
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOPGQ: POST-TRAINING QUANTIZATION FOR GNNS
VIA TOPOLOGY BASED NODE GROUPING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNN) suffer from large computational and memory costs
in processing large graph data on resource-constrained devices. One effective
solution to reduce costs is neural network quantization, replacing complex high-bit
operations with efficient low-bit operations. However, to recover from the error
induced by lower precision, existing methods require extensive computational costs
for retraining. In this circumstance, we propose TopGQ, the first post-training
quantization (PTQ) for GNNs, enabling an order of magnitude faster quantization
without backpropagation. We analyze the feature magnitude of vertices and observe
that it is correlated to the topology regarding their neighboring vertices. From these
findings, TopGQ proposes to group vertices with similar topology information
of inward degree and localized Wiener index to share quantization parameters
within the group. Then, TopGQ absorbs the group-wise scale into the adjacency
matrix for efficient inference by enabling quantized matrix multiplication of node-
wise quantized features. The results show that TopGQ outperforms SOTA GNN
quantization methods in performance with a significantly faster quantization speed.

1 INTRODUCTION

Figure 1: Comparing duration of existing GNN
quantization methods against TopGQ.

Graph neural networks (GNNs) attract a great
amount of attention due to their ability to process
diverse unstructured data. They have achieved
success in many areas such as recommendation
systems (Pal et al., 2020; Fan et al., 2019; Zhang
et al., 2023), molecular interaction (Wale et al.,
2008; Borgwardt et al., 2005), transportation net-
works (Bai et al., 2020; Cao et al., 2020), and social
network analysis (Qiu et al., 2018; Arazzi et al.,
2023). However, GNNs often suffer from substan-
tial computational and memory costs due to increas-
ing demands for processing large graphs, especially on resource-constrained devices.

One promising direction to circumvent this issue is neural network quantization (Choukroun et al.,
2019; Zhao et al., 2019; Choi et al., 2021), which reduces the computation and memory requirements
of GNN inference by utilizing reduced numerical precision for computations. However, despite
its advantages, quantizing GNNs is considered difficult due to the extremely diverse vertex feature
magnitudes caused by the message-passing of the GNN algorithm. Since the quantization process is
known to be highly sensitive to the magnitude outliers (Wei et al., 2022), such diversity in aggregated
features in GNNs results in high quantization errors.

To handle the magnitude outlier problem, several methods (Tailor et al., 2020; Zhu et al., 2022) have
been proposed to adopt quantization-aware training (QAT). However, QAT methods accompany
significant computation and memory costs for the quantization process, requiring excessive resources
and time larger than full-precision pretraining target GNN architecture. Figure 1 reports the time it
takes to quantize common GNN architectures using prior GNN quantization methods (Tailor et al.,
2020; Zhu et al., 2022). Measured in wall-clock time, the quantization time easily exceeds 100
minutes, and even up to 4.9 days (ogbn-products, Degree-Quant) when the graph size increases.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Real-world graphs, such as traffic networks (Jiang & Luo, 2022; Sharma et al., 2023) or social
media graphs (Gao et al., 2023; Yao et al., 2023), are continuously updated, which requires multiple
compressing of the GNNs to keep the application up-to-date. Also, in safety-critical applications such
as edge fraud detection in financial transactions (Lu et al., 2022; Zhou et al., 2021; Liu et al., 2018), a
rapid update is required to avoid safety crisis, and fast quantization of GNN can be necessary.

To this end, we propose TopGQ, the first accurate post-training quantization (PTQ) framework for
GNNs addressing the aforementioned issues of existing GNN quantization methods. TopGQ does
not involve any form of gradient computation or parameter updates, which makes the proposed
method significantly faster compared to the baseline and requires low memory consumption. Instead,
TopGQ focuses on the local topological information of the graphs to determine accurate quantization
parameters. As a result, our method TopGQ shortens the quantization time by an order of magnitude,
making GNN quantizations much faster and more efficient.

The key to achieving high performance is to well utilize the local topology of the graphs. We observe
that the existing method relying on the indegree of the vertices is insufficient to capture the diversity of
the feature magnitudes. Instead, we propose topology-based node grouping. Because the magnitude
of a node feature is determined by local neighbors, we arrange the vertices into several quantization
groups that share similar indegree and local Wiener index. In the process, we devise an efficient
algorithm for computing the local Wiener index. Lastly, we additionally provide scale absorption
method to enable efficient integer matrix multiplication of node-wise quantized feature matrix. The
experimental results show that TopGQ outperforms the existing SOTA method for GNN quantization
with up to 358× speedups with better or comparable accuracy.

Our contributions can be summarized as follows:

• We show that the magnitudes of node features in GNN are correlated with local topological
information from degree centrality and Wiener index.

• We propose a topology-based node grouping, which groups vertices with similar topological
characteristics to reduce quantization error from high feature magnitude variance of GNN.

• We propose scale absorption to enable efficient integer arithmetic of node-wise quantized
GNN operation by absorbing node-wise scale into an adjacency matrix.

• We propose the first PTQ method for GNN, which outperforms the existing training-based
quantization method with meaningful margins while bringing up to 358× less quantization
time compared to the baselines.

2 PRELIMINARIES

2.1 GRAPH NEURAL NETWORKS

Let graph G = (V,E), where V is a set of vertices and E is a set of edges. Each vertex vi consists
of feature vector hi and adjacency matrix is A ∈ Rn×n for n vertices, where Ai,j = ei,j , if
ei,j ∈ E, else 0. To embed topological information in vertex feature, GNN gathers information
from neighboring vertices uj ∈ N (vi) to update hidden vertex feature hi of vi, which is called the
message-passing algorithm. The message-passing algorithm consists of two parts: combination and
aggregation. Firstly, hidden vertex feature h

(l)
i is multiplied with weight matrix W (l) of l-th GNN

layer (combination), then the hidden vertex feature h
(l)
i of vi is updated (aggregation) as following:

h
(l+1)
i = ϕ(Wh

(l)
i ,

⊕
j∈N (i)

ei,jWh
(l)
j), (1)

where ϕ feature update operator and
⊕

is a permutation-invariant aggregation, such as sum or mean.

GNN computation can be represented by multiplications of vertex feature matrix X ∈ Rn×din =
[h1, · · · , hn]

T , weight matrix W ∈ Rdin×dout , and adjacency matrix Ã ∈ Rn×n as follows:

X
(l)
comb = W ·X(l), (2)

X(l+1) = σ(Ã ·X(l)
comb), (3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where σ is nonlinear operation, Ã may vary with GNN architecture, e.g., GCN (Kipf & Welling,
2016) utilizes normalized graph laplacian matrix Ã = D−1/2AD−1/2, while GIN (Xu et al., 2019)
uses binary adjacency matrix Ã = A. GraphSAGE (Hamilton et al., 2017) differs in the aggregation
phase by sampling a subset of neighboring vertices instead of considering all neighbors.

2.2 QUANTIZATION

Quantization replaces high-bit floating-point operations with low-bit integer operations. We use
simple yet effective uniform integer quantization as with scale (s) and zero-point (z) as follows:

xq = Q(x; s, z) = clamp(⌊s · x− z)⌉, qmax, qmin), (4)

s = (2k − 1)/(xmax − xmin), (5)

where k is quantization bit, qmax, qmin is maximum and minimum value of k-bit integer representa-
tion, and ⌊·⌉ is rounding operator. Symmetric quantization has the representation range centered with
zero (z = 0), while asymmetric quantization uses z = s · xmin + 2k−1. Also, each row or column
may have different quantization parameters (s, z), which are calculated independently according to
quantization dimension, called row-wise and column-wise quantization, respectively.

There are two mainstream types of quantization: Post-training quantization (PTQ) and quantization-
aware training (QAT). On the one hand, PTQ goes through a calibration process which adjusts the
scale, zero-point, and rounding directions using only a small set of data. Conversely, QAT methods
directly apply gradient-based training to explicitly reduce the quantized network’s target loss. The
major discrepancy between them is that QAT generally incorporates updating weight parameters,
while PTQ methods focus on quantization parameters without weight updates and is much faster.

2.3 QUANTIZATION OF GRAPH NEURAL NETWORKS

To achieve efficient inference in terms of computational cost and memory requirements, we should
consider both the combination phase (Equation (2)) and the aggregation phase (Equation (3)):

X
(l)
comb = Q(W ; sW , zW) ·Q(X(l); sX(l) , zX(l)), (6)

X(l+1) = σ(Q(Ã; sÃ, zÃ) ·Q(X
(l)
comb; sX(l)

comb

, z
X

(l)
comb

)). (7)

As we can see in Equation (6) and Equation (7), we have to choose quantization policy for each W ,
X(l), X(l)

comb, and Ã. These design choices highly affect the final accuracy and inference efficiency of
a quantized network, and many baselines choose different policies. Degree-Quant (Tailor et al., 2020)
applies per-tensor quantization for all matrices. While this requires the smallest storage, it suffers
from outliers as a single outlier element can affect the quantization scale. A2Q (Zhu et al., 2022)
mitigates this issue by applying column-wise (W and Xcomb) and row-wise (X and Ã) quantization.
As row- and column-wise quantization can separate quantization parameters of each node and feature
dimension, respectively, it is more robust to outliers at the expense of increased cost.

3 RELATED WORK

GNN Quantization can efficiently reduce extensive computational costs and memory requirements
of graph neural networks (Kipf & Welling, 2016; Xu et al., 2019; Veličković et al., 2018), as they
suffer from large size of real-world graphs. Degree-Quant (Tailor et al., 2020) is the first work to
quantize GNN, using QAT to allow high-degree vertices to retain full-precision features at training
and be quantized later for inference. EPQuant (Huang et al., 2022) focuses on reducing high memory
costs incurred by processing large graph data with product quantization, along with quantized
GNNs. SGQuant (Feng et al., 2020) and A2Q (Zhu et al., 2022) are also QAT methods targeting
GNN architectures, but they differ in that they allow mixed-precision to assign higher bitwidth
to high-magnitude vertices. SMP (Wang et al., 2023) tackles the oversmoothing problem when
quantizating deep GNNs with a customized message propagation, and (Eliasof et al., 2023) utilizes
wavelet transformations in traditional image compression to quantize GNNs. Notably, existing GNN
quantization methods adopt QAT, i.e., incorporating gradient-based iterative weight updates, which
require significant computational overheads (Figure 1).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Graph Topology in GNNs is often integrated during training to help the model effectively learn
the structural information (Ji, 2019; Zhang & Lu, 2020; Hu et al., 2022; Wu et al., 2018; You et al.,
2021; Brasoveanu et al., 2023). For example, Ji (2019) uses degree centrality to find highly central
vertices in their pooling layer as they are more important for effective representation learning. Also,
Zhang & Lu (2020) uses betweenness centrality to assign weights to each node during aggregation.
Wu et al. (2018); Brasoveanu et al. (2023) uses Wiener index from chemoinformatics as inputs of
GNNs to enhance its performance on general tasks. However, these methods do not relate topological
information with node feature magnitudes, especially for quantization.

4 MOTIVATIONAL STUDY

(a) GIN, Cora (b) GCN, PubMed

Figure 2: Comparing feature magnitude range of two grouping techniques: indegree (left) and TopGQ
(right). For both plots, x-axis denotes feature magnitude and y-axis denotes sorted group index.

For GNNs, the range of the feature values largely depends on each node’s structural properties
because of their unique message-passing framework. However, existing works (Feng et al., 2020;
Tailor et al., 2020) only utilize node indegree which only takes into account 1-hop neighbors. We
find that indegree is a suboptimal measure when it comes to determining the quantization group. In
Figure 2, we plot the feature magnitude of each quantization group using indegree as the sole metric,
and we compare it against the groups used in our method TopGQ. Using only indegree to group the
node features, each group tends to have a large range of values with uneven distribution of nodes
among the groups. The extreme spread of values within each group would lead to poor representation
of the dense region, leading to large quantization errors. Instead, TopGQ proposes to use a topological
feature that can better capture such information. Figure 2 shows that each quantization group of
TopGQ has a smaller range with a more even distribution across the groups.

5 METHODOLOGY

The goal of TopGQ is to rapidly perform quantization with PTQ, while retaining QAT-like perfor-
mance on GNNs. For this, we propose topology-based node grouping which captures the local
topology information into GNN quantization. In this process, we propose a new algorithm to
accelerate the computation of the local topology for each node in the graph. Then, we propose
scale absorption which allows for efficient integer arithmetic while still preserving the accuracy of
node-wise quantization.

5.1 QUANTIZATION WITH TOPOLOGY-BASED NODE GROUPING

Figure 3a shows the group generation strategy of TopGQ. Due to the nature of the aggregation phase
(Equation (3)), it is evident that the feature magnitudes of a vertex depend greatly on how many and
which vertices the features are being aggregated from. As discussed in Section 4, node indegree is
a suboptimal measure because it only accounts for a limited amount of information. Instead, we
propose to examine the topology of the local subgraph surrounding each vertex, and group the vertices
with the same or similar local topology. Within the same group, we can expect that the vertices
aggregate similar values and thus sharing a quantization scale leads to minimal quantized errors.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

ccc
cc

k-hop subgraphNode vi ∈ V

i = 1... |V |

I(vi), Wk(vi)

2

3

3

3

2

2

2

2

2 IG1, WG1

…

IG2, WG2
IG3, WG3

3

IG4, WG4

Feature
Magnitude

Compute

I(v1), Wk(v1)
I(v2), Wk(v2)
I(v3), Wk(v3)
I(v4), Wk(v4)

…
I(v|V|), Wk(v|V|)

Unique (I,W)

(c) Inference

Unseen Data

(a) Group Generation

I(v), Wk(v)

Query
Nearest

GNN

…GNN
Layer

GNN
Layer

IG1, WG1

…

IG2, WG2
IG3, WG3
IG4, WG4

SG1, ZG1
SG2, ZG2

SG4, ZG4

SG3, ZG3Compute S, Z

(b) Calibration

0

0

maxmin

127−128
INT8

FP32

Calibration Set

Figure 3: The process of topology-based node grouping. (a) shows group generation using topological
characteristics: indegree and Wiener Index. Each color is used to denote each group. (b) shows the
calibration process to achieve a set of quantization parameters for each group. (c) demonstrates how
inference is done on unseen data by using the quantization parameters of the nearest group.

While there exist several different measures to interpret the topology of a graph, we propose to use
Wiener index Graovac & Pisanski (1991) in conjunction with the indegree to better quantify the local
structure around each node. Let graph G = (V,E), where V is a set of vertices and E is a set of
edges. Wiener index is defined as the sum of shortest lengths between all pairs of vertices:

W (G) = Σu,v∈V dis(u, v), (8)
where dis(u, v) denotes the shortest path distance between vertices u and v. Because Wiener index is
originally a graph-level representation, we make an adaptation to use it as a node-level representation.
For each vertex, we extract a k-hop subgraph around each vertex and compute the Wiener index of
the subgraph. Formally put, we define the localized Wiener index Wk(u) of vertex u as:

Wk(u) = Σv,w∈Nk(u)dis(v, w), Nk(u) = {v ∈ V |dis(u, v) ≤ k}, (9)
where k is the predefined hop count and Nk is the set of reachable neighbor vertices within k hops.

Once the localized Wiener index values are obtained for the vertices, we consider indegree I(u)
together, and vertices with equal (I(u),Wk(u)) are assigned to the same quantization group. For
example, in Figure 3a, all purple-colored vertices belong to a single group.

Algorithm 1 Accelerated Wiener Index Computation

1: Input: Local k-hop subgraph Gsub = (Vsub, Esub)
2: Output: Wiener index Wk(u) ∈ N
3:
4: function addNeighbors(node u, set H , depth m)
5: for v ∈ u.nbr() do
6: hm ← hm ∪ (u, v)
7: if m > 0 do
8: addNeighbors(v, H , m− 1)
9: end if

10: end for
11: end function
12:
13: W ← k|Vsub|2
14: H ← {hl = ∅ | l = 0, ..., k}
15: hk ← Vsub

16: parallel for node u ∈ Vsub

17: addNeighbors(u, H , k − 1)
18: end for
19: W ←W −

∑k
l=0 |

⋃k
i=l hi|

After the groups have been generated, the
calibration (Figure 3b) takes place. For
each group, group-wise quantization parame-
ters (SG, ZG) are obtained according to Sec-
tion 2.2 by measuring min, max values per
group. At inference time (Figure 3c), the
test set vertices are assigned to the groups
according to their (I,W) pair values. When
unseen values are found at inference time,
they are assigned to the most similar quan-
tization group by first comparing the I and
then the W values.

5.2 ACCELERATED COMPUTATION
OF LOCALIZED WIENER INDEX

Because the localized Wiener index in Equa-
tion (9) requires all-pair shortest paths within
the subgraphs, its computation can add a con-
siderable overhead. Although several algo-
rithms are known for all-pair shorted paths (Dijkstra, 1959; Floyd, 1962; Warshall, 1962; Bellman,
1958; Ford Jr, 1956), they often require substantial computational and space complexity.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

For this, we propose a new algorithm to compute the localized Wiener index, shown in Algorithm 1.
The key idea is that because we sampled k-hop neighbors of a single vertex to extract a subgraph, its
diameter (i.e., the maximum distance between two arbitrary nodes) is capped at 2k. This can be used
to efficiently calculate the localized Wiener indices. For instance, W2(u) is calculated as

W2(u) = |Esub|+ 2|d2|+ 3|d3|+ 4|d4|, (10)

where dn is a set of distance-n node pairs in a local k-hop subgraph Gsub = (Vsub, Esub) of node u.
In practice, obtaining the sets di can be time-consuming because this requires costly all-pair shortest
paths. Instead, Equation (10) can be restructured in a subtractive manner, using k-hop reachable set
Ni(u) that can be easily obtained by simple traversal:

W2(u) = 4 · Σv∈Vsub
|N4(v)| − (Σ3

i=0Σv∈Vsub
|Ni(v)|), (11)

From the maximum-value case where all vertices are connected in 4 hops, we subtract the number of
occurrences in each of i-hop reachable set from the vertices. Additionally, we can substitute some
terms trivially obtainable from graph formats such as CSR. The Σv∈Vsub

|N4(v)| is simply |Vsub|2,
Σv∈Vsub

|N1(v)| is the number of edges |Esub| and Σv∈Vsub
|N0(v)| the number of vertices |Vsub|:

W2(u) = 4|Vsub|2 − (Σv∈Vsub
|N3(v)|+Σv∈Vsub

|N2(v)|+ |Esub|+ |Vsub|), (12)

The overall process is shown in Algorithm 1. First, we define a function addNeighbors (lines 4-11),
which recursively adds l-hop reachable node pairs into the set hl. Then, we initialize Wiener index
W with k|Vsub|2 (line 13), and hl with ∅. As the computation of addNeighbors on node n in Gsub is
independent of each other, we parallelized the computation (line 16). After the computation, the hl

stores a non-overlapping set of l-hop reachable node pairs. By using hl, we calculate Σv∈Vsub
|Nl(v)|

by |
⋃k

i=l hi| and obtain the Wiener index result (line 19). Please refer to Table 6 for the experiments
on acceleration, compared to Bellman-Ford, Floyd-Warshall, and Dijkstra’s algorithm.

5.3 INFERENCE FLOW WITH SCALE ABSORPTION

≈

Scale
Absorption

Ã

N

N

sX′

ÃX′

WXN
F

F′

×

X′

F′

NÃ

N

N ⋅

ÃX′

S[|V|×1]
ÃX′

S[1×N]
X′

⋅ ×

row-wise
quantization

fp

row-wise

X′ Q

F′

N

ÃX′

ÃQ
X′

row-wise
quantization

Ã

N

Nfp

intintfp

…

S[|V|×1]
ÃX′

Figure 4: Inference with scale absorption.

Scale Absorption preserves both the benefits of fixed-
point operations and activation precision preservation
in TopGQ. Repetitive aggregation in GNN layers may
amplify certain values, leading to a node-wise outliers
in activations. To prevent the outliers from distorting
quantization parameters, TopGQ maintains the same
quantization method for the vertex feature matrix X
for the combination and aggregation phases. Main-
taining node-wise quantization for activation leads to
retaining precision, as outliers are isolated from other
activation values in the quantization process.

Assuming symmetric quantization for simplicity, it
can be represented as X ≈ SX ·XQ, where XQ is
the quantized features and SX is a diagonal matrix of
the scales of each node group. In the combination phase, the weight parameters are regarded as a
single group. Therefore, the quantized form of the combination becomes:

X ·W ≈ SX ·XQ ·WQ · sW = (sW ⊗ SX) · (XQ ·WQ). (13)

For aggregation, using the same quantization method is infeasible, because with quantized Ã and X ,

Ã ·X ≈ SA · ÃQ · SX ·XQ, (14)

which contains the SX matrix inside the multiplication. Instead, we take advantage of the fact that Ã
is a static topology. After calculating the scale diagonal matrix SX ,

Ã ·X ≈ Ã · SX ·XQ = ÃX ·XQ ≈ SAX
· ÃQ

X ·XQ. (15)

In the above, the scale diagonal matrix SX is absorbed into the adjacency matrix Ã to form ÃX ,
which is then row-wisely quantized with the new scale as SAX

· ÃQ
X . At inference time, this can be

pre-calculated as both Ã and SX only depend on the topology of the input graph.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Performance on node classification task using large graph datasets.

Dataset Bit Method Type GCN GraphSAGE

Acc. Q. Time Acc. Q. Time

Reddit

FP32 - - 90.60 - 94.64 -

INT4

Degree-Quant QAT 49.25 (31.18h) 89.86 (42.23h)
SGQuant QAT 88.74 (9.19h) 63.73 (15.75h)
A2Q QAT 58.31 (4.92h) 52.65 (5.78h)

TopGQ (Ours) PTQ 83.95 (0.02h) 93.93 (0.02h)

INT8

Degree-Quant QAT 90.91 (30.39h) 90.35 (42.49h)
SGQuant QAT 88.67 (9.46h) 69.12 (15.48h)
A2Q QAT 61.15 (4.91h) 76.26 (5.70h)

TopGQ (Ours) PTQ 91.13 (0.02h) 94.60 (0.02h)

ogbn-
proteins

FP32 - - 56.94 - 73.33 -

INT4

Degree-Quant QAT 57.37 (7.68h) 50.02 (8.84h)
SGQuant QAT 52.97 (3.46h) 57.77 (4.64h)
A2Q QAT 44.95 (2.35h) 71.98 (2.49h)

TopGQ (Ours) PTQ 60.08 (0.01h) 68.93 (0.01h)

INT8

Degree-Quant QAT 59.32 (7.49h) 73.81 (8.38h)
SGQuant QAT 52.77 (3.32h) 69.30 (4.58h)
A2Q QAT 44.41 (2.35h) 69.38 (2.51h)

TopGQ (Ours) PTQ 58.05 (0.01h) 73.34 (0.01h)

ogbn-
products

FP32 - - 78.41 - 71.65 -

INT4

Degree-Quant QAT 70.58 (98.38h) 65.05 (121.78h)
SGQuant QAT 26.90 (20.03h) 27.38 (37.17h)
A2Q QAT 23.62 (13.16h) 22.21 (14.69h)

TopGQ (Ours) PTQ 57.55 (0.34h) 71.02 (0.34h)

INT8

Degree-Quant QAT 75.26 (95.95h) 69.18 (118.96h)
SGQuant QAT 65.71 (20.18h) 41.71 (31.25h)
A2Q QAT 47.91 (12.57h) 58.26 (14.66h)

TopGQ (Ours) PTQ 76.94 (0.34h) 73.67 (0.34h)

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTINGS

We report evaluation results on two representative tasks: Node-level and graph-level classification.
We use Reddit, ogbn-proteins, and ogbn-products, Cora, CiteSeer, and PubMed for node classification
task, and use PROTEINS and NCI1 for graph classification task. For baselines, we use three GNN
quantization methods: Degree-Quant (Tailor et al., 2020), SGQuant (Feng et al., 2020), and A2Q (Zhu
et al., 2022). To ensure a fair comparison, we use fixed-precision quantization for both SGQuant
and A2Q when attaining experiment results. We use GCN (Kipf & Welling, 2016), GIN (Xu et al.,
2019), and GraphSAGE (Hamilton et al., 2017) architectures with 4-bit and 8-bit integer quantization.
For a fair comparison, we apply the same bitwidth for all layers. We use k = 3 for ogbn-products,
PROTEINS, and NCI1 and k = 2 for other datasets. More details can be found in the Appendix.

6.2 NODE CLASSIFICATION RESULTS

The experimental results of quantization accuracy comparison of node classification task are shown
in two settings: larger graphs (Table 1) and more conventional sized graphs (Table 2). The results
show that TopGQ performs comparable or significantly better in accuracies, and achieves an order
of magnitude faster quantization time. Taking Reddit with 4-bit GraphSAGE as an example, the
best-performing baseline is Degree-Quant, with 89.86% accuracy. However, it suffers from almost
42.27 hours of quantization time. SGQuant and A2Q are faster on quantization, but suffer from
severe accuracy drops. On the other hand, TopGQ achieves a significantly higher accuracy of 93.93%,
with only 0.02 hours of quantization time. This is more than 1000× faster than Degree-Quant, and
more than 100× faster than the low-performing baselines (SGQuant and A2Q).

Table 2 shows results on the smaller graphs that are more commonly used in existing GNN quanti-
zation literature. The results show a similar trend overall. TopGQ shows comparable performance
compared to the existing baselines with significantly low overhead for GNN quantization. The

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Performance on node classification task using smaller graph datasets.

Dataset Bit Method Type GCN GIN GraphSAGE

Acc. Q. Time Acc. Q. Time Acc. Q. Time

Cora

FP32 - - 82.08 - 78.54 - 79.58 -

INT4

Degree-Quant QAT 79.02 (9.64s) 71.90 (31.47s) 73.50 (15.54s)
SGQuant QAT 79.02 (3.20s) 70.21 (4.22s) 75.30 (8.62s)
A2Q QAT 52.68 (2.09s) 64.64 (1.72s) 74.16 (2.53s)

TopGQ (Ours) PTQ 81.50 (1.40s) 78.58 (0.99s) 79.64 (0.87s)

INT8

Degree-Quant QAT 81.80 (9.82s) 74.60 (31.45s) 77.50 (15.52s)
SGQuant QAT 80.51 (3.60s) 73.32 (4.53s) 75.32 (8.38s)
A2Q QAT 79.96 (1.60s) 78.74 (1.95s) 76.12 (2.48s)

TopGQ (Ours) PTQ 82.08 (1.12s) 78.42 (1.18s) 80.30 (0.87s)

Citeseer

FP32 - - 72.34 - 70.24 - 71.96 -

INT4

Degree-Quant QAT 22.34 (21.72s) 47.92 (90.57s) 17.14 (40.67s)
SGQuant QAT 68.08 (5.57s) 46.70 (8.23s) 48.34 (17.91s)
A2Q QAT 54.00 (2.08s) 46.04 (2.67s) 66.22 (3.18s)

TopGQ (Ours) PTQ 71.90 (1.17s) 70.14 (1.14s) 71.76 (1.05s)

INT8

Degree-Quant QAT 69.72 (22.03s) 58.34 (92.75s) 69.10 (40.63s)
SGQuant QAT 68.34 (5.85s) 51.30 (8.56s) 54.12 (18.47s)
A2Q QAT 70.48 (1.77s) 67.26 (2.36s) 66.04 (3.15s)

TopGQ (Ours) PTQ 72.28 (1.11s) 70.26 (1.16s) 71.96 (1.05s)

Pubmed

FP32 - - 80.32 - 78.82 - 78.84 -

INT4

Degree-Quant QAT 78.62 (21.33s) 76.56 (108.07s) 78.18 (34.38s)
SGQuant QAT 76.08 (5.41s) 65.28 (8.24s) 71.08 (15.86s)
A2Q QAT 69.72 (2.17s) 51.90 (2.60s) 73.92 (3.31s)

TopGQ (Ours) PTQ 79.58 (1.21s) 77.70 (1.18s) 79.00 (1.12s)

INT8

Degree-Quant QAT 79.24 (21.56s) 79.70 (109.59s) 78.42 (34.07s)
SGQuant QAT 78.06 (5.31s) 75.22 (8.91s) 73.44 (15.66s)
A2Q QAT 76.44 (1.70s) 76.40 (2.15s) 75.36 (3.24s)

TopGQ (Ours) PTQ 80.30 (1.08s) 78.62 (1.16s) 78.94 (1.22s)

Table 3: Performance on graph classification task.

Dataset Bit Method Type GCN GIN GraphSAGE

Acc. Q. Time Acc. Q. Time Acc. Q. Time

PROTEINS

FP32 - - 76.19 - 74.79 - 72.87 -

INT4

Degree-Quant QAT 75.21 (2158.47s) 70.44 (1407.09s) 63.72 (1371.54s)
SGQuant QAT 59.84 (203.70s) 59.48 (190.28s) 59.66 (249.86s)
A2Q QAT 71.16 (128.52s) 65.59 (116.96s) 73.59 (209.23s)

TopGQ (Ours) PTQ 70.15 (4.20s) 70.61 (3.94s) 69.67 (4.21s)

INT8

Degree-Quant QAT 74.93 (2140.48s) 69.72 (1368.98s) 63.61 (1358.99s)
SGQuant QAT 72.40 (203.61s) 69.73 (190.71s) 61.99 (261.81s)
A2Q QAT 73.05 (136.03s) 66.85 (129.83s) 70.62 (194.75s)

TopGQ (Ours) PTQ 75.94 (4.11s) 74.86 (3.86s) 74.00 (4.17s)

NCI1

FP32 - - 80.41 - 81.46 - 78.46 -

INT4

Degree-Quant QAT 73.55 (4588.48s) 76.42 (3110.10s) 69.46 (3585.30s)
SGQuant QAT 63.92 (530.27s) 53.09 (571.44s) 66.13 (778.96s)
A2Q QAT 68.81 (668.52s) 79.08 (648.44s) 72.38 (656.70s)

TopGQ (Ours) PTQ 65.09 (9.36s) 78.49 (8.98s) 76.43 (9.18s)

INT8

Degree-Quant QAT 75.47 (4493.82s) 77.59 (3025.24s) 69.12 (3449.79s)
SGQuant QAT 68.47 (527.19s) 74.36 (572.13s) 67.59 (799.31s)
A2Q QAT 75.64 (648.18s) 79.17 (635.09s) 76.86 (645.50s)

TopGQ (Ours) PTQ 80.91 (9.35s) 81.88 (8.97s) 79.16 (9.22s)

quantization times are relatively short for all methods, which comes from a small number of vertices
and edges for the datasets. Nonetheless, TopGQ is the fastest in quantization time in all cases.

Interestingly, TopGQ sometimes outperforms QAT baselines or even the FP32 network. This hints
that the existing QAT baselines do not consider the nature of GNN. On the other hand, our method
directly integrates the nature of GNN aggregation into the quantization parameters by grouping nodes
by their k-hop topological structure. We provide a more detailed analysis in Appendix I.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Ablation study of TopGQ.

Bit Node
Grouping

Scale
Absorption

PROTEINS NCI1

GCN GIN Graph
SAGE GCN GIN Graph

SAGE

INT4

✗ ✗ 57.32 45.51 44.05 53.35 60.66 73.80
Indegree ✗ 56.15 45.04 50.65 60.54 69.71 75.46

L. Wiener Index ✗ 61.28 47.12 62.76 60.93 72.76 75.63

L. Wiener Index ✓ 69.94 70.92 68.93 65.88 75.37 75.98

INT8

✗ ✗ 56.14 55.91 61.25 79.63 81.29 78.30
Indegree ✗ 72.57 71.86 70.48 78.91 81.28 78.32

L. Wiener Index ✗ 75.64 73.94 73.69 80.89 81.90 79.18

L. Wiener Index ✓ 75.65 74.34 72.20 79.72 81.36 78.43

Table 6: Comparison of node-wise Wiener index computation time.

Algorithm Cora CiteSeer Pubmed PROTEINS NCI1 Reddit ogbn- ogbn-
proteins products

Bellman-Ford 0.35s 0.46s 19.87s 40.07s 512.13s 4.21h 2.84h 305.50h
Floyd-Warshall 0.15s 0.21s 4.68s 8.50s 11.27s 0.57h 0.41h 35.44h
Dijkstra 0.19s 0.29s 2.70s 12.75s 12.49s 0.16h 0.11h 8.52h

Ours (§5.2) 0.02s 0.01s 0.06s 4.84s 1.78s 0.0004h 0.0002h 0.2855h
Speed Up 9.77× 31.65× 43.50× 1.76× 6.32× 412.23× 602.30× 29.83×

6.3 GRAPH CLASSIFICATION RESULTS

The experimental results on graph classification are in Table 3. The proposed method, TopGQ,
significantly improves quantization speed while maintaining competitive classification performance.
For instance, Degree-Quant takes almost an hour to quantize the GraphSAGE model on NCI1, with a
significant drop in accuracy of 9.0%p. In contrast, TopGQ achieves remarkable speed improvements
with PTQ, requiring only about a minute for quantization across all datasets and models. This
efficiency highlights the superiority of TopGQ, as it achieves a balance between accuracy and
quantization speed, making it a practical choice for large-scale graph-level classification tasks.

6.4 ABLATION STUDY

We conducted an ablation study to show the effect of the proposed topological quantization groups,
shown in Table 4. The PTQ baseline without any proposed methods suffers from accuracy degradation
due to high-variance node-wise magnitude. This phenomenon is especially worse in GIN, as the node
features of GIN architecture are larger due to the unnormalized sum aggregation operation (Tailor
et al., 2020). Applying the proposed topology grouping with localized Wiener index further boosts
the PTQ performance, as it effectively divides quantization groups in a node-wise manner, with the
nodes in the group sharing similar magnitudes for the quantization.

6.5 COST ANALYSIS
Table 5: Inference time comparison using GCN.

Bit Method Type Reddit ogbn-products

Time (s) Speedup Time (s) Speedup

FP32 - - 1.41 - 1.45 -

INT8

Degree-Quant QAT 1.22 1.15× 1.30 1.12×
SGQuant QAT 1.25 1.13× 1.31 1.11×
A2Q QAT 1.30 1.08× 1.78 0.82×

TopGQ PTQ 1.24 1.13× 1.30 1.11×

We compare the inference time in Table 5, mea-
sured on an RTX 4090 GPU with customized
kernels. While the forward times are mostly sim-
ilar due to the same amount of multiplications,
the difference in inference time comes from the
unseen vertices. While Degree-Quant does not handle unseen nodes any differently, A2Q has to
perform costly nearest neighbor search on the input features. Although TopGQ performs a group
search for unseen nodes, this only involves simple I,W comparison before inference.

In terms of quantization time, TopGQ is orders of magnitude faster as discussed in Section 6.2. A
large portion of this is due to the proposed computing method for the localized Wiener index, as
shown in Table 6. We compare the time to compute the Wiener index of k-hop subgraph, using the
same k settings that are used in the main experiments. For the baselines, we used implementations
from the SciPy library. The results show that our method demonstrates significant improvements in
computational efficiency compared to other algorithms. Specifically, our approach reduces the Wiener
index computation time by up to 602.30× on large-scale datasets like ogbn-proteins, achieving a

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 7: Comparison on different centrality measures against localized Wiener index used in TopGQ.

Bit Method PROTEINS NCI1
GCN GIN GraphSAGE GCN GIN GraphSAGE

FP32 - 76.19 74.79 72.87 80.41 81.46 78.46

INT4

Degree Centrality only 56.15 45.04 50.65 60.54 69.71 75.46
+ Betweenness Centrality 59.03 54.25 50.58 63.81 67.55 70.61
+ Closeness Centrality 58.52 61.73 50.48 63.14 69.54 71.97
+ Katz Centrality 53.68 55.24 44.08 57.19 57.36 57.77
+ L. Wiener Index (Ours) 70.15 70.61 69.67 67.53 78.49 76.43

time reduction from 2.84 hours to 0.0002 hours. This trend is consistent, with speedups ranging from
9.77× on Cora to 412.23× on Reddit. Our method scales significantly better with larger graphs by
reducing the computational cost of the Wiener index, achieving superior quantization speed.

6.6 ANALYSIS ON TOPOLOGICAL MEASURES

To further identify the advantages of the localized Wiener Index, we compare it against other centrality
measures, such as betweenness centrality, closeness centrality, and Katz centrality. The results are
shown in Table 7. The other centrality measures depict suboptimal performance compared to localized
Wiener Index. We believe that the result stems from the unique expressiveness of the localized Wiener
index in capturing local compactness of a node within k-hop neighbors: A small value of a node
indicates a dense connectivity within its neighbors, and relatively rapid propagation of features via
message passing. Therefore, TopGQ can effectively group node features with distinctive ranges, as
shown in Figure 2 in the paper, leading to enhanced quantization quality.

6.7 ANALYSIS ON SCALE ABSORPTION

Node Index Feature Index Node Index Feature Index

Figure 5: Xcomb before (left) and after (right)
scale absorption (GCN, PROTEINS).

(a) GIN, Cora (b) GCN, Citeseer

Figure 6: Xcomb magnitude visualization.

In this section, we visualize the activations Xcomb before and after applying scale absorption. In
Figure 5, the left-hand side denotes the activation of the FP32 format before scale absorption, where
visible outliers can be seen in a node-wise distribution. Such distribution with outliers results in most
values being mapped to a few integers in quantization, causing inefficient use of integer precision.
This is further supported by Figure 6, where the spiky distribution with large outliers is also found in
other models and datasets. On the other hand, applying scale absorption leads to an even distribution
across the mapped range (-128, 127) as right-hand side of Figure 5. Such even distribution depicts
desirable quantization outputs of allocated integers, because the values can be mapped evenly across
the bins, fully utilizing the quantization precision and thus leading to minimal quantization error.

7 CONCLUSION

In this paper, we propose TopGQ, the first post-training quantization method for GNNs. TopGQ
proposes to group vertices that share similar topological structure, which is measured using an
adaptation of Wiener index to capture the local topology around each node. For this, TopGQ proposes
a new algorithm that reduces the overhead of computing localized Wiener index for each node. Then,
TopGQ proposes the scale absorption method, which merges the scale parameters of quantization
groups to the adjacency matrix for efficient computation. The extensive experimental results show
that TopGQ outperforms baselines while having orders of magnitude faster quantization.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marco Arazzi, Marco Cotogni, Antonino Nocera, and Luca Virgili. Predicting tweet engagement with
graph neural networks. In Proceedings of the 2023 ACM International Conference on Multimedia
Retrieval, pp. 172–180, 2023.

Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional recurrent
network for traffic forecasting. Advances in neural information processing systems, 33:17804–
17815, 2020.

Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87–90, 1958.

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and
Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(suppl 1):
i47–i56, 2005.

Andrei Dragos Brasoveanu, Fabian Jogl, Pascal Welke, and Maximilian Thiessen. Extending graph
neural networks with global features. In The Second Learning on Graphs Conference, 2023.

Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Congrui Huang, Yunhai Tong, Bixiong
Xu, Jing Bai, Jie Tong, et al. Spectral temporal graph neural network for multivariate time-series
forecasting. Advances in neural information processing systems, 33:17766–17778, 2020.

Kanghyun Choi, Deokki Hong, Noseong Park, Youngsok Kim, and Jinho Lee. Qimera: Data-free
quantization with synthetic boundary supporting samples. In Advances in Neural Information
Processing Systems, 2021.

Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. Low-bit quantization of neural networks
for efficient inference. In IEEE/CVF International Conference on Computer Vision Workshop,
2019.

Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik, 1
(1):269–271, 1959.

Moshe Eliasof, Benjamin J Bodner, and Eran Treister. Haar wavelet feature compression for quantized
graph convolutional networks. IEEE Transactions on Neural Networks and Learning Systems,
2023.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The world wide web conference, pp. 417–426, 2019.

Boyuan Feng, Yuke Wang, Xu Li, Shu Yang, Xueqiao Peng, and Yufei Ding. Sgquant: Squeezing the
last bit on graph neural networks with specialized quantization. In 2020 IEEE 32nd international
conference on tools with artificial intelligence (ICTAI), pp. 1044–1052. IEEE, 2020.

Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345–345, 1962.

Lester R. Ford Jr. Network Flow Theory. 1956. Technical report, RAND Corporation.

Chen Gao, Yu Zheng, Nian Li, Yinfeng Li, Yingrong Qin, Jinghua Piao, Yuhan Quan, Jianxin Chang,
Depeng Jin, Xiangnan He, et al. A survey of graph neural networks for recommender systems:
Challenges, methods, and directions. ACM Transactions on Recommender Systems, 1(1):1–51,
2023.

Ante Graovac and Tomaž Pisanski. On the wiener index of a graph. Journal of mathematical
chemistry, 8(1):53–62, 1991.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 2017.

Man Hu, Dezhi Sun, Fucheng You, and Han Xiao. Hybrid structure encoding graph neural networks
with attention mechanism for link prediction. In 2022 IEEE 34th International Conference on
Tools with Artificial Intelligence (ICTAI), pp. 417–424. IEEE, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Linyong Huang, Zhe Zhang, Zhaoyang Du, Shuangchen Li, Hongzhong Zheng, Yuan Xie, and
Nianxiong Tan. Epquant: A graph neural network compression approach based on product
quantization. Neurocomputing, 503:49–61, 2022.

H GaoandS Ji. Graph u-nets. In Proceedings of the 36th International Conference on Machine
Learning, in Proceedings of Machine Learning Research, 2019.

Weiwei Jiang and Jiayun Luo. Graph neural network for traffic forecasting: A survey. Expert systems
with applications, 207:117921, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2016.

Ziqi Liu, Chaochao Chen, Xinxing Yang, Jun Zhou, Xiaolong Li, and Le Song. Heterogeneous graph
neural networks for malicious account detection. In Proceedings of the 27th ACM international
conference on information and knowledge management, pp. 2077–2085, 2018.

Mingxuan Lu, Zhichao Han, Susie Xi Rao, Zitao Zhang, Yang Zhao, Yinan Shan, Ramesh Raghu-
nathan, Ce Zhang, and Jiawei Jiang. Bright-graph neural networks in real-time fraud detection. In
Proceedings of the 31st ACM International Conference on Information & Knowledge Management,
pp. 3342–3351, 2022.

Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg, and Jure Leskovec.
Pinnersage: Multi-modal user embedding framework for recommendations at pinterest. In Pro-
ceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 2311–2320, 2020.

Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. Deepinf: Social
influence prediction with deep learning. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 2110–2119, 2018.

Amit Sharma, Ashutosh Sharma, Polina Nikashina, Vadim Gavrilenko, Alexey Tselykh, Alexander
Bozhenyuk, Mehedi Masud, and Hossam Meshref. A graph neural network (gnn)-based approach
for real-time estimation of traffic speed in sustainable smart cities. Sustainability, 15(15):11893,
2023.

Gil Shomron, Freddy Gabbay, Samer Kurzum, and Uri Weiser. Post-training sparsity-aware quantiza-
tion. Advances in Neural Information Processing Systems, 34:17737–17748, 2021.

Shyam Anil Tailor, Javier Fernandez-Marques, and Nicholas Donald Lane. Degree-quant:
Quantization-aware training for graph neural networks. In International Conference on Learning
Representations, 2020.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowledge and Information Systems, 14:347–375, 2008.

Shuang Wang, Bahaeddin Eravci, Rustam Guliyev, and Hakan Ferhatosmanoglu. Low-bit quantization
for deep graph neural networks with smoothness-aware message propagation. In Proceedings of the
32nd ACM International Conference on Information and Knowledge Management, pp. 2626–2636,
2023.

Stephen Warshall. A theorem on boolean matrices. Journal of the ACM (JACM), 9(1):11–12, 1962.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Fengwei
Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer language
models. Advances in Neural Information Processing Systems, 35:17402–17414, 2022.

D Wu, Q Tang, Y Zhao, M Zhang, and D Zhang. Easyquant: Post-training quantization via scale
optimization. arxiv 2020. arXiv preprint arXiv:2006.16669.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chemical science, 9(2):513–530, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?
id=ryGs6iA5Km.

Yuhang Yao, Mohammad Mahdi Kamani, Zhongwei Cheng, Lin Chen, Carlee Joe-Wong, and
Tianqiang Liu. Fedrule: Federated rule recommendation system with graph neural networks. In
Proceedings of the 8th ACM/IEEE Conference on Internet of Things Design and Implementation,
pp. 197–208, 2023.

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp.
10737–10745, 2021.

Li Zhang and Haiping Lu. A feature-importance-aware and robust aggregator for gcn. In Proceedings
of the 29th ACM International Conference on Information & Knowledge Management, pp. 1813–
1822, 2020.

Yiming Zhang, Lingfei Wu, Qi Shen, Yitong Pang, Zhihua Wei, Fangli Xu, Ethan Chang, and Bo Long.
Graph learning augmented heterogeneous graph neural network for social recommendation. ACM
Transactions on Recommender Systems, 1(4):1–22, 2023.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang. Improving neural network
quantization without retraining using outlier channel splitting. In International Conference on
Machine Learning, 2019.

Hongkuan Zhou, Ajitesh Srivastava, Hanqing Zeng, Rajgopal Kannan, and Viktor Prasanna. Acceler-
ating large scale real-time gnn inference using channel pruning. arXiv preprint arXiv:2105.04528,
2021.

Zeyu Zhu, Fanrong Li, Zitao Mo, Qinghao Hu, Gang Li, Zejian Liu, Xiaoyao Liang, and Jian Cheng.
A2q: Aggregation-aware quantization for graph neural networks. In The Eleventh International
Conference on Learning Representations, 2022.

A CODE

The code, which includes our implementation of this work, is included in a zip archive of the
supplementary material. The code is under Nvidia Source Code License-NC and GNU General
Public License v3.0.

B ADDITIONAL EXPERIMENTAL SETTINGS

We report evaluation results on two representative graph processing tasks: Node-level classification,
graph-level classification. For node-level classification, we compare the validation accuracy of Reddit,
ogbn-proteins, and ogbn-products datasets in a transductive setting. Please note that we first conduct
GNN quantization experiments on the dataset with this level of scale, thus further enlarging the field of
GNN quantization. By following the experimental settings of baselines, we also conduct experiments
using Cora, CiteSeer, and PubMed datasets in a transductive setting, which is the common setting for
GNN quantization. Lastly, we further conduct a comparison of large-graph processing on Reddit,
ogbn-proteins, and ogbn-products datasets. For graph-level classification, we choose PROTEINS and
NCI1 datasets to evaluate the inductive inference performance of quantized GNNs.

We compare TopGQ with three graph quantization baselines using QAT approaches: Degree-
Quant (Tailor et al., 2020), SGQuant (Feng et al., 2020), and A2Q (Zhu et al., 2022). To ensure a fair
comparison, we use a fixed-precision quantization for both SGQuant and A2Q when attaining experi-
ment results. We report quantized accuracy of GCN (Kipf & Welling, 2016), GIN (Xu et al., 2019),

13

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 8: Comparison on inference and quantization time.

Metrics Acc. (%) Infer. Infer. Quant. Quant.
Time (s) Speedup Time (h) Speedup

FP32 78.41 1.450 1× - -
Degree-Quant 75.26 1.295 1.120× 95.95 1×
Degree-Quant-PTQ 46.57 1.294 1.121× 0.28 343×
TopGQ 76.94 1.304 1.112× 0.34 282×

Table 9: Comparison of theoretical costs and storage for different methods.

Metrics Theoretical Cost Theoretical Storage

FP32 OFP (N
2F1 +NF1F2) OFP (E + F1F2 +NF0)

Degree-Quant OINT (N
2F1 +NF1F2) +OFPelem

(NF2) OINT (E + F1F2 +NF0) +OFP (1)
Degree-Quant-PTQ OINT (N

2F1 +NF1F2) +OFPelem
(NF2) OINT (E + F1F2 +NF0) +OFP (1)

TopGQ OINT (N
2F1 +NF1F2) +OFPelem

(NF2) OINT (E + F1F2 +NF0) +OFP (NT + F2)

and GraphSAGE (Hamilton et al., 2017) architectures with 4-bit and 8-bit integer quantization. For a
fair comparison, we apply the same bitwidth for all layers, including aggregation and combination.

All experiments are conducted on a server with a single A6000 GPU, RTX 4090 GPU, and Intel(R)
Xeon(R) Gold 6442Y CPU. We implement our algorithm on PyG library v2.6.0 with PyTorch v2.2.1.
In the Wiener index computation time comparison, we use the SciPy library to measure the time of
the baseline algorithm to compute the all-pair shortest-path metric.

For the ablation study, we present in Table 4, we first build baseline PTQ method, which applies a
min-max quantization strategy to quantize graph neural networks without node grouping and scale
absorption. For the case of using Indegree for the node grouping metric, we apply the same strategy
with our method that uses the Wiener index by grouping the nodes having the same indegree value
and quantizing them to share the same quantization parameters.

C QUANTIZATION TRADE-OFF ANALYSIS

Here, we present a comprehensive analysis regarding the trade-offs of quantization and provide
a theoretical analysis of computation cost and storage consumption. The experimental results are
shown in Tables 8 and 9.

As shown in Table 8, TopGQ finds a good balance between reducing quantization time and preserving
accuracy, while other choices in FP32, Degree-Quant, TopGQ demonstrate disadvantages in either
accuracy, time, or memory. FP32 suffers from the expensive costs of computation and storage. While
Degree-Quant alleviates this cost via quantization, the long quantization time is required to obtain
the benefits. TopGQ is free from the quantization time problem but at the cost of considerable
performance degradation. TopGQ aims to find the best way of addressing each issue by leveraging
topological node similarities with an additional amount of storage cost.

As for the theoretical costs (Table 9), we assume GNN layer propagation as AXW operation, with
A ∈ RN∗N , X ∈ RN∗F1,W ∈ RF1∗F2 with initial dataset size of N ∗ F0. We note computation
and storage costs of FP and Int operation as follows:

• OFP (): Complexity for floating-point operations / Storage complexity for floating-point
values.

• OFPelem
(): Complexity for element-wise floating-point operations.

• OINT (): Complexity for fixed-point operations / Storage complexity for fixed-point values.

The computation cost shows that quantization converts the expensive floating-point matrix multiplica-
tion into integer operations. The additional floating-point cost comes from converting integer outputs

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 10: Comparison of GAT architecture on citation datasets.

Bit Method Type Cora Citeseer PubMed
Acc. (%) Q. Time (s) Acc. (%) Q. Time (s) Acc. (%) Q. Time (s)

FP32 - - 82.10 - 74.10 - 79.42 -

INT4

Degree-Quant QAT 80.70 (18.78s) 23.10 (40.91s) 74.50 (60.89s)
SGQuant QAT 74.70 (5.55s) 66.20 (8.67s) 72.40 (9.77s)
A2Q QAT 76.80 (2.44s) 61.80 (2.47s) 70.50 (3.16s)

TopGQ PTQ 80.34 (0.92s) 66.92 (1.20s) 78.06 (1.25s)

INT8

Degree-Quant QAT 81.70 (18.30s) 69.80 (41.31s) 79.20 (61.02s)
SGQuant QAT 79.90 (5.71s) 68.40 (8.72s) 76.00 (9.74s)
A2Q QAT 77.50 (2.44s) 69.50 (2.55s) 72.80 (3.11s)

TopGQ PTQ 82.02 (0.86s) 73.70 (1.11s) 79.32 (1.26s)

Table 11: Comparison of GAT architecture on graph classification datasets.

Bit Method Type Proteins NCI1
Acc. (%) Q. Time (s) Acc. (%) Q. Time (s)

FP32 - - 75.56 - 79.73 -

INT4

Degree-Quant QAT 71.96 (3626.77s) 74.01 (8078.41s)
SGQuant QAT 59.56 (267.66s) 58.49 (754.85s)
A2Q QAT 70.36 (396.62s) 66.16 (1002.95s)

TopGQ PTQ 69.09 (4.71s) 69.70 (9.90s)

INT8

Degree-Quant QAT 72.41 (3580.78s) 74.50 (7988.47s)
SGQuant QAT 68.82 (267.65s) 74.42 (753.09s)
A2Q QAT 72.42 (385.62s) 72.28 (997.62s)

TopGQ PTQ 75.74 (4.87s) 79.48 (9.49s)

back to floating-point values. The measurement is provided by using our kernel, and the theoretical
analysis is based on Zhu et al. (2022).

D GAT QUANTIZATION RESULTS

The GAT’s attention-based edge weights are computed at runtime, therefore quantization scales
of the adjacency matrix are also computed at runtime, meaning our method of absorbing the scale
to the adjacency matrix cannot be precomputed. However, scale absorption can be modified to
accommodate such dynamic quantization scenarios, which we provide in Tables 10 and 11. The
results show that TopGQ also performs well in GAT architecture. In our modified scale absorption
for GAT, the absorption is performed at runtime right before the quantization operation, simply by
adding an FP32 element-wise multiplication between the adjacency matrix and the precalculated
scales.

E GRAPHSAGE QUANTIZATION RESULTS WITH MEAN AGGREGATORS

We would like to present the quantization results of TopGQ for graphSAGE architecture with
“mean” aggregators, with FP32 accuracies comparable to those of ogbn-leaderboard scores. In the
leaderboard, the selected aggregator function is “mean”, while our setting selected “max” as the
aggregator function in the experiments. As presented in Table 12, TopGQ can preserve performance
regardless of aggregator functions.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 12: Comparison of GAT architecture on graph classification datasets.

Bit Method Type Proteins NCI1
Acc. (%) Q. Time (s) Acc. (%) Q. Time (s)

FP32 - - 75.56 - 79.73 -

INT4

Degree-Quant QAT 71.96 (3626.77s) 74.01 (8078.41s)
SGQuant QAT 59.56 (267.66s) 58.49 (754.85s)
A2Q QAT 70.36 (396.62s) 66.16 (1002.95s)

TopGQ PTQ 69.09 (4.71s) 69.70 (9.90s)

INT8

Degree-Quant QAT 72.41 (3580.78s) 74.50 (7988.47s)
SGQuant QAT 68.82 (267.65s) 74.42 (753.09s)
A2Q QAT 72.42 (385.62s) 72.28 (997.62s)

TopGQ PTQ 75.74 (4.87s) 79.48 (9.49s)

Table 13: Experiment results reported with standard deviation using Citation datasets.

Bit Model Cora Citeseer Pubmed
GCN GIN GS GCN GIN GS GCN GIN GS

INT4

Degree-Quant 79.02 ± 0.55 71.88 ± 5.10 73.50 ± 1.23 22.34 ± 1.57 47.92 ± 7.66 17.14 ± 2.96 78.62 ± 0.71 76.56 ± 10.90 78.18 ± 1.81
SGQuant 79.02 ± 0.82 70.21 ± 5.22 75.30 ± 3.31 68.08 ± 0.91 46.70 ± 5.82 48.34 ± 5.93 76.08 ± 0.92 65.28 ± 7.01 71.08 ± 2.21
A2Q 52.68 ± 5.82 64.64 ± 4.14 74.16 ± 0.64 54.00 ± 6.12 46.04 ± 7.75 66.22 ± 4.24 69.72 ± 4.54 51.90 ± 7.66 73.92 ± 3.84

TopGQ 81.50 ± 0.44 78.58 ± 0.42 79.64 ± 0.15 71.90 ± 0.37 70.14 ± 0.34 71.76 ± 0.58 79.58 ± 0.12 77.70 ± 0.14 79.00 ± 0.16

INT8

Degree-Quant 81.80 ± 0.70 74.64 ± 5.00 77.50 ± 1.09 69.72 ± 0.69 58.34 ± 7.95 69.10 ± 4.73 79.24 ± 0.78 79.70 ± 11.07 78.42 ± 1.03
SGQuant 80.51 ± 0.59 73.32 ± 4.23 75.32 ± 3.86 68.34 ± 0.48 51.30 ± 5.01 54.12 ± 5.15 78.06 ± 0.54 75.22 ± 2.44 73.44 ± 0.62
A2Q 79.96 ± 2.28 78.74 ± 2.68 76.12 ± 3.09 70.48 ± 1.29 67.26 ± 5.13 66.04 ± 3.04 76.44 ± 1.29 76.40 ± 0.98 75.36 ± 0.60

TopGQ 82.08 ± 0.39 78.42 ± 0.53 80.30 ± 0.61 72.28 ± 0.53 70.26 ± 0.60 71.96 ± 0.75 80.30 ± 0.19 78.62 ± 0.74 78.94 ± 0.47

F EXPERIMENT RESULTS WITH STANDARD DEVIATION IN CITATIONS
DATASETS

In the main experiment tables, we omitted the error bar for better readability. To show the error range
of both the baseline methods and TopGQ, we present the accuracy table with standard deviation
values using citation datasets in Table 13.

G EXPERIMENTAL RESULTS OF QAT-STYLE TOPGQ

In neural network quantization, enabling PTQ (non-training quantization) is recognized as a contri-
bution for two reasons: 1) PTQ is considered more efficient than QAT for practical deployment. 2)
Enabling PTQ is usually difficult due to a severe accuracy drop compared to QAT. This is because
PTQ has limited capacity than QAT which can freely update weights. Thus, simply building a
stable PTQ method that can minimize such accuracy loss is difficult and is considered a meaningful
contribution. Nevertheless, we provide TopGQ with QAT settings and compare the results with the
original TopGQ, shown in Table 14 and Table 15.

We can observe that TopGQ with QAT can perform to a significant level, with several settings close
to the original TopGQ. This shows that the proposed quantization techniques of TopGQ leveraging
topology can also be effective in a QAT setting.

H LOCALIZED WIENER INDEX CALCULATION COST OF UNSEEN NODES

During inference, we only need to calculate the Wiener indices on the unseen nodes. To compare
this overhead with the inference time, we provide comparison results in GCN INT8 settings with
the graph datasets PROTEINS and NCI1 (Table 16). The nodes from the test set graphs will be the
unseen nodes, and their information will have to be calculated during inference time.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 14: Comparing QAT and PTQ implementations of TopGQ on node classification task.

Method Bit Cora Citeseer Pubmed
GCN GIN GraphSAGE GCN GIN GraphSAGE GCN GIN GraphSAGE

TopGQ + QAT INT4 80.08 76.30 76.64 70.58 69.10 69.56 78.50 77.00 76.72
TopGQ 81.50 78.58 79.64 71.90 70.14 71.76 79.58 77.70 79.00

TopGQ + QAT INT8 81.12 78.30 76.00 70.24 69.14 69.50 79.40 78.86 78.10
TopGQ 82.08 78.42 80.30 72.28 70.26 71.96 80.30 78.62 78.94

Table 15: Comparing QAT and PTQ implementations of TopGQ on graph classification task.

Method Bit PROTEINS NCI1
GCN GIN GraphSAGE GCN GIN GraphSAGE

TopGQ + QAT INT4 67.36 66.31 66.61 69.74 66.66 73.12
TopGQ 69.94 70.92 68.93 65.88 75.37 75.98

TopGQ + QAT INT8 73.19 65.68 73.73 77.86 79.86 77.92
TopGQ 75.65 74.34 72.20 79.72 81.36 78.43

As we can see in the table, the overhead for calculating Wiener index of unseen test nodes accounts
for only a very small portion (smaller than 1%) of the total inference time. Note that this is made
possible from a specialized algorithm to accelerate the computation of the localized Wiener Index,
which is another contribution of TopGQ.

I ANALYSIS OF TOPOLOGY-AWARE GROUPING ON PTQ AND QAT

As we discussed in the main body of the paper, the better performance of TopGQ compared to
QAT baselines is from better consideration of topological structure. In other words, the superior
performance of TopGQ is due to a better ability to find quantization parameters, and is orthogonal
to the PTQ/QAT differences. To validate this, we present two variants: Degree-Quant-PTQ and
TopGQ-QAT, which are the PTQ and QAT versions of each method, respectively. The experimental
results are shown in Table 17. The results show that our proposed topology-aware grouping shows
better performance regardless of PTQ and QAT.

As for the results that outperform FP32 accuracies, we believe this phenomenon often occurs when
the low-bit format is sufficient to handle the original model complexity. We cite some papers that
exhibit the mentioned occasion in their experiments. For example, some of Wu et al.; Shomron et al.
(2021) report better performance in 8-bit settings than FP32 settings at various tasks.

J FURTHER COMPARISON ON k-HOP WIENER INDEX

Here, we present further analysis of the Wiener index, including a sensitivity study regarding the
hyperparameter k, which determines the diameter of the local subgraph.

Tables 18 and 20 shows the sensitivity study on quantization accuracy regarding the hop size k. We
compare the hop size k = 1, k = 2, and k = 3, where the k = 1 setting corresponds to the baseline,

Table 16: Average inference time and calculation overhead for GCN on PROTEINS and NCI1
datasets.

hop size k k = 2 k = 3

Metric PROTEINS NCI1 PROTEINS NCI1
Avg. test inference time (s) 0.0438 0.1332 0.0438 0.1332
Avg. overhead of calculation (s) 0.0001 0.0003 0.0018 0.0048
Proportion 0.23% 0.22% 4.07% 3.63%

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 17: Comparison on PTQ and QAT differences on INT4 Quantization.

Method Cora PubMed
GCN GIN GraphSAGE GCN GIN GraphSAGE

Degree-Quant 79.00 71.90 73.50 78.60 76.60 78.20
Degree-Quant-PTQ 78.42 30.46 78.54 78.34 50.20 77.64

TopGQ-QAT 80.08 76.30 76.64 78.50 77.00 76.72
TopGQ 81.50 78.58 79.64 79.58 77.70 79.00

Table 18: Sensitivity study of TopGQ on graph classification task.

Bit Datasets PROTEINS NCI1
Hop size k GCN GIN GraphSAGE GCN GIN GraphSAGE

INT4
k = 1 73.34 72.88 73.03 80.81 81.60 78.88
k = 2 76.05 74.61 74.22 80.86 81.84 79.10
k = 3 75.94 74.86 74.00 80.91 81.88 79.16

INT8
k = 1 60.86 51.04 65.77 62.68 70.91 75.90
k = 2 66.06 63.96 67.01 66.14 77.33 76.50
k = 3 70.15 70.61 69.67 65.09 78.49 76.43

Table 19: Comparison of node-wise Wiener index computation time.

k Algorithm Cora CiteSeer Pubmed PROTEINS NCI1 Reddit ogbn- ogbn-
proteins products

2

Bellman-Ford 0.35s 0.46s 19.87s 13.02s 33.01s 4.21h 2.84h 34.64h
Floyd-Warshall 0.15s 0.21s 4.68s 7.91s 2.97s 0.57h 0.41h 4.51h
Dijkstra 0.19s 0.29s 2.70s 8.78s 2.56s 0.16h 0.11h 1.55h
Ours 0.02s 0.01s 0.06s 0.29s 0.10s 0.0004h 0.0002h 0.0048h
Speed Up 9.77× 31.65× 43.50× 27.12× 25.17× 412.23× 602.30× 322.37×

3

Bellman-Ford 3.63s 2.43s 216.76s 40.07s 512.13s 46.63h 30.09h 305.50h
Floyd-Warshall 0.77s 0.31s 34.62s 8.50s 11.27s 5.75h 3.78h 35.44h
Dijkstra 0.61s 0.39s 14.71s 12.75s 12.49s 1.02h 0.61h 8.52h
Ours 0.52s 0.08s 1.82s 4.84s 1.78s 0.0155h 0.0065h 0.2855h
Speed Up 1.18× 3.76× 8.10× 1.76× 6.32× 65.89× 93.39× 29.83×

Table 20: Sensitivity study of TopGQ on citation datasets.

Bit Datasets Cora Citeseer PubMed
Hop size k GCN GIN GraphSAGE GCN GIN GraphSAGE GCN GIN GraphSAGE

INT4
k = 1 81.00 77.12 78.82 71.86 69.10 70.86 78.20 75.42 78.50
k = 2 81.50 78.58 79.64 71.90 70.14 71.76 79.58 77.70 79.00
k = 3 81.56 78.32 78.56 72.12 70.47 71.38 79.20 77.00 78.72

INT8
k = 1 81.96 78.36 79.92 72.24 70.18 71.84 80.18 78.34 78.90
k = 2 82.08 78.42 80.30 72.28 70.26 71.96 80.30 78.62 78.94
k = 3 82.10 78.38 79.54 72.24 70.60 71.92 80.24 78.68 78.84

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 21: Comparison on different centrality measures against localized Wiener index used in TopGQ.

Bit Method PROTEINS NCI1
GCN GIN GraphSAGE GCN GIN GraphSAGE

FP32 - 76.19 74.79 72.87 80.41 81.46 78.46

INT4

Degree Centrality only 56.15 45.04 50.65 60.54 69.71 75.46
+ Betweeness Centrality 59.03 54.25 50.58 63.81 67.55 70.61
+ Closeness Centrality 58.52 61.73 50.48 63.14 69.54 71.97
+ Katz Centrality 53.68 55.24 44.08 57.19 57.36 57.77
+ L. Wiener Index (Ours) 70.15 70.61 69.67 67.53 78.49 76.43

INT8

Degree Centrality only 72.57 71.86 70.48 78.91 81.28 78.32
+ Betweeness Centrality 62.10 61.55 55.08 76.89 75.18 75.13
+ Closeness Centrality 62.48 64.96 57.33 76.49 76.68 75.85
+ Katz Centrality 56.82 57.97 48.56 64.20 62.19 64.27
+ L. Wiener Index (Ours) 75.94 74.86 74.00 80.91 81.88 79.16

which is identical to the “indegree” setting in Table 4. For the PROTEINS dataset, increasing the hop
size from k = 1 to k = 2 led to noticeable improvements across all models.

Across both precision levels and datasets, a clear trend emerged where increasing the hop size from
k = 1 to k = 2 generally improved performance for all architectures. This effect was particularly
noticeable in the PROTEINS dataset under INT4 precision, where all architectures showed consistent
gains. In the INT8 configuration, the same trend held, though the magnitude of improvements was
more pronounced in some cases. Notably, GIN and GCN showed substantial increases in performance
as the hop size increased from k = 1 to k = 3 for the PROTEINS dataset, while the NCI1 dataset
saw more moderate gains. However, increasing the hop size further to k = 3 did not always lead to
continued improvements.

We also conducted further sensitivity study regarding Wiener index computation time by varying the
value of k, as increasing k results in more computational costs due to the larger diameters of each
subgraph. Table 19 shows the comparison results of computation time.

For k = 2, our method shows remarkable speedups, often outperforming the other algorithms by
significant margins, especially for larger graphs where it achieves up to several hundred times faster
performance. At k = 3, while all methods take longer due to the increased complexity, our method
continues to lead in performance, though the speedup is generally lower than for k = 2. Nonetheless,
it maintains a strong advantage, especially in large-scale cases where traditional methods struggle
with execution times. Overall, the trends show that our method provides consistent and substantial
speed improvements.

From the experiments, we observe that k = 2 often provides the best balances of quantization
accuracy and computation time. In addition, for better quantization accuracy, using k = 3 is also an
option to choose.

K COMPARISON AGAINST DIFFERENT CENTRALITY MEASURES

In this section, we provide quantization accuracies when using other centrality measures than our
proposed localized Wiener index. Table 21 shows the results using PROTEINS and NCI1 datasets on
three different model architectures, both in INT4 and INT8 precisions. As we observed in Section 6.6,
the results are consistent in that localized Wiener index shows superior results to other centrality
measures.

19

	Introduction
	Preliminaries
	Graph Neural Networks
	Quantization
	Quantization of Graph Neural Networks

	Related Work
	Motivational Study
	Methodology
	Quantization with Topology-based Node Grouping
	Accelerated Computation of Localized Wiener Index
	Inference Flow with Scale Absorption

	Experiments
	Experimental Settings
	Node Classification Results
	Graph Classification Results
	Ablation Study
	Cost Analysis
	Analysis on Topological Measures
	Analysis on Scale Absorption

	Conclusion
	Code
	Additional Experimental Settings
	Quantization Trade-off Analysis
	GAT Quantization Results
	GraphSAGE Quantization Results with Mean Aggregators
	Experiment Results with Standard Deviation in Citations Datasets
	Experimental Results of QAT-Style TOPGQ
	Localized Wiener Index Calculation Cost of Unseen Nodes
	Analysis of topology-aware grouping on PTQ and QAT
	Further comparison on k-hop Wiener index
	Comparison against different centrality Measures

