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ABSTRACT

We study the gap-dependent bounds of two important algorithms for on-policy Q-
learning for finite-horizon episodic tabular Markov Decision Processes (MDPs):
UCB-Advantage (Zhang et al. 2020) and Q-EarlySettled-Advantage (Li et al.
2021). UCB-Advantage and Q-EarlySettled-Advantage improve upon the results
based on Hoeffding-type bonuses and achieve the almost optimal

√
T -type regret

bound in the worst-case scenario, where T is the total number of steps. How-
ever, the benign structures of the MDPs such as a strictly positive suboptimality
gap can significantly improve the regret. While gap-dependent regret bounds have
been obtained for Q-learning with Hoeffding-type bonuses, it remains an open
question to establish gap-dependent regret bounds for Q-learning using variance
estimators in their bonuses and reference-advantage decomposition for variance
reduction. We develop a novel error decomposition framework to prove gap-
dependent regret bounds of UCB-Advantage and Q-EarlySettled-Advantage that
are logarithmic in T and improve upon existing ones for Q-learning algorithms.
Moreover, we establish the gap-dependent bound for the policy switching cost of
UCB-Advantage and improve that under the worst-case MDPs. To our knowl-
edge, this paper presents the first gap-dependent regret analysis for Q-learning
using variance estimators and reference-advantage decomposition and also pro-
vides the first gap-dependent analysis on policy switching cost for Q-learning.

1 INTRODUCTION

Reinforcement Learning (RL) (Sutton & Barto, 2018) is a subfield of machine learning focused
on sequential decision-making. Often modeled as a Markov Decision Process (MDP), RL tries to
obtain an optimal policy through sequential interactions with the environment. It finds applications
in various fields, such as games (Silver et al., 2016; 2017; 2018; Vinyals et al., 2019), robotics
(Kober et al., 2013; Gu et al., 2017), and autonomous driving (Yurtsever et al., 2020).

In this paper, we focus on the on-policy RL tailored for episodic tabular MDPs with inhomogeneous
transition kernels. Specifically, the agent interacts with an episodic MDP consisting of S states,
A actions, and H steps per episode. The regret information bound for any MDP above and any
learning algorithm with K episodes is O(

√
H2SAT ) where T = KH denotes the total number

of steps (Jin et al., 2018). Multiple RL algorithms in the literature (e.g. Zhang et al. (2020); Li
et al. (2021); Zhang et al. (2024)) have reached a near-optimal

√
T -type regret that matches the

information bound up to logarithmic factors, which acts as a worst-case guarantee.

In practice, RL algorithms often perform better than their worst-case guarantees, as such guaran-
tees can be significantly improved under MDPs with benign structures (Zanette & Brunskill, 2019).
This motivates the problem-dependent analysis for algorithms that exploit the benign MDPs (e.g.,
Wagenmaker et al. (2022a); Zhou et al. (2023); Zhang et al. (2024)). One of the benign structures is
based on the dependency on the positive suboptimality gap: for every state, the best action outper-
forms others by a margin. It is important because nearly all non-degenerate environments with finite
action sets satisfy some sub-optimality gap conditions (Yang et al., 2021). Recently, Simchowitz
& Jamieson (2019) proved the log T -type regret if there exists a strictly positive suboptimality gap.
Since then, the gap-dependent regret analysis has been widely studied, for example, Dann et al.
(2021); Yang et al. (2021); Xu et al. (2021); Wang et al. (2022); He et al. (2021), etc.
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Model-free RL algorithms, the focus of this paper, are also called Q-learning algorithms and directly
learn the optimal action value function (Q-function) and state value function (V -function) to opti-
mize the policy. It is widely used in practice due to its easy implementation (Jin et al., 2018) and the
lower memory requirement that scales linearly in S while that for model-based algorithms scales
quadratically. However, the literature on gap-dependent analysis for Q-learning is quite sparse.
Yang et al. (2021) studied the gap-dependent regret of the Q-Hoeffding algorithm (Jin et al., 2018),
the first model-free algorithm with a worst-case

√
T -type regret in the literature, and presented the

first log T -type regret bound for model-free algorithms:

O

(
H6SA log(SAT )

∆min

)
. (1)

where ∆min is defined as the minimum nonzero suboptimality gap for all the state-action-step triples.

Xu et al. (2021) proposed the multi-step bootstrapping algorithm and showed the same dependency
on the minimum gap as Yang et al. (2021). Both papers used the simple Hoeffding-type bonuses
for explorations in the algorithm design. However, their analysis frameworks based on Hoeffding-
type bonuses cannot be directly applied to study two important Q-learning algorithms that improve
the regrets of Jin et al. (2018) and achieve the almost optimal worst-case regret: UCB-Advantage
(Zhang et al., 2020) and Q-EarlySettled-Advantage (Li et al., 2021). In particular, UCB-Advantage
and Q-EarlySettled-Advantage use variance estimators in their bonuses and reference-advantage de-
composition for variance reduction. It remains an important open question whether such techniques
can improve gap-dependent regret:

Is it possible to establish a potentially improved gap-dependent regret bound for Q-learning using
variance estimators in the bonuses and reference-advantage decomposition?

This is a challenging task due to several non-trivial difficulties. In particular, bounding the weighted
sum of the errors of the estimated Q-functions is necessary to establish the gap-dependent regret
bounds for UCB-Advantage and Q-EarlySettled-Advantage, which is very difficult as it involves the
estimated reference and advantage functions and the bonuses that include variance estimators for
both functions. However, the analysis framework of Xu et al. (2021) for their non-optimism algo-
rithm cannot bound the weighted sum of such errors, and the analysis frameworks in all optimism-
based model-free algorithms including Jin et al. (2018); Zhang et al. (2020); Li et al. (2021); Yang
et al. (2021) can only bound the weighted sum under the simple Hoeffding-type bonus.

Besides the regret, the policy switching cost is also an important evaluation criterion for on-policy
RL, especially in applications with restrictions on policy switching such as compiler optimization
(Ashouri et al., 2018), hardware placements (Mirhoseini et al., 2017), database optimization (Krish-
nan et al., 2018), and material discovery (Nguyen et al., 2019). Under the worst-case MDPs, Bai
et al. (2019) modified the algorithms in Jin et al. (2018) to reach a switching cost of O(H3SA log T ),
and UCB-Advantage (Zhang et al., 2020) reached an improved switching cost of O(H2SA log T )
due to the stage design in Q-function update, both improving upon the cost of Θ(K) for regular
Q-learning algorithms (e.g. Jin et al. (2018)). To our knowledge, none of existing works study
gap-dependent switching costs for Q-learning algorithms, which remains open.

Summary of our contributions. In this paper, we give an affirmative answer to the open questions
above by establishing gap-dependent regret bound for UCB-Advantage (Zhang et al., 2020) and
Q-EarlySettled-Advantage (Li et al., 2021) as well as a gap-dependent policy switching cost for
UCB-Advantage. For Q-learning, this paper provides the first gap-dependent regret analysis with
both variance estimators and variance reduction and the first gap-dependent policy switching cost.

Our detailed contributions are summarized as follows.

• Improved Gap-Dependent Regret. Denote Q⋆ ∈ [0, H2] as the maximum conditional variance
for the MDP and β ∈ (0, H] as the hyper-parameter to settle the reference function. We prove that
UCB-Advantage guarantees a gap-dependent expected regret of

O

((
Q⋆ + β2H

)
H3SA log(SAT )

∆min
+

H8S2A log(SAT ) log(T )

β2

)
, (2)
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and Q-EarlySettled-Advantage guarantees a gap-dependent expected regret of

O

((
Q⋆ + β2H

)
H3SA log(SAT )

∆min
+

H7SA log2(SAT )

β

)
. (3)

These results are logarithmic in T and better than the worst-case
√
T -type regret in

Zhang et al. (2020); Li et al. (2021). They also have a common gap-dependent term
Õ
((
Q⋆ + β2H

)
H3SA)/∆min

)
where Õ(·) hides logarithmic factors. The other term in either

Equation (2) or Equation (3) is gap-free. Our result is also better than Equation (1) for Yang
et al. (2021); Xu et al. (2021) in the following ways. (a) Under the worst-case Q⋆ = Θ(H2)

and setting β = O(1/
√
H) as in Zhang et al. (2020) or β = O(1) as in Li et al. (2021),

Õ
((
Q⋆ + β2H

)
H3SA)/∆min

)
becomes Õ(H5SA/∆min), which is better than Equation (1) by

a factor of H . (b) Under the best variance Q⋆ = 0 which will happen when the MDP is deter-
ministic, our regret in Equation (3) can linearly depend on Õ(∆

−1/3
min ), which is intrinsically better

than the dependency on ∆−1
min in Equation (1). (c) Since our gap-free terms also logarithmically

depend on T , they are smaller than Equation (1) when ∆min is sufficiently small.

• Gap-Dependent Policy Switching Cost. We can prove that for any δ ∈ (0, 1), with probability
at least 1− δ, the policy switching cost for UCB-Advantage is at most

O

H|Dopt| log
(

T

H|Dopt|
+ 1

)
+H|Dc

opt| log

H4SA
1
2 log(SAT

δ )

β
√
|Dc

opt|∆min

 . (4)

Here, Dopt is a subset of all state-action-step triples and represents all triples such that the action is
optimal. Dc

opt is its complement, and | · | gives the cardinality of the set. Next, we compare Equa-
tion (4) with the worst-case costs of O(H3SA log T ) in Bai et al. (2019) and O(H2SA log T )
in Zhang et al. (2020). Since |Dopt| < HSA for non-degenerate MDPs, our first term in Equa-
tion (4) is better than the worst-case costs. Specifically, when each state has a unique optimal
action so that |Dopt| = HS, it implies the improvement by removing a factor of A compared with
O(H2SA log T ). This improvement is significant in applications with a large action space (e.g.
recommender systems (Covington et al., 2016) and text-based games (Bellemare et al., 2013)). For
the second term where |Dc

opt| < HSA in Equation (4), we also improve log T to log log T , and
the significance of such improvement is pointed out by Qiao et al. (2022); Zhang et al. (2022b).

• Technical Novelty and Contributions.
For gap-dependent regret analysis, we develop an error decomposition framework that separates
errors in reference estimations, advantage estimations, and reference settling. This helps bound
the weighted sums mentioned above. We creatively handle the separated terms in the following
way. (a) We relate the empirical errors and the bonus for reference estimations to Q⋆ to avoid
using their upper bounds Θ(H2). This leverages the variance estimators. (b) When trying to
bound the errors in reference and advantage estimations, we tackle the non-martingale difficulty,
originating from the settled reference functions that depend on the whole learning process, with
our novel surrogate reference functions so that the empirical estimations become martingale sums.
To the best of our knowledge, we are the first to construct martingale surrogates in the literature
for Q-learning using reference-advantage decomposition.
For the gap-dependent policy switching cost, we explore the unbalanced number of visits to states
paired with optimal or suboptimal actions, which leads to the two terms in Equation (4).

2 PRELIMINARIES

Throughout this paper, we assume that 0/0 = 0. For any C ∈ N, we use [C] to denote the set
{1, 2, . . . C}. We use I[x] to denote the indicator function, which equals 1 when the event x is true
and 0 otherwise.

Tabular episodic Markov decision process (MDP). A tabular episodic MDP is denoted asM :=
(S,A, H,P, r), where S is the set of states with |S| = S,A is the set of actions with |A| = A, H
is the number of steps in each episode, P := {Ph}Hh=1 is the transition kernel so that Ph(· | s, a)
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characterizes the distribution over the next state given the state action pair (s, a) at step h, and
r := {rh}Hh=1 are the deterministic reward functions with rh(s, a) ∈ [0, 1].

In each episode, an initial state s1 is selected arbitrarily by an adversary. Then, at each step h ∈ [H],
an agent observes a state sh ∈ S , picks an action ah ∈ A, receives the reward rh = rh(sh, ah)
and then transits to the next state sh+1. The episode ends when an absorbing state sH+1 is reached.
Later on, for ease of presentation, when we describe s, a, h along with “any, each, all” or “∀”, we
will omit the sets S,A, [H]. We denote Ps,a,hf = Esh+1∼Ph(·|s,a)(f(sh+1)|sh = s, ah = a),
Vs,a,hf = Ps,a,hf

2 − (Ps,a,hf)
2 and 1sf = f(s),∀(s, a, h) for any function f : S → R.

Policies, state value functions, and action value functions. A policy π is a collection of H func-
tions

{
πh : S → ∆A}

h∈[H]
, where ∆A is the set of probability distributions over A. A policy is

deterministic if for any s ∈ S , πh(s) concentrates all the probability mass on an action a ∈ A. In
this case, we denote πh(s) = a. We use V π

h : S → R to denote the state value function at step h

under policy π. Mathematically, V π
h (s) :=

∑H
h′=h E(sh′ ,ah′ )∼(P,π) [rh′(sh′ , ah′) | sh = s] . We also

use Qπ
h : S × A → R to denote the action value function at step h, i.e., Qπ

h(s, a) := rh(s, a) +∑H
h′=h+1 E(sh′ ,ah′ )∼(P,π) [rh′(sh′ , ah′) | sh = s, ah = a] . Azar et al. (2017) proved that there al-

ways exists an optimal policy π⋆ that achieves the optimal value V ⋆
h (s) = supπ V

π
h (s) = V π∗

h (s)
for all s ∈ S and h ∈ [H]. The Bellman equation and the Bellman optimality equation are V π

h (s) = Ea′∼πh(s)[Q
π
h(s, a

′)]
Qπ

h(s, a) := rh(s, a) + Ps,a,hV
π
h+1

V π
H+1(s) = 0,∀(s, a, h)

and

 V ⋆
h (s) = maxa′∈A Q⋆

h(s, a
′)

Q⋆
h(s, a) := rh(s, a) + Ps,a,hV

⋆
h+1

V ⋆
H+1(s) = 0,∀(s, a, h).

(5)

For any learning problem with K episodes, let πk be the policy adopted in the k-th episode,
and sk1 be the corresponding initial state. The regret over T = HK steps is Regret(T ) :=∑K

k=1

(
V ⋆
1 (s

k
1)− V πk

1 (sk1)
)
. Later, when we mention the episode index k with “any, each, all”

or “∀”, we will omit the set [K].

Suboptimality Gap. For any given MDP, we can provide the following formal definition.
Definition 2.1. For any (s, a, h), the suboptimality gap is defined as ∆h(s, a) := V ⋆

h (s)−Q⋆
h(s, a).

Equation (5) implies that ∆h(s, a) ≥ 0,∀(s, a, h). Then it is natural to define the minimum gap,
which is the minimum non-zero suboptimality gap with regard to all (s, a, h).
Definition 2.2. We define the minimum gap as ∆min := inf{∆h(s, a) : ∆h(s, a) > 0, (s, a, h) ∈
S ×A× [H]}.

We remark that if {∆h(s, a) : ∆h(s, a) > 0, (s, a, h) ∈ S × A × [H]} = ϕ, then all actions are
optimal, leading to a degenerate MDP. Therefore, we assume that the set is nonempty and ∆min > 0.
Definitions 2.1 and 2.2 and the non-degeneration are standard in the literature on gap-dependent
analysis (e.g. Simchowitz & Jamieson (2019); Xu et al. (2020)).

Maximum Conditional Variance. This quantity is formally defined as follows.
Definition 2.3. We define the maximum conditional variance as Q⋆ := maxs,a,h{Vs,a,h(V

⋆
h+1)}.

Under our MDP with deterministic reward, Definition 2.3 coincides with that in (Zanette & Brun-
skill, 2019) which performed variance-dependent regret analysis.

Policy Switching Cost. We provide the following definition for any algorithm with K > 1 episodes.
Definition 2.4. The policy switching cost for K episodes is defined as Nswitch :=∑K−1

k=1 Ñswitch(π
k+1, πk). Here, the Ñswitch(π, π

′) :=
∑

s∈S
∑H

h=1 I[πh(s) ̸= π′
h(s)] represents

the local switching cost for any policies π and π′.

This definition is also used in Bai et al. (2019) and Zhang et al. (2020).

3 MAIN RESULTS

This section presents the gap-dependent regret for UCB-Advantage and Q-EarlySettled-Advantage
in Subsection 3.1 and the gap-dependent policy switching cost for UCB-Advantage in Subsection
3.3. We highlight a new technical tool for the gap-dependent regret bound in Subsection 3.2.
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3.1 GAP-DEPENDENT REGRETS

UCB-Advantage (Zhang et al., 2020) is the first model-free algorithm that reaches an almost opti-
mal worst-case regret, which is also reached by Q-EarlySettled-Advantage (Li et al., 2021). Both
algorithms are optimism-based, use upper confidence bounds (UCB) for exploration, and employ
variance estimators and reference-advantage decomposition. UCB-Advantage settles the reference
function at each (s, h) by comparing the number of visits to a threshold that relies on a hyper-
parameter β ∈ (0, H]. For readers’ convenience, we provide UCB-Advantage without any modifi-
cation in Algorithm 1 of Appendix B.1.

Theorem 3.1 provides the expected regret upper bound of UCB-Advantage.

Theorem 3.1. For UCB-Advantage (Algorithm 1 in Appendix B.1) with β ∈ (0, H], E[Regret(T )]
is upper bounded by Equation (2).

Q-EarlySettled-Advantage improved the burn-in cost of Zhang et al. (2020) for reaching the almost-
optimal worst-case regret by using both estimated upper and lower confidence bounds for V ⋆

h to
settle the reference function. In this paper, we slightly modify its reference settling condition. At
the end of k-th episode, for any (s, h), the algorithm holds V k+1

h (s), V LCB,k+1
h (s), the estimated

upper and lower bounds for V ⋆
h (s), respectively. When |V k+1

h (s) − V LCB,k+1
h (s)| ≤ β holds for

the first time, it settles the reference function value V R
h (s) as V k+1

h (s). Li et al. (2021) set β = 1
for worst-case MDPs. Our paper treats β as a hyper-parameter within (0, H] to allow better control
over the learning process. Algorithms 2 and 3 provide our refined version. For the rest of this paper,
we still call it Q-EarlySettled-Advantage without special notice.

Theorem 3.2 provides the expected regret upper bound of Q-EarlySettled-Advantage.

Theorem 3.2. For Q-EarlySettled-Advantage (Algorithms 2 and 3 in Appendix D.1) with β ∈
(0, H], E[Regret(T )] is upper bounded by Equation (3).

The proof sketch of Theorem 3.2 is presented in Section 4 to explain our technical contributions. The
complete proofs of Theorems 3.1 and 3.2 are provided in Appendix B and Appendix D, respectively.

Next, we compare the results of both theorems with the worst-case regrets in Zhang et al. (2020); Li
et al. (2021) and the gap-dependent regrets in Yang et al. (2021); Xu et al. (2021).

Comparisons with Zhang et al. (2020); Li et al. (2021). Since the regrets showed in Equa-
tions (2) and (3) are logarithmic in T , they are better than the worst-case regret Õ(

√
H2SAT )

when T ≥ Θ̃(poly(HSA,∆−1
min, β

−1)) where poly(·) represents some polynomial. In addition, our
results imply new guidance on setting the hyper-parameter β for the gap-dependent regret, which
is different from β = 1/

√
H in Zhang et al. (2020) and β = 1 in Li et al. (2021), respectively.

When Q⋆ = 0 which happens when the MDP is deterministic, if we set β = Θ̃(H(S∆min)
1/4) for

UCB-Advantage and β = Θ̃(H∆
1/3
min ), the gap-dependent regrets will linearly depend on ∆

−1/2
min and

∆
−1/3
min , respectively. This provides new guidance on setting β when we have prior knowledge about

∆min. When 0 < Q⋆ ≤ H2, the best available gap-dependent regret becomes Θ̃(Q⋆H2SA) which
holds when β ≤

√
Q⋆/H . Knowing that the gap-free terms in Equations (2) and (3) monotonically

decrease in β, we will recommend setting β = Õ(
√
Q⋆/H) if prior knowledge on Q⋆ is available.

Comparisons with Yang et al. (2021); Xu et al. (2021). The gap-dependent regret for Yang et al.
(2021) is provided in Equation (1). For the multi-step bootstrapping in Xu et al. (2021), their regret
bound is given by:

O

 H∑
h=1

∑
s∈S

∑
a ̸=π⋆

h(s)

1

∆h(s, a)
+
|Zmul|
∆min

+ SA

H5 log(K)

 , (6)

where Zmul =
{
(h, s, a)|∆h(s, a) = 0 ∧ |Zh

opt(s)| > 1
}

and Zh
opt(s) = {a|∆h(s, a) = 0}. In MDPs

where ∆h(s, a) = Θ(∆min) for Θ(HSA) state-action-step triples (e.g. the example in (Xu et al.,
2021, Theorem 1.3)) or there are Θ(A) optimal actions for each state-step pair (s, h), their regret
reduces to Equation (1), which is worse than ours.

5
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Next, we compare Equations (2) and (3) with Equation (1). Under the worst-case variance
Q⋆ = Θ(H2) and letting β be Θ(1/

√
H) or Θ(1) which are the recommendations in Zhang et al.

(2020); Li et al. (2021) respectively for the worst-case MDPs, the common gap-dependent term
Equations (2) and (3) becomes Õ(H5SA/∆min), which is better than Equation (1) by a factor of
H . Under the best variance Q⋆ = 0, the gap-dependent term becomes Õ(β2H3SA/∆min), which is
better than Equation (1) for any β ∈ (0, H]. In addition, our best possible gap-dependent regret that
is sublinear in ∆−1

min is also intrinsically better. Here, we remark that the proof in Yang et al. (2021);
Xu et al. (2021) cannot benefit from Q⋆ = 0 due to their use of Hoeffding-type bonuses.

We also comment on the gap-free terms in Equations (2) and (3). They are dominated by the gap-
dependent term as long as ∆min ≤ Õ(poly((HSA)−1, β)) for some polynomial poly(·). In addition,
the gap-free term in Equation (3) is linear in S, which is better than that for Equation (2) thanks to
Q-EarlySettled-Advantage algorithm. It utilizes both upper confidence bounds and lower confidence
bounds for V -functions to settle the reference function.

3.2 OUR TECHNICAL TOOL: SURROGATE REFERENCE FUNCTIONS

We develop a new technical tool in the proofs of both Theorems 3.1 and 3.2: the surrogate refer-
ence functions. In this subsection, we explain it with the notations in the proof of Theorem 3.2
(Appendix D.1) for Q-EarlySettled-Advantage while all the ideas also apply to UCB-Advantage. A
more detailed proof sketch will be provided in the next section. For a comprehensive explanation
of Q-EarlySettled-Advantage, we refer readers to Appendix D.1, and for a detailed mathematical
explanation of the surrogate function, please see Appendix G.

Before introducing the surrogate reference function, we provide a brief overview of the key steps
of Q-EarlySettled-Advantage. Denote the estimated Q-function, the estimated V -function, and
the reference function before the start of episode k as Qk

h(s, a), V
k
h (s), V R,k

h (s) and episode k as
{(skh, akh)}Hh=1. Let Nk

h (s, a) be the number of visits to (s, a, h) before the start of episode k. Let
Nk+1

h be short for Nk+1
h (skh, a

k
h) and kn be the episode index for the n-th visit to (skh, a

k
h, h). While

remaining unchanged for the unvisited triples, the estimated Q-function is updated on the visited
ones:

Qk+1
h (skh, a

k
h) = min{QUCB,k+1

h (skh, a
k
h), Q

R,k+1
h (skh, a

k
h), Q

k
h(s

k
h, a

k
h)}, h ∈ [H]. (7)

Here, QUCB,k+1
h represents the Hoeffding-type estimation similar to Jin et al. (2018), and

QR,k+1
h (skh, a

k
h) represents the reference-advantage type estimation as follows:

QR,k+1
h (skh, a

k
h) = rkh(s

k
h, a

k
h)+

Nk+1
h∑

n=1

(
η
Nk+1

h
n (V kn

h+1−V
R,kn

h+1 )+u
Nk+1

h
n V R,kn

h+1

)
(sk

n

h+1)+R̃h,k+1. (8)

In Equation (8), V kn

h+1 − V R,kn

h+1 represents the running estimation of the advantage function, and

{ηN
k
h

n }
Nk+1

h
n=1 are the corresponding nonnegative weights that sum to 1. {uNk+1

h
n }N

k+1
h

n=1 that sum to 1
are nonnegative weights for the reference function. R̃h,k+1 is the cumulative bonus that dominates
the variances in the two weighted sums. Next, the estimated V−function and the reference function
are also updated. For any (s, h), when some reference settling condition related to β is triggered at
the end of episode k, the reference function will be settled, which means that V R,k′

h (s) = V R,k+1
h (s)

for any k′ ≥ k + 1. Thus, we call V R,K+1
h , the reference value function after the last episode as the

settled reference function. Q-EarlySettled-Advantage guarantees that

V k
h (s) = max

a
Qk

h(s, a), π
k
h(s) = argmax

a
Qk

h(s, a),∀(h, k), (9)

Qk+1
h ≤ Qk

h ≤ H, V k+1
h ≤ V k

h ≤ H, V R,k+1
h ≤ V R,k

h ≤ H, V k
h ≤ V R,k

h , ∀(h, k). (10)
Event E1 in Lemma D.2 (Lemma 2 in Li et al. (2021)) also claims that with high probability,

Qk
h ≥ Q⋆

h, V
R,k
h ≥ V k

h ≥ V ⋆
h ,∀(h, k). (11)

Equations (9) and (11) indicate that Q-EarlySettled-Advantage is an optimism-based method that
updates the policy according to an upper bound of Q⋆

h.

6
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Next, we introduce our surrogate reference functions V̂ R,k
h . They are defined as follows:

V̂ R,k
h (s) := max{V ⋆

h (s),min{V ⋆
h (s) + β, V R,k

h (s)}},∀(s, h, k). (12)

We use the word “surrogate” because the algorithm does not rely on or learn it, and V̂ R,k
h differs

from the actual settled reference function V R,K+1
h . V̂ R,k

h is determined before episode k. In addition,
Equation (11) implies that

V ⋆
h ≤ V̂ R,k

h = min{V ⋆
h + β, V R,k

h },∀(k, h), (13)

and Lemma D.4 in Appendix D.5.2 shows that with high probability, V̂ R,k
h (s) coincides with the

settled reference value V R,K+1
h (s) after the settling condition is triggered.

Next, we discuss the usage of V̂ R,k
h in our error decompositions. Our proof relies on relating the

regret to multiple groups of estimation error sums that take the form
∑K

k=1 ω
(i)
h,k(Q

k
h−Q⋆

h)(s
k
h, a

k
h).

Here {ω(i)
h,k}k are nonnegative weights and i represents the group. Bounding the weighted sum

via controlling each individual Qk
h(s

k
h, a

k
h) − Q⋆

h(s
k
h, a

k
h) by recursion on h is a common tech-

nique for model-free optimism-based algorithms, and it is also used by all of Yang et al. (2021);
Zhang et al. (2020); Li et al. (2021). Yang et al. (2021) used it on gap-dependent regret anal-
ysis and Zhang et al. (2020); Li et al. (2021) used it to control the reference setting errors∑K

k=1(V
R,k+1
h (skh) − V R,K+1

h (skh)). However, their techniques are only limited to the Hoeffding-

type update where the errors generated in the recursion take the simple form of Õ(
√

H3/Nk
h ) where

Nk
h is short for Nk

h (s
k
h, a

k
h). When analyzing the reference-advantage type update, we will face a

complicated error (see Equation (15) in the proof sketch) that involves reference estimations, advan-
tage estimations, and bonuses with variance estimators. See Appendix G for the details.

Motivated by the structure of reference-advantage decomposition, we decompose our error into

four parts: G1 :=
∑Nk

h
n=1 η

Nk
h

n (Pskh,a
k
h,h
− 1sk

n

h+1
)(V̂ R,kn

h+1 − V ⋆
h+1), G2 :=

∑Nk
h

n=1 u
Nk

h
n (1sk

n

h+1
−

Pskh,a
k
h,h

)V̂ R,kn

h+1 , G3 :=
∑Nk

h
n=1(u

Nk
h

n − η
Nk

h
n )Pskh,a

k
h,h

V̂ R,kn

h+1 +
∑Nk

h
n=1 u

Nk
h

n (V R,kn

h+1 − V̂ R,kn

h+1 )(sk
n

h+1),

the bonus term G4 and a negative term
∑Nk

h
n=1 η

Nk
h

n (V̂ R,kn

h+1 − V R,kn

h+1 )(sk
n

h+1). The first three terms
correspond to advantage estimation error, reference estimation error, and reference settling error, re-
spectively. Here, we creatively use the surrogate V̂ R,k

h+1 as it is determined before the start of episode
k. Thus, G1,G2 are martingale sums and can be controlled by concentration inequalities. G3 corre-
sponds to the reference settling error and can also be well-controlled given the settling conditions
and properties of V̂ R,k

h (s). G4 is controlled using the same idea of bounding G1,G2,G3. V̂ R,k
h+1 is

crucial to this process and cannot be replaced by the actual settled reference function V R,K+1
h+1 used

in Zhang et al. (2020); Li et al. (2021). This is because V R,K+1
h+1 depends on the whole learning

process and causes a non-martingale issue in controlling G1,G2. To the best of our knowledge, we
are the first to introduce the novel construction of reference surrogates for reference-advantage de-
composition, which is of independent interest for future research on off-policy and offline methods.

3.3 GAP-DEPENDENT POLICY SWITCHING COST FOR UCB-ADVANTAGE

Different from Q-EarlySettled-Advantage, UCB-Advantage uses the stage design for updating the
estimated Q-function. For each (s, a, h), Zhang et al. (2020) divided the visits into consecutive
stages with the stage size increasing exponentially. It updates the estimated Q-function only at the
end of each stage so that the policy switches infrequently. Theorem 3.3 provides the policy switching
cost for UCB-Advantage, and the proof is provided in Appendix C.
Theorem 3.3. For UCB-Advantage (Algorithm 1 in Appendix B.1) with β ∈ (0, H] and any δ ∈
(0, 1), with probability at least 1 − δ, Nswitch is upper bounded by Equation (4). Here, Dopt =
{(s, a, h) ∈ S ×A× [H]|a = π⋆

h(s)}, and Dc
opt = (S ×A× [H])\Dopt.

Comparisons with existing works. The first term in Equation (4) logarithmically depends on T
and the second one logarithmically depends on 1/∆min and log T . Next, we compare our result with
O(H2SA log T ) in Zhang et al. (2020), which is the best available switching cost for model-free

7
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methods in the literature. For the first term in Equation (4), knowing that |Dopt| < HSA for all
non-degenerated MDPs where there exists at least one state such that not all actions are optimal, the
coefficient is better than Equation (4). Specifically, if each state has a unique optimal action so that

|Dopt| = SH , Equation (4) becomes O

(
H2S log

(
T

H2S + 1
)
+H2SA log

(
H

7
2 S

1
2 log(SAT

δ )

β∆min

))
where coefficient in the first term is Zhang et al. (2020) by a factor of A.

For the second term in Equation (4), when the total steps are sufficiently large such that T =
Ω̃
(
poly

(
SAH, (β∆min)

−1
))

for some polynomial poly(·), it is also better than O(H2SA log T ).

Key Ideas of the Proof. The proof of Theorem 2 in Zhang et al. (2020) implies Nswitch ≤∑
s,a,h 4H log

(
NK+1

h (s,a)

2H + 1
)

, where NK+1
h (s, a) is upper bounded by the total number of

visits to (s, a, h). Under their worst-case MDP and noticing that
∑

s,a,h N
K+1
h (s, a) ≤ T ,

Zhang et al. (2020) further proved their bound O(H2SA log T ) by applying Jensen’s inequality.
In our gap-dependent analysis, Equation (76) in Appendix C shows that with high probability,∑

(s,a,h)∈Dc
opt
NK+1

h (s, a) ≤ Õ
(

H6SA
∆min

+ H8S2A
β2

)
, which is much smaller than T when T is suf-

ficiently large. This implies the discrepancy among the number of visits to state-action-step triples
with optimal or suboptimal actions. Accordingly, we prove the bound in Equation (4) by using
Jensen’s inequality separately for triples with optimal or suboptimal actions.

4 PROOF SKETCH

This section provides a proof sketch to outline the key steps for proving Theorem 3.2 on the gap-
dependent regret of Q-EarlySettled-Advantage and explain our technical contributions. The key
steps for proving Theorem 3.1 are similar except for different bounds on reference settling error and
gap-free regret terms. For space consideration, their complete proofs are presented in the appendix.

Notations. First, we show the weights used in the algorithm. Let ηn := H+1
H+n . For N ∈ N+,

denote η00 := 1 and ηN0 :=
∏N

i=1(1 − ηi). For integers 1 ≤ n ≤ N , we also denote ηNn :=

ηn
∏N

i=n+1(1 − ηi), and uN
n =

∑N
i=n η

N
i /i. When N > 0, they satisfy 1 − ηN0 =

∑N
n=1 η

N
n =∑N

n=1 u
N
n . For simplicity later, we use the notations Êref

h,kf :=
∑Nk

h
n=1 u

Nk
h

n f(sk
n

h+1) and Êref
h,kf

kn

:=∑Nk
h

n=1 u
Nk

h
n fkn

(sk
n

h+1) for any functions f : S → R and fk : S → R with k ∈ N+, respec-

tively. Similarly, we denote Êadv
h,kf :=

∑Nk
h

n=1 η
Nk

h
n f(sk

n

h+1) and Êadv
h,kf

kn

:=
∑Nk

h
n=1 η

Nk
h

n fkn

(sk
n

h+1).

We also denote Pref
h,kf =

∑Nk
h

n=1 u
Nk

h
n Pskh,a

k
h,h

f , Pref
h,kf

kn

=
∑Nk

h
n=1 u

Nk
h

n Pskh,a
k
h,h

fkn

, Padv
h,kf =∑Nk

h
n=1 η

Nk
h

n Pskh,a
k
h,h

f and Padv
h,kf

kn

=
∑Nk

h
n=1 η

Nk
h

n Pskh,a
k
h,h

fkn

.

In what follows, we present the proof sketch of Theorem 3.2.

Step 1: Bounding Qk
h−Q⋆

h via decomposition and the surrogate reference function. The update
of the estimated Q-function in Equations (7) and (8) guarantees that

Qk
h(s

k
h, a

k
h) ≤ η

Nk
h

0 H + rh(s
k
h, a

k
h) + Êadv

h,k(V
kn

h+1 − V R,kn

h+1 ) + Êref
h,kV

R,kn

h+1 +Rh,k. (14)

Here, Rh,k is the cumulative bonus provided in Equation (91) in Appendix D. Together with

Q⋆
h(s

k
h, a

k
h) ≥ rh(s

k
h, a

k
h) + (1 − η

Nk
h

0 )Pskh,a
k
h,h

V ⋆
h+1 by Equation (5) and Êadv

h,k(V
kn

h+1 − V R,kn

h+1 ) ≤

Êadv
h,k(V

kn

h+1 − V̂ R,kn

h+1 ) implied by Equation (13), we have (Qk
h − Q⋆

h)(s
k
h, a

k
h) ≤ η

Nk
h

0 H +Rh,k +

Êadv
h,k(V

kn

h+1 − V̂ R,kn

h+1 ) + Êref
h,kV

R,kn

h+1 − Padv
h,kV

⋆
h+1 =: Gk

h. Denote V̂ adv,k
h = V̂ R,k

h − V ⋆
h , then:

Gk
h = Êadv

h,k(V
kn

h+1 − V ⋆
h+1) + (Padv

h,k − Êadv
h,k)V̂

adv,kn

h+1 + (Êref
h,k − Pref

h,k)V̂
R,kn

h+1 +Rh,k +Rh,k
else,0. (15)

Here, Rh,k
else,0 = Hη

Nk
h

0 + Êref
h,k(V

R,kn

h+1 − V̂ R,kn

h+1 ) + (Pref
h,kV̂

R,kn

h+1 − Padv
h,kV̂

R,kn

h+1 ). Equation (88) and
Equation (89) in Appendix D.3.1 show that for all (k, h) simultaneously, with high probability,

(Padv
h,k − Êadv

h,k)V̂
adv,kn

h+1 ≤ Õ

(√
Hβ2

Nk
h

)
, (Êref

h,k − Pref
h,k)V̂

R,kn

h+1 ≤ Õ

(√
Q⋆ + β2

Nk
h

+
H

Nk
h

)
. (16)
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Equation (16) corresponds to controlling G1,G2 discussed in Section 3.2 and holds because our
surrogate reference function adapts to the learning process. To bound the bonus Rh,k, we use V̂ R,k

h
in Appendix D.3.2. Equation (96) shows that for all (k, h) simultaneously, with high probability

Rh,k ≤ Õ

(√
(Q⋆ + β2H)/Nk

h +H2/(Nk
h )

3
4 +

√
HΨk

h/N
k
h

)
. (17)

where Ψk
h =

∑Nk
h

n=1(V
R,kn

h+1 − V̂ R,kn

h+1 )(sk
n

h+1). Equations (15) to (17) imply

(Qk
h−Q⋆

h)(s
k
h, a

k
h) ≤ Êadv

h,k(V
kn

h+1−V ⋆
h+1)+ Õ

(√
(Q⋆ +Hβ2)/Nk

h +H2(Nk
h )

−3/4
)
+Rh,k

else (18)

where Rh,k
else = Õ

(
η
Nk

h
0 H+Êref

h,k(V
R,kn

h+1 −V̂
R,kn

h+1 )+(Pref
h,kV̂

R,kn

h+1 −Padv
h,kV̂

R,kn

h+1 )+(
√
HΨk

h+H)/Nk
h

)
.

Remark 1: We can show Q⋆ in Equation (17) instead of its upper bound Θ(H2) thanks to the
variance estimator (line 16 of Algorithm 2 in Appendix D.1 ) used in Q-EarlySettled-Advantage.

Step 2: Bounding the Weighted Sum. For any given h and non-negative constants {ωh,k}h,[K], we
denote ∥ω∥∞,h = maxk∈[K] ωh,k and ∥ω∥1,h =

∑
k∈[K] ωh,k. We also recursively define ωh′,k(h)

for any h ≤ h′ ≤ H, k ∈ [K] as follows:

ωh,k(h) := ωh,k;ωh′,j(h) =

K∑
k=1

Nk
h∑

n=1

ωh′−1,k(h)η
Nk

h
n I [kn = j] ,∀j ∈ [K], h′ > h. (19)

Equation (19) implies the mapping from {ωh,k}h,[K] to {ωh′,k(h)}h′,[K] is linear. Equation (100)
and Equation (101) shows that

∥ω(h)∥1,h′ ≤ ∥ω(h)∥1,h′−1, ∥ω(h)∥∞,h′ ≤ (1 + 1/H)∥ω(h)∥∞,h′−1,∀h′ > h. (20)

Next, given non-negative constants {ωh,k}h,[K], we bound
∑K

k=1 ωh,k(Q
k
h − Q⋆

h)(s
k
h, a

k
h).

In Equation (18) where we take summations with regard to k on both sides and
apply the standard summation rearrangement technique given in Appendix D.4.1, we
have

∑K
k=1 ωh,k(Q

k
h − Q⋆

h)(s
k
h, a

k
h) ≤

∑K
k=1 ωh+1,k(h)(Q

k
h+1 − Q⋆

h+1)(s
k
h+1, a

k
h+1) +∑K

k=1 ωh,kÕ(
√
(Q⋆ +Hβ2)/Nk

h + H2(Nk
h )

−3/4) +
∑K

k=1 ωh,kR
h,k
else . Recurring it with regard

to h, h+ 1 . . . , H , we have
K∑

k=1

ωh,k(Q
k
h −Q⋆

h)(s
k
h, a

k
h) ≤ Rc +

K∑
k=1

H∑
h′=h

ωh′,k(h)R
h′,k
else . (21)

where Rc =
∑K

k=1

∑H
h′=h ωh′,k(h)Õ

(√
(Q⋆ +Hβ2)/Nk

h +H2(Nk
h )

−3/4

)
. Lemma D.3 in Ap-

pendix D.2 implies that

Rc ≤ Õ

(
H(
√
Q⋆ + β2H)

√
SA||ω||∞,h||ω||1,h +H3(SA||ω||∞,h)

3
4 ||ω||

1
4

1,h

)
. (22)

Step 3: Integrating Multiple Weighted Sums. Next, consider multiple groups of weights related
to [∆min, H]. We split it into N disjoint intervals Ii := [2i−1∆min, 2

i∆min) for i ∈ [N − 1] and
IN := [2N−1∆min, 2

N∆min]. Here, N = ⌈log2(H/∆min)⌉. For any given i ∈ [N ] and h ∈ [H], we
denote ω

(i)
h,k = I

[
(Qk

h −Q⋆
h)(s

k
h, a

k
h) ∈ Ii

]
. For {ω(i)

h,k}h,[K], we have ∥ω(i)∥∞,h ≤ 1 and

2i−1∆min∥ω(i)∥1,h ≤
K∑

k=1

ω
(i)
h,k(Q

k
h −Q⋆

h)(s
k
h, a

k
h) ≤ 2i∆min∥ω(i)∥1,h. (23)

Noticing that
∑N

i=1

∑K
k=1 ω

(i)
h,k(Q

k
h−Q⋆

h)(s
k
h, a

k
h) =

∑K
k=1 clip[(Qk

h−Q⋆
h)(s

k
h, a

k
h) | ∆min] where

clip[x | δ] := x · I[x ≥ δ], Equation (23) further implies
K∑

k=1

clip[(Qk
h −Q⋆

h)(s
k
h, a

k
h) | ∆min] = Θ

(
N∑
i=1

2i∆min∥ω(i)∥1,h

)
. (24)
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Letting ωh,k = ω
(i)
h,k in Equation (21) and applying Equations (22) and (23), we have

2i−1∆min||ω(i)||1,h ≤ Õ

(
θ1

√
||ω(i)||1,h + θ2||ω(i)||

1
4

1,h +

K∑
k=1

H∑
h′=h

ωh′,k(h)R
h′,k
else

)
. (25)

Here, θ1 =
√
H2SA(Q⋆ + β2H), θ2 = H3(SA)

3
4 . Thus, by Equation (106) in Appendix D.5.1,

||ω(i)||1,h ≤ Õ

((
Q⋆ + β2H

)
SAH2

4i−1∆2
min

+
H4SA

(2i−1∆min)
4
3

+

∑K
k=1

∑H
h′=h ω

(i)
h′,k(h)R

h′,k
else

2i−1∆min

)
.

This further implies
N∑
i=1

2i∆min||ω(i)||1,h ≤ Õ

((
Q⋆ + β2H

)
SAH2

∆min
+

H4SA

∆
1
3

min

+

K∑
k=1

H∑
h′=h

ω̂h′,k(h)R
h′,k
else

)
. (26)

where ω̂h′,k(h) =
∑N

i=1 ω
(i)
h′,k(h). Noticing that ω̂h,k(h) = I[(Qk

h−Q⋆
h)(s

k
h, a

k
h) ≥ ∆min], together

with the linearity showed in Equation (19), Equation (20) implies ω̂h′,k(h) ≤ O(1),∀h ≤ h′ ≤ H .
Thus,

∑K
k=1

∑H
h′=h ω̂h′,k(h)R

h′,k
else ≤ O(

∑K
k=1

∑H
h=1 R

h,k
else ). Appendix D.5.2 shows that with high

probability,
K∑

k=1

H∑
h=1

Rh,k
else ≤ Õ(H6SA/β). (27)

Summarizing Equations (24), (26) and (27) and noticing that H4SA/∆
1
3

min = O(β2H3SA/∆min +
H4SA/β +H5SA/β) that follows from the AM–GM inequality, we have

K∑
k=1

clip[(Qk
h −Q⋆

h)(s
k
h, a

k
h) | ∆min] = Õ(SAH2(Q⋆ + β2H)/∆min +H6SA/β). (28)

Remark 2: Integrating groups of sums is first introduced in Yang et al. (2021) and also applied in Li
et al. (2021). It leads to regret dependency on 1/∆min instead of 1/∆2

min that will appear if we do not
use integration. We extend this method in handling Rh,k

else that only appears in our proof: we apply the
upper bound in Equation (27) after the integration instead of Equation (25) before the integration.
This helps us remove the dependency on ∆min in the second term in Equation (28).

Remark 3: Equation (27) can be regarded as bounding the reference settling errors, which is related
to V̂ R,k

h and the reference settling design in Q-EarlySettled-Advantage. UCB-Advantage and Q-
EarlySettled-Advantage mainly differ on the reference settling policy, which results in different
bounds for reference settling error and the gap-free regret terms in Equations (2) and (3). We show
the details in Appendix D.5.2.

Step 4: Bounding the Expected Regret. By Equation (9), Qk
h(s

k
h, a

k
h) = V k

h (skh) ≥ V ⋆
h (s

k
h). Thus,

∆h(x
k
h, a

k
h) = clip[V ∗

h (x
k
h)−Q∗

h(x
k
h, a

k
h) | ∆min] ≤ clip[(Qk

h −Q∗
h)(x

k
h, a

k
h) | ∆min],∀(k, h).

Equation (4) of Yang et al. (2021) shows that E (Regret(K)) = E
[∑K

k=1

∑H
h=1 ∆h(x

k
h, a

k
h)
]
,

which further implies

E (Regret(K)) ≤ E

[
K∑

k=1

H∑
h=1

clip[(Qk
h −Q∗

h)(x
k
h, a

k
h) | ∆min]

]
. (29)

Using Equation (118) from Appendix D.6, which connects Equation (28) to Equation (29), we can
derive the desired gap-dependent regret bound presented in Theorem 3.2.

5 CONCLUSION

In this paper, we have presented the first gap-dependent regret analysis for Q-learning using
reference-advantage decomposition and also provided the first gap-dependent analysis on the policy
switching cost of Q-learning, which answers two important open questions. Our novel error decom-
position approach and construction of surrogate reference functions can be used in other problems
using reference-advantage decomposition such as the offline Q-learning and stochastic learning.
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A GENERAL LEMMAS

Lemma A.1. (Azuma-Hoeffding Inequality) Suppose {Xk}∞k=0 is a martingale and |Xk−Xk−1| ≤
ck, ∀k ∈ N+, almost surely. Then for any positive integers N and any positive real number ϵ, it
holds that:

P (XN −X0 ≥ ϵ) ≤ exp

(
− ϵ2

2
∑N

k=1 c
2
k

)
,

and

P (|XN −X0| ≥ ϵ) ≤ 2 exp

(
− ϵ2

2
∑N

k=1 c
2
k

)
.

Lemma A.2. (Lemma 10 in Zhang et al. (2022a)) Let X1, X2, . . . be a sequence of random vari-
ables taking value in [0, l]. Define Fk = σ(X1, X2, . . . , Xk−1) and Yk = E[Xk|Fk] for k ≥ 1. For
any δ > 0, we have that

P

[
∃n,

n∑
k=1

Xk ≥ 3

n∑
k=1

Yk + l log(1/δ)

]
≤ δ

and

P

[
∃n,

n∑
k=1

Yk ≥ 3

n∑
k=1

Xk + l log(1/δ)

]
≤ δ.

Lemma A.3. (Lemma 11 in Zhang et al. (2021b)) Let (Mn)n≥0 be a martingale such that M0 = 0
and |Mn −Mn−1| ≤ c for some c > 0 and any n ≥ 1. Let

Varn =

n∑
k=1

E[(Mk −Mk−1)
2|Fk−1]

for n ≥ 0, where Fk = σ(M1, . . . ,Mk). Then for any positive integer n and any ϵ, δ > 0, we have
that

P
(
|Mn| ≥ 2

√
2Varn ln(1/δ) + 2

√
ϵ ln(1/δ) + 2c ln(1/δ)

)
≤ 2

(
log2

(
nc2

ϵ

)
+ 1

)
δ.

B PROOF OF THEOREM 3.1

B.1 ALGORITHM DETAILS

The UCB-Advantage algorithm, first introduced in Zhang et al. (2020), achieves the information-
theoretic bound on regret up to logarithmic factors, using a model-free algorithm. The key inno-
vation of the algorithm lies in its combination of UCB exploration (Jin et al., 2018) with a newly
introduced reference-advantage decomposition for updating Q-estimates.

Before discussing the algorithm in detail, we will first review the special stage design used in the
algorithm. For any triple (s, a, h), we divide the samples received for the triple into consecutive
stages. Define e1 = H and ei+1 =

⌊
(1 + 1

H )ei
⌋

for all i ≥ 1, standing for the length of the stages.
We also let L := {

∑j
i=1 ei|j = 1, 2, 3, . . .} be the set of indices marking the ends of the stages.

We note that the definition of stages is with respect to the triple (s, a, h). For any fixed pair of k and
h, let (skh, a

k
h) be the state-action pair at the h-th step during the k-th episode of the algorithm. We

say that (k, h) falls in the j-th stage of (s, a, h) if and only if (s, a) = (skh, a
k
h) and the total visit

number of (skh, a
k
h) after the k-th episode is in (

∑j−1
i=1 ei,

∑j
i=1 ei].

Now we introduce the stage-based update framework. For any (s, a, h) triple, we update Qh(s, a)
when the total visit number of (s, a, h) reaches the end of the current stage (in other word, the
total visit number occurs in L). For k-th episode at the end of a given stage, the Q-estimate
Q1,k+1

h (skh, a
k
h) learned from UCB is updated to:

Q1,k+1
h (skh, a

k
h) = rkh(s

k
h, a

k
h) +

1

ňk
h

ňk
h∑

i=1

V kľi

h+1(s
ľi
h+1) + 2

√
H2ι

ňk
h

. (30)
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Here we define ňk
h = ňk

h(s
k
h, a

k
h) be the number of visits to (skh, a

k
h, h) during the stage immediately

before the stage of k-th episode and ľi = ľih,k denotes the index of the i-th episode among the ňk
h

episodes. V k
h (s) is the V -estimate at the end of the episode k− 1 with the initial value V 1

h (s) = H .
The term 2

√
H2ι
ňk
h

represents the exploration bonus for ňk
h-th visit, where ι = log( 2p ) with p ∈ (0, 1)

being failure probability.

The other estimate, denoted by Q2,k+1
h (skh, a

k
h), uses the reference-advantage decomposition tech-

nique. For k-th episode at the end of a given stage, it is updated to:

rkh(s
k
h, a

k
h) +

1

nk
h

nk
h∑

i=1

V ref,kli

h+1 (slih+1) +
1

ňk
h

ňk
h∑

i=1

(
V kľi

h+1 − V ref,kľi

h+1

)
(sľih+1) + bk+1

h (skh, a
k
h). (31)

Here we define nk
h = nk

h(s
k
h, a

k
h) be the number of visits to (skh, a

k
h, h) prior to the stage of (k)-th

episode and li = lih,k denotes the index of i-th episode among the nk
h episodes.

In Equation (31), V ref,k
h (s) is the reference function learned at the end of episode k − 1. We expect

that for any s ∈ S, sufficiently large k and some given β ∈ (0, H], it holds |V ref,k
h (s) − V ⋆

h (s)| ≤
β. In this case, for sk

n

h+1 ∼ Ph(·|sk
n

h , ak
n

h ), the variance of the advantage term V kľi

h+1(s
kn

h+1) −
V ref,kľi

h+1 (sk
ľi

h+1), is bounded by β2, which can be less volatile than the stochastic term V kľi

h+1(s
kľi

h+1),

whose variance can be H2. Meanwhile, the reference term
∑nk

h
i=1 V

ref,kli

h+1 (sk
li

h+1)/n
k
h use a batch

of historical visits to (skh, a
k
h, h), which can lower the variance as the increase of the sample size

nk
h. Accordingly, the exploration bonus term bk+1

h is taken to be an upper confidence bound for the
above-mentioned two terms combined.

With these Q-estimates, we can update the final Q-estimate as follows:

Qk+1
h (skh, a

k
h) = min{Q1,k+1

h (skh, a
k
h), Q

2,k+1
h (skh, a

k
h), Q

k
h(s

k
h, a

k
h)}. (32)

We also incorporate Qk
h(s

k
h, a

k
h) here to keep the mononicity of the update. Then we can learn

V k+1
h (skh) by a greedy policy with respect to the Q-estimates V k+1

h (skh) = maxa Q
k+1
h (skh, a). If

the number of visits to the state-step pair (s, h) first exceeds N0 = O(SAH5ι
β2 ) at k-th episode, then

we learn the final reference function V REF
h (s) = V k+1

h (s). For the reader’s convenience, we have
also provided the detailed algorithm below.

Algorithm 1 UCB-Advantage

1: Initialize: set all accumulators to 0; for all (s, a, h) ∈ S × A× [H], set Qh(s, a), Vh(s, a)←
H − h+ 1;V ref

h (s)← H;
2: for episodes k ← 1, 2, . . . ,K do
3: observe s1;
4: for h← 1, 2, . . . ,H do
5: Take action ah ← argmaxa Qh(sh, a), and observe sh+1.
6: Update the accumulators by n := nh(sh, ah)

+←− 1, ň := ňh(sh, ah)
+←− 1,

7: and Equation (33), Equation (34), Equation (35).
8: if n ∈ L then
9: b← 2

√
σref
h /n−(µref

h /n)2

n ι+ 2
√

σ̌/ň−(µ̌/ň)2

ň ι+ 5
(

Hι
n + Hι

ň + Hι3/4

n3/4 + Hι3/4

ň3/4

)
;

10: b̄← 2
√

H2

ň ι;

11: Qh(sh, ah)← min{rh(sh, ah) + v̌
ň + b̄, rh(sh, ah) +

µref

n + µ̌
ň + b,Qh(sh, ah)};

12: Vh(sh)← maxa Qh(sh, a);
13: ňh(sh, ah), µ̌h(sh, ah), v̌h(sh, ah), σ̌h(sh, ah)← 0;
14: end if
15: if

∑
a nh(sh, a) = N0 then V ref

h (sh)← Vh(sh)
16: end if
17: end for
18: end for

17
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The accumulators in the algorithm are updated as follows.

µ̌ := µ̌h(sh, ah)
+←− Vh+1(sh+1)− V ref

h+1(sh+1); v̌ := v̌h(sh, ah)
+←− Vh+1(sh+1); (33)

σ̌ := σ̌h(sh, ah)
+←−
(
Vh+1(sh+1)− V ref

h+1(sh+1)
)2

; (34)

Meanwhile, the following two types of global accumulators are used for the samples in all stages

µref := µref
h (sh, ah)← V ref

h+1(sh+1); σref
h := σref(sh, ah)←

(
V ref
h+1(sh+1)

)2
. (35)

We use µref,k
h , σref,k

h , µ̌k
h, v̌kh, σ̌k

h, bkh to denote respectively the values of µref, σref, µ̌, v̌, σ̌, b at step h
by the start of the k-th episode.

B.2 KEY LEMMAS

Before proceeding to the proof, we will first establish several key lemmas. In the algorithm, define
ι = log(2/p) with p ∈ (0, 1) being the failure probability.

Lemma B.1. Using ∀(s, a, h, k) as the simplified notation for ∀(s, a, h, k) ∈ S × A × [H] × [K].
Let Nk

h (s) =
∑

a n
k
h(s, a), λ

k
h(s) = I[Nk

h (s) < N0], V̂
ref,k
h (s) = max{V ⋆

h (s),min{V ⋆
h (s) +

β, V ref,k
h (s)}}. Then we have the following conclusions:

(a) (Proposition 4 in Zhang et al. (2020)) With probability at least 1 − (4H2T 4 + 12T )p, the
following event holds:

E1 =
{
Q⋆

h(s, a) ≤ Qk+1
h (s, a) ≤ Qk

h(s, a),∀(s, a, h, k)
}
.

(b) (Corollary 6 in Zhang et al. (2020)) With probability at least 1 − (4H2T 4 + 13T )p, the
following event holds:

E2 =
{
Nk

h (s) ≥ N0 ⇒ V ⋆
h (s) ≤ V ref,k

h ≤ V ⋆
h (s) + β,∀(s, a, h, k)

}
.

(c) With probability at least 1− p, the following event holds:

E3 =

{
K∑

k=1

Pskh,a
k
h,h

λk
h+1 ≤ 3

K∑
k=1

λk
h+1(s

k
h+1) + ι

}
.

Especially, λk
H+1(s) = 0.

(d) With probability at least 1− SATp, the following event holds:

E4 =


∣∣∣∑nk

h
i=1

(
1
s
li
h+1

− Ps,a,h

)(
V̂ ref,li
h+1 − V ⋆

h+1

)∣∣∣
nk
h(s, a)

≤ β

√
2ι

nk
h(s, a)

,∀(s, a, h, k)

 .

(e) With probability at least 1− SAT 2p, the following event holds:

E5 =


∣∣∣∑nk

h
i=1

(
1
s
li
h+1

− Ps,a,h

)
V ⋆
h+1

∣∣∣
nk
h(s, a)

≤ 2

√
2Q⋆ι

nk
h(s, a)

+
4Hι

nk
h(s, a)

,∀(s, a, h, k)

 .

(f) With probability at least 1− SAT 2p, the following event holds:

E6 =


∣∣∣∣∑ňk

h
i=1

(
1
s
ľi
h+1

− Ps,a,h

)(
V̂ ref,ľi
h+1 − V ⋆

h+1

)∣∣∣∣
ňk
h(s, a)

≤ β

√
2ι

ňk
h(s, a)

,∀(s, a, h, k)

 .

18
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(g) With probability at least 1− SATp, the following event holds:

E7 =


∣∣∣∑nk

h
i=1

(
1
s
li
h+1

− Ps,a,h

)
(V ⋆

h+1)
2
∣∣∣

nk
h(s, a)

≤ H2

√
2ι

nk
h(s, a)

,∀(s, a, h, k)

 .

Proof. We only need prove (c) to (e).

(c) Using Lemma A.2 with l = 1 and δ = p, we can prove this conclusion.

(d) From the definition of V̂ ref,k
h (s), we know that for any k ∈ [K]:

V ⋆
h (s) ≤ V̂ ref,k

h (s) ≤ V ⋆
h (s) + β. (36)

Then the sequence {
∑j

i=1(1s
li
h+1

−Ps,a,h)(V̂
ref,ľi
h+1 −V ⋆

h+1)}j∈N+ is a martingale sequence

with |(1
s
li
h+1

−Ps,a,h)(V̂
ref,ľi
h+1 −V ⋆

h+1)| ≤ β . Then according to Azuma-Hoeffding inequal-

ity, for any p ∈ (0, 1), with probability at least 1− p, it holds for given nk
h(s, a) = n ∈ N+

that:
1

n

∣∣∣∣∣
n∑

i=1

(
1
s
li
h+1

− Ps,a,h

)(
V̂ ref,li
h+1 − V ⋆

h+1

)∣∣∣∣∣ ≤
√

2β2ι

n
.

For any all (s, a, h, k) ∈ S ×A× [H]× [K], we have nk
h(s, a) ∈ [ TH ]. Considering all the

possible combinations (s, a, h, n) ∈ S×A×[H]×[ TH ], with probability at least 1−SATp,
it holds simultaneously for all (s, a, h, k) ∈ S ×A× [H]× [K] that:

1

nk
h(s, a)

∣∣∣∣∣∣
nk
h∑

i=1

(
1
s
li
h+1

− Ps,a,h

)(
V̂ ref,li
h+1 − V ⋆

h+1

)∣∣∣∣∣∣ ≤
√

2β2ι

nk
h(s, a)

.

(e) The sequence {
∑j

i=1(1s
li
h+1

−Ps,a,h)V
⋆
h+1}j∈N+ is a martingale sequence with |(1

s
li
h+1

−
Ps,a,h)V

⋆
h+1| ≤ H . Using Lemma A.3 with c = H , ϵ = H2 and δ = p

2 , for a given
nk
h(s, a) = n ∈ [ TH ], with probability at least 1− (log2(n) + 1)p ≥ 1− Tp, we have:

1

n

∣∣∣∣∣
n∑

i=1

(
1
s
li
h+1

− Ps,a,h

)
V ⋆
h+1

∣∣∣∣∣ ≤ 2

√
2Q⋆ι

n
+

4Hι

n

Considering all the possible combinations (s, a, h, n) ∈ S×A×[H]×[ TH ], with probability
at least 1− SAT 2p, it holds simultaneously for all (s, a, h, k) ∈ S ×A× [H]× [K] that:

1

nk
h(s, a)

∣∣∣∣∣∣
nk
h∑

i=1

(
1
s
li
h+1

− Ps,a,h

)
V ⋆
h+1

∣∣∣∣∣∣ ≤ 2

√
2Q⋆

nk
h(s, a)

+
4Hι

nk
h(s, a)

.

(f) The sequence {
∑j

i=1(1s
ľi
h+1

−Ps,a,h)(V̂
ref,ľi
h+1 −V ⋆

h+1)}j∈N+ is a martingale sequence with

|(1
s
ľi
h+1

− Ps,a,h)(V̂
ref,ľi
h+1 − V ⋆

h+1)| ≤ β. Then according to Azuma-Hoeffding inequality,

for any p ∈ (0, 1), with probability at least 1 − p, it holds for given ňk
h(s, a) = ň ∈ N+

that:
1

ň

∣∣∣∣∣
ň∑

i=1

(
1
s
ľi
h+1

− Ps,a,h

)(
V̂ ref,ľi
h+1 − V ⋆

h+1

)∣∣∣∣∣ ≤
√

2β2ι

ň
.

For any all (s, a, h, k) ∈ S × A × [H] × [K], we have ňk
h(s, a) ∈ [ TH ]. Considering

all the possible combinations (s, a, h, k) ∈ S × A × [H] × [K] and ňk
h(s, a) ∈ [ TH ],
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with probability at least 1 − SAT 2/Hp ≥ 1 − SAT 2p, it holds simultaneously for all
(s, a, h, k) ∈ S ×A× [H]× [K] that:

1

ňk
h(s, a)

∣∣∣∣∣∣
ňk
h∑

i=1

(
1
s
ľi
h+1

− Ps,a,h

)(
V̂ ref,ľi
h+1 − V ⋆

h+1

)∣∣∣∣∣∣ ≤
√

2β2ι

ňk
h(s, a)

.

(g) The sequence {
∑j

i=1(1s
li
h+1

− Ps,a,h)(V
⋆
h+1)

2}j∈N+ is a martingale sequence with

|(1
s
li
h+1

− Ps,a,h)(V
⋆
h+1)

2| ≤ H2. Then according to Azuma-Hoeffding inequality, with

probability at least 1− p, it holds for given nk
h(s, a) = n that:

1

n

∣∣∣∣∣
n∑

i=1

(
1
s
li
h+1

− Ps,a,h

)
(V ⋆

h+1)
2

∣∣∣∣∣ ≤ H2

√
2ι

n

Considering all the possible combinations (s, a, h, n) ∈ S×A×[H]×[ TH ], with probability
at least 1− SATp, it holds simultaneously for all (s, a, h, k) ∈ S ×A× [H]× [K] that:

1

nk
h(s, a)

∣∣∣∣∣∣
nk
h∑

i=1

(
1
s
li
h+1

− Ps,a,h

)
(V ⋆

h+1)
2

∣∣∣∣∣∣ ≤ H2

√
2ι

nk
h(s, a)

.

From this lemma, we know that the event
⋂7

i=1 Ei holds with probability at least 1−(40H2SAT 4)p.

Next, we will discuss the relationship among the V -estimate V k
h , the reference function V ref,k

h (s),
the surrogate function V̂ ref,k

h (s) and the final learned reference function V REF
h (s).

Lemma B.2. For any (s, h, k) ∈ S × [H] × [K], let . Under the event E1 ∩ E2 in Lemma B.1, we
have the following conclusions:

(a) V̂ ref,k
h (s) = min{V ⋆

h (s) + β, V ref,k
h (s)}

(b) 0 ≤ V ref,k
h (s)− V REF

h (s) ≤ Hλk
h(s).

(c) 0 ≤ V ref,k
h (s)− V̂ ref,k

h (s) ≤ Hλk
h(s).

(d)
∣∣∣V̂ ref,k

h (s)− V REF
h (s)

∣∣∣ ≤ Hλk
h(s).

Proof. (a) Under the event E1 in Lemma B.1, we have V ref,k
h (s) ≥ V k

h (s) ≥ V ⋆
h (s). Therefore,

min{V ⋆
h (s) + β, V ref,k

h (s)} ≥ V ⋆
h (s). According to the definition of V̂ ref,k

h (s), we have
V̂ ref,k
h (s) = min{V ⋆

h (s) + β, V ref,k
h (s)}.

(b) For any (s, h, k) ∈ S × [H]× [K]:
If Nk

h (s) ≥ N0, then λk
h(s) = 0. In this case, the reference function V ref,k

h (s) is updated to
its final value V REF

h (s) and then V ref,k
h (s)− V REF

h (s) = 0 = Hλk
h(s).

If Nk
h (s) < N0, then λk

h(s) = 1. Since the reference function is non-increasing and
V ref,1
h (s) = H , we have 0 ≤ V ref,k

h (s)− V REF
h (s) ≤ H = Hλk

h(s).
Combining these two cases, we can prove the conclusion (b).

(c) For any (s, h, k) ∈ S × [H]× [K]:
If Nk

h (s) ≥ N0, then λk
h(s) = 0. Under the event E2 in Lemma B.1, we have V ref,k

h (s) ≤
V ⋆
h (s) + β. Therefore, it holds that V̂ ref,k

h (s) = V ref,k
h (s) by (a). In this case, V ref,k

h (s) −
V̂ ref,k
h (s) = 0 = Hλk

h(s).
If Nk

h (s) < N0, then λk
h(s) = 1. Since the reference function is non-increasing and

V ref,1
h (s) = H , we have 0 ≤ V ref,k

h (s)− V̂ ref,k
h (s) ≤ H .

Combining these two cases, we can prove the conclusion (c).
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(d) For any (s, h, k) ∈ S × [H]× [K]:
If Nk

h (s) ≥ N0, then λk
h(s) = 0. In this case, the reference function V ref,k

h (s) is updated to
its final value V REF

h (s). Under the event E2 in Lemma B.1, we have V REF
h (s) = V ref,k

h (s) ≤
V ⋆
h (s) + β. In this case, we know V̂ ref,k

h (s) = V ref,k
h (s) = V REF

h (s). Therefore, it holds
that V̂ ref,k

h (s)− V REF
h (s) = 0 = Hλk

h(s).
If Nk

h (s) < N0, then λk
h(s) = 1. Since the reference function is non-increasing and

V ref,1
h (s) = H , we have 0 ≤ V REF

h (s) ≤ V ref,k
h (s) ≤ H and 0 ≤ V̂ ref,k

h (s) ≤ V ref,k
h (s) ≤

H . Therefore, it holds that
∣∣∣V̂ ref,k

h (s)− V REF
h (s)

∣∣∣ ≤ H = Hλk
h(s).

Combining these two cases, we can prove the conclusion (d).

Lemma B.3. For any (s, a, h, k) ∈ S ×A× [H]× [K] such that ňk
h(s, a) ̸= 0, it holds that:

nk
h(s, a)

ňk
h(s, a)

≤ 4H

Proof. For ňk
h(s, a) ̸= 0, there exists j ∈ N+ such that ňk

h(s, a) = ej and nk
h(s, a) =

∑j
i=1 ei. We

will use the mathematical induction to prove that for any j ∈ N+,
∑j

i=1 ei
ej

≤ 4H .

For j = 1,
∑j

i=1 ei
ej

= 1 ≤ 4H .

If
∑j−1

i=1 ei
ej−1

≤ 4H , then for j ∈ N+ and j ≥ 2, because ej = ⌊(1 + 1
H )ej−1⌋ ≥ (1 + 1

2H )ej−1, we
have: ∑j

i=1 ei
ej

= 1 +

∑j−1
i=1 ei
ej

≤ 1 +

∑j−1
i=1 ei

(1 + 1
2H )ej−1

≤ 1 +
4H

1 + 1
2H

≤ 4H.

Therefore, we finish the proof.

Lemma B.4. For any non-negative weight sequence {ωh,k}h,k and α ∈ (0, 1), it holds that:

K∑
k=1

ωh,kI[nk
h(s

k
h, a

k
h) ̸= 0]

nk
h(s

k
h, a

k
h)

α
≤ 22−α

1− α
(SA||ω||∞,h)

α||ω||1−α
1,h ,

and
K∑

k=1

ωh,kI[ňk
h(s

k
h, a

k
h) ̸= 0]

ňk
h(s

k
h, a

k
h)

α
≤ 22+αHα

1− α
(SA||ω||∞,h)

α||ω||1−α
1,h .

Here, ||ω||∞,h = max
k
{ωh,k} and ||ω||1,h =

∑K
k=1 ωh,k.

For α = 1, we have the following conclusions:

K∑
k=1

I[nk
h(s

k
h, a

k
h) ̸= 0]

nk
h(s

k
h, a

k
h)

≤ 2SA log(T ),

and
K∑

k=1

I[ňk
h(s

k
h, a

k
h) ̸= 0]

ňk
h(s

k
h, a

k
h)

≤ 4SAH log(T ).

Proof.

K∑
k=1

ωh,kI[nk
h(s

k
h, a

k
h) ̸= 0]

nk
h(s

k
h, a

k
h)

α
=
∑
s,a

K∑
k=1

ωh,kI[nk
h(s, a) ̸= 0, (skh, a

k
h) = (s, a)]

nk
h(s, a)

α

≜
∑
s,a

K∑
k=1

ω′
h,k(s, a)

nk
h(s, a)

α
(37)
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Here we let ω′
h,k(s, a) = ωh,kI[nk

h(s, a) ̸= 0, (skh, a
k
h) = (s, a)] and ch(s, a) =

∑K
k=1 ω

′
h,k(s, a).

Then ω′
h,k(s, a) ≤ ||ω||∞,h and

∑
s,a ch(s, a) ≤

∑K
k=1 ωh,k = ||ω||1,h.

Because nk
h(s, a) is nondecreasing for 1 ≤ k ≤ K, given the term

∑K
k=1

ω′
h,k

nk
h(s,a)

α , when the weights
ω′
h,k(s, a) concentrates on former terms, we can obtain the largest value. For a given state-action

pair (s, a) and j ∈ N+, according to the stage design, the set {k : nk
h(s, a) =

∑j
i=1 ei} has

at most ej+1 ≤ (1 + 1
H )ej elements. Thus, the upper bound for the sum of the coefficients of

nk
h(s, a) =

∑j
i=1 ei in Equation (37) is given by (1 + 1

H )ej ||ω||∞,h.

Let:

k0 = max

k :

k−1∑
j=1

(1 +
1

H
)ej ||ω||∞,h < ch(s, a), k ∈ N+

 .

Because ej+1 ≤ (1 + 1
H )ej for any j ∈ N+, we have

k0∑
j=2

ej ||ω||∞,h < ch(s, a),

and then k0 satisfies

k0∑
j=1

ej ||ω||∞,h ≤
k0−1∑
j=1

(1 +
1

H
)ej ||ω||∞,h +

k0∑
j=2

ej ||ω||∞,h < 2ch(s, a). (38)

Therefore, back to Equation (37), concentrating the weight to the terms with nk
h(s, a) =

∑j
i=1 ei,

j ∈ {1, 2, ..., k0}, for any given state-action pair (s, a) ∈ S ×A, we have:

K∑
k=1

ω′
h,k

nk
h(s, a)

α
≤

k0∑
j=1

(1 + 1
H )ej ||ω||∞,h(∑j
i=1 ei

)α = (1 +
1

H
)||ω||∞,h

 k0∑
j=1

ej(∑j
i=1 ei

)α
 . (39)

For any 0 < y < x and α ∈ (0, 1), we have:

x− y

xα
≤ 1

1− α
(x1−α − y1−α).

For any j ∈ N+, let x =
∑j

i=1 ei and y =
∑j−1

i=1 ei, then we have:

ej(∑j
i=1 ei

)α ≤ 1

1− α

( j∑
i=1

ei

)1−α

−

(
j−1∑
i=1

ei

)1−α
 .

Sum the above inequality from 1 to k0, then it holds that:

k0∑
j=1

ej(∑j
i=1 ei

)α ≤ 1

1− α

(
k0∑
i=1

ei

)1−α

<
1

1− α

(
2ch(s, a)

||ω||∞,h

)1−α

.

The last inequality is because of Equation (38). Applying this inequality to Equation (39), we have:

K∑
k=1

ω′
h,k

nk
h(s, a)

α
≤ 22−α

1− α
||ω||α∞,hch(s, a)

1−α.

Using this inequality in Equation (37), we have:

K∑
k=1

ωh,kI[nk
h(s, a) ̸= 0]√

nk
h(s

k
h, a

k
h)

≤ 22−α

1− α
||ω||α∞,h

∑
s,a

ch(s, a)
1−α ≤ 22−α

1− α
(SA||ω||∞,h)

α ||ω||1−α
1,h .
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The last inequality holds due to Hölder’s inequality, as
∑

s,a ch(s, a)
1−α ≤ (SA)α||ω||1−α

1,h .

By Lemma B.3, it is easy to prove prove the second conclusion:

K∑
k=1

ωh,kI[ňk
h(s

k
h, a

k
h) ̸= 0]

ňk
h(s

k
h, a

k
h)

α
≤ 22+αHα

1− α
(SA||ω||∞,h)

α||ω||1−α
1,h .

The case of α = 1 is proved in Lemma 11 of Zhang et al. (2020).

Lemma B.5. For any non-negative sequence {Xk
h}k,h, we have that

K∑
k=1

I
[
nk
h(s

k
h, a

k
h) ̸= 0

]
nk
h(s

k
h, a

k
h)

nk
h∑

i=1

X li
h ≤ 3 log(T )

K∑
k=1

Xk
h ,

K∑
k=1

I
[
ňk
h(s

k
h, a

k
h) ̸= 0

]
ňk
h(s

k
h, a

k
h)

ňk
h∑

i=1

X ľi
h ≤

(
1 +

1

H

) K∑
k=1

Xk
h .

Proof. For the first conclusion,

K∑
k=1

I
[
nk
h(s

k
h, a

k
h) ̸= 0

]
nk
h(s

k
h, a

k
h)

nk
h∑

i=1

X li
h =

K∑
k=1

∑nk
h

i=1 X
li
h

nk
h(s

k
h, a

k
h)
·

K∑
j=1

I
[
li = j, nk

h(s
k
h, a

k
h) ̸= 0

]

=

K∑
k=1

nk
h∑

i=1

K∑
j=1

Xj
h

nk
h(s

k
h, a

k
h)
· I
[
li = j, nk

h(s
k
h, a

k
h) ̸= 0

]

=

K∑
j=1

 K∑
k=1

∑nk
h

i=1 I
[
li = j, nk

h(s
k
h, a

k
h) ̸= 0

]
nk
h(s

k
h, a

k
h)

Xj
h. (40)

For a given episode k, according to the definition of li,
∑nk

h
i=1 I

[
li = j, nk

h(s
k
h, a

k
h) ̸= 0

]
= 1 if and

only if (skh, a
k
h) = (sjh, a

j
h) and (j, h) falls in the stage before that (k, h) falls in. As a result, for

nk
h(s

k
h, a

k
h) =

∑j−1
i=1 ei, the set {k :

∑nk
h

i=1 I
[
li = j, nk

h(s
k
h, a

k
h) ̸= 0

]
= 1} has at most ej elements.

Then it holds that:

K∑
k=1

∑nk
h

i=1 I
[
li = j, nk

h(s
k
h, a

k
h) ̸= 0

]
nk
h(s

k
h, a

k
h)

≤
∑
j∈A

ej∑j−1
i=1 ei

≤
∑
j∈A

ej∑
p=1

3∑j−1
i=1 ei + p

≤ 3 log(T ) (41)

Here, A = {j : H ≤
∑j−1

i=1 ei ≤ T, j ∈ N+}. The second inequality is because ej ≤ (1 + 1
H )ej−1

and then for any p ∈ [ej ],
∑j−1

i=1 ei+p ≤ 3
∑j−1

i=1 ei. Then we finish the proof of the first conclusion.
For the second conclusion,

K∑
k=1

I
[
ňk
h(s

k
h, a

k
h) ̸= 0

]
ňk
h(s

k
h, a

k
h)

ňk
h∑

i=1

X ľi
h =

K∑
k=1

∑ňk
h

i=1 X
ľi
h

ňk
h(s

k
h, a

k
h)
·

K∑
j=1

I
[
ľi = j, ňk

h(s
k
h, a

k
h) ̸= 0

]

=

K∑
k=1

ňk
h∑

i=1

K∑
j=1

Xj
h

ňk
h(s

k
h, a

k
h)
· I
[
ľi = j, ňk

h(s
k
h, a

k
h) ̸= 0

]

=

K∑
j=1

 K∑
k=1

∑ňk
h

i=1 I
[
ľi = j, ňk

h(s
k
h, a

k
h) ̸= 0

]
ňk
h(s

k
h, a

k
h)

Xj
h. (42)

For a given episode k, according to the definition of ľi,
∑nk

h
i=1 I

[
ľi = j, ňk

h(s
k
h, a

k
h) ̸= 0

]
= 1 if

and only if (skh, a
k
h) = (sjh, a

j
h) and (j, h) falls in the previous stage of that (k, h) falls in.
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As a result, in the stage of (j, h), the number of visits to (skh, a
k
h, h) is ňk

h(s
k
h, a

k
h), and the set

{k :
∑nk

h
i=1 I

[
ľi = j, ňk

h ̸= 0
]
= 1} has at most (1 + 1

H )ňk
h(s

k
h, a

k
h) elements. Then it holds that:

K∑
k=1

∑ňk
h

i=1 I
[
ľi = j, ňk

h ̸= 0
]

ňk
h(s

k
h, a

k
h)

≤ 1 +
1

H
(43)

Therefore, we prove the second conclusion.

B.3 PROOF SKETCH OF THEOREM 3.1

Next, we will begin to prove Theorem 3.1 under
⋂7

i=1 Ei.

Step 1: Bounding the term Qk
h − Q⋆

h. By Equation (31) and Bellman Optimality Equation (5), it
holds that:

Qk
h(s

k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h)

≤ I
[
nk
h ̸= 0

]∑nk
h

i=1 V
ref,li
h+1 (slih+1)

nk
h(s

k
h, a

k
h)

+

∑ňk
h

i=1(V
ľi
h+1 − V ref,ľi

h+1 )(sľih+1)

ňk
h(s

k
h, a

k
h)

+ bkh(s
k
h, a

k
h)


+ I
[
nk
h = 0

]
H − Pskh,a

k
h,h

V ⋆
h+1

≤ I
[
nk
h ̸= 0

]∑nk
h

i=1 V
ref,li
h+1 (slih+1)

nk
h(s

k
h, a

k
h)

+

∑ňk
h

i=1(V
ľi
h+1 − V REF

h+1)(s
ľi
h+1)

ňk
h(s

k
h, a

k
h)

+ bkh(s
k
h, a

k
h)


+ I
[
nk
h = 0

]
H − I

[
ňk
h ̸= 0

]
Pskh,a

k
h,h

V ⋆
h+1

= I
[
nk
h = 0

]
H + I

[
nk
h ̸= 0

] (
G1 + bkh(s

k
h, a

k
h)
)
+ I
[
ňk
h ̸= 0

]
(G2 +G3)

The second inequality is because V ref,ľi
h+1 (sľih+1) ≥ V REF

h+1(s
ľi
h+1). In the last equality we use

I
[
nk
h(s

k
h, a

k
h) = 0

]
= I

[
ňk
h(s

k
h, a

k
h) = 0

]
. Here

G1 =

∑nk
h

i=1

(
V ref,li
h+1 (slih+1)− Pskh,a

k
h,h

V REF
h+1

)
nk
h(s

k
h, a

k
h)

,

G2 =

∑ňk
h

i=1

(
Pskh,a

k
h,h
− 1

s
ľi
h+1

)(
V REF
h+1 − V ⋆

h+1

)
ňk
h(s

k
h, a

k
h)

,

G3 =

∑ňk
h

i=1

(
V ľi
h+1(s

ľi
h+1)− V ⋆

h+1(s
ľi
h+1)

)
ňk
h(s

k
h, a

k
h)

.

The upper bounds of G1, G2 and bkh is given in Appendix B.4. Combining the three upper bounds
Equation (54), Equation (58) and Equation (63), the following inequality holds:

(Qk
h −Q⋆

h)(s
k
h, a

k
h) ≲ I

[
ňk
h ̸= 0

](
G3 +

Hι
3
4

ňk
h(s

k
h, a

k
h)

3
4

)
+ I
[
nk
h ̸= 0

]√ (Q⋆ + β2H)ι

nk
h(s

k
h, a

k
h)

+ Y k
h .

(44)

Here, for any h′ ∈ [H] and k ∈ [K], Y k
h′ is defined as:

Y k
h′ = HI

[
nk
h′ = 0

]
+

I
[
nk
h′ ̸= 0

]
nk
h′(skh′ , akh′)

( nk
h′∑

i=1

H
(
1
s
li
h′+1

+ Psk
h′ ,a

k
h′ ,h

′

)
λli
h′+1 +

√
HΓk

h′(skh′ , akh′)ι

)

+
I
[
ňk
h′ ̸= 0

]
ňk
h′(skh′ , akh′)

 ňk
h′∑

i=1

H

(
Psk

h′ ,a
k
h′ ,h

′ + 1
s
ľi
h′+1

)
λľi
h′+1 +H

√
Γ̌k
h′(skh′ , akh′)ι+Hι

 .
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Then in Equation (44), for the given h, Wh =
∑K

k=1 ωh,kY
k
h .

Step 2: Bounding the weighted sum. For any given h and non-negative constants {ωh,k}h,[K], we
denote ∥ω∥∞,h = maxk∈[K] ωh,k and ∥ω∥1,h =

∑
k∈[K] ωh,k. We also recursively define ωh′,k(h)

for any h ≤ h′ ≤ H, k ∈ [K] as follows:

ωh,k(h) := ωh,k;ωh′+1,j(h) =

K∑
k=1

ωh′,k(h)

∑ňk
h′

i=1 I[ľi = j, ňk
h′ ̸= 0]

ňk
h′(skh′ , akh′)

. (45)

By Equation (43), it is easy to show that

∥ω(h)∥1,h′+1 ≤ ∥ω(h)∥1,h′+1, ∥ω(h)∥∞,h′ ≤ (1 + 1/H)∥ω(h)∥∞,h′ ,∀h′ > h. (46)

Given the weight {ωh,k}, we will bound
∑K

k=1 ωh,k(Q
k
h − Q⋆

h)(s
k
h, a

k
h). With Equation (44), we

have:
K∑

k=1

ωh,k(Q
k
h(s

k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h))

≤
K∑

k=1

ωh,kI
[
ňk
h ̸= 0

]
G3 +

K∑
k=1

ωh,k

(
I
[
nk
h ̸= 0

]√ (Q⋆ + β2H)ι

nk
h(s

k
h, a

k
h)

+ I
[
ňk
h ̸= 0

] Hι
3
4

ňk
h(s

k
h, a

k
h)

3
4

)

+

K∑
k=1

ωh,kY
k
h .

≲
K∑
j=1

ωh+1,j(h)
(
Qj

h+1 −Q⋆
h+1

)
(sjh+1, a

j
h+1) +

√
(Q⋆ + β2H)SA||ω||∞,h||ω||1,hι

+H
11
4 (SA||ω||∞,hι)

3
4 ||ω||

1
4

1,h +

K∑
k=1

ωh,kY
k
h . (47)

In this inequality, the upper bound of
∑K

k=1 ωh,kI
[
ňk
h ̸= 0

]
G3 is given in Appendix B.5. The upper

bounds of middle two terms is given by Lemma B.4 with α = 1
2 and α = 3

4 .

Recurring Equation (47) for h, h + 1, ...,H , since Qk
H+1(s, a) = Q⋆

H+1(s, a) = 0 and the weight
relationship Equation (45) and Equation (46), we have:

K∑
k=1

ωh,k(Q
k
h(s

k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h))

≲ H
√
(Q⋆ + β2H)SA||ω||∞,h||ω||1,hι+H

11
4 (SA||ω||∞,hι)

3
4 ||ω||

1
4

1,h +

H∑
h′=h

K∑
k=1

ωh′,k(h)Y
k
h′ .

(48)

Step 3: Integrating multiple weighted sums. For any N = ⌈log2(H/∆min)⌉, n ∈ [N ], k ∈ [K]
and the given h ∈ [H], let:

ω
(n)
h,k = I

[
Qk

h(s
k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h) ∈ [2n−1∆min, 2

n∆min)
]
,

and

||ω(n)||∞,h = max
k

ω
(n)
h,k ≤ 1, ||ω(n)||1,h =

K∑
k=1

ω
(n)
h,k.

For h ≤ h′ ≤ H and any n ∈ [N ] the weight {ω(n)
h′,k}k can be defined recursively by Equation (45):

ω
(n)
h,j (h) = ω

(n)
h,j ; ω

(n)
h′+1,j(h) =

K∑
k=1

ω
(n)
h′,k(h)

∑ňk
h′

i=1 I[ľi = j, ňk
h′ ̸= 0]

ňk
h′(skh′ , akh′)

.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Therefore, for any j ∈ [K], it holds that:

N∑
n=1

ω
(n)
h′+1,j(h) =

K∑
k=1

(
N∑

n=1

ω
(n)
h′,k(h)

) ∑ňk
h′

i=1 I[ľi = j, ňk
h′ ̸= 0]

ňk
h′(skh′ , akh′)

.

Then by mathematical induction on h′ ∈ [h,H], it is straightforward to prove that for any j ∈ [K],

N∑
n=1

ω
(n)
h′,j(h) ≤

(
1 +

1

H

)h′−h

< 3, (49)

given that for any j ∈ [K]

K∑
k=1

∑ňk
h′

i=1 I[ľi = j, ňk
h′ ̸= 0]

ňk
h′(skh′ , akh′)

≤ 1 +
1

H

by Equation (43) and
∑N

n=1 ω
(n)
h,j (h) =

∑N
n=1 ω

(n)
h,j ≤ 1.

Applying the weight {ω(n)
h,k}k to Equation (48), for any n ∈ [N ], it holds that:

K∑
k=1

ω
(n)
h,k(Q

k
h(s

k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h))

≲ H
√

(Q⋆ + β2H)SA||ω(n)||1,hι+H
11
4 (SAι)

3
4 ||ω(n)||

1
4

1,h +

H∑
h′=h

K∑
k=1

ω
(n)
h′,k(h)Y

k
h′ .

On the other hand, according to the definition of ω(n)
h,k,

K∑
k=1

ω
(n)
h,k

(
Qk

h(s
k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h)
)
≥ 2n−1∆min||ω||(n)1,h.

Therefore, we obtain the following inequality:

2n−1∆min||ω||(n)1,h

≲ H
√
(Q⋆ + β2H)SA||ω(n)||1,hι+H

11
4 (SAι)

3
4 ||ω(n)||

1
4

1,h +

H∑
h′=h

K∑
k=1

ω
(n)
h′,k(h)Y

k
h′ . (50)

Then at least one of the following three inequalities holds:

2n−1∆min||ω||(n)1,h ≲ H
√
(Q⋆ + β2H)SA||ω(n)||1,hι,

2n−1∆min||ω(n)||1,h ≲ H
11
4 (SAι)

3
4 (||ω||(n)1,h)

1
4 ,

2n−1∆min||ω||(n)1,h ≲
H∑

h′=h

K∑
k=1

ω
(n)
h′,k(h)Y

k
h′ .

Solving this three inequalities, we know that:

||ω||(n)1,h ≤ O

(
max

{(
Q⋆ + β2H

)
SAH2ι

4n−2∆2
min

,
H

11
3 SAι

(2n−1∆min)
4
3

,

∑H
h′=h

∑K
k=1 ω

(n)
h′,k(h)Y

k
h′

2n−1∆min

})

≤ O

((
Q⋆ + β2H

)
SAH2ι

4n−2∆2
min

+
H

11
3 SAι

(2n−1∆min)
4
3

+

∑H
h′=h

∑K
k=1 ω

(n)
h′,k(h)Y

k
h′

2n−1∆min

)
.

By Equation (49), we have:
N∑

n=1

H∑
h′=h

K∑
k=1

ω
(n)
h′,k(h)Y

k
h′ =

H∑
h′=h

K∑
k=1

(
N∑

n=1

ω
(n)
h′,k(h)

)
Y k
h′ ≤ 3

H∑
h′=1

K∑
k=1

Y k
h′ .
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Therefore,

N∑
n=1

2n∆min||ω||(n)1,h ≤ O

((
Q⋆ + β2H

)
SAH2ι

∆min
+

H
11
3 SAι

(∆min)
1
3

+

H∑
h′=1

K∑
k=1

Y k
h′

)
. (51)

From Appendix B.6, we know the upper bound for
∑H

h′=1

∑K
k=1 Y

k
h′ is O(H

7S2Aι log(T )
β2 ). There-

fore, back to Equation (51), it holds that:

N∑
n=1

2n∆min||ω||(n)1,h ≤ O

((
Q⋆ + β2H

)
SAH2ι

∆min
+

H
11
3 SAι

(∆min)
1
3

+
H7S2Aι log(T )

β2

)

≤ O

((
Q⋆ + β2H

)
SAH2ι

∆min
+

H7S2Aι log(T )

β2

)
(52)

The last inequality is because:

H
11
3 SAι

(∆min)
1
3

≲
β2H3SAι

∆min
+

H4SAι

β
+

H4SAι

β
≲

(
Q⋆ + β2H

)
SAH2ι

∆min
+

H7SAι log(T )

β2
.

Step 4: Bounding the expected gap-dependent regret. Let p = (40SAH2T 5)−1, then E =⋂7
i=1 Ei holds with probability at least 1 − 1

T and ι ≲ log(SAT ). Therefore, by Equation (29), we
have:

E (Regret(K)) ≤ E

[
K∑

k=1

H∑
h=1

clip[(Qk
h −Q∗

h)(s
k
h, a

k
h) | ∆min]

]

= E

[
K∑

k=1

H∑
h=1

clip[(Qk
h −Q∗

h)(x
k
h, a

k
h) | ∆min]

∣∣∣∣E
]
P(E)

+ E

[
K∑

k=1

H∑
h=1

clip[(Qk
h −Q∗

h)(x
k
h, a

k
h) | ∆min]

∣∣∣∣Ec
]
P(Ec)

≤
H∑

h=1

N∑
n=1

2n∆min||ω||(n)1,h +
1

T
· TH

≤ O

((
Q⋆ + β2H

)
H3SA log(SAT )

∆min
+

H8S2A log(SAT ) log(T )

β2

)
.

The third inequality is because

K∑
k=1

clip[(Qk
h −Q∗

h)(s
k
h, a

k
h) | ∆min] =

K∑
k=1

N∑
n=1

ω
(n)
h,k(Q

k
h −Q∗

h)(s
k
h, a

k
h)

≤
N∑

n=1

2n∆min

K∑
k=1

ω
(n)
h,k =

N∑
n=1

2n∆min||ω||(n)1,h.

The last inequality is by Equation (52).

B.4 BOUNDING THE TERM Qk
h −Q⋆

h

B.4.1 BOUNDING THE TERM G1

We can split G1 into four terms:∑nk
h

i=1

(
V ref,li
h+1 (slih+1)− Pskh,a

k
h,h

V REF
h+1

)
nk
h(s

k
h, a

k
h)

= G1,1 +G1,2 +G1,3 +G1,4, (53)

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

where

G1,1 =

∑nk
h

i=1

(
1
s
li
h+1

− Pskh,a
k
h,h

)(
V ref,li
h+1 − V̂ ref,li

h+1

)
nk
h(s

k
h, a

k
h)

,

G1,2 =

∑nk
h

i=1

(
1
s
li
h+1

− Pskh,a
k
h,h

)(
V̂ ref,li
h+1 − V ⋆

h+1

)
nk
h(s

k
h, a

k
h)

,

G1,3 =

∑nk
h

i=1

(
1
s
li
h+1

− Pskh,a
k
h,h

)
V ⋆
h+1

nk
h(s

k
h, a

k
h)

and

G1,4 =

∑nk
h

i=1 Pskh,a
k
h,h

(
V ref,li
h+1 − V REF

h+1

)
nk
h(s

k
h, a

k
h)

.

According to (c) in Lemma B.2, we have:

G1,1 ≤

∑nk
h

i=1 H
(
1
s
li
h+1

+ Pskh,a
k
h,h

)
λli
h+1

nk
h(s

k
h, a

k
h)

.

Under the event E4 in Lemma B.1, we can bound G1,2:

G1,2 ≤ β

√
2ι

nk
h(s

k
h, a

k
h)

.

Under the event E5 in Lemma B.1, we can bound G1,3:

G1,3 ≤ 2

√
2Q⋆ι

nk
h(s

k
h, a

k
h)

+
4Hι

nk
h(s

k
h, a

k
h)

.

The upper bound of G1,4 is given by (b) in Lemma B.2:

G1,4 ≤
∑nk

h
i=1 HPskh,a

k
h,h

λli
h+1

nk
h(s

k
h, a

k
h)

.

Combining these four upper bounds together, we can bound G1:

G1 ≲

∑nk
h

i=1 H
(
1
s
li
h+1

+ 2Pskh,a
k
h,h

)
λli
h+1

nk
h(s

k
h, a

k
h)

+

√
(Q⋆ + β2)ι

nk
h(s

k
h, a

k
h)

+
Hι

nk
h(s

k
h, a

k
h)

. (54)

B.4.2 BOUNDING THE TERM G2

We can split the term of G2 into two terms:

G2 =

∑ňk
h

i=1

(
Pskh,a

k
h,h
− 1

s
ľi
h+1

)[(
V REF
h+1 − V̂ ref,ľi

h+1

)
+
(
V̂ ref,ľi
h+1 − V ⋆

h+1

)]
ňk
h(s

k
h, a

k
h)

. (55)

According to (d) in Lemma B.2, we can bound the first term in Equation (55):∑ňk
h

i=1

(
Pskh,a

k
h,h
− 1

s
ľi
h+1

)(
V REF
h+1 − V̂ ref,ľi

h+1

)
ňk
h(s

k
h, a

k
h)

≤

∑ňk
h

i=1 H

(
Pskh,a

k
h,h

+ 1
s
ľi
h+1

)
λľi
h+1

ňk
h(s

k
h, a

k
h)

. (56)

The upper bound for the second term in Equation (55) is given by the event E6 in Lemma B.1:∑ňk
h

i=1

(
Ps,a,h − 1

s
ľi
h+1

)(
V̂ ref,ľi
h+1 − V ⋆

h+1

)
ňk
h(s, a)

≤

√
2β2ι

ňk
h(s, a)

≲

√
β2Hι

nk
h(s, a)

. (57)

The last inequality is because of Lemma B.3. Applying Equation (56) and Equation (57) to Equa-
tion (55), we have:

G2 ≲

∑ňk
h

i=1 H

(
Pskh,a

k
h,h

+ 1
s
ľi
h+1

)
λľi
h+1

ňk
h(s

k
h, a

k
h)

+

√
β2Hι

nk
h(s, a)

. (58)
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B.4.3 BOUNDING THE TERM bkh(s
k
h, a

k
h)

According to the definition of bkh(s
k
h, a

k
h) in the algorithm, we have

bkh(s
k
h, a

k
h) = 2

√
νref,k
h ι

nk
h

+ 2

√
ν̌khι

ňk
h

+ 5

(
Hι

nk
h

+
Hι

ňk
h

+
Hι

3
4

(nk
h)

3
4

+
Hι

3
4

(ňk
h)

3
4

)
, (59)

where νref,k
h = σref,k

h /nk
h − (µref,k

h /nk
h)

2 and ν̌ref,k
h = σ̌k

h/ň
k
h − (µ̌k

h/ň
k
h)

2.

Since V ref,li
h+1 (slih+1) ≥ V̂ ref,li

h+1 (slih+1), it holds that

√
νref,k
h ι

nk
h

=

√√√√√ σref,k
h (skh,a

k
h)

nk
h(s

k
h,a

k
h)
−
(

µref,k
h (skh,a

k
h)

nk
h(s

k
h,a

k
h)

)2
nk
h(s

k
h, a

k
h)

ι ≤

√
Ih,k1 + Ih,k2

nk
h(s

k
h, a

k
h)

ι,

where:

Ih,k1 =

∑nk
h

i=1

((
V ref,li
h+1 (slih+1)

)2
−
(
V̂ ref,li
h+1 (slih+1)

)2)
nk
h(s

k
h, a

k
h)

,

and

Ih,k2 =

∑nk
h

i=1

(
V̂ ref,li
h+1 (slih+1)

)2
nk
h(s

k
h, a

k
h)

−

∑nk
h

i=1 V̂
ref,li
h+1 (slih+1)

nk
h(s

k
h, a

k
h)

2

.

Next we want to bound both Jh,k
1 and Jh,k

2 .

Ih,k1 =

∑nk
h

i=1

(
V ref,li
h+1 (slih+1) + V̂ ref,li

h+1 (slih+1)
)(

V ref,li
h+1 (slih+1)− V̂ ref,li

h+1 (slih+1)
)

nk
h(s

k
h, a

k
h)

≤

∑nk
h

n=1 2H
(
V ref,li
h+1 (slih+1)− V̂ ref,li

h+1 (slih+1)
)

nk
h(s

k
h, a

k
h)

≜
2HΓk

h(s
k
h, a

k
h)

nk
h(s

k
h, a

k
h)

, (60)

where

Γk
h(s

k
h, a

k
h) =

nk
h∑

i=1

(
V ref,li
h+1 (slih+1)− V̂ ref,li

h+1 (slih+1)
)
.

For the second term Ih,k2 , because of Cauchy’s Inequality, we have:

Ih,k2 =

∑nk
h

n=1

(
V̂ ref,li
h+1 (slih+1)−

∑nk
h

i=1 V̂
ref,li
h+1 (s

li
h+1)

nk
h(s

k
h,a

k
h)

)2

nk
h(s

k
h, a

k
h)

≤ 2
(
Ih,k2,1 + Ih,k2,2

)
,

where:

Ih,k2,1 =

∑nk
h

i=1

(
V̂ ref,li
h+1 (slih+1)− V ⋆

h+1(s
li
h+1) +

∑nk
h

n=1 V ⋆
h+1(s

ln
h+1)

nk
h(s

k
h,a

k
h)

−
∑nk

h
n=1 V̂ ref,ln

h+1 (sk
n

h+1)

nk
h(s

k
h,a

k
h)

)2

nk
h(s

k
h, a

k
h)

,

and

Ih,k2,2 =

∑nk
h

i=1

(
V ⋆
h+1(s

li
h+1)−

∑nk
h

n=1 V ⋆
h+1(s

ln
h+1)

nk
h(s

k
h,a

k
h)

)2

nk
h(s

k
h, a

k
h)

=

∑nk
h

i=1

(
V ⋆
h+1(s

li
h+1)

)2
nk
h(s

k
h, a

k
h)

−

∑nk
h

i=1 V
⋆
h+1(s

li
h+1)

nk
h(s

k
h, a

k
h)

2

.
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Since V ⋆
h+1(s

li
h+1) ≤ V̂ ref,li

h+1 (slih+1) ≤ V ⋆
h+1(s

li
h+1) + β, it holds that:∣∣∣∣∣∣V̂ ref,li

h+1 (slih+1)− V ⋆
h+1(s

li
h+1) +

∑Nk
h

n=1 V
⋆
h+1(s

ln
h+1)

nk
h(s

k
h, a

k
h)

−
∑Nk

h
n=1 V̂

ref,ln
h+1 (slnh+1)

nk
h(s

k
h, a

k
h)

∣∣∣∣∣∣
≤
∣∣∣V̂ ref,li

h+1 (slih+1)− V ⋆
h+1(s

li
h+1)

∣∣∣+
∣∣∣∣∣∣
∑Nk

h
n=1 V

⋆
h+1(s

ln
h+1)

nk
h(s

k
h, a

k
h)

−
∑Nk

h
n=1 V̂

ref,ln
h+1 (slnh+1)

nk
h(s

k
h, a

k
h)

∣∣∣∣∣∣ ≤ 2β.

Therefore, applying this inequality to Ih,k2,1 , we have Ih,k2,1 ≤ 4β2.

Moreover, according to the definition of Q⋆, it holds that

Ih,k2,2 −Q⋆ ≤ Ih,k2,2 −
(
Pskh,a

k
h,h

(V ⋆
h+1)

2 −
(
Pskh,a

k
h,h

V ⋆
h+1

)2)

= −

∑nk
h

i=1 V
⋆
h+1(s

li
h+1)

nk
h(s

k
h, a

k
h)

+ Pskh,a
k
h,h

V ⋆
h+1



∑nk

h
i=1

(
1
s
li
h+1

− Pskh,a
k
h,h

)
V ⋆
h+1

nk
h(s

k
h, a

k
h)


+

∑nk
h

i=1

(
1
s
li
h+1

− Pskh,a
k
h,h

)
(V ⋆

h+1)
2

nk
h(s

k
h, a

k
h)

≲ H2

√
ι

nk
h(s

k
h, a

k
h)

.

The last inequality is because of Q⋆ ≤ H2, the event E5 and the event E7 in Lemma B.1. Therefore,

Ih,k2,2 ≲ Q⋆ +H2

√
ι

nk
h(s

k
h, a

k
h)

.

Combining the upper bounds of Ih,k1 Equation (60), Ih,k2,1 and Ih,k2,2 , we have:√
νref,k
h ι

nk
h

≲

√
HΓk

h(s
k
h, a

k
h)ι

nk
h(s

k
h, a

k
h)

+

√
(Q⋆ + β2)ι

nk
h(s

k
h, a

k
h)

+
Hι

3
4

nk
h(s

k
h, a

k
h)

3
4

. (61)

Using the inequality (80) of Zhang et al. (2020), we have:√
ν̌khι

ňk
h

≤

√
β2ι

ňk
h

+

√
H2Γ̌k

h(s
k
h, a

k
h)ι

ňk
h

≲

√
β2Hι

nk
h

+

√
H2Γ̌k

h(s
k
h, a

k
h)ι

ňk
h

. (62)

where Γ̌k
h(s

k
h, a

k
h) =

∑ňk
h

i=1

(
V ref,ľi
h+1 (sľih+1)− V̂ ref,ľi

h+1 (sľih+1)
)
. The last inequality is by Lemma B.3.

Applying Equation (61) and Equation (62) to Equation (59), we have:

bkh(s
k
h, a

k
h) ≲

√
HΓk

h(s
k
h, a

k
h)ι

nk
h(s

k
h, a

k
h)

+

√
(Q⋆ + β2H)ι

nk
h(s

k
h, a

k
h)

+
Hι

3
4

ňk
h(s

k
h, a

k
h)

3
4

+
H
√
Γ̌k
h(s

k
h, a

k
h)ι+Hι

ňk
h(s

k
h, a

k
h)

.

(63)

B.5 REARRANGE THE WEIGHTED SUM OF G3

Similar to Equation (42), it holds that:

K∑
k=1

ωh,kI
[
ňk
h ̸= 0

]
G3 =

K∑
k=1

ωh,kI
[
ňk
h ̸= 0

] ∑ňk
h

i=1

(
V ľi
h+1(s

ľi
h+1)− V ⋆

h+1(s
ľi
h+1)

)
ňk
h(s

k
h, a

k
h)

=

K∑
j=1

(
K∑

k=1

ωh,k

∑ňk
h

i=1 I
[
ľi = j, ňk

h ̸= 0
]

ňk
h(s

k
h, a

k
h)

)(
V j
h+1(s

j
h+1)− V ⋆

h+1(s
j
h+1)

)
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≤
K∑
j=1

 K∑
k=1

ωh,k

∑ňk
h

i=1 I
[
ľi = j, ňk

h ̸= 0
]

ňk
h(s

k
h, a

k
h)

(Qj
h+1 −Q⋆

h+1

)
(sjh+1, a

j
h+1)

(64)

=

K∑
j=1

ωh+1,j(h)
(
Qj

h+1(s
j
h+1, a

j
h+1)−Q⋆

h+1(s
j
h+1, a

j
h+1)

)
. (65)

B.6 BOUNDING THE TERM
∑H

h′=1

∑K
k=1 Y

k
h′

K∑
k=1

Y k
h′ =

K∑
k=1

I
[
nk
h′ = 0

]
H

+

K∑
k=1

I
[
nk
h′ ̸= 0

]
nk
h′(skh′ , akh′)

nk
h′∑

i=1

H

(
1
s
li
h′+1

+ Psk
h′ ,a

k
h′ ,h

′

)
λli
h′+1 +

√
HΓk

h′(skh′ , akh′)ι


+

K∑
k=1

I
[
ňk
h′ ̸= 0

]
ňk
h′(skh′ , akh′)

 ňk
h′∑

i=1

H

(
Psk

h′ ,a
k
h′ ,h

′ + 1
s
ľi
h′+1

)
λľi
h′+1 +H

√
Γ̌k
h′(skh′ , akh′)ι+Hι

 .

(66)

In this equation,
H∑

h′=1

K∑
k=1

I
[
nk
h′(skh′ , akh′) = 0

]
H =

H∑
h′=1

∑
s,a

H

K∑
k=1

I
[
nk
h′(s, a) = 0, (skh′ , akh′) = (s, a)

]
≤ H3SA.

(67)
By Lemma B.4, we have the following inequalities:

H∑
h′=1

K∑
k=1

I
[
ňk
h′ ̸= 0

]
ňk
h′(skh′ , akh′)

Hι ≲ H3SAι log(T ). (68)

According to Lemma B.5, we have:

K∑
k=1

I
[
nk
h′ ̸= 0

]
nk
h′(skh′ , akh′)

nk
h′∑

i=1

H
(
1
s
li
h′+1

+ Psk
h′ ,a

k
h′ ,h

′

)
λli
h′+1 ≤ 3H log T

K∑
k=1

(
1sk

h′+1
+ Psk

h′ ,a
k
h′ ,h

′

)
λk
h′+1.

(69)
and

K∑
k=1

I
[
ňk
h′ ̸= 0

]
ňk
h′(skh′ , akh′)

ňk
h′∑

i=1

H

(
Psk

h′ ,a
k
h′ ,h

′ + 1
s
ľi
h′+1

)
λľi
h′+1 ≤ 2H

K∑
k=1

(
Psk

h′ ,a
k
h′ ,h

′ + 1sk
h′+1

)
λk
h′+1.

(70)
Note that

K∑
k=1

λk
h′+1 =

K∑
k=1

I
[
Nk

h′+1(s
k
h′+1) < N0

]
=
∑
s

K∑
k=1

I
[
Nk

h′+1(s) < N0, s
k
h′+1 = s

]
≤ SN0.

Then under the event E3 in Lemma B.1, it holds that:
K∑

k=1

Psk
h′ ,a

k
h′ ,h

′λk
h′+1 ≤ 3

K∑
k=1

λk
h′+1 + ι ≤ 4SN0.

Applying these two inequalities to Equation (69) and Equation (70), then the following two inequal-
ities holds:

H∑
h′=1

K∑
k=1

I
[
nk
h′ ̸= 0

]
nk
h′(skh′ , akh′)

nk
h′∑

i=1

H

(
1
s
li
h′+1

+ Psk
h′ ,a

k
h′ ,h

′

)
λli
h′+1 ≲ H2SN0 log(T ), (71)
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and
H∑

h′=1

K∑
k=1

I
[
ňk
h′ ̸= 0

]
ňk
h′(skh′ , akh′)

ňk
h′∑

i=1

H

(
Psk

h′ ,a
k
h′ ,h

′ + 1
s
ľi
h′+1

)
λľi
h′+1 ≲ H2SN0 (72)

Meanwhile, according to Lemma B.2 we have:

Γk
h′(skh′ , akh′) =

nk
h′∑

i=1

(
V ref,li
h′+1(s

kn

h′+1)− V̂ ref,li
h′+1(s

li
h′+1)

)
≤ H

nk
h′∑

i=1

λli
h′+1(s

li
h′+1) ≜ Θk

h′(skh′ , akh′).

Then it holds that:

K∑
k=1

√
Γk
h′(skh′ , akh′)

nk
h′(skh′ , akh′)

≤
K∑

k=1

√
Θk

h′(skh′ , akh′)

nk
h′(skh′ , akh′)

≤
∑
s,a

∑
j∈C

ej∑j−1
i=1 ei

√ΘK
h′(s, a)

≲ log T
∑
s,a

√
ΘK

h′(s, a) ≤ log T

√
SA

∑
s,a

ΘK
h′(s, a) (73)

Here, C = {j : H ≤
∑j−1

i=1 ei ≤ T}. The second inequality is by Equation (41) and the mononicity
of Θn

h′(s, a). The last inequality is by Cauchy’s inequality. To continue, note that:

H∑
h′=1

√∑
s,a

ΘK
h′(s, a) ≤

H∑
h′=1

√√√√H

K∑
k=1

λk
h′+1(s

k
h′+1) ≤ H

√
HSN0

Together with Equation (73), it holds:

H∑
h′=1

K∑
k=1

√
HΓk

h′(skh′ , akh′)ι

nk
h′(skh′ , akh′)

≲ log T

H∑
h′=1

√
HSA

∑
s,a

ΘK
h′(s, a)ι ≲ H2S log(T )

√
AN0ι. (74)

Since Γ̌k
h′(skh′ , akh′) ≤ Γk

h′(skh′ , akh′) and 4Hňk
h′(skh′ , akh′) ≥ nk

h′(skh′ , akh′) by Lemma B.3, it holds:

H∑
h′=1

K∑
k=1

H
√

Γ̌k
h′(skh′ , akh′)ι

ňk
h′(skh′ , akh′)

≲ H3S log(T )
√

HAN0ι. (75)

Applying the inequalities Equation (67), Equation (68), Equation (71), Equation (72), Equation (74)
and Equation (75) to Equation (66), since N0 = O(SAH5ι

β2 ), we have:

H∑
h′=1

K∑
k=1

Y k
h′ ≤ O

(
H7S2Aι log(T )

β2

)
.

C PROOF OF THEOREM 3.3

In this section, we will prove Theorem 3.3.

Proof. For δ ∈ (0, 1), let p ← δ
40SAH2T 4 , then ι = log( 2p ) = O(SAT

δ ). Now with probability at

least 1− δ,
⋂7

i=1 Ei holds. Next, we will prove the upper bound for policy switching cost under the
event

⋂7
i=1 Ei.

From the proof of Theorem 2 in Zhang et al. (2020), we have:

Nswitch ≤
∑
s,a,h

4H log

(
NK+1

h (s, a)

2H
+ 1

)
.
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Next for any (s, a, h) ∈ S × A× [H], we will bound the term NK+1
h (s, a). For a ̸= π⋆

h(s). In this
case, we have ∆h(s, a) > 0 and then ∆h(s, a) ≥ ∆min. For any h ∈ [H], let set Dh be all triples of
(s, a, h) such that a ̸= π⋆

h(s), that is:

Dh = {(s, a, h)|a ̸= π⋆
h(s)}.

We also let the set D =
⋃H

h=1 Dh and the set Dopt = {(s, a, h)|a = π⋆
h(s)}. Then we have

|D|+ |Dopt| = SAH . Since for every state-step pair (s, h), there exists at least one optimal action.
Therefore we know |Dopt| ≥ SH and then 0 ≤ |D| ≤ SA(H − 1).

If for given (h, k) ∈ [H]× [k], (skh, a
k
h) ∈ Dh, we have ∆h(s

k
h, a

k
h) ≥ ∆min. Then it holds that:

Qk
h(s

k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h) = V k

h (skh)−Q⋆
h(s

k
h, a

k
h) ≥ ∆h(s

k
h, a

k
h) ≥ ∆min.

The first inequality is because V k
h (s) ≥ V ⋆

h (s). Therefore, we have∑
(s,a,h)∈Dh

I[(skh, akh) = (s, a)] = I[(skh, akh, h) ∈ Dh]

≤ I
[
Qk

h(s
k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h) ≥ ∆min

]
=

N∑
n=1

ω
(n)
h,k.

and then∑
(s,a,h)∈D

NK+1
h (s, a) =

H∑
h=1

∑
(s,a,h)∈Dh

NK+1
h (s, a) =

H∑
h=1

∑
(s,a,h)∈Dh

K∑
k=1

I[(skh, akh) = (s, a)]

≤
H∑

h=1

K∑
k=1

N∑
n=1

ω
(n)
h,k =

H∑
h=1

N∑
n=1

||ω||(n)1,h.

By Equation (52), we know:

∑
(s,a,h)∈Dc

opt

NK+1
h (s, a) ≤

H∑
h=1

N∑
n=1

||ω||(n)1,h ≤ O

((
Q⋆ + β2H

)
SAH3ι

∆min
+

H8S2Aι log(T )

β2

)
(76)

Therefore we have:

Nswitch ≤
∑
s,a,h

4H log

(
NK+1

h (s, a)

2H
+ 1

)

=
∑

(s,a,h)∈Dc
opt

4H log

(
NK+1

h (s, a)

2H
+ 1

)
+

∑
(s,a,h)/∈Dopt

4H log

(
NK+1

h (s, a)

2H
+ 1

)
(77)

≤ 4H(SAH − |Dopt|) log

(
1 +

∑H
h=1

∑N
n=1 ||ω||

(n)
1,h

2H(SAH − |Dopt|)

)
+ 4H|Dopt| log

(
T

2H|Dopt|
+ 1

)

≤ O

(
H(SAH − |Dopt|) log

(
(Q⋆ + β2H)H2SAι

(SAH − |Dopt|)∆2
min

+
H7S2Aι log(T )

β2(SAH − |Dopt|)∆min

)

+H|Dopt| log
( K

|Dopt|
+ 1
))

. (78)

The first inequality is because of Jensen’s Inequality. The last inequality is by Equation (52). Since
Q⋆ ≤ H2 and β ≤ H , then we have:

(Q⋆ + β2H)H2SAι

(SAH − |Dopt|)∆2
min
≤ H7SAι

β2(SAH − |Dopt|)∆2
min

.
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By ∆min ≤ H , we also have:

H7S2Aι log(T )

β2(SAH − |Dopt|)∆min
≤ H8S2Aι log(T )

β2(SAH − |Dopt|)∆2
min

.

For δ ∈ (0, 1), let p ← δ
60SAH2T 5 , then ι = log( 2p ) ≤ O(log(SAT

δ )). Applying the above two
inequalities to Equation (78), with probability at least 1− δ, we have it holds that:

Nswitch ≤ O

(
H(SAH − |Dopt|) log

(
H8S2Aι log(T )

β2(SAH − |Dopt|)∆2
min

)
+H|Dopt| log

( K

|Dopt|
+ 1
))

= O

(
H(SAH − |Dopt|) log

(
H4SA

1
2 ι

β
√
(SAH − |Dopt|)∆min

)
+H|Dopt| log

( K

|Dopt|
+ 1
))

= O

H|Dc
opt| log

H4SA
1
2 log(SAT

δ )

β
√
|Dc

opt|∆min

+H|Dopt| log
(

K

|Dopt|
+ 1

) .

Especially, if the optimal policy is deterministic and unique, which means |Dopt| = SA, then the
policy switching cost is upper bounded by:

O

(
H2SA log

(
H

7
2S

1
2 log(SAT

δ )

β∆min

)
+H2S log

(
K

HS
+ 1

))
.

D PROOF OF THEOREM 3.2

D.1 ALGORITHM DETAILS

Before continuing, let us briefly introduce the refined algorithm, which is similar to the original
version in Li et al. (2021). Before diving into the algorithm itself, we will first discuss the key
auxiliary functions used for estimating the Q-value functions. For any δ ∈ [0, 1], let ι = log(SAT

δ ).

In the algorithm, µref
h and σref

h are updated to represent the current mean and second moment of
the reference function. µadv

h and σadv
h are updated to be the current weighted mean and weighted

second moment of the reference function with weight to be the learning rate ηn = H+1
H+n . bR

h is the
exploration bonus for Q-EarlySettled-Advantage. With these update functions, we can then discuss
the Q-EarlySettled-Advantage algorithm.
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Algorithm 2 Auxiliary functions

1: function UPDATE-UCB-Q

2: QUCB
h (sh, ah)← (1− ηn)Q

UCB
h (sh, ah) + ηn

(
rh(sh, ah) + Vh+1(sh+1) + cb

√
H3ι
n

)
.

3: function UPDATE-LCB-Q

4: QLCB
h (sh, ah)← (1− ηn)Q

LCB
h (sh, ah) + ηn

(
rh(sh, ah) + V LCB

h+1 (sh+1)− cb

√
H3ι
n

)
.

5: function UPDATE-UCB-UCB-ADVANTAGE
6: [µref

h , σref
h , µadv

h , σadv
h ](sh, ah)← UPDATE-MOMENTS();

7: [δR
h , B

R
h ](sh, ah)← UPDATE-BONUS();

8: bR
h ← BR

h(sh, ah) + (1− ηn)
δR
h(sh,ah)

ηn
+ cb

H2ι
n3/4 ;

9: QR
h(sh, ah)← (1− ηn)Q

R
h(sh, ah)

+ηn
(
rh(sh, ah) + Vh+1(sh+1)− V R

h+1(sh+1) + µref
h (sh, ah) + bR

h

)
.

10: function UPDATE-MOMENTS
11: µref

h (sh, ah)←
(
1− 1

n

)
µref
h (sh, ah) +

1
nV

R
h+1(sh+1);

12: σref
h (sh, ah)←

(
1− 1

n

)
σref
h (sh, ah) +

1
n

(
V R
h+1(sh+1)

)2
;

13: µadv
h (sh, ah)← (1− ηn)µ

adv
h (sh, ah) + ηn

(
Vh+1(sh+1)− V R

h+1(sh+1)
)
;

14: σadv
h (sh, ah)← (1− ηn)σ

adv
h (sh, ah) + ηn

(
Vh+1(sh+1)− V R

h+1(sh+1)
)2

;
15: function UPDATE-BONUS
16: Bnext

h (sh, ah)←

cb
√

ι
n

(√
σref
h (sh, ah)−

(
µref
h (sh, ah)

)2
+
√
H

√
σadv
h (sh, ah)−

(
µadv
h (sh, ah)

)2)
;

17: δR
h(sh, ah) = Bnext

h (sh, ah)−BR
h(sh, ah);

18: BR
h(sh, ah)← Bnext

h (sh, ah)−BR
h(sh, ah).

Algorithm 3 Refined Q-EarlySettled-Advantage

1: Parameters: Some universal constant cb > 0 and probability of failure δ ∈ (0, 1);
2: Initialize Q1

h(s, a), Q
UCB,1
h (s, a), QR,1

h (s, a)← H;QLCB,1
h (s, a)← 0;

V 1
h (s)← H,N1

h(s, a), µ
ref
h (s, a), σref

h (s, a), µadv
h (s, a), σadv

h (s, a), δR
h(s, a), B

R
h(s, a)← 0;

and uk
1(s, a, h)← True, for all (s, a, h) ∈ S ×A× [H].

3: for Episode k = 1 to K do
4: Set initial state sk1 ← sk1 ;
5: for Step h = 1 to H do
6: Take action akh = πk

h(s
k
h) = argmaxa Q

k
h(s

k
h, a), and draw skh+1 ∼ Ph(·|skh, akh);

7: Nk
h (s

k
h, a

k
h)← Nk−1

h (skh, a
k
h) + 1; n← Nk

h (s
k
h, a

k
h);

8: ηn ← H+1
H+n ;

9: QUCB,k+1
h (skh, a

k
h)← UPDATE-UCB-Q().

10: QLCB,k+1
h (skh, a

k
h)← UPDATE-LCB-Q().

11: QR,k+1
h (skh, a

k
h)← UPDATE-UCB-UCB-Advantage().

12: Qk+1
h (skh, a

k
h)← min{QR,k+1

h (skh, a
k
h), Q

UCB,k+1
h (skh, a

k
h), Q

k
h(s

k
h, a

k
h)};

13: V k+1
h (skh)← maxa Q

k+1
h (skh, a);

14: V LCB,k+1
h (skh)← max

{
maxa Q

LCB,k+1
h (skh, a), V

LCB,k
h (skh)

}
;

15: if V k+1
h (skh)− V LCB,k+1

h (skh) > β then
16: V R,k+1

h (skh)← V k+1
h (skh);

17: else if uk
h(s

k
h) = True then

18: V R,k+1
h (skh)← V k+1

h (skh); u
k+1
h (skh) = False.
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At the beginning of the k-th episode, we can obtain V -estimate V k
h (s), the reference function

V R,k
h (s) and the policy πk from the previous episode k − 1 and select a initial state sk1 (For the

first episode, we randomly choose a policy π1 and V 1
h (s) = V R,1

h = H). At step h ∈ [H], we
can process the trajectory with akh = πk

h(s
k
h) and skh+1 ∼ Ph(·|skh, akh). Now we need to update the

estimates of both Q-value and V -value functions at the end of k-th episode. In the algorithm, the
estimate learned from the UCB by the end of k-th episode, denoted as QUCB,k+1

h , is updated to:

QUCB,k+1
h = rkh(s

k
h, a

k
h) +

Nk
h∑

n=1

η
Nk

h
n

(
V kn

h+1(s
kn

h+1) + cb

√
H3ι

n

)
(79)

Here we define Nk
h = Nk

h (s
k
h, a

k
h) as the number of times that the state-action pair (skh, a

k
h) has

been visited at step h at the beginning of the k-th episode and kn = knh(s
k
h, a

k
h) denotes the index

of the episode in which the state-action pair (skh, a
k
h) is visited for the n-th time at step h. The term

cb

√
H3ι
n represents the exploration bonus for n-th visit, where cb > 0 is a sufficiently large constant

and ι = log(SAT
δ ) with δ ∈ (0, 1) being failure probability.

Another Q-estimate obtained from LCB at the end of k-th episode, denoted as QLCB,k+1
h , is updated

similarly to QUCB,k+1
h , but with the exploration bonus subtracted instead.

The last estimate of Q-value function, denoted as QR,k+1
h , uses reference-advantage decomposition

techniques. At the end of k-th episode, QR,k+1
h is updated to:

QR,k+1
h = rkh(s

k
h, a

k
h)+

Nk+1
h∑

n=1

η
Nk+1

h
n

(
V kn

h+1(s
kn

h+1)−V
R,kn

h+1 (sk
n

h+1)+

∑n
i=1 V

R,ki

h+1 (s
ki

h+1)

n
+bR,kn+1

h

)
.

(80)
In Equation (80), V R,k

h (s) is the reference function learned at the end of episode k−1. The key idea
of the reference-advantage decomposition is that we expect to maintain a collection of reference val-
ues {V R,k

h (s)}s,k,h, which form reasonable estimates of {V ⋆
h (s)}s,h and become increasingly more

accurate as the algorithm progresses. It means for any s ∈ S, sufficiently large k and some given
β ∈ (0, H], it holds |V R,k

h (s)−V ⋆
h (s)| ≤ β. In this case, for sk

n

h+1 ∼ Ph(·|sk
n

h , ak
n

h ), the variance of

the advantage term V kn

h+1(s
kn

h+1) − V R,kn

h+1 (sk
ľi

h+1), is bounded by β2, which can be less volatile than

the stochastic term V kn

h+1(s
kn

h+1). Meanwhile, the reference term
∑n

i=1 V
R,ki

h+1 (s
ki

h+1)/n use a batch
of historical visits to (skh, a

k
h, h), which can lower the variance as the increase of the sample size n.

Accordingly, the exploration bonus term bR,kn+1
h is taken to be an upper confidence bound for the

above-mentioned two terms combined. Given that the uncertainty of Equation (80) largely stems
from the advantage and the reference terms (which can both be much smaller than the variability in
Equation (79)), the incorporation of the reference function helps accelerate convergence and lower
the regret upper bound.

With two additional Q-estimates in hand — QUCB,k+1
h learned from UCB and QR,k+1

h obtained from
the reference-advantage decomposition, it is natural to combine them as follows to further reduce
the bias without violating the optimism principle:

Qk+1
h (skh, a

k
h) = min{QUCB,k+1

h (skh, a
k
h), Q

R,k+1
h (skh, a

k
h), Q

k
h(s

k
h, a

k
h)}. (81)

We also incorporate Qk
h(s

k
h, a

k
h) here to keep the monotonicity of the update. Then we can learn

V k+1
h (skh, a

k
h) and V LCB,k+1

h (skh, a
k
h) by a greedy policy with respect to these Q-estimates:

V k+1
h (skh) = max

a
Qk+1

h (skh, a), V
LCB,k+1
h (skh) = max

{
max

a
QLCB,k+1

h (skh, a), V
LCB,k
h (skh)

}
.

In the algorithm, V LCB,k
h (s) is used as lower bound estimates of V ⋆

h (s). We learn the final value
V R
h (s) of the reference function for the state-step pair (s, h) when it first meets the condition V k

h (s)−
V LCB,k
h (s) ≤ β.
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D.2 AUXILIARY LEMMAS

As can be easily verified, we have

N∑
n=1

ηNn =

{
1, if N > 0,

0, if N = 0.
(82)

Lemma D.1. For any integer N > 0, the following properties hold:

1

Na
≤

N∑
n=1

ηNn
na
≤ 2

Na
, for all

1

2
≤ a ≤ 1, (83)

max
1≤n≤N

ηNn ≤
2H

N
,

N∑
n=1

(ηNn )2 ≤ 2H

N
,

∞∑
N=n

ηNn ≤ 1 +
1

H
. (84)

Proof. It is proved in Appendix B of Li et al. (2021).

Let uN
i =

∑N
n=i

ηN
n

n . Then according to Equation (83), we know uN
i ≤ 2

N for any i ≤ N ∈ N+.

Lemma D.2. Consider any δ ∈ (0, 1) and ι = log(SAT
δ ). Using ∀(s, a, h, k) as the simpli-

fied notation for ∀(s, a, h, k) ∈ S × A × [H] × [K] and ∀(s, h, k) as the simplified notation for
∀(s, a, h, k) ∈ S × [H] × [K]. Let V̂ R,k

h (s) = max{V ⋆
h (s),min{V ⋆

h (s) + β, V R,k
h (s)}}. Then we

have the following conclusions:

(a) (Lemma 2 of Li et al. (2021)) With probability at least 1− δ, the following event holds:

E1 =
{
Q⋆

h(s, a) ≤ Qk+1
h (s, a) ≤ Qk

h(s, a), V
⋆
h (s) ≤ V k

h (s) ≤ V R,k
h (s), ∀(s, a, h, k)

}
.

(b) (Lemma 3 of Li et al. (2021)) With probability at least 1− δ, the following event holds:

E2 =

{
QLCB,k

h (s, a) ≤ Q⋆
h(s, a), V

LCB,k
h (s) ≤ V ⋆

h (s), ∀(s, a, h, k) and

H∑
h=1

K∑
k=1

1

(
Qk

h(s
k
h, a

k
h)−QLCB,k

h (skh, a
k
h) > ε

)
≲

SAH6ι

ε2
, for any ϵ ∈ (0, H]

}
.

(c) (Paraphrased from Lemma 4 of Li et al. (2021)) With probability at least 1−δ, the following
event holds:

E3 =

{∣∣∣V k
h (s)− V R,k

h (s)
∣∣∣ ≤ 2β and

H∑
h=1

K∑
k=1

(
V R,k
h (skh)− V R,K+1

h (skh)
)
≤ 2H6SAι

β
, ∀(s, h, k)

}
.

(d) With probability at least 1− δ, the following event holds:

E4 =


Nk

h∑
i=1

u
Nk

h
i

(
1
sk

i

h+1
− Ps,a,h

) (
V̂ R,ki

h+1 − V ⋆
h+1

)
≤ 2

√
2β2ι

Nk
h (s, a)

, ∀(s, a, h, k)

 .

(e) With probability at least 1− δ, the following event holds:

E5 =


Nk

h∑
i=1

u
Nk

h
i

(
1
sk

i

h+1
− Ps,a,h

)
V ⋆
h+1 ≤ 8

√
Q⋆ι

Nk
h (s, a)

+ 16
Hι

Nk
h (s, a)

, ∀(s, a, h, k)

 .
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(f) With probability at least 1− δ, the following event holds:

E6 =


Nk

h∑
n=1

η
Nk

h
n

(
Ps,a,h − 1sk

n

h+1

)(
V̂ R,ki

h+1 − V ⋆
h+1

)
≤ 2

√
β2Hι

Nk
h (s, a)

, ∀(s, a, h, k)

 .

(g) With probability at least 1− δ, the following event holds:

E7 =

{
H∑

h=1

K∑
k=1

Pskh,a
k
h,h

∣∣∣V R,K+1
h (skh)− V̂ R,k

h (skh)
∣∣∣

≤ 3

H∑
h=1

K∑
k=1

∣∣∣V R,K+1
h (skh)− V̂ R,k

h (skh)
∣∣∣+Hι ∀(s, h, k)

}
.

Proof. (d) From the definition of V̂ R,k
h (s), we know that for any k ∈ [K]:

V ⋆
h (s) ≤ V̂ R,k

h (s) ≤ V ⋆
h (s) + β. (85)

Then the sequence{
j∑

i=1

uN
i

(
1
sk

i

h+1
− Ps,a,h

)(
V̂ R,ki

h+1 − V ⋆
h+1

)}
j∈N+

is a martingale sequence with∣∣∣uN
i

(
1
sk

i

h+1
− Ps,a,h

)(
V̂ R,ki

h+1 − V ⋆
h+1

)∣∣∣ ≤ 2β

N
.

Then according to Azuma-Hoeffding inequality, for any δ ∈ (0, 1), with probability at least
1− δ

SAT , it holds for given Nk
H(s, a) = N ∈ N+ that:

N∑
i=1

(
1
sk

i

h+1
− Ps,a,h

)(
V̂ R,ki

h+1 − V ⋆
h+1

)
≤ 2

√
2β2ι

N
.

For any all (s, a, h, k) ∈ S ×A× [H]× [K], we have Nk
h (s, a) ∈ [ TH ]. Considering all the

possible combinations (s, a, h,N) ∈ S × A × [H] × [ TH ], with probability at least 1 − δ,
it holds simultaneously for all (s, a, h, k) ∈ S ×A× [H]× [K] that:

Nk
h∑

i=1

u
Nk

h
i

(
1
sk

i

h+1
− Ps,a,h

) (
V̂ R,ki

h+1 − V ⋆
h+1

)
≤ 2

√
2β2ι

Nk
h (s, a)

.

(e) The sequence {
j∑

i=1

uN
i

(
1
sk

i

h+1
− Ps,a,h

)
V ⋆
h+1

}
j∈N+

is a martingale sequence with∣∣∣uN
i

(
1
s
li
h+1

− Ps,a,h

)
V ⋆
h+1

∣∣∣ ≤ 2H

N
.

Using Lemma A.3 with c = 2H
N , ϵ = c2 and δ being δ

SAT 2 , for any given Nk
h (s, a) = N ∈

N+, with probability at least 1− (log2(n) + 1) δ
SAT 2 ≥ 1− δ

SAT , we have:
N∑
i=1

uN
i

(
1
sk

i

h+1
− Ps,a,h

)
V ⋆
h+1 ≤ 8

√
Q⋆ι

N
+ 16

Hι

N
.

For any all (s, a, h, k) ∈ S ×A× [H]× [K], we have Nk
h (s, a) ∈ [ TH ]. Considering all the

possible combinations (s, a, h,N) ∈ S × A × [H] × [ TH ], with probability at least 1 − δ,
it holds simultaneously for all (s, a, h, k) ∈ S ×A× [H]× [K]:

Nk
h∑

i=1

u
Nk

h
i

(
1
sk

i

h+1
− Ps,a,h

)
V ⋆
h+1 ≤ 8

√
Q⋆ι

Nk
h (s, a)

+ 16
Hι

Nk
h (s, a)

.
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(f) The sequence {
j∑

n=1

ηNn

(
Ps,a,h − 1sk

n

h+1

)(
V̂ R,kn

h+1 − V ⋆
h+1

)}
j∈N+

is a martingale sequence with

ηNn

(
Ps,a,h − 1sk

n

h+1

)(
V̂ R,kn

h+1 − V ⋆
h+1

)
≤ ηNn β.

Then according to Azuma-Hoeffding inequality and Equation (84), for any δ ∈ (0, 1), with
probability at least 1− δ

SAT , it holds for given Nk
h (s, a) = N ∈ N+ that:

N∑
n=1

ηNn

(
Ps,a,h − 1sk

n

h+1

)(
V̂ R,ki

h+1 − V ⋆
h+1

)
≤ 2

√
β2Hι

N
.

For any all (s, a, h, k) ∈ S ×A× [H]× [K], we have Nk
h (s, a) ∈ [ TH ]. Considering all the

possible combinations (s, a, h,N) ∈ S × A × [H] × [ TH ], with probability at least 1 − δ,
it holds simultaneously for all (s, a, h, k) ∈ S ×A× [H]× [K] that:

Nk
h∑

n=1

η
Nk

h
n

(
Ps,a,h − 1sk

n

h+1

)(
V̂ R,ki

h+1 − V ⋆
h+1

)
≤ 2

√
β2Hι

Nk
h (s, a)

(g) This conclusion is directly proved by Lemma A.2 with l = H .

Lemma D.3. For any non-negative weight sequence {ωh,k}h,k and α ∈ (0, 1), it holds that:

K∑
k=1

ωh,k

Nk
h (s

k
h, a

k
h)

α
≤ 1

1− α
(SA||ω||∞,h)

α||ω||1−α
1,h ,

Here, ||ω||∞,h = max
k
{ωh,k} and ||ω||1,h =

∑K
k=1 ωh,k.

For α = 1, we have the following conclusions:

K∑
k=1

1

Nk
h (s

k
h, a

k
h)

≲ SA log(T ),

Proof.

K∑
k=1

ωh,k

Nk
h (s

k
h, a

k
h)

α
=
∑
s,a

NK
h (s,a)∑
i=1

ωh,ki(s,a)

iα
(86)

Here ki(s, a) is the episode index of the i-th visits to (s, a, h). Let ch(s, a) =
∑NK

h (s,a)
i=1 ωh,ki(s,a)

and then we have
∑

s,a ch(s, a) =
∑K

k=1 ωh,k = ||ω||1,h. Given the term
∑K

k=1

ωh,ki(s,a)

iα , when
the weights ωh,ki(s,a) concentrates on former terms, we can obtain the largest value. Let

ks,a,h =

⌈
ch(s, a)

||ω||∞,h

⌉
and ds,a,h = ch(s, a)− (ks,a,h − 1)||ω||∞,h.

Then we have:
K∑

k=1

ωh,k

Nk
h (s

k
h, a

k
h)

α
≤
∑
s,a

ks,a,h−1∑
i=1

||ω||∞,h

iα
+

ds,a,h
kαs,a,h

≤
∑
s,a

||ω||∞,h

ks,a,h−1∑
i=1

i1−α − (i− 1)1−α

1− α
+

ds,a,h
kαs,a,h
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=
∑
s,a

||ω||∞,h(ks,a,h − 1)1−α

1− α
+

ds,a,h
kαs,a,h

=
∑
s,a

||ω||α∞,h

(
[(ks,a,h − 1)||ω||∞,h]

1−α

1− α
+

ds,a,h
(ks,a,h||ω||∞,h)α

)

≤
∑
s,a

||ω||α∞,h

(
[(ks,a,h − 1)||ω||∞,h]

1−α

1− α
+

ds,a,h
ch(s, a)α

)
. (87)

Here the last inequality is because ks,a,h||ω||∞,h ≥ ch(s, a). The second inequality is because for
any 0 < y < x and α ∈ (0, 1), we have:

x− y

xα
≤ 1

1− α
(x1−α − y1−α).

Then, let x = i and y = i− 1, it holds that:
1

iα
≤ 1

1− α
(i1−α − (i− 1)1−α).

Also let x = ch(s, a) and y = (ks,a,h − 1)||ω||∞,h, we have:

ds,a,h
ch(s, a)α

+
[(ks,a,h − 1)||ω||∞,h]

1−α

1− α
≤ ch(s, a)

1−α

1− α
.

Applying this inequality to Equation (87), we have:
K∑

k=1

ωh,k

Nk
h (s

k
h, a

k
h)

α
≤
∑
s,a

||ω||α∞,h

ch(s, a)
1−α

1− α
≤ 1

1− α
(SA||ω||∞,h)

α||ω||1−α
1,h

The last inequality is by Hölder’s inequality, as
∑

s,a ch(s, a)
1−α ≤ (SA)α||ω||1−α

1,h .
For α = 1, it holds that:

K∑
k=1

1

Nk
h (s

k
h, a

k
h)

=
∑
s,a

NK
h (s,a)∑
i=1

1

i
≤
∑
s,a

(
log(NK

h (s, a)) + 1
)
≲ SA log T.

D.3 STEP 1: BOUNDING Qk
h −Q⋆

h

D.3.1 BOUNDING THE EMPIRICAL ESTIMATION ERRORS

By E6 in Lemma D.2 we have:(
Padv
h,k − Êadv

h,k

)
V̂ adv,kn

h+1 =

Nk
h∑

n=1

η
Nk

h
n

(
Pskh,a

k
h,h
− 1sk

n

h+1

)(
V̂ R,ki

h+1 − V ⋆
h+1

)
≤ 2

√
β2Hι

Nk
h (s

k
h, a

k
h)

.

(88)
By E4 in Lemma D.2, it holds that:(
Êref
h,k − Pref

h,k

)
(V̂ R,kn

h+1 −V
⋆
h+1) =

Nk
h∑

i=1

u
Nk

h
i

(
1
sk

i

h+1
− Pskh,a

k
h,h

) (
V̂ R,ki

h+1 −V
⋆
h+1

)
≤ 2

√
2β2ι

Nk
h (s

k
h, a

k
h)

.

By E5 in Lemma D.2, it holds that:(
Êref
h,k − Pref

h,k

)
V ⋆
h+1 =

Nk
h∑

i=1

u
Nk

h
i

(
1
sk

i

h+1
− Pskh,a

k
h,h

)
V ⋆
h+1 ≤ 8

√
Q⋆ι

Nk
h (s

k
h, a

k
h)

+ 16
Hι

Nk
h (s

k
h, a

k
h)

.

Therefore, combining these two inequalities, we have:(
Êref
h,k − Pref

h,k

)
V̂ R,kn

h+1 ≲

√
Q⋆ + β2

Nk
h (s

k
h, a

k
h)

ι+
Hι

Nk
h (s

k
h, a

k
h)

. (89)
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D.3.2 BOUNDING THE BONUS

Since the term ι2 in the last inequality of Lemma 7 in Li et al. (2021) can be easily improved to ι,
we can paraphrase the equation (87) and equation (88) of Li et al. (2021) to the following form:

bR,kn+1
h =

(
1− 1

ηn

)
BR,kn

h

(
skh, a

k
h

)
+

1

ηn
BR,kn+1

h

(
skh, a

k
h

)
+

cb
n3/4

H2ι. (90)

This taken collectively with the definition of ηNn allows us to expand

Rh,k =

Nk
h∑

n=1

ηNn bR,kn+1
h

=

Nk
h∑

n=1

ηn

Nk
h∏

i=n+1

(1− ηi)

((
1− 1

ηn

)
BR,kn

h

(
skh, a

k
h

)
+

1

ηn
BR,kn+1

h

(
skh, a

k
h

))
+ cb

Nk
h∑

n=1

η
Nk

h
n

n3/4
H2ι

= BR,kNk
h+1

h + cb

Nk
h∑

n=1

η
Nk

h
n

n3/4
H2ι. (91)

Then with BR,kNk
h+1

h = BR,k
h and Equation (83) in Lemma D.1, it holds that

Rh,k ≲ BR,k
h +

H2ι

Nk
h (s

k
h, a

k
h)

3
4

. (92)

Similar to equation (158) of Li et al. (2021), we have:√√√√√σadv,k
h (skh, a

k
h)−

(
µadv,k
h (skh, a

k
h)
)2

Nk
h (s

k
h, a

k
h)

≤

√√√√√∑Nk
h

n=1 η
Nk

h

h

(
V kn

h+1(s
kn

h+1)− V R,kn

h+1 (sk
n

h+1)
)2

Nk
h (s

k
h, a

k
h)

≤ 2β

(93)

Equation (93) is because |V kn

h+1(s
kn

h+1)−V
R,kn

h+1 (sk
n

h+1)| ≤ 2β by E3 in Lemma D.2 and
∑Nk

h
n=1 η

Nk
h

h ≤
1. Meanwhile, since V R,kn

h+1 (sk
n

h+1) ≥ V̂ R,kn

h+1 (sk
n

h+1), it also holds that√√√√√σref,k
h (skh, a

k
h)−

(
µref,k
h (skh, a

k
h)
)2

Nk
h (s

k
h, a

k
h)

≤

√
Jh,k
1 + Jh,k

2

Nk
h (s

k
h, a

k
h)

,

where:

Jh,k
1 =

∑Nk
h

n=1

((
V R,kn

h+1 (sk
n

h+1)
)2
−
(
V̂ R,kn

h+1 (sk
n

h+1)
)2)

Nk
h (s

k
h, a

k
h)

,

and

Jh,k
2 =

∑Nk
h

n=1

(
V̂ R,kn

h+1 (sk
n

h+1)
)2

Nk
h (s

k
h, a

k
h)

−

∑Nk
h

n=1 V̂
R,kn

h+1 (sk
n

h+1)

Nk
h (s

k
h, a

k
h)

2

.

Next we want to bound both Jh,k
1 and Jh,k

2 .

Jh,k
1 =

∑Nk
h

n=1

(
V R,kn

h+1 (sk
n

h+1) + V̂ R,kn

h+1 (sk
n

h+1)
)(

V R,kn

h+1 (sk
n

h+1)− V̂ R,kn

h+1 (sk
n

h+1)
)

Nk
h (s

k
h, a

k
h)

≤

∑Nk
h

n=1 2H
(
V R,kn

h+1 (sk
n

h+1)− V̂ R,kn

h+1 (sk
n

h+1)
)

Nk
h (s

k
h, a

k
h)

.
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Therefore, we have

Jh,k
1 ≤ 2HΨk

h(s
k
h, a

k
h)

Nk
h (s

k
h, a

k
h)

, (94)

where

Ψk
h(s

k
h, a

k
h) =

Nk
h∑

n=1

(
V R,kn

h+1 (sk
n

h+1)− V̂ R,kn

h+1 (sk
n

h+1)
)
.

For the second term Jh,k
2 , because of Cauchy’s Inequality, we have:

Jh,k
2 =

∑Nk
h

n=1

(
V̂ R,kn

h+1 (sk
n

h+1)−
∑Nk

h
i=1 V̂ R,kn

h+1 (sk
n

h+1)

Nk
h (skh,a

k
h)

)2

Nk
h (s

k
h, a

k
h)

≤ 2(Jh,k
2,1 + Jh,k

2,2 ),

where:

Jh,k
2,1 =

∑Nk
h

n=1

(
V̂ R,kn

h+1 (sk
n

h+1)− V ⋆
h+1(s

kn

h+1) +
∑Nk

h
i=1 V ⋆

h+1(s
kn

h+1)

Nk
h (skh,a

k
h)

−
∑Nk

h
i=1 V̂ R,kn

h+1 (sk
n

h+1)

Nk
h (skh,a

k
h)

)2

Nk
h (s

k
h, a

k
h)

,

and

Jh,k
2,2 =

∑Nk
h

n=1

(
V ⋆
h+1(s

kn

h+1)−
∑Nk

h
i=1 V ⋆

h+1(s
kn

h+1)

Nk
h (skh,a

k
h)

)2

Nk
h (s

k
h, a

k
h)

=

∑Nk
h

n=1

(
V ⋆
h+1(s

kn

h+1)
)2

Nk
h (s

k
h, a

k
h)

−

∑Nk
h

n=1 V
⋆
h+1(s

kn

h+1)

Nk
h (s

k
h, a

k
h)

2

.

Since V ⋆
h+1(s

kn

h+1) ≤ V̂ R,kn

h+1 (sk
n

h+1) ≤ V ⋆
h+1(s

kn

h+1) + β, it holds that:∣∣∣∣∣∣V̂ R,kn

h+1 (sk
n

h+1)− V ⋆
h+1(s

kn

h+1) +

∑Nk
h

i=1 V
⋆
h+1(s

kn

h+1)

Nk
h (s

k
h, a

k
h)

−
∑Nk

h
i=1 V̂

R,kn

h+1 (sk
n

h+1)

Nk
h (s

k
h, a

k
h)

∣∣∣∣∣∣
≤
∣∣∣V̂ R,kn

h+1 (sk
n

h+1)− V ⋆
h+1(s

kn

h+1)
∣∣∣+
∣∣∣∣∣∣
∑Nk

h
i=1 V

⋆
h+1(s

kn

h+1)

Nk
h (s

k
h, a

k
h)

−
∑Nk

h
i=1 V̂

R,kn

h+1 (sk
n

h+1)

Nk
h (s

k
h, a

k
h)

∣∣∣∣∣∣ ≤ 2β.

Therefore, applying this inequality to Jh,k
2,1 , we have Jh,k

2,1 ≤ 4β2. Moreover, according to equation
(165) of Li et al. (2021), the following inequality holds:

Jh,k
2,2 ≲ Q⋆ +H2

√
ι

Nk
h (s

k
h, a

k
h)

.

Combining the upper bounds of Jh,k
1 Equation (94), Jh,k

2,1 and Jh,k
2,2 , we have:√√√√√σref,k

h (skh, a
k
h)−

(
µref,k
h (skh, a

k
h)
)2

Nk
h (s

k
h, a

k
h)

≲

√
HΨk

h(s
k
h, a

k
h)

Nk
h (s

k
h, a

k
h)

+

√
Q⋆ + β2

Nk
h (s

k
h, a

k
h)

+
Hι

1
4

Nk
h (s

k
h, a

k
h)

3
4

.

(95)

Back to the definition of BR,k
h in Algorithm 2, combining Equation (93) and Equation (95), it holds

that:

BR,k
h ≤ cb

√
ι

√√√√√σref,k
h (skh, a

k
h)−

(
µref,k
h (skh, a

k
h)
)2

Nk
h (s

k
h, a

k
h)

+ cb
√
Hι

√√√√√σadv,k
h (skh, a

k
h)−

(
µadv,k
h (skh, a

k
h)
)2

Nk
h (s

k
h, a

k
h)
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≲

√
HΨk

h(s
k
h, a

k
h)ι

Nk
h (s

k
h, a

k
h)

+

√
(Q⋆ + β2H)ι

Nk
h (s

k
h, a

k
h)

+
Hι

3
4

Nk
h (s

k
h, a

k
h)

3
4

.

Then by Equation (92), we have

Rh,k ≲

√
HΨk

h(s
k
h, a

k
h)ι

Nk
h (s

k
h, a

k
h)

+

√
(Q⋆ + β2H)ι

Nk
h (s

k
h, a

k
h)

+
H2ι

Nk
h (s

k
h, a

k
h)

3
4

. (96)

Applying Equation (88), Equation (89), Equation (96) to Equation (15), it holds that:

(Qk
h −Q⋆

h)(s
k
h, a

k
h) ≤ Êadv

h,k(V
kn

h+1 − V ⋆
h+1) +

√
(Q⋆ + β2H)ι

Nk
h (s

k
h, a

k
h)

+
H2ι

Nk
h (s

k
h, a

k
h)

3
4

+Rh,k
else . (97)

Here

Rh,k
else = η

Nk
h

0 H + Êref
h,k(V

R,kn

h − V̂ R,kn

h ) +

√
HΨk

h(s
k
h, a

k
h)ι

Nk
h (s

k
h, a

k
h)

+
Hι

Nk
h (s

k
h, a

k
h)

.

D.4 STEP 2: BOUNDING THE WEIGHTED SUM

D.4.1 REARRANGING THE SUMMATION

K∑
k=1

ωh,kÊadv
h,k(V

kn

h+1 − V ⋆
h+1) =

K∑
k=1

Nk
h∑

n=1

ωh,kη
Nk

h
n

(
V kn

h+1(s
kn

h+1)− V ⋆
h+1(s

kn

h+1)
)

=

K∑
j=1

 K∑
k=1

Nk
h∑

n=1

ωh,kη
Nk

h
n I [kn = j]

(V j
h+1(s

j
h+1)− V ⋆

h+1(s
j
h+1)

)

≤
K∑
j=1

 K∑
k=1

Nk
h∑

n=1

ωh,kη
Nk

h
n I [kn = j]

(Qj
h+1 −Q⋆

h+1

)
(sjh+1, a

j
h+1)

≜
K∑
j=1

ωh+1,j(h)
(
Qj

h+1(s
j
h+1, a

j
h+1)−Q⋆

h+1(s
j
h+1, a

j
h+1)

)
. (98)

Here, for any j ∈ [K]

ωh+1,j(h) =

K∑
k=1

Nk
h∑

n=1

ωh,kη
Nk

h
n I [kn = j] .

The inequality is because Qj
h+1(s

j
h+1, a

j
h+1) = V j

h+1(s
j
h+1), Q

⋆
h+1(s

j
h+1, a

j
h+1) ≤ V ⋆

h+1(s
j
h+1).

D.4.2 PROOF OF EQUATION (22)

For any given h and non-negative constants {ωh,k}h,[K], we denote ∥ω∥∞,h = maxk∈[K] ωh,k and
∥ω∥1,h =

∑
k∈[K] ωh,k. We also recursively define ωh′,k(h) for any h ≤ h′ ≤ H + 1, k ∈ [K] as

follows:

ωh,k(h) := ωh,k; ωh′,j(h) =

K∑
k=1

Nk
h∑

n=1

ωh′−1,k(h)η
Nk

h
n I [kn = j] ,∀j ∈ [K], h < h′ ≤ H + 1.

According to the definition of kn, I [kn = j] = 1 if and only if (sjh, a
j
h) = (skh, a

k
h), j ≤ k − 1 and

n = N j+1
h (sjh, a

j
h). Then by Equation (84) in Lemma D.1, we have:

K∑
k=1

Nk
h∑

n=1

η
Nk

h
n I [kn = j] =

K∑
k=j+1

η
Nk

h

Nj+1
h

I
[
(sjh, a

j
h) = (skh, a

k
h)
]
≤

∞∑
t=Nj+1

h

ηt
Nj+1

h

≤ 1 +
1

H
. (99)

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Therefore, for h < h′ ≤ H + 1, it holds that:

ωh′,j(h) ≤ ||ω(h)||∞,h′−1

K∑
k=1

Nk
h∑

n=1

η
Nk

h
n I [kn = j] ≤ (1 +

1

H
)||ω(h)||∞,h′−1. (100)

It also holds that:
K∑
j=1

ωh′,j(h) =

K∑
k=1

ωh,k

Nk
h∑

n=1

η
Nk

h
n ≤ ||ω(h)||1,h′−1. (101)

Combining Equation (97) with Equation (98), the weighted sum
∑K

k=1 ωh,k(Q
k
h−Q⋆

h)(s
k
h, a

k
h) can

be bounded by
K∑

k=1

ωh,k(Q
k
h(s

k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h))

≲
K∑

k=1

ωh+1,k(h)(Q
k
h+1 −Q⋆

h+1)(s
k
h+1, a

k
h+1) +

K∑
k=1

ωh,k

(√
(Q⋆ + β2H)ι

Nk
h (s

k
h, a

k
h)

+
H2ι

(Nk
h )

3
4

+Rh,k
else

)

≤
K∑

k=1

ωh+1,k(h)(Q
k
h+1 −Q⋆

h+1)(s
k
h+1, a

k
h+1) +

√
(Q⋆ + β2)SA||ω||∞,h||ω||1,hι

+H2ι(SA||ω||∞,h)
3
4 ||ω||

1
4

1,h +

K∑
k=1

ωh+1,k(h)R
h,k
else . (102)

The last inequality is by Lemma D.3 with α = 1
2 and 3

4 . Recurring Equation (102) with regard
to h, h + 1, . . . ,H , since Qk

H+1(s, a) = Q⋆
H+1(s, a) = 0 and the weight recursions relationship

Equation (100) and Equation (101), we have
K∑

k=1

ωh,k(Q
k
h(s

k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h))

≲ H
√
(Q⋆ + β2H)SA||ω||∞,h||ω||1,hι+H3ι(SA||ω||∞,h)

3
4 ||ω||

1
4

1,h +

K∑
k=1

H∑
h′=h

ωh′,k(h)R
h′,k
else .

(103)

D.5 STEP 3: INTEGRATING MULTIPLE WEIGHTED SUMS

D.5.1 PROOF OF EQUATION (26)

For any N = ⌈log2(H)⌉, t ∈ [N ], k ∈ [K] and the given h ∈ [H], let:

ω
(i)
h,k = I

[
Qk

h(s
k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h) ∈ [2i−1∆min, 2

i∆min)
]
,

and then

||ω||(i)∞,h = max
k

ω
(i)
h,k ≤ 1, ||ω||(i)1,h =

K∑
k=1

ω
(i)
h,k.

For any given i ∈ [N ] and h ≤ h′ ≤ H and the weight {ω(i)
h′,k}k can be defined recursively by

Equation (19). Therefore, for any j ∈ [K], it holds that:

N∑
i=1

ω
(i)
h′+1,j(h) =

K∑
k=1

Nk
h∑

n=1

(
N∑
i=1

ω
(i)
h′,k(h)

)
η
Nk

h′
n I [kn = j] .

Here for any i ∈ [N ], ω(i)
h,k(h) = ω

(i)
h,k. Then by mathematical induction on h′ ∈ [h,H], it is

straightforward to prove that for any j ∈ [K],
N∑
i=1

ω
(i)
h′,j(h) ≤

(
1 +

1

H

)h′−h

< 3, (104)
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given that for any j ∈ [K]

K∑
k=1

Nk
h∑

n=1

η
Nk

h′
n I [kn = j] ≤ 1 +

1

H

by Equation (99) and
∑N

i=1 ω
(i)
h,j(h) =

∑N
i=1 ω

(i)
h,j ≤ 1.

Applying the weight {ω(i)
h,k}k to Equation (103), since ||ω||∞,h ≤ 1, then for any i ∈ [N ], it holds

that:

K∑
k=1

ω
(i)
h,k(Q

k
h(s

k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h)) ≲ H

√
(Q⋆ + β2H)SA||ω(i)||∞,h||ω(i)||1,hι

+H3ι(SA||ω(i)||∞,h)
3
4 (||ω(i)||1,h)

1
4 +

K∑
k=1

H∑
h′=h

ω
(i)
h′,k(h)R

h′,k
else .

On the other hand, according to the definition of ω(i)
h,k,

K∑
k=1

ω
(i)
h,k

(
Qk

h(s
k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h)
)
≥ 2i−1∆min||ω||(i)1,h.

Therefore, since ||ω(i)||∞,h ≤ 1, we obtain the following inequality for any i ∈ [N ]:

2i−1∆min||ω(i)||1,h ≲ H
√
(Q⋆ + β2h)SA||ω(i)||1,hι+H3ι(SA)

3
4 (||ω(i)||1,h)

1
4

+

K∑
k=1

H∑
h′=h

ω
(i)
h′,k(h)R

h′,k
else . (105)

Then at least one of the following three inequalities holds:

2i−1∆min||ω(i)||1,h ≲ H
√
(Q⋆ + β2H)SA||ω(i)||1,hι

2i−1∆min||ω(i)||1,h ≲ H3ι(SA)
3
4 (||ω(i)||1,h)

1
4 ,

2i−1∆min||ω(i)||1,h ≲
K∑

k=1

H∑
h′=h

ω
(i)
h′,k(h)R

h′,k
else .

Solving this three inequalities, we know that:

||ω(i)||1,h ≤ O

(
max

{(
Q⋆ + β2H

)
SAH2ι

4i−1∆2
min

,
H4SAι

4
3

(2i−1∆min)
4
3

,

∑K
k=1

∑H
h′=h ω

(i)
h′,k(h)R

h′,k
else

2i−1∆min

})

≤ O

((
Q⋆ + β2H

)
SAH2ι

4i−1∆2
min

+
H4SAι

4
3

(2i−1∆min)
4
3

+

∑K
k=1

∑H
h′=h ω

(i)
h′,k(h)R

h′,k
else

2i−1∆min

)
.

(106)

By Equation (104), we have:

N∑
i=1

K∑
k=1

H∑
h′=h

ω
(i)
h′,k(h)R

h′,k
else =

H∑
h′=h

K∑
k=1

(
N∑
i=1

ω
(i)
h′,k(h)

)
Rh′,k

else ≤ 3

H∑
h′=1

K∑
k=1

Rh′,k
else .

Using this inequality, we have

N∑
i=1

2i∆min||ω(i)||1,h ≤ O

((
Q⋆ + β2H

)
SAH2ι

∆min
+

H4SAι
4
3

(∆min)
1
3

+

H∑
h′=1

K∑
k=1

Rh′,k
else

)
. (107)
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D.5.2 PROOF OF EQUATION (27) AND EQUATION (28)

Next we will bound the term
∑H

h′=1

∑K
k=1 R

h′,k
else , where

Rh,k
else = η

Nk
h

0 H + Êref
h,k

(
V R,kn

h+1 − V̂ R,kn

h+1

)
+
(
Pref
h,kV̂

R,kn

h+1 − Padv
h,kV̂

R,kn

h+1

)
+

√
HΨk

hι

Nk
h

+
Hι

Nk
h

.

According to equation (149) of Li et al. (2021), we have:
H∑

h′=1

K∑
k=1

η
Nk

h′
0 H ≤ H2SA ≤ H6SA log(T )ι

β
. (108)

Since for any k ∈ [K], V R,k
h′+1(s)− V̂ R,k

h′+1(s) ≥ 0, we have

H∑
h′=1

K∑
k=1

Êref
h′,k

(
V R,kn

h′+1 − V̂ R,kn

h′+1

)
≤

H∑
h′=1

K∑
k=1

Nk
h′∑

n=1

u
Nk

h′
n

(
V R,kn

h′+1 − V̂ R,kn

h′+1

)
(sk

n

h′+1)

 K∑
j=1

I[kn = j]


=

H∑
h′=1

K∑
j=1

( K∑
k=1

Nk
h′∑

n=1

u
Nk

h′
i I [kn = j]

)(
V R,j
h′+1 − V̂ R,j

h′+1

)
(sk

n

h′+1).

Here I [kn = j] = 1 if and only if (sjh′ , a
j
h′) = (skh′ , akh′), j ≤ k − 1 and n = N j+1

h′ (sjh′ , a
j
h′) > 0.

Then we have:

K∑
k=1

Nk
h′∑

n=1

u
Nk

h′
i I

[
ki = j

]
=

K∑
k=j+1

u
Nk

h′

Nj+1

h′
I
[
(sjh′ , a

j
h′) = (skh′ , akh′)

]
≤

NK
h′∑

t=Nj+1

h′

ut
Nj+1

h′
≲ log T.

(109)

The last inequality is because for any N ∈ N+ and i ∈ [N ], uN
i ≤ 2

N . Therefore it holds that:

H∑
h′=1

K∑
k=1

Êref
h′,k

(
V R,kn

h′ − V̂ R,kn

h′

)
≲ log T

H∑
h′=1

K∑
j=1

(
V R,j
h′+1 − V̂ R,j

h′+1

)
(sk

i

h′+1). (110)

To continue, we will first prove a lemma
Lemma D.4. For any h′ ∈ [H] and k ∈ [K],

• If V k
h′+1(s)− V LCB,k

h′+1 (s) ≤ β, then V R,K+1
h′+1 (s) = V R,k

h′+1(s) = V̂ R,k
h′+1(s).

• If V k
h′+1(s)− V LCB,k

h′+1 (s) > β, then we have:

0 ≤ V R,k
h′+1(s)− V̂ R,k

h′+1(s) ≤ V k
h′+1(s)− V LCB,k

h′+1 (s),

and
|V̂ R,j

h′+1(s)− V R,K+1
h′+1 (s)| ≤ V k

h′+1(s)− V LCB,k
h′+1 (s).

Proof. • If for given k ∈ [K], V k
h′+1(s) − V LCB,k

h′+1 (s) ≤ β, then there exists k1 ∈ [K] such
that:

k1 = min
{
k : V k

h′+1(s)− V LCB,k
h′+1 (s) ≤ β

}
.

Then according the algorithm, we have uk1

ref(s) = TRUE, or it is contradictory to the mini-
mality of k1. Therefore, in this case we have:

V R,K+1
h′+1 (s) = V R,k

h′+1(s) = V R,k1

h′+1(s) = V k1

h′+1(s) ≤ V LCB,k1

h′+1 (s) + β ≤ V ⋆
h′+1(s) + β,

and
V R,k
h′+1(s) = V R,k1

h′+1(s) = V k1

h′+1(s) ≥ V ⋆
h′+1(s).

According to the definition of V̂ R,k
h′+1(s), we have V̂ R,k

h′+1(s) = V R,k
h′+1(s) = V R,K+1

h′+1 (s).
Thus V k

h′+1(s) − V LCB,k
h′+1 (s) ≤ β is the sufficient condition of V R,k

h′+1(s) = V̂ R,k
h′+1(s) =

V R,K+1
h′+1 (s).
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• Moreover, if V k
h′+1(s)− V LCB,k

h′+1 (s) > β, according to the algorithm, we have V R,k
h′+1(s) =

V k
h′+1(s) and then 0 ≤ V R,k

h′+1(s)− V̂ R,k
h′+1(s) ≤ V k

h′+1(s)− V LCB,k
h′+1 (s).

In this case, we also have V LCB,k
h′+1 (s) ≤ V R,K+1

h′+1 (s) ≤ V k
h′+1(s) and then V LCB,k

h′+1 (s) ≤
V̂ R,k
h′+1(s) ≤ V R,k

h′+1(s) = V k
h′+1(s). These two inequalities imply that |V̂ R,j

h′+1(s) −
V R,K+1
h′+1 (s)| ≤ V k

h′+1(s)− V LCB,k
h′+1 (s).

According to this lemma, the following inequality holds:

H∑
h′=1

K∑
j=1

(
V R,j
h′+1(s

j
h′+1)− V̂ R,j

h′+1(s
j
h′+1)

)

≤
H∑

h′=1

K∑
j=1

(
V k
h′+1(s

j
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Applying this inequality to Equation (110), it holds that:
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(111)

For the third term in Rh′,k
else , because
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Similar to Equation (110), we have:

H∑
h′=1

K∑
k=1

Nk
h′∑

n=1

u
Nk

h′
n Psk

h′ ,a
k
h′ ,h

′

∣∣∣V̂ R,kn

h′+1 − V R,K+1
h′+1

∣∣∣ ≲ log(T )

H∑
h′=1

K∑
j=1

Psk
h′ ,a

k
h′ ,h

′

∣∣∣V̂ R,j
h′+1 − V R,K+1

h′+1

∣∣∣ .
and

H∑
h′=1

K∑
k=1

Nk
h′∑

n=1

η
Nk

h′
n Psk

h′ ,a
k
h′ ,h

′

∣∣∣V̂ R,kn

h′+1 − V R,K+1
h′+1

∣∣∣ ≲ H∑
h′=1

K∑
j=1

Psk
h′ ,a

k
h′ ,h

′

∣∣∣V̂ R,j
h′+1 − V R,K+1

h′+1

∣∣∣
by Equation (99). Combining these two inequalities, we have:
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According to Lemma D.4, the following inequality holds:
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Combining Equation (112) with the event E7 in Lemma D.2, we have:
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Now we move to the fourth term in Rh,k
else . By Lemma D.4 we have:
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The first inequality is because of the mononicity of Φn
h′(s, a). The second inequality is by Cauchy’s

inequality. To continue, note that:
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Together with Equation (114), it holds:
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By Lemma D.3 with α = 1, we have:
H∑
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K∑
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Hι
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By summing Equation (108), Equation (111), Equation (113), Equation (115) and Equation (116),
since β ∈ (0, H], we can conclude that:
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Then we have
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The last inequality is because
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by AM-GM inequality.

D.6 STEP 4: BOUNDING THE EXPECTED GAP-DEPENDENT REGRET
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The last inequality is because under the event E , we have proved that
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by Equation (117) and under the event Ec,
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E RELATED WORK

On-policy RL for finite-horizon tabular MDPs with worst-case regret. There are mainly two
types of algorithms for reinforcement learning: model-based and model-free learning. Model-
based algorithms learn a model from past experience and make decisions based on this model,
while model-free algorithms only maintain a group of value functions and take the induced opti-
mal actions. Due to these differences, model-free algorithms are usually more space-efficient and
time-efficient compared to model-based algorithms. However, model-based algorithms may achieve
better learning performance by leveraging the learned model.

Next, we discuss the literature on model-based and model-free algorithms for finite-horizon tabular
MDPs with worst-case regret. Auer et al. (2008), Agrawal & Jia (2017), Azar et al. (2017), Kakade
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et al. (2018), Agarwal et al. (2020), Dann et al. (2019), Zanette & Brunskill (2019),Zhang et al.
(2021a),Zhou et al. (2023) and Zhang et al. (2023) worked on model-based algorithms. Notably,
Zhang et al. (2023) provided an algorithm that achieves a regret of Õ(min{

√
SAH2T , T}), which

matches the information lower bound. Jin et al. (2018), Yang et al. (2021), Zhang et al. (2020),
Li et al. (2021) and Ménard et al. (2021) work on model-free algorithms. The latter three have
introduced algorithms that achieve minimax regret of Õ(

√
SAH2T ).

Suboptimality Gap. When there is a strictly positive suboptimality gap, it is possible to achieve log-
arithmic regret bounds. In RL, earlier work obtained asymptotic logarithmic regret bounds Auer &
Ortner (2007); Tewari & Bartlett (2008). Recently, non-asymptotic logarithmic regret bounds were
obtained (Jaksch et al. (2010); Ok et al. (2018); Simchowitz & Jamieson (2019); He et al. (2021).
Specifically, Jaksch et al. (2010) developed a model-based algorithm, and their bound depends on
the policy gap instead of the action gap studied in this paper. Ok et al. (2018) derived problem-
specific logarithmic type lower bounds for both structured and unstructured MDPs. Simchowitz &
Jamieson (2019) extended the model-based algorithm by Zanette & Brunskill (2019) and obtained
logarithmic regret bounds. Logarithmic regret bounds are obtained in linear function approximation
settings (He et al., 2021). Nguyen-Tang et al. (2023) also provides a gap-dependent regret bounds
for offline RL with linear funciton approximation.

Specifically, for model free algorithm, Yang et al. (2021) showed that the optimistic Q-learning
algorithm by Jin et al. (2018) enjoyed a logarithmic regret O(H

6SAT
∆min

), which was subsequently
refined by Xu et al. (2021). In their work, Xu et al. (2021) introduced the Adaptive Multi-step
Bootstrap (AMB) algorithm.

There are also some other works focusing on gap-dependent sample complexity bounds (Jonsson
et al., 2020; Marjani & Proutiere, 2020; Al Marjani et al., 2021; Tirinzoni et al., 2022; Wagenmaker
et al., 2022b; Wagenmaker & Jamieson, 2022; Wang et al., 2022; Tirinzoni et al., 2023).

Variance reduction in RL. The reference-advantage decomposition used in Zhang et al. (2020)
and Li et al. (2021) is a technique of variance reduction that was originally proposed for finite-
sum stochastic optimization (see e.g. Gower et al. (2020); Johnson & Zhang (2013); Nguyen et al.
(2017)). Later on, model-free RL algorithms also used variance reduction to improve the sample
efficiency. For example, it was used in learning with generative models Sidford et al. (2018; 2023);
Wainwright (2019), policy evaluation Du et al. (2017); Khamaru et al. (2021); Wai et al. (2019); Xu
et al. (2020), offline RL Shi et al. (2022); Yin et al. (2021), and Q-learning Li et al. (2020); Zhang
et al. (2020); Li et al. (2021); Yan et al. (2023).

RL with low switching cost. Research in RL with low switching costs aims to minimize the number
of policy switches while maintaining comparable regret bounds to fully adaptive counterparts. Bai
et al. (2019) first introduced the problem of RL with low-switching cost and proposed a Q-learning
algorithm with lazy updates, achieving Õ(SAH3 log T ) switching costs. This work was advanced
by Zhang et al. (2020), which improved the regret upper bound and the switching cost. Additionally,
Wang et al. (2021) studied RL under the adaptivity constraint. Recently, Qiao et al. (2022) proposed
a model-based algorithm with Õ(log log T ) switching costs.

Other problem-dependent performance. In practice, RL algorithms often perform far more ap-
pealingly than what their worst-case performance guarantees would suggest. This motivates a re-
cent line of works that investigate optimal performance in various problem-dependent settings (Fruit
et al., 2018; Jin et al., 2020; Talebi & Maillard, 2018; Wagenmaker et al., 2022a; Zhao et al., 2023;
Zhou et al., 2023).

F NUMERICAL EXPERIMENTS

In this section, we conduct experiments1. All the experiments are conducted in a synthetic envi-
ronment to demonstrate the better gap-dependent regret of UCB-Advantage and Q-EarlySettled-
Advantage compared to other two model-free algorithms: UCB-Hoeffding (Jin et al., 2018) and

1All the experiments are run on a server with Intel Xeon E5-2650v4 (2.2GHz) and 100 cores. Each replica-
tion is limited to a single core and 4GB RAM. The total execution time is less than 2 hours. The code for the
numerical experiments is included in the supplementary materials along with the submission.
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AMB (Xu et al., 2021). We will consider two different scales of experiments across two cases: a
general MDP and a deterministic MDP.

We first set H = 5, S = 3, and A = 2. The reward rh(s, a) for each (s, a, h) is generated in-
dependently and uniformly at random from [0, 1]. For general MDP, Ph(· | s, a) is generated on
the S-dimensional simplex independently and uniformly at random for (s, a, h). For deterministic
MDP, Ph(· | s, a) is a randomly generated vector with only one element equal to 1, and all others
equal to 0 for each (s, a, h). Under the given MDP, we generate 3×105 episodes. For each episode,
we randomly choose the initial state uniformly from the S states. For all four algorithms, we set
ι = 1 and the hyper-parameter c1 in the Hoeffding-type bonus to

√
2. Here, c1 represents the only

undefined constant in the bonus terms of the UCB-Hoeffding and AMB algorithms, as well as the
multipliers in the bonus expressions in line 10 of Algorithm 1 (UCB-Advantage) and lines 2 and
4 of Algorithm 2 (Q-EarlySettled-Advantage). In both the UCB-Advantage and Q-EarlySettled-
Advantage algorithms, we set the hyper-parameters c2 to 2. Here, c2 denotes the constant in the
variance estimators of the advantage-type bonus, which is the undefined constant in line 16 of Al-
gorithm 2. In addition, we set c3 to 1. Here, c3 denotes the multiplier in the last term in line 9 of
Algorithm 1 and the last term in line 8 of Algorithm 2. For UCB-Advantage, we set N0 = 200, and
for Q-EarlySettled-Advantage, we set β = 0.05.

To show error bars, we collect 10 sample paths for all algorithms under the same MDP environment
and show the relationship between Regret(T )/ log(K + 1) and the total number of episodes K in
Figure 1. For both panels, the solid line represents the median of the 10 sample paths, while the
shaded area shows the 10th and 90th percentiles.

(a) Regret of General MDPs (b) Regret of Deterministic MDPs

Figure 1: Numerical comparison of regrets with H = 5, S = 3, and A = 2

We also conduct a larger scale experiment with H = 10, S = 5, and A = 5 for 3× 106 episodes in
both types of MDPs. With all other settings unchanged, the result is shown in the following Figure 2:

(a) Regret of General MDPs (b) Regret of Deterministic MDPs

Figure 2: Numerical comparison of regrets with H = 10, S = 5, and A = 5

51



2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

Next, we discuss the results. From the two figures, we observe that both UCB-Advantage and Q-
EarlySettled-Advantage enjoy lower regret compared to UCB-Hoeffding and AMB. The y-axis rep-
resents Regret(T )/ log(K+1), and we note that the curves for UCB-Advantage and Q-EarlySettled-
Advantage approach horizontal lines as K becomes sufficiently large. This suggests that the regret
for these two algorithms grows logarithmically with K. In particular, Q-EarlySettled-Advantage
achieves even lower regret than UCB-Advantage when K is large. These features are consistent
with our theoretical results.

We also conduct an experiment to evaluate the policy switching cost of the UCB-Advantage algo-
rithm for these two different scales of (H,S,A), under the same experimental setting. The results
are presented in the following figures:

(a) Policy Switching Cost of General MDPs (b) Policy Switching Cost of Deterministic MDPs

Figure 3: Policy switching cost of UCB-Advantage algorithm with H = 5, S = 3, and A = 2

(a) Policy Switching Cost of General MDPs (b) Policy Switching Cost of Deterministic MDPs

Figure 4: Policy switching cost of UCB-Advantage algorithm with H = 10, S = 5, and A = 5

In these two figures, the y-axis represents the ratio of policy switching cost to log(K + 1). We
note that all these four curves approach horizontal lines as K becomes sufficiently large, which is
consistent with our logarithmic policy switching cost shown in Equation (4).

G MATHEMATICAL EXPLANATION OF THE SURROGATE FUNCTION

Next, we explain the surrogate function in a more mathematical manner.

Our proof relies on relating the regret to multiple groups of estimation error sums that take the
form

∑K
k=1 ω

(i)
h,k(Q

k
h − Q⋆

h)(s
k
h, a

k
h). Here {ω(i)

h,k}k are nonnegative weights and i represents the
group. Bounding the weighted sum via controlling each individual Qk

h(s
k
h, a

k
h) − Q⋆

h(s
k
h, a

k
h) by
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recursion on h is a common technique for model-free optimism-based algorithms, which was used
by all of Zhang et al. (2020); Li et al. (2021); Yang et al. (2021). Yang et al. (2021) used it on gap-
dependent regret analysis, and Zhang et al. (2020) and Li et al. (2021) used it to control the reference
setting errors

∑K
k=1(V

R,k+1
h (skh)− V R,K+1

h (skh)). However, their techniques are only limited to the
Hoeffding-type update. In detail, the Hoeffding-type update in Q-function is given by
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which is the key update of Yang et al. (2021), and the update of QUCB,k+1
h for [2, 3]. Accordingly,

we can find that
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which is the event in Definition 4.1 of Yang et al. (2021). Here, ηN
k
h

0 = 0 when Nk
h > 0. After taking

the weighted sum with regard to k ∈ [K] on both sides, we can establish recursions on h where the

main terms are
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k
h−Q⋆

h)(s
k
h, a

k
h) and

∑K
k=1 ω

(i)
h,k

∑Nk+1
h

n=1 η
Nk+1

h
n (V kn

h+1−V ⋆
h+1)(s

kn

h+1).

With
∑K

k=1 Hη
Nk

h
0 being easily controlled, the error generated by the recursion is mainly dominated

by the weighted sum regarding the simple term Õ

(√
H3/Nk+1

h

)
, which obviously vanishes when

k is large so that Nk
h (the number of visit to (skh, a

k
h, h) is large.

Here, we explain why Zhang et al. (2020) and Li et al. (2021) only rely on the weighted sum∑K
k=1 ω

(i)
h,k(Q

k
h − Q⋆

h)(s
k
h, a

k
h) with simple Hoeffding-type errors though their algorithms in-

volve reference-advantage decomposition. Both methods incorporate a Hoeffding-type update
(see QUCB,k+1

h in Equation (7)), with which they bound the reference settling error by control-
ling the weighted sum. When analyzing the worst-case regret, they only need to relate the regret to∑K

k=1(Q
k
h−Q⋆

h)(s
k
h, a

k
h), i.e., the sum instead of the weighted sum. However, in our gap-dependent

regret analysis, because the weights do not adapt to the learning process (see our proof sketch for
more details), we have to analyze each item (Qk

h − Q⋆
h)(s

k
h, a

k
h) individually in the weighted sum

with complicated errors with new technical tools when we consider the reference-advantage update
(Equation (8)).

The reference-advantage update is listed as follows

QR,k+1
h (skh, a

k
h) = rkh(s

k
h, a

k
h) +

Nk+1
h∑

n=1

(
η
Nk+1

h
n (V kn

h+1 − V R,kn

h+1 ) + u
Nk+1

h
n V R,kn

h+1

)
(sk

n

h+1) + R̃h,k+1.

Here, {ηN
k+1
h

n }N
k+1
h

n=1 are the corresponding nonnegative weights that sum to 1. {uNk+1
h

n }N
k+1
h

n=1 that
sum to 1 are nonnegative weights for the reference function. R̃h,k+1 is the cumulative bonus that
contains variance estimators and dominates the variances in reference estimations and advantage
estimations. Accordingly, we can find that

(Qk
h −Q⋆

h)(s
k
h, a

k
h) ≤ Hη

Nk
h

0 +

Nk
h∑

n=1

η
Nk

h
n (V kn

h+1 − V ∗
h+1)(s

kn

h+1)

+

Nk
h∑

n=1

(
η
Nk

h
n (V ∗

h+1 − V R,kn

h+1 ) + u
Nk

h
n V R,kn

h+1

)
(sk

n

h+1)− (1− η
Nk

h
0 )P(skh,a

k
h,h)

V ⋆
h+1 +Rh,k.

To establish the recursion on h in the same way, when keeping the main terms unchanged and

neglecting the term Hη
Nk

h
0 , the error term in our iteration becomes the weighted summation for

Nk
h∑

n=1

(
η
Nk

h
n (V ⋆

h+1 − V R,kn

h+1 ) + u
Nk

h
n V R,kn

h+1

)
(sk

n

h+1)− (1− η
Nk

h
0 )P(skh,a

k
h,h)

V ⋆
h+1 +Rh,k.
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It is much more complicated than Õ(
√

H3/Nk
h ) for the Hoeffding-type update.

To handle this error, we propose a decomposition method following the reference advantage struc-
ture. Naively, we can move towards advantage estimation errors (the first term), reference estimation
errors (the second term), reference settling errors (the third term), the cumulative bonus (the fourth
term), and a negative term (the last term), i.e.

Nk
h∑

n=1

η
Nk

h
n

(
Pskh,a

k
h,h
− 1sk

n

h+1

)
(V R,K+1

h+1 − V ⋆
h+1) +

Nk
h∑

n=1

u
Nk

h
n

(
1sk

n

h+1
− Pskh,a

k
h,h

)
V R,K+1
h+1 (sk

n

h+1)

+

Nk
h∑

n=1

u
Nk

h
n (V R,kn

h+1 − V R,K+1
h+1 )(sk

n

h+1) +Rh,k +

Nk
h∑

n=1

η
Nk

h
n (V R,K+1

h+1 − V R,kn

h+1 )(sk
n

h+1)

because the properties of the settled reference function V R,K+1
h+1 is well-studied in Zhang et al.

(2020) and Li et al. (2021). However, it will cause a non-martingale issue when we try to ap-
ply concentration inequalities as V R,K+1

h+1 depends on the whole learning process. To solve this
issue, we propose our surrogate reference function V̂ R,k

h and decompose the error above as

G1 :=
∑Nk

h
n=1 η

Nk
h

n (Pskh,a
k
h,h
− 1sk

n

h+1
)(V̂ R,kn

h+1 − V ⋆
h+1), G2 :=

∑Nk
h

n=1 u
Nk

h
n (1sk

n

h+1
− Pskh,a

k
h,h

)V̂ R,kn

h+1 ,

G3 :=
∑Nk

h
n=1(u

Nk
h

n − η
Nk

h
n )Pskh,a

k
h,h

V̂ R,kn

h+1 +
∑Nk

h
n=1 u

Nk
h

n (V R,kn

h+1 − V̂ R,kn

h+1 )(sk
n

h+1), the bonus term

G4 = Rh,k, and a negative negligible term
∑Nk

h
n=1 η

Nk
h

n (V̂ R,kn

h+1 −V R,kn

h+1 )(sk
n

h+1). The first three terms
correspond to advantage estimation error, reference estimation error, and reference settling error, re-
spectively. Here, we creatively use the surrogate V̂ R,k

h+1 as it is determined before the start of episode
k. Thus, G1,G2 are martingale sums and can be controlled by concentration inequalities that are
given in Equation (16), so the non-martingale challenge can be addressed. G3 corresponds to the
reference settling error and can also be controlled given the settling conditions and properties of
V̂ R,k
h (s). The bonus G4 is controlled using the same idea of bounding G1,G2,G3.

Our decomposition above expands the technique of bounding the weighted sum of estimation errors
to reference-advantage type estimations. In addition, we are the first to use the novel construction
of the reference surrogates for reference-advantage decomposition in the literature, which makes a
separate contribution to future work on off-policy methods and offline methods.

54


	Introduction
	Preliminaries
	Main results
	Gap-dependent Regrets
	blueOur Technical Tool: Surrogate Reference Functions
	Gap-Dependent Policy Switching Cost for UCB-Advantage

	Key steps for proving Theorem 3.2
	Conclusion
	General Lemmas
	Proof of Theorem 3.1
	Algorithm details
	Key lemmas
	Proof sketch of Theorem 3.1
	Bounding the term Q-Q*
	Bounding the term G1
	Bounding the term G2
	Bounding the term bonus

	Rearrange the weighted sum of G3
	Bounding the term sum of Y

	Proof of Theorem 3.3
	Proof of Theorem 3.2
	Algorithm details
	Auxiliary lemmas
	Step 1: Bounding Q-Q* 
	Bounding the empirical estimation errors
	Bounding the bonus

	Step 2: Bounding the weighted sum
	Rearranging the summation
	Proof of Equation (22)

	Step 3: Integrating multiple weighted sums
	Proof of Equation (26)
	Proof of Equation (27) and Equation (28)

	Step 4: Bounding the expected gap-dependent regret

	blueRelated work
	blueNumerical Experiments
	blueMathematical explanation of the surrogate function

