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ABSTRACT

Graph neural networks (GNN) suffer from large computational and memory costs
in processing large graph data on resource-constrained devices. One effective
solution to reduce costs is neural network quantization, replacing complex high-bit
operations with efficient low-bit operations. However, to recover from the error
induced by lower precision, existing methods require extensive computational costs
for retraining. In this circumstance, we propose TopGQ, the first post-training
quantization (PTQ) for GNNs, enabling an order of magnitude faster quantization
without backpropagation. We analyze the feature magnitude of vertices and observe
that it is correlated to the topology regarding their neighboring vertices. From these
findings, TopGQ proposes to group vertices with similar topology information
of inward degree and localized Wiener index to share quantization parameters
within the group. Then, TopGQ absorbs the group-wise scale into the adjacency
matrix for efficient inference by enabling quantized matrix multiplication of node-
wise quantized features. The results show that TopGQ outperforms SOTA GNN
quantization methods in performance with a significantly faster quantization speed.

1 INTRODUCTION

Graph neural networks (GNNs) attract a great . FP32  Degree-Quant © SGQuant " A’Q
amount of attention due to their ability to process % 1 GCN 77 GraphSAGE TopGQ

diverse unstructured data. They have achieved
success in many areas such as recommendation
systems (Pal et al., 2020; |[Fan et al., [2019; Zhang
et al., |2023), molecular interaction (Wale et al.
2008; [Borgwardt et al.| [2005), transportation net- ,
works (Bai et al.,|2020; [Cao et al., [2020), and social ogbn-proteins reddit ogbn-pr
network analysis (Qiu et al.l 2018 |Arazzi et al., . . . L
2023). Howe\}/,er, GNN s often suffer from substan- F]gurc.: l:'Comparmg dura'tlon of existing GNN
tial computational and memory costs due to increas- quantization methods against TopGQ.

ing demands for processing large graphs, especially on resource-constrained devices.

Duration (min)

d

ct:

3SR
=]
@

One promising direction to circumvent this issue is neural network quantization (Choukroun et al.|
2019; |Zhao et al.,|2019; (Choi et al., |2021), which reduces the computation and memory requirements
of GNN inference by utilizing reduced numerical precision for computations. However, despite
its advantages, quantizing GNNs is considered difficult due to the extremely diverse vertex feature
magnitudes caused by the message-passing of the GNN algorithm. Since the quantization process is
known to be highly sensitive to the magnitude outliers (Wei et al.| [2022), such diversity in aggregated
features in GNNs results in high quantization errors.

To handle the magnitude outlier problem, several methods (Tailor et al.,2020; Zhu et al., 2022) have
been proposed to adopt quantization-aware training (QAT). However, QAT methods accompany
significant computation and memory costs for the quantization process, requiring excessive resources
and time larger than full-precision pretraining target GNN architecture. Figure[I]reports the time it
takes to quantize common GNN architectures using prior GNN quantization methods (Tailor et al.|
2020; |Zhu et al., [2022)). Measured in wall-clock time, the quantization time easily exceeds 100
minutes, and even up to 4.9 days (ogbn-products, Degree-Quant) when the graph size increases.
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Real-world graphs, such as traffic networks (Jiang & Luo, [2022} [Sharma et al.| [2023)) or social
media graphs (Gao et al.} 2023} |Yao et al., [2023)), are continuously updated, which requires multiple
compressing of the GNNss to keep the application up-to-date. Also, in safety-critical applications such
as edge fraud detection in financial transactions (Lu et al.; 2022; |Zhou et al.| 2021} [Liu et al.| 2018)), a
rapid update is required to avoid safety crisis, and fast quantization of GNN can be necessary.

To this end, we propose TopGQ, the first accurate post-training quantization (PTQ) framework for
GNNs addressing the aforementioned issues of existing GNN quantization methods. TopGQ does
not involve any form of gradient computation or parameter updates, which makes the proposed
method significantly faster compared to the baseline and requires low memory consumption. Instead,
TopGQ focuses on the local topological information of the graphs to determine accurate quantization
parameters. As a result, our method TopGQ shortens the quantization time by an order of magnitude,
making GNN quantizations much faster and more efficient.

The key to achieving high performance is to well utilize the local topology of the graphs. We observe
that the existing method relying on the indegree of the vertices is insufficient to capture the diversity of
the feature magnitudes. Instead, we propose topology-based node grouping. Because the magnitude
of a node feature is determined by local neighbors, we arrange the vertices into several quantization
groups that share similar indegree and local Wiener index. In the process, we devise an efficient
algorithm for computing the local Wiener index. Lastly, we additionally provide scale absorption
method to enable efficient integer matrix multiplication of node-wise quantized feature matrix. The
experimental results show that TopGQ outperforms the existing SOTA method for GNN quantization
with up to 358 x speedups with better or comparable accuracy.

Our contributions can be summarized as follows:

* We show that the magnitudes of node features in GNN are correlated with local topological
information from degree centrality and Wiener index.

* We propose a topology-based node grouping, which groups vertices with similar topological
characteristics to reduce quantization error from high feature magnitude variance of GNN.

* We propose scale absorption to enable efficient integer arithmetic of node-wise quantized
GNN operation by absorbing node-wise scale into an adjacency matrix.

* We propose the first PTQ method for GNN, which outperforms the existing training-based
quantization method with meaningful margins while bringing up to 358 x less quantization
time compared to the baselines.

2 PRELIMINARIES

2.1 GRAPH NEURAL NETWORKS

Let graph G = (V, E), where V is a set of vertices and F is a set of edges. Each vertex v; consists
of feature vector h; and adjacency matrix is A € R"*" for n vertices, where A; ; = e;;, if
e;,; € E, else 0. To embed topological information in vertex feature, GNN gathers information
from neighboring vertices u; € N (v;) to update hidden vertex feature h; of v;, which is called the
message-passing algorithm. The message-passing algorithm consists of two parts: combination and

aggregation. Firstly, hidden vertex feature hgl) is multiplied with weight matrix W of I-th GNN

)

layer (combination), then the hidden vertex feature hl(-l of v; is updated (aggregation) as following:

1 l l
WD =oWh, @ e ;whl), o
JEN(3)
where ¢ feature update operator and € is a permutation-invariant aggregation, such as sum or mean.

GNN computation can be represented by multiplications of vertex feature matrix X € R"*din =

[h1,--- , hy]T, weight matrix W € R%n*dout and adjacency matrix A € R™*™ as follows:
l l
Koy =W - X0, @
XU = o(A-X0),,), 3
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where o is nonlinear operation, A may vary with GNN architecture, e.g., GCN (Kipf & Welling,
2016) utilizes normalized graph laplacian matrix A = D=*/2AD~1/2 while GIN (Xu et al.,[2019)
uses binary adjacency matrix A=A GraphSAGE (Hamilton et al.,[2017)) differs in the aggregation
phase by sampling a subset of neighboring vertices instead of considering all neighbors.

2.2  QUANTIZATION

Quantization replaces high-bit floating-point operations with low-bit integer operations. We use
simple yet effective uniform integer quantization as with scale (s) and zero-point (z) as follows:

x? :Q(QC;S,Z) :Clamp(LS'x_Z)WaqmaQOmin)v (4)
s= (Qk = 1)/(Tmaz — Tmin), ©)

where k is quantization bit, ¢,qz, Gmin 1S maximum and minimum value of k-bit integer representa-
tion, and | -] is rounding operator. Symmetric quantization has the representation range centered with
zero (z = 0), while asymmetric quantization uses z = S * Tyin + 2k=1 Also, each row or column
may have different quantization parameters (s, z), which are calculated independently according to
quantization dimension, called row-wise and column-wise quantization, respectively.

There are two mainstream types of quantization: Post-training quantization (PTQ) and quantization-
aware training (QAT). On the one hand, PTQ goes through a calibration process which adjusts the
scale, zero-point, and rounding directions using only a small set of data. Conversely, QAT methods
directly apply gradient-based training to explicitly reduce the quantized network’s target loss. The
major discrepancy between them is that QAT generally incorporates updating weight parameters,
while PTQ methods focus on quantization parameters without weight updates and is much faster.

2.3  QUANTIZATION OF GRAPH NEURAL NETWORKS

To achieve efficient inference in terms of computational cost and memory requirements, we should
consider both the combination phase (Equation (2)) and the aggregation phase (Equation (3))):

X5 = QWisw, 2w) - QXY sx0), 2x00), ©
x 1) — O’(Q(A, Sis ZA) : Q(Xc((l))mb; Sx® b’ZX(L) h)) @

As we can see in Equation (6) and Equation (7), we have to choose quantization policy for each W,
X0, x (El) and A. These design choices highly affect the final accuracy and inference efficiency of

a quantizgﬁl%etwork, and many baselines choose different policies. Degree-Quant (Tailor et al.| [2020)
applies per-tensor quantization for all matrices. While this requires the smallest storage, it suffers
from outliers as a single outlier element can affect the quantization scale. A?Q (Zhu et al., [2022))
mitigates this issue by applying column-wise (W and X,,) and row-wise (X and A) quantization.
As row- and column-wise quantization can separate quantization parameters of each node and feature

dimension, respectively, it is more robust to outliers at the expense of increased cost.

3 RELATED WORK

GNN Quantization can efficiently reduce extensive computational costs and memory requirements
of graph neural networks (Kipf & Welling} [2016} |Xu et al.| 2019; Velickovic et al.| 2018)), as they
suffer from large size of real-world graphs. Degree-Quant (Tailor et al., [2020) is the first work to
quantize GNN, using QAT to allow high-degree vertices to retain full-precision features at training
and be quantized later for inference. EPQuant (Huang et alf[2022) focuses on reducing high memory
costs incurred by processing large graph data with product quantization, along with quantized
GNNs. SGQuant (Feng et al., 2020) and A2%Q (Zhu et al.l [2022) are also QAT methods targeting
GNN architectures, but they differ in that they allow mixed-precision to assign higher bitwidth
to high-magnitude vertices. SMP (Wang et al.| 2023) tackles the oversmoothing problem when
quantizating deep GNNs with a customized message propagation, and (Eliasof et al.,|2023) utilizes
wavelet transformations in traditional image compression to quantize GNNs. Notably, existing GNN
quantization methods adopt QAT, i.e., incorporating gradient-based iterative weight updates, which
require significant computational overheads (Figure I).
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Graph Topology in GNNss is often integrated during training to help the model effectively learn
the structural information (Ji,2019; Zhang & Lu}|[2020; Hu et al., [2022;|Wu et al., 2018} [You et al.,
2021}; Brasoveanu et al.| |2023)). For example, Ji (2019) uses degree centrality to find highly central
vertices in their pooling layer as they are more important for effective representation learning. Also,
Zhang & Lu|(2020) uses betweenness centrality to assign weights to each node during aggregation.
‘Wu et al.| (2018)); Brasoveanu et al.| (2023) uses Wiener index from chemoinformatics as inputs of
GNNis to enhance its performance on general tasks. However, these methods do not relate topological
information with node feature magnitudes, especially for quantization.

4 MOTIVATIONAL STUDY

Indegree TopGQ (Ours) Indegree TopGQ (Ours)
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Figure 2: Comparing feature magnitude range of two grouping techniques: indegree (left) and TopGQ
(right). For both plots, x-axis denotes feature magnitude and y-axis denotes sorted group index.

For GNNs, the range of the feature values largely depends on each node’s structural properties
because of their unique message-passing framework. However, existing works (Feng et al., [2020;
Tailor et al.,|2020) only utilize node indegree which only takes into account 1-hop neighbors. We
find that indegree is a suboptimal measure when it comes to determining the quantization group. In
Figure 2] we plot the feature magnitude of each quantization group using indegree as the sole metric,
and we compare it against the groups used in our method TopGQ. Using only indegree to group the
node features, each group tends to have a large range of values with uneven distribution of nodes
among the groups. The extreme spread of values within each group would lead to poor representation
of the dense region, leading to large quantization errors. Instead, TopGQ proposes to use a topological
feature that can better capture such information. Figure 2| shows that each quantization group of
TopGQ has a smaller range with a more even distribution across the groups.

5 METHODOLOGY

The goal of TopGQ is to rapidly perform quantization with PTQ, while retaining QAT-like perfor-
mance on GNNs. For this, we propose topology-based node grouping which captures the local
topology information into GNN quantization. In this process, we propose a new algorithm to
accelerate the computation of the local topology for each node in the graph. Then, we propose
scale absorption which allows for efficient integer arithmetic while still preserving the accuracy of
node-wise quantization.

5.1 QUANTIZATION WITH TOPOLOGY-BASED NODE GROUPING

Figure [3p shows the group generation strategy of TopGQ. Due to the nature of the aggregation phase
(Equation (3)), it is evident that the feature magnitudes of a vertex depend greatly on how many and
which vertices the features are being aggregated from. As discussed in Section[d} node indegree is
a suboptimal measure because it only accounts for a limited amount of information. Instead, we
propose to examine the topology of the local subgraph surrounding each vertex, and group the vertices
with the same or similar local topology. Within the same group, we can expect that the vertices
aggregate similar values and thus sharing a quantization scale leads to minimal quantized errors.
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Figure 3: The process of topology-based node grouping. (a) shows group generation using topological
characteristics: indegree and Wiener Index. Each color is used to denote each group. (b) shows the
calibration process to achieve a set of quantization parameters for each group. (c) demonstrates how
inference is done on unseen data by using the quantization parameters of the nearest group.

While there exist several different measures to interpret the topology of a graph, we propose to use
Wiener index |Graovac & Pisanski (1991)) in conjunction with the indegree to better quantify the local
structure around each node. Let graph G = (V, E), where V is a set of vertices and F is a set of
edges. Wiener index is defined as the sum of shortest lengths between all pairs of vertices:

W(G) - EumEVdiS(ua U), (8)
where dis(u, v) denotes the shortest path distance between vertices v and v. Because Wiener index is
originally a graph-level representation, we make an adaptation to use it as a node-level representation.
For each vertex, we extract a k-hop subgraph around each vertex and compute the Wiener index of
the subgraph. Formally put, we define the localized Wiener index Wy, (u) of vertex u as:

Wi(u) = By wen, () dis(v,w), Ni(u) = {v € Vl]dis(u,v) < k}, )
where £ is the predefined hop count and Ny, is the set of reachable neighbor vertices within k£ hops.

Once the localized Wiener index values are obtained for the vertices, we consider indegree I (u)
together, and vertices with equal (I (u), Wy (u)) are assigned to the same quantization group. For
example, in Figure [3p, all purple-colored vertices belong to a single group.

After the groups have been generated, the
calibration (Figure [3p) takes place. For
each group, group-wise quantization parame- 1 Input: Local k-hop subgraph Gsup = (Vsub, Esub)
ters (S, Z¢;) are obtained according to Sec- ~ 2* Output: Wiener index Wi (u) € N
tion [2.2] by measuring min, max values per i
group. At inference time (Figure [3t), the 5.
test set vertices are assigned to the groups ¢
7
8
9

Algorithm 1 Accelerated Wiener Index Computation

: function addNeighbors(node u, set H, depth m)
for v € u.nbr() do

h’m <_ hm U bl
according to their (I, W) pair values. When (w,v)

. _ if m > 0do
unseen values are found at inference time, addNeighbors(v, H, m — 1)
they are assigned to the most similar quan- end if

tization group by first comparing the  and 10:  end for
then the W values. 11: end function

13: W < k|Vius|?
5.2 ACCELERATED COMPUTATION 4 He{h=o|1=0,..k}

OF LOCALIZED WIENER INDEX 15: hi < Veus

. . . . 16: parallel for node u € Vsyp
Because the localized Wiener index in Equa- 7. addNeighbors(u, H, k — 1)

tion (9) requires all-pair shortest paths within 8. end for

the subgraphs, its computation can add a con-  19: W «+ W — 35 |UY, hil
siderable overhead. Although several algo-
rithms are known for all-pair shorted paths (Dijkstra, [1959; [Floyd, |1962; |Warshall, |1962; Bellman,
1958; [Ford Jr,|1956), they often require substantial computational and space complexity.
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For this, we propose a new algorithm to compute the localized Wiener index, shown in Algorithm 1]
The key idea is that because we sampled k-hop neighbors of a single vertex to extract a subgraph, its
diameter (i.e., the maximum distance between two arbitrary nodes) is capped at 2k. This can be used
to efficiently calculate the localized Wiener indices. For instance, W5 (u) is calculated as

Wg(u) = ‘Esub| + 2|d2‘ + 3‘d3| + 4|d4|, (10)

where d,, is a set of distance-n node pairs in a local k-hop subgraph Gsup = (Viup, Esup) of node w.
In practice, obtaining the sets d; can be time-consuming because this requires costly all-pair shortest
paths. Instead, Equation (I0) can be restructured in a subtractive manner, using k-hop reachable set
N;(u) that can be easily obtained by simple traversal:

Wa(u) =4 Suev,,, [Na(0)] = (Z3_0Tvev... | Ni(v)]), (1n

From the maximum-value case where all vertices are connected in 4 hops, we subtract the number of
occurrences in each of i-hop reachable set from the vertices. Additionally, we can substitute some
terms trivially obtainable from graph formats such as CSR. The ¥,cv.,, | N4 (v)] is simply |Viup|?,
Yvev.,, |N1(v)] is the number of edges |Esyp| and Xyev,,,, | No(v)| the number of vertices |Viyp|:

WZ(U) = 4|‘/;ub‘2 - (EUEVSILJNB(U” + EUEVSub|N2(’U)| + ‘Esub| + |‘/éub|)7 (12)

The overall process is shown in Algorithm |1} First, we define a function addNeighbors (lines 4-11),
which recursively adds [-hop reachable node pairs into the set h;. Then, we initialize Wiener index
W with k|Vy|? (line 13), and h; with &. As the computation of addNeighbors on node n in G g, is
independent of each other, we parallelized the computation (line 16). After the computation, the h;
stores a non-overlapping set of [-hop reachable node pairs. By using h;, we calculate ¥,,cv.,, |Ni(v)]

by | Uf: , hi| and obtain the Wiener index result (line 19). Please refer to TablelEIfor the experiments
on acceleration, compared to Bellman-Ford, Floyd-Warshall, and Dijkstra’s algorithm.

5.3 INFERENCE FLOW WITH SCALE ABSORPTION

Scale Absorption preserves both the benefits of fixed- SN fp
point operations and activation precision preservation N z
in TopGQ. Repetitive aggregation in GNN layers may Sl E . .
amplify certain values, leading to a node-wise outliers ~ Absorption X | X
in activations. To prevent the outliers from distorting i I B
quantization parameters, TopGQ maintains the same row-wise l
quantization method for the vertex feature matrix X S
for the combination and aggregation phases. Main-
taining node-wise quantization for activation leads to _
retaining precision, as outliers are isolated from other Ay | —|[ A)% x v X@
activation values in the quantization process. B R .

2y

Stvixt] P v s int int
Ay Ay

Assuming symmetric quantization for simplicity, it
can be represented as X ~ Sx - X @, where X© is
the quantized features and Sy is a diagonal matrix of
the scales of each node group. In the combination phase, the weight parameters are regarded as a
single group. Therefore, the quantized form of the combination becomes:

X WaSx- X9 W2 s = (sw @ 8Sx) - (X¢-WO). (13)

Figure 4: Inference with scale absorption.

For aggregation, using the same quantization method is infeasible, because with quantized Aand X,
A- X~ S, A9 Sx - X9, (14)

which contains the Sy matrix inside the multiplication. Instead, we take advantage of the fact that A
is a static topology. After calculating the scale diagonal matrix S,

A-X~A Sx-XP=Ax X9~ S,, -AZ - XO. (15)
In the above, the scale diagonal matrix Sx is absorbed into the adjacency matrix Ato form Ay,

which is then row-wisely quantized with the new scale as S4 , - flg. At inference time, this can be
pre-calculated as both A and Sx only depend on the topology of the input graph.
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Table 1: Performance on node classification task using large graph datasets.

Dataset  Bit Method Type GCN GraphSAGE
Acc. Q.Time Acc. Q. Time
FP32 - - 90.60 - 94.64 B

Degree-Quant QAT 49.25 (31.18h) 89.86  (42.23h)
SGQuant QAT 8874 (9.19h) 63.73 (15.75h)

INT4 A2Q QAT 5831 (4.92h) 5265 (5.78h)

Reddit TopGQ (Ours) PTQ 83.95 (0.02h) 93.93  (0.02h)
Degree-Quant QAT  90.91 (30.39h) 9035  (42.4%h)

INTS SGQuant QAT 88.67 (9.46h) 69.12  (15.48h)

A2Q QAT 61.15 (491h) 7626  (5.70h)

TopGQ (Ours) PTQ 91.13  (0.02h) 94.60  (0.02h)

FP32 - - 56,94 - 73.33 -

Degree-Quant QAT  57.37  (7.68h)  50.02  (8.84h)

INT4 SGQuant QAT 5297 (3.46h) 5777  (4.64h)

A2Q QAT 4495 (235h) 7198  (2.49h)

p‘r’ft‘:il[‘ls TopGQ (Ours) PTQ 60.08 (0.01h) 6893  (0.01h)
Degree-Quant QAT 59.32 (7.4%) 73.81 (8.38h)

INTS SGQuant QAT 5277 (3.32h) 6930  (4.58h)

A2Q QAT 4441 (235h) 6938  (2.51h)

TopGQ (Ours) PTQ 58.05 (0.01h) 73.34  (0.01h)

FP32 - - 7841 - 71.65 -

Degree-Quant QAT  70.58 (98.38h) 65.05 (121.78h)

INT4 SGQuant QAT 2690 (20.03h) 2738 (37.17h)

A2Q QAT 23.62 (13.16h) 2221 (14.6%h)

ogbn- \

producs TopGQ (Ours) PTQ 57.55 (0.34h) 71.02  (0.34h)
Degree-Quant QAT  75.26 (95.95h) 69.18 (118.96h)

INTS SGQuant QAT 6571 (20.18h) 41.71 (31.25h)

A%2Q QAT 4791 (12.57h) 5826  (14.66h)
TopGQ (Ours) PTQ 76.94 (0.34h) 73.67  (0.34h)

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTINGS

We report evaluation results on two representative tasks: Node-level and graph-level classification.
We use Reddit, ogbn-proteins, and ogbn-products, Cora, CiteSeer, and PubMed for node classification
task, and use PROTEINS and NCI1 for graph classification task. For baselines, we use three GNN
quantization methods: Degree-Quant (Tailor et al.,[2020), SGQuant (Feng et al.,2020), and A2Q (Zhu
et al., [2022). To ensure a fair comparison, we use fixed-precision quantization for both SGQuant
and A?(Q) when attaining experiment results. We use GCN (Kipf & Welling, 2016), GIN (Xu et al.,
2019)), and GraphSAGE (Hamilton et al.| 2017) architectures with 4-bit and 8-bit integer quantization.
For a fair comparison, we apply the same bitwidth for all layers. We use k& = 3 for ogbn-products,
PROTEINS, and NCI1 and k = 2 for other datasets. More details can be found in the Appendix.

6.2 NODE CLASSIFICATION RESULTS

The experimental results of quantization accuracy comparison of node classification task are shown
in two settings: larger graphs (Table[T) and more conventional sized graphs (Table[2). The results
show that TopGQ performs comparable or significantly better in accuracies, and achieves an order
of magnitude faster quantization time. Taking Reddit with 4-bit GraphSAGE as an example, the
best-performing baseline is Degree-Quant, with 89.86% accuracy. However, it suffers from almost
42.27 hours of quantization time. SGQuant and A%() are faster on quantization, but suffer from
severe accuracy drops. On the other hand, TopGQ achieves a significantly higher accuracy of 93.93%,
with only 0.02 hours of quantization time. This is more than 1000x faster than Degree-Quant, and
more than 100x faster than the low-performing baselines (SGQuant and A2Q).

Table 2] shows results on the smaller graphs that are more commonly used in existing GNN quanti-
zation literature. The results show a similar trend overall. TopGQ shows comparable performance
compared to the existing baselines with significantly low overhead for GNN quantization. The
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Table 2: Performance on node classification task using smaller graph datasets.

Dataset Bit Method Type GCN GIN GraphSAGE
Acc. Q.Time Acc. Q.Time Acc. Q. Time
FP32 - - 82.08 - 78.54 - 79.58 -
Degree-Quant QAT  79.02  (9.64s) 71.90 (31.47s) 73.50 (15.54s)
INT4 SGQuant QAT 79.02 (3.20s) 7021  (4.22s) 75.30 (8.62s)
A%Q QAT 52.68 (2.09s) 64.64 (1.72s) 74.16 (2.53s)
Cora TopGQ (Ours) PTQ 81.50 (1.40s) 7858  (0.99s) 79.64 (0.87s)
Degree-Quant QAT 81.80 (9.825) 74.60 (31.45s) 77.50 (15.52s)
INT8 SGQuant QAT 80.51 (3.60s) 7332 (4.53s) 7532 (8.38s)
A%Q QAT 79.96 (1.60s) 7874 (1.95s) 76.12 (2.48s)
TopGQ (Ours) PTQ 82.08 (1.12s) 78.42 (1.18s) 80.30  (0.87s)
FP32 - - 72.34 - 70.24 - 71.96 -
Degree-Quant QAT 2234 (21.72s) 47.92 (90.57s) 17.14 (40.67s)
INT4 SGQuant QAT 68.08 (5.57s) 4670  (8.23s)  48.34 (17.91s)
A%2Q QAT 54.00 (2.08s) 46.04 (2.67s) 66.22 (3.18s)
Citeseer TopGQ (Ours) PTQ 7190 (1.17s) 70.14 (1.14s) 71.76 (1.05s)
Degree-Quant AT 69.72 (22.03s) 58.34 92.75s 69.10  (40.63s
gree-Q Q ( ( ) )
INTS SGQuant QAT 68.34 (5.85s) 51.30 (8.56s) 54.12 (18.47s)
A%Q QAT 7048 (1.77s) 6726  (2.36s) 66.04 (3.15s)
TopGQ (Ours) PTQ 7228 (1.11s) 7026 (1.16s) 71.96 (1.05s)
FP32 - - 80.32 - 78.82 - 78.84 -
Degree-Quant QAT 78.62 (21.33s) 76.56 (108.07s) 78.18 (34.38s)
INT4 SGQuant QAT 76.08 (5.41s) 6528  (8.24s) 71.08 (15.86s)
A%Q QAT 69.72 (2.17s) 5190  (2.60s) 73.92 (3.31s)
Pubmed TopGQ (Ours) PTQ 79.58 (1.21s) 77.70 (1.18s) 79.00 (1.12s)
Degree-Quant QAT  79.24 (21.56s) 79.70 (109.59s) 78.42 (34.07s)
INTS SGQuant QAT 78.06 (531s) 7522  (89ls) 73.44 (15.66s)
A%2Q QAT 7644 (1.70s) 76.40  (2.15s)  75.36  (3.24s)
TopGQ (Ours) PTQ 80.30 (1.08s) 78.62  (1.16s) 78.94 (1.22s)
Table 3: Performance on graph classification task.
Dataset Bit Method Type GCN GIN GraphSAGE
Acc. Q. Time Acc. Q. Time Acc. Q. Time
FP32 - - 76.19 - 74.79 - 72.87 -
Degree-Quant QAT 75.21 (2158.47s) 70.44 (1407.09s) 63.72 (1371.54s)
INT4 SGQuant QAT 59.84 (203.70s) 59.48 (190.28s) 59.66  (249.86s)
A2Q QAT 71.16 (128.52s) 6559 (116.96s) 73.59 (209.23s)
PROTEINS TopGQ (Ours) PTQ 70.15 (4.20s) 70.61 (3.94s) 69.67 (4.21s)
Degree-Quant QAT 7493 (2140.48s) 69.72 (1368.98s) 63.61 (1358.99s)
INTS SGQuant QAT 7240 (203.61s) 69.73 (190.71s) 61.99 (261.81s)
A%2Q QAT 73.05 (136.03s) 66.85 (129.83s) 70.62 (194.75s)
TopGQ (Ours) PTQ 75.94 (4.11s) 74.86 (3.86s) 74.00 (4.17s)
FP32 - - 80.41 - 81.46 - 78.46 -
Degree-Quant QAT 73.55 (4588.48s) 76.42 (3110.10s) 69.46 (3585.30s)
INT4 SGQuant QAT 63.92 (530.27s) 53.09 (571.44s) 66.13 (778.96s)
A%2Q QAT 68.81 (668.52s) 79.08 (648.44s) 7238  (656.70s)
NCI1 TopGQ (Ours) PTQ  65.09 (9.36s) 78.49 (8.98s) 76.43 (9.18s)
Degree-Quant QAT 7547 (4493.82s) 77.59 (3025.24s) 69.12 (3449.79s)
INTS SGQuant QAT 6847 (527.19s) 7436 (572.13s) 67.59  (799.31s)
A2Q QAT 75.64 (648.18s) 79.17 (635.09s) 76.86  (645.50s)
TopGQ (Ours) PTQ 80.91 (9.35s) 81.88 (8.97s) 79.16 (9.22s)

quantization times are relatively short for all methods, which comes from a small number of vertices
and edges for the datasets. Nonetheless, TopGQ is the fastest in quantization time in all cases.

Interestingly, TopGQ sometimes outperforms QAT baselines or even the FP32 network. This hints
that the existing QAT baselines do not consider the nature of GNN. On the other hand, our method
directly integrates the nature of GNN aggregation into the quantization parameters by grouping nodes

by their k-hop topological structure. We provide a more detailed analysis in Appendix
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Table 4: Ablation study of TopGQ.

PROTEINS NCI1
Bit Node Scale

Grouping Absorption Graph Graph
GCN GIN SAGE GCN GIN SAGE
X X 5732 4551 4405 5335 60.66 73.80
INT4 Indegree X 56.15 45.04 50.65 60.54 69.71 75.46
L. Wiener Index X 61.28 47.12 6276 6093 7276 75.63
L. Wiener Index v 69.94 7092 6893 6588 7537 7598
X X 56.14 5591 6125 79.63 8129 78.30
INTS Indegree X 72.57 71.86 7048 7891 81.28 78.32
L. Wiener Index X 75.64 7394 73.69 80.89 8190 79.18
L. Wiener Index v 75.65 7434 7220 79.72 8136 7843

Table 6: Comparison of node-wise Wiener index computation time.

Algorithm Cora  CiteSeer Pubmed PROTEINS NCII  Reddie ~ °%bn-  osbn-

proteins  products
Bellman-Ford ~ 0.35s  046s  19.87s 4007s  512.13s  421h  2.84h  305.50h
Floyd-Warshall  0.15s  021s  4.68s 8.50s 1127s  057h  041h  35.44h
Dijkstra 0.19s 0295  2.70s 12.75s 1249s  0.16h  0.11h  852h
Ours (§5.2) 0.02s  0.01s  0.06s 4.84s 1785 0.0004h  0.0002h  0.2855h
Speed Up 977x  31.65x  43.50x 1.76 % 6.32x  41223x  602.30x  29.83x

6.3 GRAPH CLASSIFICATION RESULTS

The experimental results on graph classification are in Table [3] The proposed method, TopGQ,
significantly improves quantization speed while maintaining competitive classification performance.
For instance, Degree-Quant takes almost an hour to quantize the GraphSAGE model on NCI1, with a
significant drop in accuracy of 9.0%p. In contrast, TopGQ achieves remarkable speed improvements
with PTQ, requiring only about a minute for quantization across all datasets and models. This
efficiency highlights the superiority of TopGQ, as it achieves a balance between accuracy and
quantization speed, making it a practical choice for large-scale graph-level classification tasks.

6.4 ABLATION STUDY

We conducted an ablation study to show the effect of the proposed topological quantization groups,
shown in Table[d] The PTQ baseline without any proposed methods suffers from accuracy degradation
due to high-variance node-wise magnitude. This phenomenon is especially worse in GIN, as the node
features of GIN architecture are larger due to the unnormalized sum aggregation operation (Tailor
et al.| 2020). Applying the proposed topology grouping with localized Wiener index further boosts
the PTQ performance, as it effectively divides quantization groups in a node-wise manner, with the
nodes in the group sharing similar magnitudes for the quantization.

Table 5: Inference time comparison using GCN.

6.5 COST ANALYSIS Bil Mettod | Type Reddit ogbn-products
Time (s) Speedup Time (s) Speedup
We compare the inference time in Table[5] mea-  Fp32 - - 141 - 145 -
sured on an RTX 4090 GPU with customized Desgéeé-uQaﬁlam Sﬁ 122 Lo 130 L
kernels. While the forward times are mostly sim- N8 ™72 QAT 130  108x 178  0.82x
ilar due to the same amount of multiplications, TopGQ  PTQ 124  LI3x 130  Lllx

the difference in inference time comes from the

unseen vertices. While Degree-Quant does not handle unseen nodes any differently, A%2Q has to
perform costly nearest neighbor search on the input features. Although TopGQ performs a group
search for unseen nodes, this only involves simple I, W comparison before inference.

In terms of quantization time, TopGQ is orders of magnitude faster as discussed in Section[6.2} A
large portion of this is due to the proposed computing method for the localized Wiener index, as
shown in Table[6] We compare the time to compute the Wiener index of k-hop subgraph, using the
same k settings that are used in the main experiments. For the baselines, we used implementations
from the SciPy library. The results show that our method demonstrates significant improvements in
computational efficiency compared to other algorithms. Specifically, our approach reduces the Wiener
index computation time by up to 602.30x on large-scale datasets like ogbn-proteins, achieving a



Under review as a conference paper at ICLR 2025

Table 7: Comparison on different centrality measures against localized Wiener index used in TopGQ.

. PROTEINS NCII
Bit  Method
GCN GIN GraphSAGE GCN GIN  GraphSAGE
FpP32 - 76.19 74.79 72.87 80.41 81.46 78.46
Degree Centrality only 56.15 45.04 50.65 60.54  69.71 75.46
+ Betweenness Centrality 59.03  54.25 50.58 63.81 67.55 70.61
INT4 + Closeness Centrality 58.52 61.73 50.48 63.14  69.54 71.97
+ Katz Centrality 53.68 55.24 44.08 57.19 57.36 57.717

+ L. Wiener Index (Ours) 70.15 70.61 69.67 67.53 78.49 76.43

time reduction from 2.84 hours to 0.0002 hours. This trend is consistent, with speedups ranging from
9.77x on Cora to 412.23 x on Reddit. Our method scales significantly better with larger graphs by
reducing the computational cost of the Wiener index, achieving superior quantization speed.

6.6 ANALYSIS ON TOPOLOGICAL MEASURES

To further identify the advantages of the localized Wiener Index, we compare it against other centrality
measures, such as betweenness centrality, closeness centrality, and Katz centrality. The results are
shown in Table[7} The other centrality measures depict suboptimal performance compared to localized
Wiener Index. We believe that the result stems from the unique expressiveness of the localized Wiener
index in capturing local compactness of a node within k-hop neighbors: A small value of a node
indicates a dense connectivity within its neighbors, and relatively rapid propagation of features via
message passing. Therefore, TopGQ can effectively group node features with distinctive ranges, as
shown in Figure 2] in the paper, leading to enhanced quantization quality.

6.7 ANALYSIS ON SCALE ABSORPTION
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Figure 5: X, before (left) and after (right)
scale absorption (GCN, PROTEINS). Figure 6: X ., magnitude visualization.

In this section, we visualize the activations X ,,,; before and after applying scale absorption. In
Figure[5] the left-hand side denotes the activation of the FP32 format before scale absorption, where
visible outliers can be seen in a node-wise distribution. Such distribution with outliers results in most
values being mapped to a few integers in quantization, causing inefficient use of integer precision.
This is further supported by Figure[6] where the spiky distribution with large outliers is also found in
other models and datasets. On the other hand, applying scale absorption leads to an even distribution
across the mapped range (-128, 127) as right-hand side of Figure[5] Such even distribution depicts
desirable quantization outputs of allocated integers, because the values can be mapped evenly across
the bins, fully utilizing the quantization precision and thus leading to minimal quantization error.

7 CONCLUSION

In this paper, we propose TopGQ, the first post-training quantization method for GNNs. TopGQ
proposes to group vertices that share similar topological structure, which is measured using an
adaptation of Wiener index to capture the local topology around each node. For this, TopGQ proposes
a new algorithm that reduces the overhead of computing localized Wiener index for each node. Then,
TopGQ proposes the scale absorption method, which merges the scale parameters of quantization
groups to the adjacency matrix for efficient computation. The extensive experimental results show
that TopGQ outperforms baselines while having orders of magnitude faster quantization.

10
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A CODE

The code, which includes our implementation of this work, is included in a zip archive of the
supplementary material. The code is under Nvidia Source Code License-NC and GNU General
Public License v3.0.

B ADDITIONAL EXPERIMENTAL SETTINGS

We report evaluation results on two representative graph processing tasks: Node-level classification,
graph-level classification. For node-level classification, we compare the validation accuracy of Reddit,
ogbn-proteins, and ogbn-products datasets in a transductive setting. Please note that we first conduct
GNN quantization experiments on the dataset with this level of scale, thus further enlarging the field of
GNN quantization. By following the experimental settings of baselines, we also conduct experiments
using Cora, CiteSeer, and PubMed datasets in a transductive setting, which is the common setting for
GNN quantization. Lastly, we further conduct a comparison of large-graph processing on Reddit,
ogbn-proteins, and ogbn-products datasets. For graph-level classification, we choose PROTEINS and
NCI1 datasets to evaluate the inductive inference performance of quantized GNNss.

We compare TopGQ with three graph quantization baselines using QAT approaches: Degree-
Quant (Tailor et al.,|2020), SGQuant (Feng et al., 2020), and A2Q (Zhu et al.| 2022)). To ensure a fair
comparison, we use a fixed-precision quantization for both SGQuant and A®(Q) when attaining experi-
ment results. We report quantized accuracy of GCN (Kipf & Wellingl 2016), GIN (Xu et al., 2019),
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Table 8: Comparison on inference and quantization time.

. Infer. Infer. Quant. Quant.
Metrics Acc. (%) Time (s) Speedup Time (h) Speedup
FP32 78.41 1.450 Ix - -
Degree-Quant 75.26 1.295 1.120x 95.95 Ix
Degree-Quant-PTQ 46.57 1.294 1.121x 0.28 343 x
TopGQ 76.94 1.304 1.112x 0.34 282 x

Table 9: Comparison of theoretical costs and storage for different methods.

Metrics Theoretical Cost Theoretical Storage

FP32 OFP(N2F1+NF1F2) Opp(E+ F1Fy + NF)
Degree-Quant O[NT(N2F1 +NF1F2)+OFPMQ'"(NF2) O[NT(E+F1F2+NF0)+OFP(1)
Degree—Quant—PTQ OINT(N2F1 +NF1F2)+OFP(:,M”(NF2) O]NT(E+F1F2+NFU)+OFP(1)
TOpGQ O[NT(N2F1+NF1F2)+OFPGNM(NF2) O]NT(E+F1F2+NF0)+OFP(NT+F2)

and GraphSAGE (Hamilton et al.| 2017) architectures with 4-bit and 8-bit integer quantization. For a
fair comparison, we apply the same bitwidth for all layers, including aggregation and combination.

All experiments are conducted on a server with a single A6000 GPU, RTX 4090 GPU, and Intel(R)
Xeon(R) Gold 6442Y CPU. We implement our algorithm on PyG library v2.6.0 with PyTorch v2.2.1.
In the Wiener index computation time comparison, we use the SciPy library to measure the time of
the baseline algorithm to compute the all-pair shortest-path metric.

For the ablation study, we present in Table[d] we first build baseline PTQ method, which applies a
min-max quantization strategy to quantize graph neural networks without node grouping and scale
absorption. For the case of using Indegree for the node grouping metric, we apply the same strategy
with our method that uses the Wiener index by grouping the nodes having the same indegree value
and quantizing them to share the same quantization parameters.

C QUANTIZATION TRADE-OFF ANALYSIS

Here, we present a comprehensive analysis regarding the trade-offs of quantization and provide
a theoretical analysis of computation cost and storage consumption. The experimental results are
shown in Tables [§]and

As shown in Table 8] TopGQ finds a good balance between reducing quantization time and preserving
accuracy, while other choices in FP32, Degree-Quant, TopGQ demonstrate disadvantages in either
accuracy, time, or memory. FP32 suffers from the expensive costs of computation and storage. While
Degree-Quant alleviates this cost via quantization, the long quantization time is required to obtain
the benefits. TopGQ is free from the quantization time problem but at the cost of considerable
performance degradation. TopGQ aims to find the best way of addressing each issue by leveraging
topological node similarities with an additional amount of storage cost.

As for the theoretical costs (Tableﬁ), we assume GNN layer propagation as AXW operation, with
A€ RV*N X ¢ RV*FL W ¢ RF*F2 with initial dataset size of N x F0. We note computation
and storage costs of FP and Int operation as follows:

* Opp(): Complexity for floating-point operations / Storage complexity for floating-point
values.

* Opp,,.. (): Complexity for element-wise floating-point operations.

* Orn7(): Complexity for fixed-point operations / Storage complexity for fixed-point values.

The computation cost shows that quantization converts the expensive floating-point matrix multiplica-
tion into integer operations. The additional floating-point cost comes from converting integer outputs
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Table 10: Comparison of GAT architecture on citation datasets.

Bit Method Type Cora Citeseer PubMed
Acc. (%) Q.Time (s) Acc. (%) Q.Time(s) Acc. (%) Q. Time (s)

FP32 - - 82.10 - 74.10 - 79.42 -
Degree-Quant QAT 80.70 (18.78s) 23.10 (40.91s) 74.50 (60.89s)
INT4 SGQuant QAT 74.70 (5.55s) 66.20 (8.67s) 72.40 (9.77s)
A%Q QAT 76.80 (2.44s) 61.80 (2.47s) 70.50 (3.16s)
TopGQ PTQ 80.34 (0.925) 66.92 (1.20s) 78.06 (1.25s)
Degree-Quant QAT 81.70 (18.30s) 69.80 (41.31s) 79.20 (61.02s)
INTS SGQuant QAT 79.90 (5.71s) 68.40 (8.72s) 76.00 (9.74s)
A%Q QAT 77.50 (2.44s) 69.50 (2.55s) 72.80 (3.11s)
TopGQ PTQ 82.02 (0.86s) 73.70 (1.11s) 79.32 (1.26s)

Table 11: Comparison of GAT architecture on graph classification datasets.

Proteins NCI1
Acc. (%) Q.Time (s) Acc. (%) Q. Time (s)
FP32 - - 75.56 - 79.73 -

Degree-Quant QAT 71.96 (3626.77s) 74.01 (8078.41s)
SGQuant QAT 59.56 (267.66s) 58.49 (754.85s)

Bit Method Type

INT4 A%Q QAT 70.36 (396.62s) 66.16 (1002.95s)
TopGQ PTQ 69.09 4.71s) 69.70 (9.90s)
Degree-Quant QAT 72.41 (3580.78s) 74.50 (7988.47s)
INTS SGQuant QAT 68.82 (267.65s) 74.42 (753.09s)
A%Q QAT 72.42 (385.625) 72.28 (997.62s)
TopGQ PTQ 75.74 (4.87s) 79.48 (9.49s)

back to floating-point values. The measurement is provided by using our kernel, and the theoretical
analysis is based on|Zhu et al | (2022).

D GAT QUANTIZATION RESULTS

The GAT’s attention-based edge weights are computed at runtime, therefore quantization scales
of the adjacency matrix are also computed at runtime, meaning our method of absorbing the scale
to the adjacency matrix cannot be precomputed. However, scale absorption can be modified to
accommodate such dynamic quantization scenarios, which we provide in Tables [I0] and [TT] The
results show that TopGQ also performs well in GAT architecture. In our modified scale absorption
for GAT, the absorption is performed at runtime right before the quantization operation, simply by
adding an FP32 element-wise multiplication between the adjacency matrix and the precalculated
scales.

E GRAPHSAGE QUANTIZATION RESULTS WITH MEAN AGGREGATORS

We would like to present the quantization results of TopGQ for graphSAGE architecture with
“mean’ aggregators, with FP32 accuracies comparable to those of ogbn-leaderboard scores. In the
leaderboard, the selected aggregator function is “mean”, while our setting selected “max” as the
aggregator function in the experiments. As presented in Table[I2] TopGQ can preserve performance
regardless of aggregator functions.
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Table 12: Comparison of GAT architecture on graph classification datasets.

Proteins NCI1
Acc. (%) Q.Time(s) Acc. (%) Q. Time (s)
FP32 - - 75.56 - 79.73 -

Degree-Quant QAT 7196  (3626.77s)  74.01  (8078.41s)
SGQuant QAT  59.56 (267.66s) 5849  (754.85s)

Bit Method Type

INT4 A%Q QAT 70.36 (396.62s) 66.16 (1002.95s)
TopGQ PTQ 69.09 4.71s) 69.70 (9.90s)
Degree-Quant QAT 72.41 (3580.78s) 74.50 (7988.47s)
INTS SGQuant QAT 68.82 (267.65s) 74.42 (753.09s)
A%Q QAT 72.42 (385.625) 72.28 (997.62s)
TopGQ PTQ 75.74 (4.87s) 79.48 (9.49s)

Table 13: Experiment results reported with standard deviation using Citation datasets.

Cora Citeseer Pubmed
GCN GIN GS GCN GIN GS GCN GIN GS

Degree-Quant  79.02 +0.55 71.88+5.10 73504123 2234+1.57 4792+7.66 17.14+296 78.62+0.71 76.56+10.90 78.18 £ 1.81
SGQuant 79.024+0.82 7021 £522 75304331 68.08 £091 46.704+5.82 4834+£593 76.08+0.92 65284+7.01 71.08+221
A2Q 5268 £5.82 64.64£4.14 7416+0.64 5400£6.12 46.04+7.75 6622+424 69.72+4.54 51.90+7.66 73.92+3.84
TopGQ 81.50 £0.44 7858 +042 79.64+0.15 71.90+0.37 70.14+034 71.76+0.58 79.58+0.12 7770 £0.14 79.00 £0.16
Degree-Quant  81.80 = 0.70 74.64 £5.00 77.50£1.09 69.72£0.69 58344795 69.10+£473 79.24+0.78 79.70 £11.07 7842 £ 1.03
SGQuant 80.51 £0.59 73324423 75324386 68.34+048 51.30+£501 54.12+5.15 7806+054 75224244 7344 +0.62
A2Q 79.96 £228 7874 £2.68 76.124+3.09 7048+129 67.26+5.13 66.04+3.04 7644+£129 76404098 75.36 % 0.60

TopGQ 82.08+0.39 7842+0.53 80.30+0.61 72.28+0.53 7026+0.60 71.96+0.75 80.30+0.19 78.62+0.74 78.94 + 047

Bit Model

INT4

INT8

F EXPERIMENT RESULTS WITH STANDARD DEVIATION IN CITATIONS
DATASETS

In the main experiment tables, we omitted the error bar for better readability. To show the error range
of both the baseline methods and TopGQ, we present the accuracy table with standard deviation
values using citation datasets in Table[T3]

G EXPERIMENTAL RESULTS OF QAT-STYLE TOPGQ

In neural network quantization, enabling PTQ (non-training quantization) is recognized as a contri-
bution for two reasons: 1) PTQ is considered more efficient than QAT for practical deployment. 2)
Enabling PTQ is usually difficult due to a severe accuracy drop compared to QAT. This is because
PTQ has limited capacity than QAT which can freely update weights. Thus, simply building a
stable PTQ method that can minimize such accuracy loss is difficult and is considered a meaningful
contribution. Nevertheless, we provide TopGQ with QAT settings and compare the results with the
original TopGQ, shown in Table[T4]and Table T3]

We can observe that TopGQ with QAT can perform to a significant level, with several settings close
to the original TopGQ. This shows that the proposed quantization techniques of TopGQ leveraging
topology can also be effective in a QAT setting.

H LoOCALIZED WIENER INDEX CALCULATION COST OF UNSEEN NODES

During inference, we only need to calculate the Wiener indices on the unseen nodes. To compare
this overhead with the inference time, we provide comparison results in GCN INTS settings with
the graph datasets PROTEINS and NCI1 (Table[T6). The nodes from the test set graphs will be the
unseen nodes, and their information will have to be calculated during inference time.

16



Under review as a conference paper at ICLR 2025

Table 14: Comparing QAT and PTQ implementations of TopGQ on node classification task.

Method Bit Cora Citeseer Pubmed
GCN GIN GraphSAGE GCN GIN GraphSAGE GCN GIN  GraphSAGE
TopGQ + QAT INT4 80.08 76.30 76.64 70.58 69.10 69.56 78.50  77.00 76.72
TopGQ 81.50 78.58 79.64 71.90 70.14 71.76 79.58 77.70 79.00
TopGQ + QAT INTS 81.12  78.30 76.00 70.24 69.14 69.50 79.40 78.86 78.10
TopGQ 82.08 78.42 80.30 72.28 70.26 71.96 80.30 78.62 78.94

Table 15: Comparing QAT and PTQ implementations of TopGQ on graph classification task.

Method Bit PROTEINS NCI1
GCN GIN GraphSAGE GCN GIN  GraphSAGE
TopGQ + QAT INT4 67.36  66.31 66.61 69.74  66.66 73.12
TopGQ 69.94 70.92 68.93 65.88 75.37 75.98
TopGQ + QAT INTS 73.19  65.68 73.73 77.86  79.86 77.92
TopGQ 75.65 74.34 72.20 79.72  81.36 78.43

As we can see in the table, the overhead for calculating Wiener index of unseen test nodes accounts
for only a very small portion (smaller than 1%) of the total inference time. Note that this is made
possible from a specialized algorithm to accelerate the computation of the localized Wiener Index,
which is another contribution of TopGQ.

I ANALYSIS OF TOPOLOGY-AWARE GROUPING ON PTQ AND QAT

As we discussed in the main body of the paper, the better performance of TopGQ compared to
QAT baselines is from better consideration of topological structure. In other words, the superior
performance of TopGQ is due to a better ability to find quantization parameters, and is orthogonal
to the PTQ/QAT differences. To validate this, we present two variants: Degree-Quant-PTQ and
TopGQ-QAT, which are the PTQ and QAT versions of each method, respectively. The experimental
results are shown in Table The results show that our proposed topology-aware grouping shows
better performance regardless of PTQ and QAT.

As for the results that outperform FP32 accuracies, we believe this phenomenon often occurs when
the low-bit format is sufficient to handle the original model complexity. We cite some papers that
exhibit the mentioned occasion in their experiments. For example, some of [Wu et al.; |Shomron et al.
(2021) report better performance in 8-bit settings than FP32 settings at various tasks.

J FURTHER COMPARISON ON k-HOP WIENER INDEX

Here, we present further analysis of the Wiener index, including a sensitivity study regarding the
hyperparameter k, which determines the diameter of the local subgraph.

Tables[18]and 20] shows the sensitivity study on quantization accuracy regarding the hop size k. We
compare the hop size k = 1, k = 2, and k = 3, where the k = 1 setting corresponds to the baseline,

Table 16: Average inference time and calculation overhead for GCN on PROTEINS and NCI1
datasets.

hop size k k=2 k=3

Metric PROTEINS NCI1 PROTEINS NCI1
Avg. test inference time (s) 0.0438 0.1332 0.0438 0.1332
Avg. overhead of calculation (s) 0.0001 0.0003 0.0018 0.0048
Proportion 0.23% 0.22% 4.07% 3.63%
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Table 17: Comparison on PTQ and QAT differences on INT4 Quantization.

M Cora PubMed
ethod
GCN GIN GraphSAGE GCN GIN  GraphSAGE
Degree-Quant 79.00 71.90 73.50 78.60 76.60 78.20
Degree-Quant-PTQ 78.42 30.46 78.54 78.34 50.20 77.64
TopGQ-QAT 80.08 76.30 76.64 78.50 77.00 76.72
TopGQ 81.50 78.58 79.64 79.58 77.70 79.00

Table 18: Sensitivity study of TopGQ on graph classification task.

Bit Datasets PROTEINS NCI1
Hopsizek GCN GIN  GraphSAGE GCN GIN  GraphSAGE
k=1 73.34  72.88 73.03 80.81 81.60 78.88
INT4 k=2 76.05 74.61 74.22 80.86 81.84 79.10
k=3 7594  74.86 74.00 8091 81.88 79.16
k=1 60.86 51.04 65.77 62.68 7091 75.90
INT8 k=2 66.06 63.96 67.01 66.14 77.33 76.50
k=3 70.15  70.61 69.67 65.09 78.49 76.43

Table 19: Comparison of node-wise Wiener index computation time.

k  Algorithm Cora CiteSeer Pubmed PROTEINS NCII  Reddit p;’gt‘:i‘l; . pfog(}’lj‘c‘ts
Bellman-Ford 0.35s 0.46s 19.87s 13.02s 33.01s 4.21h 2.84h 34.64h
Floyd-Warshall ~ 0.15s 0.21s 4.68s 7.91s 2.97s 0.57h 0.41h 4.51h

2 Dijkstra 0.19s 0.29s 2.70s 8.78s 2.56s 0.16h 0.11h 1.55h
Ours 0.02s 0.01s 0.06s 0.29s 0.10s 0.0004h  0.0002h  0.0048h
Speed Up 9.77x  31.65x  43.50x 27.12x 25.17x  412.23x  602.30x  322.37x
Bellman-Ford 3.63s 2.43s 216.76s 40.07s 512.13s  46.63h 30.09h 305.50h
Floyd-Warshall ~ 0.77s 0.31s 34.62s 8.50s 11.27s 5.75h 3.78h 35.44h

3 Dijkstra 0.61s 0.39s 14.71s 12.75s 12.49s 1.02h 0.61h 8.52h
Ours 0.52s 0.08s 1.82s 4.84s 1.78s 0.0155h  0.0065h  0.2855h
Speed Up 1.18x  3.76x 8.10x 1.76 x 6.32x 65.89x 93.39x 29.83x

Table 20: Sensitivity study of TopGQ on citation datasets.
Bit Datasets Cora Citeseer PubMed

Hopsizek GCN GIN GraphSAGE GCN GIN  GraphSAGE GCN GIN  GraphSAGE
k=1 81.00 77.12 78.82 71.86  69.10 70.86 78.20 75.42 78.50
INT4 k=2 81.50 78.58 79.64 71.90 70.14 71.76 79.58 77.70 79.00
k=3 81.56 78.32 78.56 7212 70.47 71.38 79.20 77.00 78.72
k=1 81.96 78.36 79.92 7224 70.18 71.84 80.18 78.34 78.90
INT8 k=2 82.08 78.42 80.30 72.28 70.26 71.96 80.30 78.62 78.94
k=3 82.10 78.38 79.54 7224 70.60 71.92 80.24  78.68 78.84
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Table 21: Comparison on different centrality measures against localized Wiener index used in TopGQ.

. PROTEINS NCII1
Bit  Method
GCN GIN GraphSAGE GCN GIN  GraphSAGE
FP32 - 76.19  74.79 72.87 80.41 81.46 78.46
Degree Centrality only 56.15 45.04 50.65 60.54 69.71 75.46
+ Betweeness Centrality 59.03 54.25 50.58 63.81 67.55 70.61
INT4 + Closeness Centrality 58.52 61.73 50.48 63.14 69.54 71.97
+ Katz Centrality 53.68 55.24 44.08 57.19  57.36 57.71
+ L. Wiener Index (Ours) 70.15 70.61 69.67 67.53  78.49 76.43
Degree Centrality only 72.57 71.86 70.48 7891 81.28 78.32
+ Betweeness Centrality 62.10 61.55 55.08 76.89 75.18 75.13
INT8 + Closeness Centrality 62.48 64.96 57.33 76.49  76.68 75.85
+ Katz Centrality 56.82 57.97 48.56 64.20 62.19 64.27

+ L. Wiener Index (Ours) 75.94 74.86 74.00 8091 81.88 79.16

which is identical to the “indegree” setting in Table[d] For the PROTEINS dataset, increasing the hop
size from k£ = 1 to k = 2 led to noticeable improvements across all models.

Across both precision levels and datasets, a clear trend emerged where increasing the hop size from
k = 1to k = 2 generally improved performance for all architectures. This effect was particularly
noticeable in the PROTEINS dataset under INT4 precision, where all architectures showed consistent
gains. In the INT8 configuration, the same trend held, though the magnitude of improvements was
more pronounced in some cases. Notably, GIN and GCN showed substantial increases in performance
as the hop size increased from k& = 1 to k = 3 for the PROTEINS dataset, while the NCI1 dataset
saw more moderate gains. However, increasing the hop size further to k¥ = 3 did not always lead to
continued improvements.

We also conducted further sensitivity study regarding Wiener index computation time by varying the
value of k, as increasing k results in more computational costs due to the larger diameters of each
subgraph. Table[I9]shows the comparison results of computation time.

For k = 2, our method shows remarkable speedups, often outperforming the other algorithms by
significant margins, especially for larger graphs where it achieves up to several hundred times faster
performance. At k = 3, while all methods take longer due to the increased complexity, our method
continues to lead in performance, though the speedup is generally lower than for £ = 2. Nonetheless,
it maintains a strong advantage, especially in large-scale cases where traditional methods struggle
with execution times. Overall, the trends show that our method provides consistent and substantial
speed improvements.

From the experiments, we observe that £k = 2 often provides the best balances of quantization
accuracy and computation time. In addition, for better quantization accuracy, using k£ = 3 is also an
option to choose.

K COMPARISON AGAINST DIFFERENT CENTRALITY MEASURES

In this section, we provide quantization accuracies when using other centrality measures than our
proposed localized Wiener index. Table 2] shows the results using PROTEINS and NCI1 datasets on
three different model architectures, both in INT4 and INTS precisions. As we observed in Section @
the results are consistent in that localized Wiener index shows superior results to other centrality
measures.
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