.
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Integrating these capabilities into future recommender architectures may help bridge the gap between
algorithmic optimization and real-world clinical needs, ultimately advancing the usability, safety, and
adaptability of AI-driven medication recommendation in diverse healthcare settings.

G LIMITATION

Despite these promising results, several limitations remain. First, DATR depends on the availability
and reliability of ATC classifications to model therapeutic intent. While comprehensive and widely
used, the ATC system may not cover novel or off-label medications accurately. Future work may
utilize embeddings learned from large-scale clinical notes or real-world prescription patterns to infer
therapeutic intent even for underrepresented or novel drugs. Second, the quality of DDI mitigation
relies heavily on the completeness and timeliness of the underlying DDI knowledge base, which is
inherently dynamic. Future work could explore adaptive mechanisms for updating the DDI matrix or
even learning interaction risks directly from data, thereby improving the robustness and applicability
of the framework in real-world clinical settings.
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