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ABSTRACT

We study the gap-dependent bounds of two important algorithms for on-policy Q-
learning for finite-horizon episodic tabular Markov Decision Processes (MDPs):
UCB-Advantage (Zhang et al. 2020) and Q-EarlySettled-Advantage (Li et al.
2021). UCB-Advantage and Q-EarlySettled-Advantage improve upon the results
based on Hoeffding-type bonuses and achieve the almost optimal

√
T -type regret

bound in the worst-case scenario, where T is the total number of steps. How-
ever, the benign structures of the MDPs such as a strictly positive suboptimality
gap can significantly improve the regret. While gap-dependent regret bounds have
been obtained for Q-learning with Hoeffding-type bonuses, it remains an open
question to establish gap-dependent regret bounds for Q-learning using variance
estimators in their bonuses and reference-advantage decomposition for variance
reduction. We develop a novel error decomposition framework to prove gap-
dependent regret bounds of UCB-Advantage and Q-EarlySettled-Advantage that
are logarithmic in T and improve upon existing ones for Q-learning algorithms.
Moreover, we establish the gap-dependent bound for the policy switching cost of
UCB-Advantage and improve that under the worst-case MDPs. To our knowl-
edge, this paper presents the first gap-dependent regret analysis for Q-learning
using variance estimators and reference-advantage decomposition and also pro-
vides the first gap-dependent analysis on policy switching cost for Q-learning.

1 INTRODUCTION

Reinforcement Learning (RL) (Sutton & Barto, 2018) is a subfield of machine learning focused
on sequential decision-making. Often modeled as a Markov Decision Process (MDP), RL tries to
obtain an optimal policy through sequential interactions with the environment. It finds applications
in various fields, such as games (Silver et al., 2016; 2017; 2018; Vinyals et al., 2019), robotics
(Kober et al., 2013; Gu et al., 2017), and autonomous driving (Yurtsever et al., 2020).

In this paper, we focus on the on-policy RL tailored for episodic tabular MDPs with inhomogeneous
transition kernels. Specifically, the agent interacts with an episodic MDP consisting of S states,
A actions, and H steps per episode. The regret information bound for any MDP above and any
learning algorithm with K episodes is O(

√
H2SAT ) where T = KH denotes the total number

of steps (Jin et al., 2018). Multiple RL algorithms in the literature (e.g. Zhang et al. (2020); Li
et al. (2021); Zhang et al. (2024)) have reached a near-optimal

√
T -type regret that matches the

information bound up to logarithmic factors, which acts as a worst-case guarantee.

In practice, RL algorithms often perform better than their worst-case guarantees, as such guaran-
tees can be significantly improved under MDPs with benign structures (Zanette & Brunskill, 2019).
This motivates the problem-dependent analysis for algorithms that exploit the benign MDPs (e.g.,
Wagenmaker et al. (2022a); Zhou et al. (2023); Zhang et al. (2024)). One of the benign structures is
based on the dependency on the positive suboptimality gap: for every state, the best action outper-
forms others by a margin. It is important because nearly all non-degenerate environments with finite
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action sets satisfy some sub-optimality gap conditions (Yang et al., 2021). Recently, Simchowitz
& Jamieson (2019) proved the log T -type regret if there exists a strictly positive suboptimality gap.
Since then, the gap-dependent regret analysis has been widely studied, for example, Dann et al.
(2021); Yang et al. (2021); Xu et al. (2021); Wang et al. (2022); He et al. (2021), etc.

Model-free RL algorithms, the focus of this paper, are also called Q-learning algorithms and di-
rectly learn the optimal action value function (Q-function) and state value function (V -function) to
optimize the policy. It is widely used in practice due to its easy implementation (Jin et al., 2018) and
the lower memory requirement that scales linearly in S while that for model-based algorithms scales
quadratically. However, the literature on gap-dependent analysis for Q-learning is quite sparse. Yang
et al. (2021) studied the gap-dependent regret of the UCB-Hoeffding algorithm (Jin et al., 2018), the
first model-free algorithm with a worst-case

√
T -type regret in the literature, and presented the first

log T -type regret bound for model-free algorithms:

O

(
H6SA log(SAT )

∆min

)
. (1)

where ∆min is defined as the minimum nonzero suboptimality gap for all the state-action-step triples.

Xu et al. (2021) proposed the multi-step bootstrapping algorithm and showed the same dependency
on the minimum gap as Yang et al. (2021). Both papers used the simple Hoeffding-type bonuses
for explorations in the algorithm design. However, their analysis frameworks based on Hoeffding-
type bonuses cannot be directly applied to study two important Q-learning algorithms that improve
the regrets of Jin et al. (2018) and achieve the almost optimal worst-case regret: UCB-Advantage
(Zhang et al., 2020) and Q-EarlySettled-Advantage (Li et al., 2021). In particular, UCB-Advantage
and Q-EarlySettled-Advantage use variance estimators in their bonuses and reference-advantage de-
composition for variance reduction. It remains an important open question whether such techniques
can improve gap-dependent regret:

Is it possible to establish a potentially improved gap-dependent regret bound for Q-learning using
variance estimators in the bonuses and reference-advantage decomposition?

This is a challenging task due to several non-trivial difficulties. In particular, bounding the weighted
sum of the errors of the estimated Q-functions is necessary to establish the gap-dependent regret
bounds for UCB-Advantage and Q-EarlySettled-Advantage, which is very difficult as it involves the
estimated reference and advantage functions and the bonuses that include variance estimators for
both functions. However, the analysis framework of Xu et al. (2021) for their non-optimism algo-
rithm cannot bound the weighted sum of such errors, and the analysis frameworks in all optimism-
based model-free algorithms including Jin et al. (2018); Zhang et al. (2020); Li et al. (2021); Yang
et al. (2021) can only bound the weighted sum under the simple Hoeffding-type bonus.

Besides the regret, the policy switching cost is also an important evaluation criterion for on-policy
RL, especially in applications with restrictions on policy switching such as compiler optimization
(Ashouri et al., 2018), hardware placements (Mirhoseini et al., 2017), database optimization (Krish-
nan et al., 2018), and material discovery (Nguyen et al., 2019). Under the worst-case MDPs, Bai
et al. (2019) modified the algorithms in Jin et al. (2018) to reach a switching cost of O(H3SA log T ),
and UCB-Advantage (Zhang et al., 2020) reached an improved switching cost of O(H2SA log T )
due to the stage design in Q-function update, both improving upon the cost of Θ(K) for regular
Q-learning algorithms (e.g. Jin et al. (2018)). To our knowledge, none of existing works study
gap-dependent switching cost for Q-learning algorithms, leaving this as an open question..

Summary of our contributions. In this paper, we give an affirmative answer to the open questions
above by establishing gap-dependent regret bound for UCB-Advantage (Zhang et al., 2020) and
Q-EarlySettled-Advantage (Li et al., 2021) as well as a gap-dependent policy switching cost for
UCB-Advantage. For Q-learning, this paper provides the first gap-dependent regret analysis with
both variance estimators and variance reduction and the first gap-dependent policy switching cost.

Our detailed contributions are summarized as follows.

• Improved Gap-Dependent Regret. Denote Q⋆ ∈ [0, H2] as the maximum conditional variance
for the MDP and β ∈ (0, H] as the hyper-parameter to settle the reference function. We prove that
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UCB-Advantage guarantees a gap-dependent expected regret of

O

((
Q⋆ + β2H

)
H3SA log(SAT )

∆min
+

H8S2A log(SAT ) log(T )

β2

)
, (2)

and Q-EarlySettled-Advantage guarantees a gap-dependent expected regret of

O

((
Q⋆ + β2H

)
H3SA log(SAT )

∆min
+

H7SA log2(SAT )

β

)
. (3)

These results are logarithmic in T and better than the worst-case
√
T -type regret in

Zhang et al. (2020); Li et al. (2021). They also have a common gap-dependent term
Õ
((
Q⋆ + β2H

)
H3SA/∆min

)
where Õ(·) hides logarithmic factors. The other term in either

Equation (2) or Equation (3) is gap-free. Our result is also better than Equation (1) for Yang
et al. (2021); Xu et al. (2021) in the following ways. (a) Under the worst-case Q⋆ = Θ(H2)

and setting β = O(1/
√
H) as in Zhang et al. (2020) or β = O(1) as in Li et al. (2021),

Õ
((
Q⋆ + β2H

)
H3SA)/∆min

)
becomes Õ(H5SA/∆min), which is better than Equation (1) by

a factor of H . (b) Under the best variance Q⋆ = 0 which will happen when the MDP is deter-
ministic, our regret in Equation (3) can linearly depend on Õ(∆

−1/3
min ), which is intrinsically better

than the dependency on ∆−1
min in Equation (1). (c) Since our gap-free terms also logarithmically

depend on T , they are smaller than Equation (1) when ∆min is sufficiently small.

• Gap-Dependent Policy Switching Cost. We can prove that for any δ ∈ (0, 1), with probability
at least 1− δ, the policy switching cost for UCB-Advantage is at most

O

(
H|Dopt| log

(
T

H|Dopt|
+ 1

)
+H|Dc

opt| log

(
H4SA

1
2 log(SAT

δ )

β
√
|Dc

opt|∆min

))
. (4)

Here, Dopt is a subset of all state-action-step triples and represents all triples such that the ac-
tion is optimal. Dc

opt is its complement, and | · | gives the cardinality of the set. Next, we compare
Equation (4) with the worst-case cost of O(H3SA log T ) in Bai et al. (2019) and O(H2SA log T )
in Zhang et al. (2020). Since |Dopt| < HSA for non-degenerate MDPs, our first term in Equa-
tion (4) is better than the worst-case cost. Specifically, when each state has a unique optimal
action so that |Dopt| = HS, it implies the improvement by removing a factor of A compared with
O(H2SA log T ). This improvement is significant in applications with a large action space (e.g.
recommender systems (Covington et al., 2016) and text-based games (Bellemare et al., 2013)). For
the second term where |Dc

opt| < HSA in Equation (4), we also improve log T to log log T , and
the significance of such improvement is pointed out by Qiao et al. (2022); Zhang et al. (2022b).

• Technical Novelty and Contributions.
For gap-dependent regret analysis, we develop an error decomposition framework that separates
errors in reference estimations, advantage estimations, and reference settling. This helps bound
the weighted sums mentioned above. We creatively handle the separated terms in the following
way. (a) We relate the empirical errors and the bonus for reference estimations to Q⋆ to avoid
using their upper bounds Θ(H2). This leverages the variance estimators. (b) When trying to
bound the errors in reference and advantage estimations, we tackle the non-martingale difficulty,
originating from the settled reference functions that depend on the whole learning process, with
our novel surrogate reference functions so that the empirical estimations become martingale sums.
To the best of our knowledge, we are the first to construct martingale surrogates in the literature
for Q-learning using reference-advantage decomposition.
For the gap-dependent policy switching cost, we explore the unbalanced number of visits to states
paired with optimal or suboptimal actions, which leads to the two terms in Equation (4).

2 PRELIMINARIES

Throughout this paper, for any C ∈ N, we use [C] to denote the set {1, 2, . . . C}. We use I[x] to
denote the indicator function, which equals 1 when the event x is true and 0 otherwise.
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Tabular episodic Markov decision process (MDP). A tabular episodic MDP is denoted asM :=
(S,A, H,P, r), where S is the set of states with |S| = S,A is the set of actions with |A| = A, H
is the number of steps in each episode, P := {Ph}Hh=1 is the transition kernel so that Ph(· | s, a)
characterizes the distribution over the next state given the state action pair (s, a) at step h, and
r := {rh}Hh=1 are the deterministic reward functions with rh(s, a) ∈ [0, 1].

In each episode, an initial state s1 is selected arbitrarily by an adversary. Then, at each step h ∈ [H],
an agent observes a state sh ∈ S , picks an action ah ∈ A, receives the reward rh = rh(sh, ah)
and then transits to the next state sh+1. The episode ends when an absorbing state sH+1 is reached.
Later on, for ease of presentation, when we describe s, a, h, k along with “any, each, all” or “∀”, we
will omit the sets S,A, [H], [K]. We denote Ps,a,hf = Esh+1∼Ph(·|s,a)(f(sh+1)|sh = s, ah = a),
Vs,a,hf = Ps,a,hf

2 − (Ps,a,hf)
2 and 1sf = f(s),∀(s, a, h) for any function f : S → R.

Policies, state value functions, and action value functions. A policy π is a collection of H func-
tions

{
πh : S → ∆A}

h∈[H]
, where ∆A is the set of probability distributions over A. A policy is

deterministic if for any s ∈ S , πh(s) concentrates all the probability mass on an action a ∈ A. In
this case, we denote πh(s) = a. We use V π

h : S → R to denote the state value function at step h

under policy π. Mathematically, V π
h (s) :=

∑H
h′=h E(sh′ ,ah′ )∼(P,π) [rh′(sh′ , ah′) | sh = s] . We also

use Qπ
h : S ×A → R to denote the state-action value function at step h, i.e., Qπ

h(s, a) := rh(s, a)+∑H
h′=h+1 E(sh′ ,ah′ )∼(P,π) [rh′(sh′ , ah′) | sh = s, ah = a] . Azar et al. (2017) proved that there al-

ways exists an optimal policy π⋆ that achieves the optimal value V ⋆
h (s) = supπ V

π
h (s) = V π∗

h (s)
for all s ∈ S and h ∈ [H]. The Bellman equation and the Bellman optimality equation are V π

h (s) = Ea′∼πh(s)[Q
π
h(s, a

′)]
Qπ

h(s, a) := rh(s, a) + Ps,a,hV
π
h+1

V π
H+1(s) = 0,∀(s, a, h)

and

 V ⋆
h (s) = maxa′∈A Q⋆

h(s, a
′)

Q⋆
h(s, a) := rh(s, a) + Ps,a,hV

⋆
h+1

V ⋆
H+1(s) = 0,∀(s, a, h).

(5)

For any problem with K episodes, let πk be the policy adopted in the k-th episode, and sk1 be the
corresponding initial state. The regret over T = HK steps is Regret(T ) :=

∑K
k=1

(
V ⋆
1 −V πk

1

)
(sk1).

Suboptimality Gap. For any given MDP, we can provide the following formal definition.
Definition 2.1. For any (s, a, h), the suboptimality gap is defined as ∆h(s, a) := V ⋆

h (s)−Q⋆
h(s, a).

Equation (5) implies that ∆h(s, a) ≥ 0,∀(s, a, h). Then it is natural to define the minimum gap,
which is the minimum non-zero suboptimality gap with regard to all (s, a, h).
Definition 2.2. We define the minimum gap as ∆min := inf{∆h(s, a) : ∆h(s, a) > 0,∀(s, a, h)}.

We remark that if {∆h(s, a) : ∆h(s, a) > 0,∀(s, a, h)} = ∅, then all actions are optimal, leading
to a degenerate MDP. Therefore, we assume that the set is nonempty and ∆min > 0. Definitions 2.1
and 2.2 and the non-degeneration are standard in the literature on gap-dependent analysis (e.g. Sim-
chowitz & Jamieson (2019); Xu et al. (2020); Yang et al. (2021); Zhang et al. (2025)).

Maximum Conditional Variance. This quantity is formally defined as follows.
Definition 2.3. We define the maximum conditional variance as Q⋆ := maxs,a,h{Vs,a,h(V

⋆
h+1)}.

Under our MDP with deterministic reward, Definition 2.3 coincides with that in (Zanette & Brun-
skill, 2019) which performed variance-dependent regret analysis.

Policy Switching Cost. We provide the following definition for any algorithm with K > 1 episodes.
Definition 2.4. The policy switching cost for K episodes is defined as Nswitch :=∑K−1

k=1 Ñswitch(π
k+1, πk). Here, the Ñswitch(π, π

′) :=
∑

s∈S
∑H

h=1 I[πh(s) ̸= π′
h(s)] represents

the local switching cost for any policies π and π′.

This definition is also used in Bai et al. (2019) and Zhang et al. (2020).

3 MAIN RESULTS

This section presents the gap-dependent regret for UCB-Advantage and Q-EarlySettled-Advantage
in Subsection 3.1 and the gap-dependent policy switching cost for UCB-Advantage in Subsection
3.3. We highlight a new technical tool for the gap-dependent regret bound in Subsection 3.2.
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3.1 GAP-DEPENDENT REGRETS

UCB-Advantage (Zhang et al., 2020) is the first model-free algorithm that reaches an almost opti-
mal worst-case regret, which is also reached by Q-EarlySettled-Advantage (Li et al., 2021). Both
algorithms are optimism-based, use upper confidence bounds (UCB) for exploration, and employ
variance estimators and reference-advantage decomposition. UCB-Advantage settles the reference
function at each (s, h) by comparing the number of visits to a threshold that relies on a hyper-
parameter β ∈ (0, H]. For readers’ convenience, we provide UCB-Advantage without any modifi-
cation in Algorithm 1 of Appendix D.1.

Theorem 3.1 provides the expected regret upper bound of UCB-Advantage.

Theorem 3.1. For UCB-Advantage (Algorithm 1 in Appendix D.1) with β ∈ (0, H], E[Regret(T )]
is upper bounded by Equation (2).

Q-EarlySettled-Advantage improved the burn-in cost of Zhang et al. (2020) for reaching the almost-
optimal worst-case regret by using both estimated upper and lower confidence bounds for V ⋆

h to
settle the reference function. In this paper, we slightly modify its reference settling condition. At
the end of k-th episode, for any (s, h), the algorithm holds V k+1

h (s), V LCB,k+1
h (s), the estimated

upper and lower bounds for V ⋆
h (s), respectively. When |V k+1

h (s) − V LCB,k+1
h (s)| ≤ β holds for

the first time, it settles the reference function value V R
h (s) as V k+1

h (s). Li et al. (2021) set β = 1
for worst-case MDPs. Our paper treats β as a hyper-parameter within (0, H] to allow better control
over the learning process. Algorithms 2 and 3 provide our refined version. For the rest of this paper,
we still call it Q-EarlySettled-Advantage without special notice.

Theorem 3.2 provides the expected regret upper bound of Q-EarlySettled-Advantage.

Theorem 3.2. For Q-EarlySettled-Advantage (Algorithms 2 and 3 in Appendix F.1) with β ∈ (0, H],
E[Regret(T )] is upper bounded by Equation (3).

The proof sketch of Theorem 3.2 is presented in Section 4 to explain our technical contributions. The
complete proofs of Theorems 3.1 and 3.2 are provided in Appendix D and Appendix F, respectively.

Next, we compare the results of both theorems with the worst-case regrets in Zhang et al. (2020); Li
et al. (2021) and the gap-dependent regrets in Yang et al. (2021); Xu et al. (2021).

Comparisons with Zhang et al. (2020); Li et al. (2021). Since the regrets showed in Equa-
tions (2) and (3) are logarithmic in T , they are better than the worst-case regret Õ(

√
H2SAT )

when T ≥ Θ̃(poly(HSA,∆−1
min, β

−1)) where poly(·) represents some polynomial. In addition, our
results imply new guidance on setting the hyper-parameter β for the gap-dependent regret, which
is different from β = 1/

√
H in Zhang et al. (2020) and β = 1 in Li et al. (2021), respectively.

When Q⋆ = 0 which happens when the MDP is deterministic, if we set β = Θ̃(H(S∆min)
1/4) for

UCB-Advantage and β = Θ̃(H∆
1/3
min ), the gap-dependent regrets will linearly depend on ∆

−1/2
min and

∆
−1/3
min , respectively. This provides new guidance on setting β when we have prior knowledge about

∆min. When 0 < Q⋆ ≤ H2, the best available gap-dependent regret becomes Θ̃(Q⋆H2SA) which
holds when β ≤

√
Q⋆/H . Knowing that the gap-free terms in Equations (2) and (3) monotonically

decrease in β, we will recommend setting β = Õ(
√
Q⋆/H) if prior knowledge on Q⋆ is available.

Comparisons with Yang et al. (2021); Xu et al. (2021). The gap-dependent regret for Yang et al.
(2021) is provided in Equation (1). For Xu et al. (2021), their regret bound is given by:

O

 H∑
h=1

∑
s∈S

∑
a ̸=π⋆

h(s)

1

∆h(s, a)
+
|Zmul|
∆min

+ SA

H5 log(K)

 , (6)

where Zmul =
{
(h, s, a)|∆h(s, a) = 0 ∧ |Zh

opt(s)| > 1
}

and Zh
opt(s) = {a|∆h(s, a) = 0}. In MDPs

where ∆h(s, a) = Θ(∆min) for Θ(HSA) state-action-step triples (e.g. the example in Xu et al.
(2021, Theorem 1.3)) or there are Θ(A) optimal actions for each state-step pair (s, h), their regret
reduces to Equation (1), which is worse than ours.

5



Published as a conference paper at ICLR 2025

Next, we compare Equations (2) and (3) with Equation (1). Under the worst-case variance
Q⋆ = Θ(H2) and letting β be Θ(1/

√
H) or Θ(1) which are the recommendations in Zhang et al.

(2020); Li et al. (2021) respectively for the worst-case MDPs, the common gap-dependent term
Equations (2) and (3) becomes Õ(H5SA/∆min), which is better than Equation (1) by a factor of
H . Under the best variance Q⋆ = 0, the gap-dependent term becomes Õ(β2H3SA/∆min), which is
better than Equation (1) for any β ∈ (0, H]. In addition, our best possible gap-dependent regret that
is sublinear in ∆−1

min is also intrinsically better. Here, we remark that the proof in Yang et al. (2021);
Xu et al. (2021) cannot benefit from Q⋆ = 0 due to their use of Hoeffding-type bonuses.

We also comment on the gap-free terms in Equations (2) and (3). They are dominated by the gap-
dependent term as long as ∆min ≤ Õ(poly((HSA)−1, β)) for some polynomial poly(·). In addition,
the gap-free term in Equation (3) is linear in S, which is better than that for Equation (2) thanks to
the special design of Q-EarlySettled-Advantage algorithm. It utilizes both upper confidence bounds
and lower confidence bounds for V -functions to settle the reference function.

3.2 OUR TECHNICAL TOOL: SURROGATE REFERENCE FUNCTIONS

We develop a new technical tool in the proofs of both Theorems 3.1 and 3.2: the surrogate refer-
ence functions. In this subsection, we explain it with the notations in the proof of Theorem 3.2
(Appendix F.1) for Q-EarlySettled-Advantage while all the ideas also apply to UCB-Advantage. A
more detailed proof sketch will be provided in the next section. For a comprehensive explanation of
Q-EarlySettled-Advantage, we refer readers to Appendix F.1.

Before introducing the surrogate reference function, we provide a brief overview of the key steps
of Q-EarlySettled-Advantage. Denote the estimated Q-function, the estimated V -function, and
the reference function before the start of episode k as Qk

h(s, a), V
k
h (s), V R,k

h (s) and episode k as
{(skh, akh)}Hh=1. Let Nk

h (s, a) be the number of visits to (s, a, h) before the start of episode k. Let
Nk+1

h be short for Nk+1
h (skh, a

k
h) and kn be the episode index for the n-th visit to (skh, a

k
h, h). While

remaining unchanged for the unvisited triples, the estimated Q-function is updated on the visited
ones:

Qk+1
h (skh, a

k
h) = min{QUCB,k+1

h (skh, a
k
h), Q

R,k+1
h (skh, a

k
h), Q

k
h(s

k
h, a

k
h)}, h ∈ [H]. (7)

Here, QUCB,k+1
h represents the Hoeffding-type estimation similar to Jin et al. (2018), and

QR,k+1
h (skh, a

k
h) represents the reference-advantage type estimation as follows:

QR,k+1
h (skh, a

k
h) = rkh(s

k
h, a

k
h)+

Nk+1
h∑

n=1

(
η
Nk+1

h
n (V kn

h+1−V
R,kn

h+1 )+u
Nk+1

h
n V R,kn

h+1

)
(sk

n

h+1)+R̃h,k+1. (8)

In Equation (8), V kn

h+1 − V R,kn

h+1 represents the running estimation of the advantage function, and

{ηN
k
h

n }
Nk+1

h
n=1 are the corresponding nonnegative weights that sum to 1. {uNk+1

h
n }N

k+1
h

n=1 that sum to 1
are nonnegative weights for the reference function. R̃h,k+1 is the cumulative bonus that dominates
the variances in the two weighted sums. Next, the estimated V -function and the reference function
are also updated. For any (s, h), when some reference settling condition related to β is triggered at
the end of episode k, the reference function will be settled, which means that V R,k′

h (s) = V R,k+1
h (s)

for any k′ ≥ k+1. Thus, we call V R,K+1
h , the reference function after the last episode as the settled

reference function. Q-EarlySettled-Advantage guarantees that for any (h, k) ∈ [H]× [K]

V k
h (s) = max

a
Qk

h(s, a), π
k
h(s) = argmax

a
Qk

h(s, a), (9)

and

Q⋆
h ≤ Qk+1

h ≤ Qk
h ≤ H,V k+1

h ≤ V k
h ≤ H, V R,k+1

h ≤ V R,k
h ≤ H, V ⋆

h ≤ V k
h ≤ V R,k

h . (10)

Equations (9) and (10) indicate that Q-EarlySettled-Advantage is an optimism-based method that
updates the policy according to an upper bound Qk

h of Q⋆
h.

Next, we introduce our surrogate reference functions V̂ R,k
h . They are defined as follows:

V̂ R,k
h (s) := max

{
V ⋆
h (s),min{V ⋆

h (s) + β, V R,k
h (s)}

}
,∀(s, h, k). (11)
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We use the word “surrogate” because the algorithm does not rely on it, and V̂ R,k
h differs from the

actual settled reference function V R,K+1
h . V̂ R,k

h is determined before episode k. In addition, Equa-
tion (10) implies that

V ⋆
h (s) ≤ V̂ R,k

h (s) = min
{
V ⋆
h (s) + β, V R,k

h (s)
}
,∀(s, h, k), (12)

and Lemma F.5 in Appendix F.2 shows that with high probability, V̂ R,k
h (s) coincides with the settled

reference value V R,K+1
h (s) after the settling condition is triggered.

Next, we discuss the usage of V̂ R,k
h in our error decompositions. Our proof relies on relating the

regret to multiple groups of estimation error sums that take the form
∑K

k=1 ω
(i)
h,k(Q

k
h−Q⋆

h)(s
k
h, a

k
h).

Here {ω(i)
h,k}k are nonnegative weights and i is the group index. Bounding the weighted sum via con-

trolling each individual (Qk
h−Q⋆

h)(s
k
h, a

k
h) by recursion on h is a common technique for model-free

optimism-based algorithms, and it is also used by all of Yang et al. (2021); Zhang et al. (2020); Li
et al. (2021). Yang et al. (2021) used it on gap-dependent regret analysis and Zhang et al. (2020); Li
et al. (2021) used it to control the reference settling errors

∑K
k=1

(
V R,k+1
h −V R,K+1

h

)
(skh). However,

their techniques are only limited to the Hoeffding-type update, where the errors generated in the re-

cursion take the simple form of Õ
(√

H3/Nk
h

)
, where Nk

h is short for Nk
h (s

k
h, a

k
h). When analyzing

the reference-advantage type update, we face a more complicated error (Equation (14) in Section 4)
involving reference and advantage estimations, as well as bonuses with variance estimators.

Motivated by the structure of reference-advantage decomposition, we decompose the estima-
tion error into several components, focusing on the following four main terms: G1 :=∑Nk

h
n=1 η

Nk
h

n (Pskh,a
k
h,h
− 1sk

n

h+1
)(V̂ R,kn

h+1 − V ⋆
h+1), G2 :=

∑Nk
h

n=1 u
Nk

h
n

(
1sk

n

h+1
− Pskh,a

k
h,h

)
V̂ R,kn

h+1 , G3 :=∑Nk
h

n=1

(
u
Nk

h
n − η

Nk
h

n

)
Pskh,a

k
h,h

V̂ R,kn

h+1 +
∑Nk

h
n=1 u

Nk
h

n (V R,kn

h+1 − V̂ R,kn

h+1 )(sk
n

h+1) and the bonus term G4.
The first three terms correspond to advantage estimation error, reference estimation error, and ref-
erence settling error, respectively. Here, we creatively use the surrogate V̂ R,k

h+1 as it is determined
before the start of episode k. Thus, G1,G2 are martingale sums and can be controlled by concentra-
tion inequalities. G3 corresponds to the reference settling error and can also be well-controlled given
the settling conditions and properties of V̂ R,k

h (s). G4 is controlled using the same idea of bounding
G1,G2,G3. V̂ R,k

h+1 is crucial to this process and cannot be replaced by the actual settled reference
function V R,K+1

h+1 used in Zhang et al. (2020); Li et al. (2021). This is because V R,K+1
h+1 depends

on the whole learning process and causes a non-martingale issue in controlling G1, G2 and G3. To
the best of our knowledge, we are the first to introduce the novel construction of reference surro-
gates for reference-advantage decomposition, which is of independent interest for future research on
off-policy and offline methods.

3.3 GAP-DEPENDENT POLICY SWITCHING COST FOR UCB-ADVANTAGE

Different from Q-EarlySettled-Advantage, UCB-Advantage uses the stage design for updating the
estimated Q-function. For each (s, a, h), Zhang et al. (2020) divided the visits into consecutive
stages with the stage size increasing exponentially. It updates the estimated Q-function only at the
end of each stage so that the policy switches infrequently. Theorem 3.3 provides the policy switching
cost for UCB-Advantage, and the proof is provided in Appendix E.

Theorem 3.3. For UCB-Advantage (Algorithm 1 in Appendix D.1) with β ∈ (0, H] and any δ ∈
(0, 1), with probability at least 1 − δ, Nswitch is upper bounded by Equation (4). Here, Dopt =
{(s, a, h) ∈ S × A × [H] | a ∈ A⋆

h(s)}, where A∗
h(s) = {a | a = argmaxa′ Q∗

h(s, a
′)}, and

Dc
opt = (S ×A× [H])\Dopt.

Comparisons with existing works. The first term in Equation (4) logarithmically depends on T
and the second one logarithmically depends on 1/∆min and log T . Next, we compare our result with
O(H2SA log T ) in Zhang et al. (2020), which is the best available policy switching cost for model-
free methods in the literature. For the first term in Equation (4), knowing that |Dopt| < HSA for
all non-degenerated MDPs where there exists at least one state such that not all actions are optimal,
the coefficient is better than Equation (4). Specifically, if each state has a unique optimal action so

7
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that |Dopt| = SH , Equation (4) becomes O
(
H2S log

(
T

H2S + 1
)
+H2SA log

(
H

7
2 S

1
2 log(SAT

δ )

β∆min

))
where the coefficient in the first term outperforms that in Zhang et al. (2020) by a factor of A.

For the second term in Equation (4), when the total steps are sufficiently large such that T =
Ω̃
(
poly

(
SH, (β∆min)

−1
))

for some polynomial poly(·), it is also better than O(H2SA log T ).

Key Ideas of the Proof. The proof of Theorem 2 in Zhang et al. (2020) implies Nswitch ≤∑
s,a,h 4H log

(
NK+1

h (s,a)

2H + 1
)

, where NK+1
h (s, a) is the total number of visits to (s, a, h). Un-

der their worst-case MDP and noticing that
∑

s,a,h N
K+1
h (s, a) ≤ T , Zhang et al. (2020) further

proved their bound O(H2SA log T ) by applying Jensen’s inequality. In our gap-dependent anal-
ysis, Equation (79) in Appendix E shows that with high probability,

∑
(s,a,h)∈Dc

opt
NK+1

h (s, a) ≤

Õ
(
H6SA
∆min

+ H8S2A
β2

)
, which is much smaller than T when T is sufficiently large. This implies the

discrepancy among the number of visits to state-action-step triples with optimal or suboptimal ac-
tions. Accordingly, we prove the bound in Equation (4) by using Jensen’s inequality separately for
triples with optimal or suboptimal actions.

4 PROOF SKETCH OF THEOREM 3.2

This section provides a proof sketch to outline the key steps for proving Theorem 3.2 on the gap-
dependent regret of Q-EarlySettled-Advantage and explain our technical contributions. The key
steps for proving Theorem 3.1 are similar except for different bounds on reference settling error and
gap-free regret terms. For space consideration, the proofs of Theorem 3.1 are given in Appendix D.

Notations. First, we introduce the weights used in the algorithm. Let ηn := H+1
H+n . For

N ∈ N+, denote η00 := 1 and ηN0 :=
∏N

i=1(1 − ηi). For integers 1 ≤ n ≤ N , we
also denote ηNn := ηn

∏N
i=n+1(1 − ηi), and uN

n =
∑N

i=n η
N
i /i. When N > 0, they sat-

isfy 1 − ηN0 =
∑N

n=1 η
N
n =

∑N
n=1 u

N
n . For simplicity later, we use the notations Êref

h,kf :=∑Nk
h

n=1 u
Nk

h
n f(sk

n

h+1) and Êref
h,kf

kn

:=
∑Nk

h
n=1 u

Nk
h

n fkn

(sk
n

h+1) for any functions f : S → R and

fk : S → R with k ∈ N+, respectively. Similarly, we denote Êadv
h,kf :=

∑Nk
h

n=1 η
Nk

h
n f(sk

n

h+1) and

Êadv
h,kf

kn

:=
∑Nk

h
n=1 η

Nk
h

n fkn

(sk
n

h+1). We also denote Pref
h,kf =

∑Nk
h

n=1 u
Nk

h
n Pskh,a

k
h,h

f , Pref
h,kf

kn

=∑Nk
h

n=1 u
Nk

h
n Pskh,a

k
h,h

fkn

, Padv
h,kf =

∑Nk
h

n=1 η
Nk

h
n Pskh,a

k
h,h

f and Padv
h,kf

kn

=
∑Nk

h
n=1 η

Nk
h

n Pskh,a
k
h,h

fkn

.

In what follows, we present the proof sketch of Theorem 3.2.

Step 1: Bounding Qk
h−Q⋆

h via decomposition and the surrogate reference function. The update
of the estimated Q-function in Equations (7) and (8) guarantees that

Qk
h(s

k
h, a

k
h) ≤ η

Nk
h

0 H + rh(s
k
h, a

k
h) + Êadv

h,k(V
kn

h+1 − V R,kn

h+1 ) + Êref
h,kV

R,kn

h+1 +Rh,k. (13)

Here, Rh,k is the cumulative bonus provided in Equation (98) in Appendix F.3.2. Together with

Q⋆
h(s

k
h, a

k
h) ≥ rh(s

k
h, a

k
h) + (1 − η

Nk
h

0 )Pskh,a
k
h,h

V ⋆
h+1 by Equation (5) and Êadv

h,k(V
kn

h+1 − V R,kn

h+1 ) ≤
Êadv
h,k(V

kn

h+1 − V̂ R,kn

h+1 ) implied by Equation (12), we have

(Qk
h −Q⋆

h)(s
k
h, a

k
h) ≤ η

Nk
h

0 H +Rh,k + Êadv
h,k(V

kn

h+1 − V̂ R,kn

h+1 ) + Êref
h,kV

R,kn

h+1 − Padv
h,kV

⋆
h+1 =: Gk

h.

Denote V̂ adv,k
h = V̂ R,k

h − V ⋆
h , then:

Gk
h = Êadv

h,k(V
kn

h+1 − V ⋆
h+1) + (Padv

h,k − Êadv
h,k)V̂

adv,kn

h+1 + (Êref
h,k − Pref

h,k)V̂
R,kn

h+1 +Rh,k +Rh,k
else,0. (14)

Here, Rh,k
else,0 = Hη

Nk
h

0 + Êref
h,k(V

R,kn

h+1 − V̂ R,kn

h+1 ) + (Pref
h,kV̂

R,kn

h+1 − Padv
h,kV̂

R,kn

h+1 ). Equation (95) and
Equation (96) in Appendix F.3.1 show that for all (k, h) simultaneously, with high probability,

(Padv
h,k − Êadv

h,k)V̂
adv,kn

h+1 ≤ Õ

(√
Hβ2

Nk
h

)
, (Êref

h,k − Pref
h,k)V̂

R,kn

h+1 ≤ Õ

(√
Q⋆ + β2

Nk
h

+
H

Nk
h

)
. (15)

8
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Equation (15) corresponds to controlling G1 and G2, as discussed in Section 3.2, and holds because
our surrogate reference function adapts to the learning process. To bound the bonus Rh,k, we also
use the surrogate function V̂ R,k

h . Equation (103) in Appendix F.3.2 shows that for all (k, h) simulta-
neously, with high probability

Rh,k ≤ Õ

(√
(Q⋆ + β2H)/Nk

h +H2/(Nk
h )

3
4 +

√
HΨk

h/N
k
h

)
. (16)

where Ψk
h =

∑Nk
h

n=1

(
V R,kn

h+1 − V̂ R,kn

h+1

)
(sk

n

h+1). Equations (14) to (16) imply

(Qk
h−Q⋆

h)(s
k
h, a

k
h) ≤ Êadv

h,k

(
V kn

h+1−V ⋆
h+1

)
+Õ

(√
(Q⋆ +Hβ2)/Nk

h +H2(Nk
h )

− 3
4

)
+Rh,k

else , (17)

where Rh,k
else = Õ

(
η
Nk

h
0 H+Êref

h,k

(
V R,kn

h+1 −V̂
R,kn

h+1

)
+
(
Pref
h,kV̂

R,kn

h+1 −Padv
h,kV̂

R,kn

h+1

)
+
(√

HΨk
h+H

)
/Nk

h

)
.

Remark 1: We use Q⋆ in Equation (16) instead of its upper bound Θ(H2) thanks to the variance
estimator (line 16 of Algorithm 2 in Appendix F.1 ) used in Q-EarlySettled-Advantage algorithm.

Step 2: Bounding the Weighted Sum. For any given h ∈ [H] and non-negative weights
{ωh,k}h,k∈[K], we denote ∥ω∥∞,h = maxk∈[K] ωh,k and ∥ω∥1,h =

∑
k∈[K] ωh,k. We also re-

cursively define ωh′,k(h) for any h ≤ h′ < H, k ∈ [K] as follows:

ωh,k(h) := ωh,k; ωh′+1,j(h) =

K∑
k=1

Nk
h′∑

n=1

ωh′,k(h)η
Nk

h′
n I [kn = j] ,∀j ∈ [K], h ≤ h′ < H. (18)

Equation (18) implies the mapping from {ωh,k}h,[K] to {ωh′,k(h)}h′,[K] is linear. Let
∥ω(h)∥∞,h′ = maxk∈[K] ωh′,k(h) and ∥ω(h)∥1,h′ =

∑
k∈[K] ωh′,k(h). Then Equation (106) and

Equation (107) in Appendix F.4.2 shows that
∥ω(h)∥∞,h′ ≤ (1 + 1/H)∥ω(h)∥∞,h′−1, ∥ω(h)∥1,h′ ≤ ∥ω(h)∥1,h′−1, ∀h′ > h. (19)

Next, we bound the weighted sum
∑K

k=1 ωh,k(Q
k
h − Q⋆

h)(s
k
h, a

k
h). In Equation (17) where

we take summations with regard to k on both sides and apply the standard summation
rearrangement technique given in Appendix F.4.1 to the first term Êadv

h,k

(
V kn

h+1 − V ⋆
h+1

)
,

we have
∑K

k=1 ωh,k(Q
k
h − Q⋆

h)(s
k
h, a

k
h) ≤

∑K
k=1 ωh+1,k(h)(Q

k
h+1 − Q⋆

h+1)(s
k
h+1, a

k
h+1) +∑K

k=1 ωh,kÕ
(√

(Q⋆ +Hβ2)/Nk
h + H2(Nk

h )
− 3

4

)
+
∑K

k=1 ωh,kR
h,k
else . Recurring it with regard

to h, h+ 1 . . . , H , we have
K∑

k=1

ωh,k(Q
k
h −Q⋆

h)(s
k
h, a

k
h) ≤ Rc +

K∑
k=1

H∑
h′=h

ωh′,k(h)R
h′,k
else . (20)

where Rc =
∑K

k=1

∑H
h′=h ωh′,k(h)Õ

(√
(Q⋆ +Hβ2) /Nk

h +H2(Nk
h )

−3/4
)

. From Equation (19)
and Lemma F.3 in Appendix F.2, it follows that

Rc ≤ Õ

(
H
√
Q⋆ + β2H

√
SA∥ω∥∞,h∥ω∥1,h +H3(SA∥ω∥∞,h)

3
4 ∥ω∥

1
4

1,h

)
. (21)

Step 3: Integrating Multiple Weighted Sums. Next, we consider multiple groups of weights. We
split the interval [∆min, H] into N disjoint intervals Ii := [2i−1∆min, 2

i∆min) for i ∈ [N − 1] and
IN := [2N−1∆min, H]. Here, N = ⌈log2(H/∆min)⌉. For any given i ∈ [N ] and h ∈ [H], we
denote ω

(i)
h,k = I

[
(Qk

h −Q⋆
h)(s

k
h, a

k
h) ∈ Ii

]
. Then we have ∥ω(i)∥∞,h = maxk∈[K] ω

(i)
h,k ≤ 1 and

2i−1∆min∥ω(i)∥1,h ≤
K∑

k=1

ω
(i)
h,k(Q

k
h −Q⋆

h)(s
k
h, a

k
h) ≤ 2i∆min∥ω(i)∥1,h, (22)

where ∥ω(i)∥1,h =
∑

k∈[K] ω
(i)
h,k. Noticing that

∑N
i=1

∑K
k=1 ω

(i)
h,k(Q

k
h − Q⋆

h)(s
k
h, a

k
h) =∑K

k=1 clip[(Qk
h −Q⋆

h)(s
k
h, a

k
h)|∆min] where clip[x|δ] := xI[x ≥ δ], Equation (22) further implies

K∑
k=1

clip[(Qk
h −Q⋆

h)(s
k
h, a

k
h) | ∆min] = Θ

(
N∑
i=1

2i∆min∥ω(i)∥1,h

)
. (23)

9
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Letting ωh,k = ω
(i)
h,k in Equation (20) and applying Equations (21) and (22), we have

2i−1∆min∥ω(i)∥1,h ≤ Õ

(
θ1

√
∥ω(i)∥1,h + θ2∥ω(i)∥

1
4

1,h +

K∑
k=1

H∑
h′=h

ω
(i)
h′,k(h)R

h′,k
else

)
. (24)

Here, θ1 =
√
H2SA(Q⋆ + β2H), θ2 = H3(SA)

3
4 . The weight {ω(i)

h′,k(h)}k is defined recursively

by Equation (18) with ω
(i)
h,k(h) = ω

(i)
h,k. Solving this inequality (see Equation (112)), we have

∥ω(i)∥1,h ≤ Õ

((
Q⋆ + β2H

)
SAH2

4i−1∆2
min

+
H4SA

(2i−1∆min)
4
3

+

∑K
k=1

∑H
h′=h ω

(i)
h′,k(h)R

h′,k
else

2i−1∆min

)
.

This further implies
N∑
i=1

2i∆min∥ω(i)∥1,h ≤ Õ

((
Q⋆ + β2H

)
SAH2

∆min
+

H4SA

∆
1
3

min

+

K∑
k=1

H∑
h′=h

ω̂h′,k(h)R
h′,k
else

)
. (25)

where ω̂h′,k(h) =
∑N

i=1 ω
(i)
h′,k(h). Noticing that ω̂h,k(h) = I[(Qk

h−Q⋆
h)(s

k
h, a

k
h) ≥ ∆min], together

with the linearity showed in Equation (18), Equation (19) implies ω̂h′,k(h) ≤ O(1) for any h ≤
h′ ≤ H . Thus,

∑K
k=1

∑H
h′=h ω̂h′,k(h)R

h′,k
else ≤ O(

∑K
k=1

∑H
h′=1 R

h′,k
else ). Appendix F.5.2 shows that

with high probability,
K∑

k=1

H∑
h′=1

Rh′,k
else ≤ Õ(H6SA/β). (26)

Summarizing Equations (23), (25) and (26) and noticing that H4SA/∆
1
3

min ≤ O(β2H3SA/∆min +
H4SA/β +H5SA/β) that follows from the AM–GM inequality, we have

K∑
k=1

clip[(Qk
h −Q⋆

h)(s
k
h, a

k
h) | ∆min] = Õ

(
SAH2(Q⋆ + β2H)/∆min +H6SA/β

)
. (27)

Remark 2: Integrating groups of sums is first introduced in Yang et al. (2021) and also applied in Li
et al. (2021). It leads to regret dependency on 1/∆min instead of 1/∆2

min that will appear if we do not
use integration. We extend this method in handling Rh,k

else that only appears in our proof: we apply the
upper bound in Equation (26) after the integration instead of Equation (24) before the integration.
This helps us remove the dependency on ∆min in the second term in Equation (27).

Remark 3: Equation (26) can be interpreted as bounding the reference settling errors, which is
related to V̂ R,k

h and the reference settling design in Q-EarlySettled-Advantage. UCB-Advantage and
Q-EarlySettled-Advantage mainly differ on the reference settling policy, which results in different
bounds for reference settling error and the gap-free regret terms in Equations (2) and (3). We show
the details in Appendix F.5.2.

Step 4: Bounding the Expected Regret. By Equation (9), Qk
h(s

k
h, a

k
h) = V k

h (skh) ≥ V ⋆
h (s

k
h). Thus,

∆h(s
k
h, a

k
h) = clip[V ∗

h (s
k
h)−Q∗

h(s
k
h, a

k
h) | ∆min] ≤ clip[(Qk

h −Q∗
h)(s

k
h, a

k
h) | ∆min],∀(k, h).

Equation (4) of Yang et al. (2021) shows that E (Regret(K)) = E
[∑K

k=1

∑H
h=1 ∆h(s

k
h, a

k
h)
]
, then

E (Regret(K)) ≤ E

[
K∑

k=1

H∑
h=1

clip[(Qk
h −Q∗

h)(s
k
h, a

k
h) | ∆min]

]
. (28)

Using the definition of expectation (see Equation (123) in Appendix F.6, which connects Equa-
tion (27) to Equation (28)), we can derive the gap-dependent regret bound presented in Theorem 3.2.

5 CONCLUSION

In this paper, we have presented the first gap-dependent regret analysis for Q-learning using
reference-advantage decomposition and also provided the first gap-dependent analysis on the policy
switching cost of Q-learning, which answers two important open questions. Our novel error decom-
position approach and construction of surrogate reference functions can be used in other problems
using reference-advantage decomposition such as the offline Q-learning and stochastic learning.
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In the appendix, Appendix A reviews related works. Appendix B presents the results of our nu-
merical experiments. Appendix C include some useful lemmas. Appendix D, Appendix E and
Appendix F provides the proof for Theorem 3.1, Theorem 3.3 and Theorem 3.2, respectively.

A RELATED WORK

On-policy RL for finite-horizon tabular MDPs with worst-case regret. There are mainly two
types of algorithms for reinforcement learning: model-based and model-free algorithms. Model-
based algorithms learn a model from past experience and make decisions based on this model,
while model-free algorithms only maintain a group of value functions and take the induced opti-
mal actions. Due to these differences, model-free algorithms are usually more space-efficient and
time-efficient compared to model-based algorithms. However, model-based algorithms may achieve
better learning performance by leveraging the learned model.

Next, we discuss the literature on model-based and model-free algorithms for finite-horizon tabular
MDPs with worst-case regret. Auer et al. (2008), Agrawal & Jia (2017), Azar et al. (2017), Kakade
et al. (2018), Agarwal et al. (2020), Dann et al. (2019), Zanette & Brunskill (2019),Zhang et al.
(2021a),Zhou et al. (2023) and Zhang et al. (2023) worked on model-based algorithms. Notably,
Zhang et al. (2023) provided an algorithm that achieves a regret of Õ(min{

√
SAH2T , T}), which

matches the information lower bound. Jin et al. (2018), Yang et al. (2021), Zhang et al. (2020),
Li et al. (2021) and Ménard et al. (2021) work on model-free algorithms. The latter three have
introduced algorithms that achieve minimax regret of Õ(

√
SAH2T ).

Suboptimality Gap. When there is a strictly positive suboptimality gap, it is possible to achieve
logarithmic regret bounds. In RL, earlier work obtained asymptotic logarithmic regret bounds Auer
& Ortner (2007); Tewari & Bartlett (2008). Recently, non-asymptotic logarithmic regret bounds
were obtained (Jaksch et al. (2010); Ok et al. (2018); Simchowitz & Jamieson (2019); He et al.
(2021). Specifically, Jaksch et al. (2010) developed a model-based algorithm, and their bound de-
pends on the policy gap instead of the action gap studied in this paper. Ok et al. (2018) derived
problem-specific logarithmic type lower bounds for both structured and unstructured MDPs. Sim-
chowitz & Jamieson (2019) extended the model-based algorithm proposed by Zanette & Brunskill
(2019) and obtained logarithmic regret bounds. Logarithmic regret bounds are also derived in linear
function approximation settings (He et al., 2021). Additionally, Nguyen-Tang et al. (2023) provides
a gap-dependent regret bounds for offline RL with linear funciton approximation.

Specifically, for model free algorithm, Yang et al. (2021) showed that the optimistic Q-learning
algorithm by Jin et al. (2018) enjoyed a logarithmic regret O(H

6SAT
∆min

), which was subsequently
refined by Xu et al. (2021). In their work, Xu et al. (2021) introduced the Adaptive Multi-step
Bootstrap (AMB) algorithm.

There are also some other works focusing on gap-dependent sample complexity bounds (Jonsson
et al., 2020; Marjani & Proutiere, 2020; Al Marjani et al., 2021; Tirinzoni et al., 2022; Wagenmaker
et al., 2022b; Wagenmaker & Jamieson, 2022; Wang et al., 2022; Tirinzoni et al., 2023).

Variance reduction in RL. The reference-advantage decomposition used in Zhang et al. (2020)
and Li et al. (2021) is a technique of variance reduction that was originally proposed for finite-sum
stochastic optimization (Gower et al., 2020; Johnson & Zhang, 2013; Nguyen et al., 2017). Later
on, model-free RL algorithms also used variance reduction to improve the sample efficiency. For
example, it was used in learning with generative models (Sidford et al., 2018; 2023; Wainwright,
2019), policy evaluation (Du et al., 2017; Khamaru et al., 2021; Wai et al., 2019; Xu et al., 2020),
offline RL (Shi et al., 2022; Yin et al., 2021), and Q-learning (Li et al., 2020; Zhang et al., 2020; Li
et al., 2021; Yan et al., 2023; Zheng et al., 2024b).

RL with low switching cost. Research in RL with low switching cost aims to minimize the number
of policy switches while maintaining comparable regret bounds to fully adaptive counterparts. Bai
et al. (2019) was the first to introduce the problem of RL with low-switching cost and proposed a
Q-learning algorithm with lazy updates that achieves a low switching cost of Õ(SAH3 log T ) . This
work was advanced by Zhang et al. (2020), which improved the regret upper bound and the switching
cost. Additionally, Wang et al. (2021) studied RL under the adaptivity constraint. Recently, Qiao
et al. (2022) proposed a model-based algorithm with a switching cost of Õ(log log T ).
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Other problem-dependent performance. In practice, RL algorithms often outperform what their
worst-case performance guarantees would suggest. This motivates a recent line of works that in-
vestigate optimal performance in various problem-dependent settings (Fruit et al., 2018; Jin et al.,
2020; Talebi & Maillard, 2018; Wagenmaker et al., 2022a; Zhao et al., 2023; Zhou et al., 2023).

B NUMERICAL EXPERIMENTS

In this section, we conduct experiments1. All the experiments are conducted in a synthetic envi-
ronment to demonstrate the better gap-dependent regret of UCB-Advantage and Q-EarlySettled-
Advantage compared to other two model-free algorithms: UCB-Hoeffding (Jin et al., 2018) and
AMB (Xu et al., 2021). We will consider two different scales of experiments across two cases: a
general MDP and a deterministic MDP.

We first set H = 5, S = 3, and A = 2. The reward rh(s, a) for each (s, a, h) is generated
independently and uniformly at random from [0, 1]. For general MDP, Ph(· | s, a) is generated on
the S-dimensional simplex independently and uniformly at random for (s, a, h). For deterministic
MDP, Ph(· | s, a) is a randomly generated vector with only one element equal to 1, and all others
equal to 0 for each (s, a, h). Under the given MDP, we generate 3×105 episodes. For each episode,
we randomly choose the initial state uniformly from the S states. For all four algorithms, we set
ι = 1 and the hyper-parameter c1 =

√
2 in the Hoeffding-type bonus. Here, c1 represents the

undefined constant in the bonus terms of the UCB-Hoeffding and AMB algorithms, as well as the
multipliers in the bonus expressions in line 10 of Algorithm 1 (UCB-Advantage) and lines 2 and
4 of Algorithm 2 (Q-EarlySettled-Advantage). In both the UCB-Advantage and Q-EarlySettled-
Advantage algorithms, we set the hyper-parameter c2 = 2, where c2 denotes the constant in the
variance estimators of the advantage-type bonus, corresponding to the undefined constant in the
second term of line 9 in Algorithm 1 and line 16 in Algorithm 2. Additionally, we set c3 = 1, which
is the multiplier in the last term of line 9 in Algorithm 1 and the last term of line 8 in Algorithm 2.
For UCB-Advantage, we set N0 = 200, and for Q-EarlySettled-Advantage, we set β = 0.05.

To show error bars, we collect 10 sample paths for all algorithms under the same MDP environment
and show the relationship between Regret(T )/ log(K + 1) and the total number of episodes K in
Figure 1. For both panels, the solid line represents the median of the 10 sample paths, while the
shaded area shows the 10th and 90th percentiles.

(a) Regret of General MDPs (b) Regret of Deterministic MDPs

Figure 1: Numerical comparison of regrets with H = 5, S = 3, and A = 2

We also conduct a larger scale experiment with H = 10, S = 5, and A = 5 for 3× 106 episodes in
both types of MDPs. With all other settings unchanged, the result is shown in the following Figure 2:

1All the experiments are run on a server with Intel Xeon E5-2650v4 (2.2GHz) and 100 cores. Each replica-
tion is limited to a single core and 4GB RAM. The total execution time is less than 2 hours. The code for the
numerical experiments is included in the supplementary materials along with the submission.
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(a) Regret of General MDPs (b) Regret of Deterministic MDPs

Figure 2: Numerical comparison of regrets with H = 10, S = 5, and A = 5

From the two figures, we observe that both UCB-Advantage and Q-EarlySettled-Advantage enjoy
lower regret compared to UCB-Hoeffding and AMB. The y-axis represents Regret(T )/ log(K+1),
and we note that the curves for UCB-Advantage and Q-EarlySettled-Advantage approach horizontal
lines as K becomes sufficiently large. This suggests that the regret for these two algorithms grows
logarithmically with K. In particular, Q-EarlySettled-Advantage achieves even lower regret than
UCB-Advantage when K is large. These features are consistent with our theoretical results.

We also conduct an experiment to evaluate the policy switching cost of the UCB-Advantage algo-
rithm for (H,S,A) = (5, 3, 2) and (10, 5, 5) with the same experimental settings. The results are
presented in the following figures:

(a) Policy Switching Cost of General MDPs (b) Policy Switching Cost of Deterministic MDPs

Figure 3: Policy switching cost of UCB-Advantage algorithm with H = 5, S = 3, and A = 2

(a) Policy Switching Cost of General MDPs (b) Policy Switching Cost of Deterministic MDPs

Figure 4: Policy switching cost of UCB-Advantage algorithm with H = 10, S = 5, and A = 5
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In these two figures, the y-axis represents the ratio of policy switching cost to log(K + 1). We
note that all these four curves approach horizontal lines as K becomes sufficiently large, which is
consistent with our logarithmic policy switching cost shown in Equation (4).

C GENERAL LEMMAS

Lemma C.1. (Azuma-Hoeffding Inequality). Suppose {Xk}∞k=0 is a martingale and |Xk −
Xk−1| ≤ ck, ∀k ∈ N+, almost surely. Then for any positive integers N and any positive real
number ϵ, it holds that:

P (XN −X0 ≥ ϵ) ≤ exp

(
− ϵ2

2
∑N

k=1 c
2
k

)
,

and

P (|XN −X0| ≥ ϵ) ≤ 2 exp

(
− ϵ2

2
∑N

k=1 c
2
k

)
.

Lemma C.2. (Lemma 10 in Zhang et al. (2022a)). Let X1, X2, . . . be a sequence of random vari-
ables taking value in [0, l]. Define Fk = σ(X1, X2, . . . , Xk) and Yk = E[Xk|Fk−1] for k ≥ 1. For
any δ > 0, we have that

P

[
∃n,

n∑
k=1

Xk ≥ 3

n∑
k=1

Yk + l log(1/δ)

]
≤ δ

and

P

[
∃n,

n∑
k=1

Yk ≥ 3

n∑
k=1

Xk + l log(1/δ)

]
≤ δ.

Lemma C.3. (Lemma 11 in Zhang et al. (2021b)). Let {Mn}n≥0 be a martingale such that M0 = 0
and |Mn −Mn−1| ≤ c for some c > 0 and any n ≥ 1. Let

Varn =

n∑
k=1

E
[
(Mk −Mk−1)

2|Fk−1

]
for n ≥ 0, where Fk = σ(M1, . . . ,Mk). Then for any positive integer n and any ϵ, δ > 0, we have

P

(
|Mn| ≥ 2

√
2Varn ln

(
1

δ

)
+ 2

√
ϵ ln

(
1

δ

)
+ 2c ln

(
1

δ

))
≤ 2

(
log2

(
nc2

ϵ

)
+ 1

)
δ.

D PROOF OF THEOREM 3.1

D.1 ALGORITHM DETAILS

The UCB-Advantage algorithm, first introduced in Zhang et al. (2020), achieves the information-
theoretic bound on regret up to logarithmic factors, using a model-free algorithm. The key inno-
vation of the algorithm lies in its combination of UCB exploration (Jin et al., 2018) with a newly
introduced reference-advantage decomposition for updating Q-estimates.

Before discussing the algorithm in detail, we will first review the special stage design used in the
algorithm. For any triple (s, a, h), we divide the samples received for the triple into consecutive
stages. Define e1 = H and ei+1 =

⌊
(1 + 1

H )ei
⌋

for all i ≥ 1, standing for the length of the stages.
We also let L := {

∑j
i=1 ei|j = 1, 2, 3, . . .} be the set of indices marking the ends of the stages.

We note that the definition of stages is with respect to the triple (s, a, h). For any fixed pair of k and
h, let (skh, a

k
h) be the state-action pair at the h-th step during the k-th episode of the algorithm. We

say that (k, h) falls in the j-th stage of (s, a, h) if and only if (s, a) = (skh, a
k
h) and the total visit

number of (skh, a
k
h) after the k-th episode is in (

∑j−1
i=1 ei,

∑j
i=1 ei].
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Now we introduce the stage-based update framework. For any (s, a, h) triple, we update Qh(s, a)
when the total visit number of (s, a, h) reaches the end of the current stage. For k-th episode at the
end of a given stage, the Q-estimate Q1,k+1

h (skh, a
k
h) learned from UCB is updated to:

Q1,k+1
h (skh, a

k
h) = rkh(s

k
h, a

k
h) +

1

ňk+1
h

ňk+1
h∑
i=1

V kľi

h+1(s
ľi
h+1) + c1

√
H2ι

ňk+1
h

. (29)

Here we define ňk
h = ňk

h(s
k
h, a

k
h) as the number of visits to (skh, a

k
h, h) during the stage immediately

before the current stage of (k, h) and ľi = ľih,k denotes the index of the i-th episode among the ňk
h

episodes. V k
h (s) is the V -estimate at the end of the episode k− 1 with the initial value V 1

h (s) = H .
The term c1

√
H2ι

ňk+1
h

represents the exploration bonus for ňk+1
h -th visit, where c1 is a sufficiently

large constant and ι = log( 2p ) with p ∈ (0, 1) being the failure probability. This type of bonus is
commonly used in Hoeffding-type updates (Jin et al. (2018); Li et al. (2021); Zheng et al. (2024a)).

The other estimate, denoted by Q2,k+1
h (skh, a

k
h), uses the reference-advantage decomposition tech-

nique. For k-th episode at the end of a given stage, it is updated to:

rkh(s
k
h, a

k
h)+

1

nk+1
h

nk+1
h∑
i=1

V ref,kli

h+1 (slih+1)+
1

ňk+1
h

ňk+1
h∑
i=1

(
V kľi

h+1 − V ref,kľi

h+1

)
(sľih+1)+bk+1

h (skh, a
k
h). (30)

Here we define nk
h = nk

h(s
k
h, a

k
h) be the number of visits to (skh, a

k
h, h) prior to the stage of (k, h)

and li = lih,k denotes the index of i-th episode among the nk
h episodes.

In Equation (30), V ref,k
h (s) is the reference function learned at the end of episode k − 1. We expect

that for any s ∈ S, sufficiently large k and some given β ∈ (0, H], it holds |V ref,k
h (s)−V ⋆

h (s)| ≤ β.

With these Q-estimates, we can update the final Q-estimate as follows:
Qk+1

h (skh, a
k
h) = min{Q1,k+1

h (skh, a
k
h), Q

2,k+1
h (skh, a

k
h), Q

k
h(s

k
h, a

k
h)}. (31)

We also incorporate Qk
h(s

k
h, a

k
h) here to keep the mononicity of the update. After updating the

Q-estimate, we can learn V k+1
h (skh) by a greedy policy with respect to the Q-estimates, i.e.,

V k+1
h (skh) = maxa Q

k+1
h (skh, a). If the number of visits to the state-step pair (s, h) first exceeds

N0 = O(SAH5ι
β2 ) at k-th episode, then we update the final reference function V REF

h (s) to V k+1
h (s).

For the reader’s convenience, we have also provided the detailed algorithm below.

Algorithm 1 UCB-Advantage

1: Initialize: set all accumulators to 0; for all (s, a, h) ∈ S × A × [H], set Qh(s, a), Vh(s) ←
H − h+ 1;V ref

h (s)← H;
2: for episodes k ← 1, 2, . . . ,K do
3: observe s1;
4: for h← 1, 2, . . . ,H do
5: Take action ah ← argmaxa Qh(sh, a), and observe sh+1.
6: Update the accumulators by n := nh(sh, ah)

+←− 1, ň := ňh(sh, ah)
+←− 1,

7: and Equation (32), Equation (33), Equation (34).
8: if n ∈ L then
9: b← c2

√
σref
h /n−(µref

h /n)2

n ι+ c2

√
σ̌/ň−(µ̌/ň)2

ň ι+ c3

(
Hι
n + Hι

ň + Hι3/4

n3/4 + Hι3/4

ň3/4

)
;

10: b̄← c1

√
H2

ň ι;

11: Qh(sh, ah)← min{rh(sh, ah) + v̌
ň + b̄, rh(sh, ah) +

µref

n + µ̌
ň + b,Qh(sh, ah)};

12: Vh(sh)← maxa Qh(sh, a);
13: ňh(sh, ah), µ̌h(sh, ah), v̌h(sh, ah), σ̌h(sh, ah)← 0;
14: end if
15: if

∑
a nh(sh, a) = N0 then V ref

h (sh)← Vh(sh)
16: end if
17: end for
18: end for
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In the algorithm, c1, c2, c3 > 0 are sufficiently large constant. The stage-wise accumulators in the
algorithm are updated as follows.

µ̌ := µ̌h(sh, ah)
+←− Vh+1(sh+1)− V ref

h+1(sh+1); v̌ := v̌h(sh, ah)
+←− Vh+1(sh+1); (32)

σ̌ := σ̌h(sh, ah)
+←−
(
Vh+1(sh+1)− V ref

h+1(sh+1)
)2

; (33)

Meanwhile, the following two global accumulators are used for the samples in all stages

µref := µref
h (sh, ah)

+←− V ref
h+1(sh+1); σref := σref

h (sh, ah)
+←−
(
V ref
h+1(sh+1)

)2
. (34)

We use µref,k
h , σref,k

h , µ̌k
h, v̌kh, σ̌k

h, bkh to denote respectively the values of µref, σref, µ̌, v̌, σ̌, b at step h
by the start of the k-th episode.

UCB-Advantage assumes that the reward is known after the visit to the triple (s, a, h), which is
common in RL settings. When the reward is unknown after the visit to the triple, inverse reinforce-
ment learning (Zeng et al., 2022; Liu & Zhu, 2022; 2023; 2024; Qiao et al., 2024; Liu & Zhu, 2025)
provides a bi-level learning structure to help learn the reward.

D.2 KEY LEMMAS

Before proceeding to the proof, we will first establish several key lemmas. In the algorithm, define
ι = log(2/p) with p ∈ (0, 1) being the failure probability.
Lemma D.1. Using ∀(s, a, h, k) as the simplified notation for ∀(s, a, h, k) ∈ S×A×[H]×[K]. For
∀(s, a, h, k), let Nk

h (s) =
∑

a n
k
h(s, a), λ

k
h(s) = I[Nk

h (s) < N0] and define the surrogate function
as V̂ ref,k

h (s) = max{V ⋆
h (s),min{V ⋆

h (s) + β, V ref,k
h (s)}}. Then we have the following conclusions:

(a) (Proposition 4 in Zhang et al. (2020)). With probability at least 1− (4H2T 4 + 12T )p, the
following event holds:

E1 =
{
Q⋆

h(s, a) ≤ Qk+1
h (s, a) ≤ Qk

h(s, a),∀(s, a, h, k)
}
.

(b) (Corollary 6 in Zhang et al. (2020)). With probability at least 1 − (4H2T 4 + 13T )p, the
following event holds:

E2 =
{
Nk

h (s) ≥ N0 ⇒ V ⋆
h (s) ≤ V ref,k

h ≤ V ⋆
h (s) + β,∀(s, h, k) ∈ S × [H]× [K]

}
.

(c) With probability at least 1−Hp, the following event holds:

E3 =

{
K∑

k=1

Pskh,a
k
h,h

λk
h+1 ≤ 3

K∑
k=1

λk
h+1(s

k
h+1) + ι, ∀h ∈ [H]

}
.

Especially, λk
H+1(s) = 0.

(d) With probability at least 1− SATp, the following event holds:

E4 =


∣∣∣∑nk

h
i=1

(
1
s
li
h+1

− Ps,a,h

)(
V̂ ref,li
h+1 − V ⋆

h+1

)∣∣∣
nk
h(s, a)

≤ β

√
2ι

nk
h(s, a)

,∀(s, a, h, k)

 .

(e) With probability at least 1− SAT 2p, the following event holds:

E5 =


∣∣∣∑nk

h
i=1

(
1
s
li
h+1

− Ps,a,h

)
V ⋆
h+1

∣∣∣
nk
h(s, a)

≤ 2

√
2Q⋆ι

nk
h(s, a)

+
4Hι

nk
h(s, a)

,∀(s, a, h, k)

 .

(f) With probability at least 1− SAT 2p, the following event holds:

E6 =


∣∣∣∣∑ňk

h
i=1

(
1
s
ľi
h+1

− Ps,a,h

)(
V̂ ref,ľi
h+1 − V ⋆

h+1

)∣∣∣∣
ňk
h(s, a)

≤ β

√
2ι

ňk
h(s, a)

,∀(s, a, h, k)

 .
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(g) With probability at least 1− SATp, the following event holds:

E7 =


∣∣∣∑nk

h
i=1

(
1
s
li
h+1

− Ps,a,h

)
(V ⋆

h+1)
2
∣∣∣

nk
h(s, a)

≤ H2

√
2ι

nk
h(s, a)

,∀(s, a, h, k)

 .

(h) With probability at least 1− SATp, the following event holds:

E8 =


∣∣∣∑nk

h
i=1

(
1
s
li
h+1

− Ps,a,h

)
V ⋆
h+1

∣∣∣
nk
h(s, a)

≤ H

√
2ι

nk
h(s, a)

,∀(s, a, h, k)

 .

Proof. We only need prove (c) to (e).

(c) By using Lemma C.2 with l = 1 and δ = p and considering all possible values of h ∈ [H],
we can prove this conclusion.

(d) From the definition of V̂ ref,k
h (s), we know that for any k ∈ [K]:

V ⋆
h (s) ≤ V̂ ref,k

h (s) ≤ V ⋆
h (s) + β. (35)

Then the sequence {
j∑

i=1

(
1
s
li
h+1

− Ps,a,h

)(
V̂ ref,ľi
h+1 − V ⋆

h+1

)}
j∈N+

is a martingale sequence with∣∣∣(1
s
li
h+1

− Ps,a,h

)(
V̂ ref,ľi
h+1 − V ⋆

h+1

)∣∣∣ ≤ β.

Then according to Azuma-Hoeffding inequality, for any p ∈ (0, 1), with probability at least
1− p, it holds for given nk

h(s, a) = n ∈ N+ that:

1

n

∣∣∣∣∣
n∑

i=1

(
1
s
li
h+1

− Ps,a,h

)(
V̂ ref,li
h+1 − V ⋆

h+1

)∣∣∣∣∣ ≤
√

2β2ι

n
.

For any all (s, a, h, k) ∈ S ×A× [H]× [K], we have nk
h(s, a) ∈ [ TH ]. Considering all the

possible combinations (s, a, h, n) ∈ S×A×[H]×[ TH ], with probability at least 1−SATp,
it holds simultaneously for all (s, a, h, k) ∈ S ×A× [H]× [K] that:

1

nk
h(s, a)

∣∣∣∣∣∣
nk
h∑

i=1

(
1
s
li
h+1

− Ps,a,h

)(
V̂ ref,li
h+1 − V ⋆

h+1

)∣∣∣∣∣∣ ≤
√

2β2ι

nk
h(s, a)

.

(e) The sequence {
j∑

i=1

(
1
s
li
h+1

− Ps,a,h

)
V ⋆
h+1

}
j∈N+

is a martingale sequence with∣∣∣(1
s
li
h+1

− Ps,a,h

)
V ⋆
h+1

∣∣∣ ≤ H.

Using Lemma C.3 with c = H , ϵ = H2 and δ = p
2 , for a given nk

h(s, a) = n ∈ [ TH ], with
probability at least 1− (log2(n) + 1)p ≥ 1− Tp, we have:

1

n

∣∣∣∣∣
n∑

i=1

(
1
s
li
h+1

− Ps,a,h

)
V ⋆
h+1

∣∣∣∣∣ ≤ 2

√
2Q⋆ι

n
+

4Hι

n
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Considering all the possible combinations (s, a, h, n) ∈ S×A×[H]×[ TH ], with probability
at least 1− SAT 2p, it holds simultaneously for all (s, a, h, k) ∈ S ×A× [H]× [K] that:

1

nk
h(s, a)

∣∣∣∣∣∣
nk
h∑

i=1

(
1
s
li
h+1

− Ps,a,h

)
V ⋆
h+1

∣∣∣∣∣∣ ≤ 2

√
2Q⋆

nk
h(s, a)

+
4Hι

nk
h(s, a)

.

(f) The sequence {
j∑

i=1

(
1
s
ľi
h+1

− Ps,a,h

)(
V̂ ref,ľi
h+1 − V ⋆

h+1

)}
j∈N+

is a martingale sequence with∣∣∣∣(1s
ľi
h+1

− Ps,a,h

)(
V̂ ref,ľi
h+1 − V ⋆

h+1

)∣∣∣∣ ≤ β.

Then according to Azuma-Hoeffding inequality, for any p ∈ (0, 1), with probability at least
1− p, it holds for given ňk

h(s, a) = ň ∈ N+ that:

1

ň

∣∣∣∣∣
ň∑

i=1

(
1
s
ľi
h+1

− Ps,a,h

)(
V̂ ref,ľi
h+1 − V ⋆

h+1

)∣∣∣∣∣ ≤
√

2β2ι

ň
.

For any all (s, a, h, k) ∈ S × A × [H] × [K], we have ňk
h(s, a) ∈ [ TH ]. Considering

all the possible combinations (s, a, h, k) ∈ S × A × [H] × [K] and ňk
h(s, a) ∈ [ TH ],

with probability at least 1 − SAT 2/Hp ≥ 1 − SAT 2p, it holds simultaneously for all
(s, a, h, k) ∈ S ×A× [H]× [K] that:

1

ňk
h(s, a)

∣∣∣∣∣∣
ňk
h∑

i=1

(
1
s
ľi
h+1

− Ps,a,h

)(
V̂ ref,ľi
h+1 − V ⋆

h+1

)∣∣∣∣∣∣ ≤
√

2β2ι

ňk
h(s, a)

.

(g) The sequence {
j∑

i=1

(
1
s
li
h+1

− Ps,a,h

) (
V ⋆
h+1

)2}
j∈N+

is a martingale sequence with∣∣∣(1
s
li
h+1

− Ps,a,h

) (
V ⋆
h+1

)2∣∣∣ ≤ H2.

Then according to Azuma-Hoeffding inequality, with probability at least 1− p, it holds for
given nk

h(s, a) = n that:

1

n

∣∣∣∣∣
n∑

i=1

(
1
s
li
h+1

− Ps,a,h

)
(V ⋆

h+1)
2

∣∣∣∣∣ ≤ H2

√
2ι

n

Considering all the possible combinations (s, a, h, n) ∈ S×A×[H]×[ TH ], with probability
at least 1− SATp, it holds simultaneously for all (s, a, h, k) ∈ S ×A× [H]× [K] that:

1

nk
h(s, a)

∣∣∣∣∣∣
nk
h∑

i=1

(
1
s
li
h+1

− Ps,a,h

)
(V ⋆

h+1)
2

∣∣∣∣∣∣ ≤ H2

√
2ι

nk
h(s, a)

.

(h) The sequence {
j∑

i=1

(
1
s
li
h+1

− Ps,a,h

)
V ⋆
h+1

}
j∈N+

is a martingale sequence with∣∣∣(1
s
li
h+1

− Ps,a,h

)
V ⋆
h+1

∣∣∣ ≤ H.
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Then according to Azuma-Hoeffding inequality, with probability at least 1− p, it holds for
given nk

h(s, a) = n that:

1

n

∣∣∣∣∣
n∑

i=1

(
1
s
li
h+1

− Ps,a,h

)
V ⋆
h+1

∣∣∣∣∣ ≤ H

√
2ι

n

Considering all the possible combinations (s, a, h, n) ∈ S×A×[H]×[ TH ], with probability
at least 1− SATp, it holds simultaneously for all (s, a, h, k) ∈ S ×A× [H]× [K] that:

1

nk
h(s, a)

∣∣∣∣∣∣
nk
h∑

i=1

(
1
s
li
h+1

− Ps,a,h

)
V ⋆
h+1

∣∣∣∣∣∣ ≤ H

√
2ι

nk
h(s, a)

.

From this lemma, we know that the event
⋂8

i=1 Ei holds with probability at least 1− 40H2SAT 4p.

Next, we will discuss the relationship among the V -estimate V k
h (s), the reference function V ref,k

h (s),
the surrogate function V̂ ref,k

h (s) and the final value V REF
h (s) of the reference function.

Lemma D.2. Under the event E1 ∩ E2 in Lemma D.1, we have the following conclusions:

(a) V̂ ref,k
h (s) = min{V ⋆

h (s) + β, V ref,k
h (s)}

(b) 0 ≤ V ref,k
h (s)− V REF

h (s) ≤ Hλk
h(s).

(c) 0 ≤ V ref,k
h (s)− V̂ ref,k

h (s) ≤ Hλk
h(s).

(d)
∣∣∣V̂ ref,k

h (s)− V REF
h (s)

∣∣∣ ≤ Hλk
h(s).

Proof. (a) Under the event E1 in Lemma D.1, we have V ref,k
h (s) ≥ V k

h (s) ≥ V ⋆
h (s). Therefore,

min{V ⋆
h (s) + β, V ref,k

h (s)} ≥ V ⋆
h (s). According to the definition of V̂ ref,k

h (s), we have
V̂ ref,k
h (s) = min{V ⋆

h (s) + β, V ref,k
h (s)}.

(b) For any (s, h, k) ∈ S × [H]× [K]:
If Nk

h (s) ≥ N0, then λk
h(s) = 0. In this case, the reference function V ref,k

h (s) is updated to
its final value V REF

h (s) and then V ref,k
h (s)− V REF

h (s) = 0 = Hλk
h(s).

If Nk
h (s) < N0, then λk

h(s) = 1. Since the reference function is non-increasing and
V ref,1
h (s) = H , we have 0 ≤ V ref,k

h (s)− V REF
h (s) ≤ H = Hλk

h(s).
Combining these two cases, we can prove the conclusion (b).

(c) For any (s, h, k) ∈ S × [H]× [K]:
If Nk

h (s) ≥ N0, then λk
h(s) = 0. Under the event E2 in Lemma D.1, we have V ref,k

h (s) ≤
V ⋆
h (s) + β. Therefore, it holds that V̂ ref,k

h (s) = V ref,k
h (s) by (a). In this case, V ref,k

h (s) −
V̂ ref,k
h (s) = 0 = Hλk

h(s).
If Nk

h (s) < N0, then λk
h(s) = 1. Since the reference function is non-increasing and

V ref,1
h (s) = H , we have 0 ≤ V ref,k

h (s)− V̂ ref,k
h (s) ≤ H .

Combining these two cases, we can prove the conclusion (c).

(d) For any (s, h, k) ∈ S × [H]× [K]:
If Nk

h (s) ≥ N0, then λk
h(s) = 0. In this case, the reference function V ref,k

h (s) is updated to
its final value V REF

h (s). Under the event E2 in Lemma D.1, we have V REF
h (s) = V ref,k

h (s) ≤
V ⋆
h (s) + β. In this case, we know V̂ ref,k

h (s) = V ref,k
h (s) = V REF

h (s). Therefore, it holds
that V̂ ref,k

h (s)− V REF
h (s) = 0 = Hλk

h(s).
If Nk

h (s) < N0, then λk
h(s) = 1. Since the reference function is non-increasing and

V ref,1
h (s) = H , we have 0 ≤ V REF

h (s) ≤ V ref,k
h (s) ≤ H and 0 ≤ V̂ ref,k

h (s) ≤ V ref,k
h (s) ≤
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H . Therefore, it holds that
∣∣∣V̂ ref,k

h (s)− V REF
h (s)

∣∣∣ ≤ H = Hλk
h(s).

Combining these two cases, we can prove the conclusion (d).

Lemma D.3. For any (s, a, h, k) ∈ S ×A× [H]× [K] such that ňk
h(s, a) ̸= 0, it holds that:

nk
h(s, a)

ňk
h(s, a)

≤ 4H

Proof. For ňk
h(s, a) ̸= 0, there exists j ∈ N+ such that ňk

h(s, a) = ej and nk
h(s, a) =

∑j
i=1 ei. We

will use the mathematical induction to prove that for any j ∈ N+,
∑j

i=1 ei
ej

≤ 4H .

For j = 1,
∑j

i=1 ei
ej

= 1 ≤ 4H .

If
∑j−1

i=1 ei
ej−1

≤ 4H , then for j ∈ N+ and j ≥ 2, we have

ej =

⌊(
1 +

1

H

)
ej−1

⌋
≥
(
1 +

1

2H

)
ej−1,

which implies:∑j
i=1 ei
ej

= 1 +

∑j−1
i=1 ei
ej

≤ 1 +

∑j−1
i=1 ei

(1 + 1
2H )ej−1

≤ 1 +
4H

1 + 1
2H

≤ 4H.

Therefore, we finish the proof.

Lemma D.4. For any non-negative weight sequence {ωh,k}h,k and α ∈ (0, 1), it holds that:

K∑
k=1

ωh,kI[nk
h(s

k
h, a

k
h) ̸= 0]

nk
h(s

k
h, a

k
h)

α
≤ 22−α

1− α
(SA∥ω∥∞,h)

α∥ω∥1−α
1,h ,

and
K∑

k=1

ωh,kI[ňk
h(s

k
h, a

k
h) ̸= 0]

ňk
h(s

k
h, a

k
h)

α
≤ 22+αHα

1− α
(SA∥ω∥∞,h)

α∥ω∥1−α
1,h .

Here, ∥ω∥∞,h = max
k
{ωh,k} and ∥ω∥1,h =

∑K
k=1 ωh,k.

For α = 1, we have the following conclusions:

K∑
k=1

I[nk
h(s

k
h, a

k
h) ̸= 0]

nk
h(s

k
h, a

k
h)

≤ 2SA log(T ),

and
K∑

k=1

I[ňk
h(s

k
h, a

k
h) ̸= 0]

ňk
h(s

k
h, a

k
h)

≤ 4SAH log(T ).

Proof.

K∑
k=1

ωh,kI[nk
h(s

k
h, a

k
h) ̸= 0]

nk
h(s

k
h, a

k
h)

α
=
∑
s,a

K∑
k=1

ωh,kI[nk
h(s, a) ̸= 0, (skh, a

k
h) = (s, a)]

nk
h(s, a)

α

≜
∑
s,a

K∑
k=1

ω′
h,k(s, a)

nk
h(s, a)

α
(36)

Here we let ω′
h,k(s, a) = ωh,kI[nk

h(s, a) ̸= 0, (skh, a
k
h) = (s, a)] and ch(s, a) =

∑K
k=1 ω

′
h,k(s, a).

Then ω′
h,k(s, a) ≤ ∥ω∥∞,h and

∑
s,a ch(s, a) ≤

∑K
k=1 ωh,k = ∥ω∥1,h.
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Because nk
h(s, a) is nondecreasing for 1 ≤ k ≤ K, given the term

∑K
k=1

ω′
h,k

nk
h(s,a)

α , when the weights
ω′
h,k(s, a) concentrates on former terms, we can obtain the largest value. For a given state-action

pair (s, a) and j ∈ N+, according to the stage design, the set {k : nk
h(s, a) =

∑j
i=1 ei} has

at most ej+1 ≤ (1 + 1
H )ej elements. Thus, the upper bound for the sum of the coefficients of

nk
h(s, a) =

∑j
i=1 ei in Equation (36) is given by (1 + 1

H )ej∥ω∥∞,h.

Let:

k0 = max

k :

k−1∑
j=1

(
1 +

1

H

)
ej∥ω∥∞,h < ch(s, a), k ∈ N+

 .

Because ej+1 ≤ (1 + 1
H )ej for any j ∈ N+, we have

k0∑
j=2

ej∥ω∥∞,h < ch(s, a),

and thus
k0∑
j=1

ej∥ω∥∞,h ≤
k0−1∑
j=1

(
1 +

1

H

)
ej∥ω∥∞,h +

k0∑
j=2

ej∥ω∥∞,h < 2ch(s, a). (37)

Therefore, back to Equation (36), by concentrating the weight to the terms with nk
h(s, a) =

∑j
i=1 ei,

j ∈ {1, 2, ..., k0}, for any given state-action pair (s, a) ∈ S ×A, we have:

K∑
k=1

ω′
h,k

nk
h(s, a)

α
≤

k0∑
j=1

(1 + 1
H )ej∥ω∥∞,h(∑j
i=1 ei

)α =

(
1 +

1

H

)
∥ω∥∞,h

 k0∑
j=1

ej(∑j
i=1 ei

)α
 . (38)

For any 0 ≤ y < x and α ∈ (0, 1), we have:
x− y

xα
≤ 1

1− α
(x1−α − y1−α).

For any j ∈ N+, let x =
∑j

i=1 ei and y =
∑j−1

i=1 ei, then we have:

ej(∑j
i=1 ei

)α ≤ 1

1− α

( j∑
i=1

ei

)1−α

−

(
j−1∑
i=1

ei

)1−α
 .

Sum the above inequality from 1 to k0, then it holds that:

k0∑
j=1

ej(∑j
i=1 ei

)α ≤ 1

1− α

(
k0∑
i=1

ei

)1−α

<
1

1− α

(
2ch(s, a)

∥ω∥∞,h

)1−α

.

The last inequality is because of Equation (37). Applying this inequality to Equation (38), we have:
K∑

k=1

ω′
h,k

nk
h(s, a)

α
≤ 22−α

1− α
∥ω∥α∞,hch(s, a)

1−α.

Using this inequality in Equation (36), we have:
K∑

k=1

ωh,kI[nk
h(s, a) ̸= 0]

nk
h(s

k
h, a

k
h)

α
≤ 22−α

1− α
∥ω∥α∞,h

∑
s,a

ch(s, a)
1−α ≤ 22−α

1− α
(SA∥ω∥∞,h)

α ∥ω∥1−α
1,h .

The last inequality holds due to Hölder’s inequality, as
∑

s,a ch(s, a)
1−α ≤ (SA)α∥ω∥1−α

1,h .

By Lemma D.3, it is easy to prove prove the second conclusion:
K∑

k=1

ωh,kI[ňk
h(s

k
h, a

k
h) ̸= 0]

ňk
h(s

k
h, a

k
h)

α
≤ 22+αHα

1− α
(SA∥ω∥∞,h)

α∥ω∥1−α
1,h .

The case of α = 1 is proved in Lemma 11 of Zhang et al. (2020).
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Lemma D.5. For any non-negative functions {Xk
h : S → R | k ∈ [K], h ∈ [H]} and any h ∈ [H],

we have that
K∑

k=1

I
[
nk
h(s

k
h, a

k
h) ̸= 0

]
nk
h(s

k
h, a

k
h)

nk
h∑

i=1

X li
h+1 ≤ 3 log(T )

K∑
k=1

Xk
h+1,

K∑
k=1

I
[
ňk
h(s

k
h, a

k
h) ̸= 0

]
ňk
h(s

k
h, a

k
h)

ňk
h∑

i=1

X ľi
h+1 ≤

(
1 +

1

H

) K∑
k=1

Xk
h+1.

Here, Xk
H+1 = 0 for any k ∈ [K] and s ∈ S.

Proof. For the first conclusion,

K∑
k=1

I
[
nk
h(s

k
h, a

k
h) ̸= 0

]
nk
h(s

k
h, a

k
h)

nk
h∑

i=1

X li
h+1 =

K∑
k=1

∑nk
h

i=1 X
li
h+1

nk
h(s

k
h, a

k
h)
·

K∑
j=1

I
[
li = j, nk

h(s
k
h, a

k
h) ̸= 0

]

=
K∑

k=1

nk
h∑

i=1

K∑
j=1

Xj
h+1

nk
h(s

k
h, a

k
h)
· I
[
li = j, nk

h(s
k
h, a

k
h) ̸= 0

]

=

K∑
j=1

 K∑
k=1

∑nk
h

i=1 I
[
li = j, nk

h(s
k
h, a

k
h) ̸= 0

]
nk
h(s

k
h, a

k
h)

Xj
h+1. (39)

For a given episode k, according to the definition of li,
∑nk

h
i=1 I

[
li = j, nk

h(s
k
h, a

k
h) ̸= 0

]
= 1 if and

only if (skh, a
k
h) = (sjh, a

j
h) and (j, h) falls in the stage before that (k, h) falls in. As a result,

if the (k, h) belongs to stage t of (skh, a
k
h, h), we have nk

h(s
k
h, a

k
h) =

∑t−1
i=1 ei and the set {k :∑nk

h
i=1 I

[
li = j, nk

h(s
k
h, a

k
h) ̸= 0

]
= 1} has at most et elements. Then it holds that:

K∑
k=1

∑nk
h

i=1 I
[
li = j, nk

h(s
k
h, a

k
h) ̸= 0

]
nk
h(s

k
h, a

k
h)

≤
∑
t∈C

et∑t−1
i=1 ei

≤
∑
t∈C

et∑
p=1

3∑t−1
i=1 ei + p

≤ 3 log(T ) (40)

Here, C = {j : H ≤
∑t−1

i=1 ei ≤ T, t ∈ N+}. The second inequality is because et ≤ (1 + 1
H )et−1

and then for any p ∈ [et],
∑t−1

i=1 ei+p ≤ 3
∑t−1

i=1 ei. Then we finish the proof of the first conclusion.
For the second conclusion,

K∑
k=1

I
[
ňk
h(s

k
h, a

k
h) ̸= 0

]
ňk
h(s

k
h, a

k
h)

ňk
h∑

i=1

X ľi
h+1 =

K∑
k=1

∑ňk
h

i=1 X
ľi
h+1

ňk
h(s

k
h, a

k
h)
·

K∑
j=1

I
[
ľi = j, ňk

h(s
k
h, a

k
h) ̸= 0

]

=

K∑
k=1

ňk
h∑

i=1

K∑
j=1

Xj
h+1

ňk
h(s

k
h, a

k
h)
· I
[
ľi = j, ňk

h(s
k
h, a

k
h) ̸= 0

]

=

K∑
j=1

 K∑
k=1

∑ňk
h

i=1 I
[
ľi = j, ňk

h(s
k
h, a

k
h) ̸= 0

]
ňk
h(s

k
h, a

k
h)

Xj
h+1. (41)

For a given episode k, according to the definition of ľi,
∑nk

h
i=1 I

[
ľi = j, ňk

h(s
k
h, a

k
h) ̸= 0

]
= 1 if

and only if (skh, a
k
h) = (sjh, a

j
h) and (j, h) falls in the previous stage of that (k, h) falls in.

As a result, in the stage of (j, h), the number of visits to (skh, a
k
h, h) is ňk

h(s
k
h, a

k
h), and the set

{k :
∑nk

h
i=1 I

[
ľi = j, ňk

h ̸= 0
]
= 1} has at most (1 + 1

H )ňk
h(s

k
h, a

k
h) elements. Then it holds that:

K∑
k=1

∑ňk
h

i=1 I
[
ľi = j, ňk

h ̸= 0
]

ňk
h(s

k
h, a

k
h)

≤ 1 +
1

H
(42)

Therefore, we prove the second conclusion.
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D.3 PROOF SKETCH OF THEOREM 3.1

Next, we will begin to prove Theorem 3.1 under
⋂8

i=1 Ei. Let X = (S,A, H, T, ι). The notation
f(X ) ≲ g(X ) means that there exists a universal constant C1 > 0 such that f(X ) ≤ C1g(X ).
Step 1: Bounding the term Qk

h − Q⋆
h. By Equation (30) and Bellman Optimality Equation (5), it

holds that:

Qk
h(s

k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h)

≤ I
[
nk
h ̸= 0

]∑nk
h

i=1 V
ref,li
h+1 (slih+1)

nk
h(s

k
h, a

k
h)

+

∑ňk
h

i=1

(
V ľi
h+1 − V ref,ľi

h+1

)
(sľih+1)

ňk
h(s

k
h, a

k
h)

+ bkh(s
k
h, a

k
h)


+ I
[
nk
h = 0

]
H − Pskh,a

k
h,h

V ⋆
h+1

≤ I
[
nk
h ̸= 0

]∑nk
h

i=1 V
ref,li
h+1 (slih+1)

nk
h(s

k
h, a

k
h)

+

∑ňk
h

i=1

(
V ľi
h+1 − V REF

h+1

)
(sľih+1)

ňk
h(s

k
h, a

k
h)

+ bkh(s
k
h, a

k
h)


+ I
[
nk
h = 0

]
H − I

[
ňk
h ̸= 0

]
Pskh,a

k
h,h

V ⋆
h+1

= I
[
nk
h = 0

]
H + I

[
nk
h ̸= 0

] (
G1 + bkh(s

k
h, a

k
h)
)
+ I
[
ňk
h ̸= 0

]
(G2 +G3)

The second inequality is because V ref,ľi
h+1 (sľih+1) ≥ V REF

h+1(s
ľi
h+1). In the last equality we use

I
[
nk
h(s

k
h, a

k
h) = 0

]
= I

[
ňk
h(s

k
h, a

k
h) = 0

]
. Here

G1 =

∑nk
h

i=1

(
V ref,li
h+1 (slih+1)− Pskh,a

k
h,h

V REF
h+1

)
nk
h(s

k
h, a

k
h)

,

G2 =

∑ňk
h

i=1

(
Pskh,a

k
h,h
− 1

s
ľi
h+1

)(
V REF
h+1 − V ⋆

h+1

)
ňk
h(s

k
h, a

k
h)

,

G3 =

∑ňk
h

i=1

(
V ľi
h+1(s

ľi
h+1)− V ⋆

h+1(s
ľi
h+1)

)
ňk
h(s

k
h, a

k
h)

.

The upper bounds of G1, G2 and bkh is given in Appendix D.4. Combining the three upper bounds
Equation (53), Equation (57) and Equation (62), the following inequality holds:

(Qk
h −Q⋆

h)(s
k
h, a

k
h) ≲ I

[
ňk
h ̸= 0

](
G3 +

Hι
3
4

ňk
h(s

k
h, a

k
h)

3
4

)
+ I
[
nk
h ̸= 0

]√ (Q⋆ + β2H)ι

nk
h(s

k
h, a

k
h)

+ Y k
h .

(43)

Here, for any h′ ∈ [H] and k ∈ [K], Y k
h′ is defined as:

Y k
h′ = HI

[
nk
h′ = 0

]
+

I
[
nk
h′ ̸= 0

]
nk
h′(skh′ , akh′)

( nk
h′∑

i=1

H
(
1
s
li
h′+1

+ Psk
h′ ,a

k
h′ ,h

′

)
λli
h′+1 +

√
HΓk

h′(skh′ , akh′)ι

)

+
I
[
ňk
h′ ̸= 0

]
ňk
h′(skh′ , akh′)

 ňk
h′∑

i=1

H

(
Psk

h′ ,a
k
h′ ,h

′ + 1
s
ľi
h′+1

)
λľi
h′+1 +

√
HΓ̌k

h′(skh′ , akh′)ι+Hι

 ,

where

Γk
h′(skh′ , akh′) =

nk
h′∑

i=1

(
V ref,li
h′+1(s

li
h′+1)− V̂ ref,li

h′+1(s
li
h′+1)

)
and

Γ̌k
h′(skh′ , akh′) =

ňk
h′∑

i=1

(
V ref,ľi
h′+1(s

ľi
h′+1)− V̂ ref,ľi

h′+1(s
ľi
h′+1)

)
.
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Step 2: Bounding the weighted sum. For any given h and non-negative constants {ωh,k}h,[K], we
denote ∥ω∥∞,h = maxk∈[K] ωh,k and ∥ω∥1,h =

∑
k∈[K] ωh,k. We also recursively define ωh′,k(h)

for any h ≤ h′ ≤ H, k ∈ [K], j ∈ [K] as follows:

ωh,k(h) := ωh,k; ωh′+1,j(h) =

K∑
k=1

ωh′,k(h)

∑ňk
h′

i=1 I[ľi = j, ňk
h′ ̸= 0]

ňk
h′(skh′ , akh′)

. (44)

By Equation (42), it is easy to show that

∥ω(h)∥1,h′+1 ≤ ∥ω(h)∥1,h′ , ∥ω(h)∥∞,h′+1 ≤ (1 + 1/H)∥ω(h)∥∞,h′ ,∀h′ > h, (45)

where

∥ω(h))∥∞,h′ = max
k

ωh′,k(h) ≤ 1, ∥ω(h)∥1,h′ =

K∑
k=1

ωh′,k(h).

Now given the weight {ωh,k}k, we will bound the weighted sum
∑K

k=1 ωh,k(Q
k
h − Q⋆

h)(s
k
h, a

k
h).

Summing Equation (43) from 1 to K with the weight {ωh,k}k, we have:

K∑
k=1

ωh,k(Q
k
h(s

k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h))

≤
K∑

k=1

ωh,kI
[
ňk
h ̸= 0

]
G3 +

K∑
k=1

ωh,k

(
I
[
nk
h ̸= 0

]√ (Q⋆ + β2H)ι

nk
h(s

k
h, a

k
h)

+ I
[
ňk
h ̸= 0

] Hι
3
4

ňk
h(s

k
h, a

k
h)

3
4

)

+

K∑
k=1

ωh,kY
k
h .

≲
K∑
j=1

ωh+1,j(h)
(
Qj

h+1 −Q⋆
h+1

)
(sjh+1, a

j
h+1) +

√
(Q⋆ + β2H)SA∥ω∥∞,h∥ω∥1,hι

+H
7
4 (SA∥ω∥∞,hι)

3
4 ∥ω∥

1
4

1,h +

K∑
k=1

ωh,kY
k
h . (46)

In the last inequality, the upper bound of
∑K

k=1 ωh,kI
[
ňk
h ̸= 0

]
G3 is given in Appendix D.5. The

upper bounds of the middle two terms is given by Lemma D.4 with α = 1
2 and α = 3

4 .

Recurring Equation (46) for h, h+ 1, ...,H , since Qk
H+1(s, a) = Q⋆

H+1(s, a) = 0, we have:

K∑
k=1

ωh,k(Q
k
h(s

k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h))

≲ H
√
(Q⋆ + β2H)SA∥ω∥∞,h∥ω∥1,hι+H

11
4 (SA∥ω∥∞,hι)

3
4 ∥ω∥

1
4

1,h +

H∑
h′=h

K∑
k=1

ωh′,k(h)Y
k
h′ ,

(47)

where ωh′,k(h) is defined in Equation (44).

Step 3: Integrating multiple weighted sums. For any N = ⌈log2(H/∆min)⌉, n ∈ [N ], k ∈ [K]
and the given h ∈ [H], let:

ω
(n)
h,k = I

[
Qk

h(s
k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h) ∈ [2n−1∆min, 2

n∆min)
]
,

and
ω
(N)
h,k = I

[
Qk

h(s
k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h) ∈ [2N−1∆min, H]

]
.

We also denote

∥ω(n)∥∞,h = max
k

ω
(n)
h,k ≤ 1, ∥ω(n)∥1,h =

K∑
k=1

ω
(n)
h,k.
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For h ≤ h′ ≤ H and any n ∈ [N ], the weight {ω(n)
h′,k}k can be defined recursively by Equation (44):

ω
(n)
h,j (h) = ω

(n)
h,j ; ω

(n)
h′+1,j(h) =

K∑
k=1

ω
(n)
h′,k(h)

∑ňk
h′

i=1 I[ľi = j, ňk
h′ ̸= 0]

ňk
h′(skh′ , akh′)

.

Therefore, for any j ∈ [K], it holds that:

N∑
n=1

ω
(n)
h′+1,j(h) =

K∑
k=1

(
N∑

n=1

ω
(n)
h′,k(h)

) ∑ňk
h′

i=1 I[ľi = j, ňk
h′ ̸= 0]

ňk
h′(skh′ , akh′)

.

By mathematical induction on h′ ∈ [h,H], it is straightforward to prove that for any j ∈ [K],

N∑
n=1

ω
(n)
h′,j(h) ≤

(
1 +

1

H

)h′−h

< 3, (48)

given that for any j ∈ [K]

K∑
k=1

∑ňk
h′

i=1 I[ľi = j, ňk
h′ ̸= 0]

ňk
h′(skh′ , akh′)

≤ 1 +
1

H

by Equation (42) and
∑N

n=1 ω
(n)
h,j (h) =

∑N
n=1 ω

(n)
h,j ≤ 1 for h′ = h.

Applying the weight {ω(n)
h,k}k to Equation (47), for any n ∈ [N ], it holds that:

K∑
k=1

ω
(n)
h,k(Q

k
h(s

k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h))

≲ H
√

(Q⋆ + β2H)SA∥ω(n)∥1,hι+H
11
4 (SAι)

3
4 ∥ω(n)∥

1
4

1,h +

H∑
h′=h

K∑
k=1

ω
(n)
h′,k(h)Y

k
h′ .

On the other hand, according to the definition of ω(n)
h,k,

K∑
k=1

ω
(n)
h,k

(
Qk

h(s
k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h)
)
≥ 2n−1∆min∥ω(n)∥1,h.

Therefore, we obtain the following inequality:

2n−1∆min∥ω(n)∥1,h

≲ H
√

(Q⋆ + β2H)SA∥ω(n)∥1,hι+H
11
4 (SAι)

3
4 ∥ω(n)∥

1
4

1,h +

H∑
h′=h

K∑
k=1

ω
(n)
h′,k(h)Y

k
h′ . (49)

Then at least one of the following three inequalities holds:

2n−1∆min∥ω(n)∥1,h ≲ H
√
(Q⋆ + β2H)SA∥ω(n)∥1,hι,

2n−1∆min∥ω(n)∥1,h ≲ H
11
4 (SAι)

3
4 (∥ω(n)∥1,h)

1
4 ,

2n−1∆min∥ω(n)∥1,h ≲
H∑

h′=h

K∑
k=1

ω
(n)
h′,k(h)Y

k
h′ .

Solving this three inequalities, we know that:

∥ω(n)∥1,h ≤ O

(
max

{(
Q⋆ + β2H

)
SAH2ι

4n−2∆2
min

,
H

11
3 SAι

(2n−1∆min)
4
3

,

∑H
h′=h

∑K
k=1 ω

(n)
h′,k(h)Y

k
h′

2n−1∆min

})

≤ O

((
Q⋆ + β2H

)
SAH2ι

4n−2∆2
min

+
H

11
3 SAι

(2n−1∆min)
4
3

+

∑H
h′=h

∑K
k=1 ω

(n)
h′,k(h)Y

k
h′

2n−1∆min

)
.
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By Equation (48), we have:
N∑

n=1

H∑
h′=h

K∑
k=1

ω
(n)
h′,k(h)Y

k
h′ =

H∑
h′=h

K∑
k=1

(
N∑

n=1

ω
(n)
h′,k(h)

)
Y k
h′ ≤ 3

H∑
h′=1

K∑
k=1

Y k
h′ .

Therefore,
N∑

n=1

2n∆min∥ω(n)∥1,h ≤ O

((
Q⋆ + β2H

)
SAH2ι

∆min
+

H
11
3 SAι

(∆min)
1
3

+

H∑
h′=1

K∑
k=1

Y k
h′

)
. (50)

From Appendix D.6, we know
∑H

h′=1

∑K
k=1 Y

k
h′ can be bounded by O(H

7S2Aι log(T )
β2 ). Therefore,

back to Equation (50), it holds that:
N∑

n=1

2n∆min∥ω(n)∥1,h ≤ O

((
Q⋆ + β2H

)
SAH2ι

∆min
+

H
11
3 SAι

(∆min)
1
3

+
H7S2Aι log(T )

β2

)

≤ O

((
Q⋆ + β2H

)
SAH2ι

∆min
+

H7S2Aι log(T )

β2

)
(51)

The last inequality is because:

H
11
3 SAι

(∆min)
1
3

≲
β2H3SAι

∆min
+

H4SAι

β
+

H4SAι

β
≲

(
Q⋆ + β2H

)
SAH2ι

∆min
+

H7SAι log(T )

β2
.

Step 4: Bounding the expected gap-dependent regret. Let p = (40SAH2T 5)−1, then E =⋂7
i=1 Ei holds with probability at least 1 − 1

T and ι ≲ log(SAT ). Therefore, by Equation (28), we
have:

E (Regret(K)) ≤ E

[
K∑

k=1

H∑
h=1

clip[(Qk
h −Q∗

h)(s
k
h, a

k
h) | ∆min]

]

= E

[
K∑

k=1

H∑
h=1

clip[(Qk
h −Q∗

h)(s
k
h, a

k
h) | ∆min]

∣∣∣∣E
]
P(E)

+ E

[
K∑

k=1

H∑
h=1

clip[(Qk
h −Q∗

h)(s
k
h, a

k
h) | ∆min]

∣∣∣∣Ec
]
P(Ec)

≤
H∑

h=1

N∑
n=1

2n∆min∥ω(n)∥1,h +
1

T
· TH

≤ O

((
Q⋆ + β2H

)
H3SA log(SAT )

∆min
+

H8S2A log(SAT ) log(T )

β2

)
.

The last inequality is by Equation (51). The third inequality is because
K∑

k=1

clip[(Qk
h −Q∗

h)(s
k
h, a

k
h) | ∆min] =

K∑
k=1

N∑
n=1

ω
(n)
h,k(Q

k
h −Q∗

h)(s
k
h, a

k
h)

≤
N∑

n=1

2n∆min

K∑
k=1

ω
(n)
h,k =

N∑
n=1

2n∆min∥ω(n)∥1,h.

D.4 BOUNDING THE TERM Qk
h −Q⋆

h

D.4.1 BOUNDING THE TERM G1

We can split G1 into four terms:∑nk
h

i=1

(
V ref,li
h+1 (slih+1)− Pskh,a

k
h,h

V REF
h+1

)
nk
h(s

k
h, a

k
h)

= G1,1 +G1,2 +G1,3 +G1,4, (52)
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where

G1,1 =

∑nk
h

i=1

(
1
s
li
h+1

− Pskh,a
k
h,h

)(
V ref,li
h+1 − V̂ ref,li

h+1

)
nk
h(s

k
h, a

k
h)

,

G1,2 =

∑nk
h

i=1

(
1
s
li
h+1

− Pskh,a
k
h,h

)(
V̂ ref,li
h+1 − V ⋆

h+1

)
nk
h(s

k
h, a

k
h)

,

G1,3 =

∑nk
h

i=1

(
1
s
li
h+1

− Pskh,a
k
h,h

)
V ⋆
h+1

nk
h(s

k
h, a

k
h)

and

G1,4 =

∑nk
h

i=1 Pskh,a
k
h,h

(
V ref,li
h+1 − V REF

h+1

)
nk
h(s

k
h, a

k
h)

.

According to (c) in Lemma D.2, we have:

G1,1 ≤

∑nk
h

i=1 H
(
1
s
li
h+1

+ Pskh,a
k
h,h

)
λli
h+1

nk
h(s

k
h, a

k
h)

.

Under the event E4 in Lemma D.1, we can bound G1,2:

G1,2 ≤ β

√
2ι

nk
h(s

k
h, a

k
h)

.

Under the event E5 in Lemma D.1, we can bound G1,3:

G1,3 ≤ 2

√
2Q⋆ι

nk
h(s

k
h, a

k
h)

+
4Hι

nk
h(s

k
h, a

k
h)

.

The upper bound of G1,4 is given by (b) in Lemma D.2:

G1,4 ≤
∑nk

h
i=1 HPskh,a

k
h,h

λli
h+1

nk
h(s

k
h, a

k
h)

.

Combining these four upper bounds together, we can bound G1:

G1 ≲

∑nk
h

i=1 H
(
1
s
li
h+1

+ Pskh,a
k
h,h

)
λli
h+1

nk
h(s

k
h, a

k
h)

+

√
(Q⋆ + β2)ι

nk
h(s

k
h, a

k
h)

+
Hι

nk
h(s

k
h, a

k
h)

. (53)

D.4.2 BOUNDING THE TERM G2

We can split the term of G2 into two terms:

G2 =

∑ňk
h

i=1

(
Pskh,a

k
h,h
− 1

s
ľi
h+1

)[(
V REF
h+1 − V̂ ref,ľi

h+1

)
+
(
V̂ ref,ľi
h+1 − V ⋆

h+1

)]
ňk
h(s

k
h, a

k
h)

. (54)

According to (d) in Lemma D.2, we can bound the first term in Equation (54):∑ňk
h

i=1

(
Pskh,a

k
h,h
− 1

s
ľi
h+1

)(
V REF
h+1 − V̂ ref,ľi

h+1

)
ňk
h(s

k
h, a

k
h)

≤

∑ňk
h

i=1 H

(
Pskh,a

k
h,h

+ 1
s
ľi
h+1

)
λľi
h+1

ňk
h(s

k
h, a

k
h)

. (55)

The upper bound for the second term in Equation (54) is given by the event E6 in Lemma D.1:∑ňk
h

i=1

(
Ps,a,h − 1

s
ľi
h+1

)(
V̂ ref,ľi
h+1 − V ⋆

h+1

)
ňk
h(s, a)

≤

√
2β2ι

ňk
h(s, a)

≲

√
β2Hι

nk
h(s, a)

. (56)

The last inequality is because of Lemma D.3. Applying Equation (55) and Equation (56) to Equa-
tion (54), we have:

G2 ≲

∑ňk
h

i=1 H

(
Pskh,a

k
h,h

+ 1
s
ľi
h+1

)
λľi
h+1

ňk
h(s

k
h, a

k
h)

+

√
β2Hι

nk
h(s, a)

. (57)
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D.4.3 BOUNDING THE TERM bkh(s
k
h, a

k
h)

According to the definition of bkh(s
k
h, a

k
h) in Appendix D.1, we have

bkh(s
k
h, a

k
h) ≲

√
νref,k
h ι

nk
h

+

√
ν̌khι

ňk
h

+

(
Hι

nk
h

+
Hι

ňk
h

+
Hι

3
4

(nk
h)

3
4

+
Hι

3
4

(ňk
h)

3
4

)
, (58)

where νref,k
h = σref,k

h /nk
h − (µref,k

h /nk
h)

2 and ν̌ref,k
h = σ̌k

h/ň
k
h − (µ̌k

h/ň
k
h)

2.

Since V ref,li
h+1 (slih+1) ≥ V̂ ref,li

h+1 (slih+1), it holds that

√
νref,k
h ι

nk
h

=

√√√√√ σref,k
h (skh,a

k
h)

nk
h(s

k
h,a

k
h)
−
(

µref,k
h (skh,a

k
h)

nk
h(s

k
h,a

k
h)

)2
nk
h(s

k
h, a

k
h)

ι ≤

√
Ih,k1 + Ih,k2

nk
h(s

k
h, a

k
h)

ι,

where:

Ih,k1 =

∑nk
h

i=1

((
V ref,li
h+1 (slih+1)

)2
−
(
V̂ ref,li
h+1 (slih+1)

)2)
nk
h(s

k
h, a

k
h)

,

and

Ih,k2 =

∑nk
h

i=1

(
V̂ ref,li
h+1 (slih+1)

)2
nk
h(s

k
h, a

k
h)

−

∑nk
h

i=1 V̂
ref,li
h+1 (slih+1)

nk
h(s

k
h, a

k
h)

2

.

Next we want to bound both Ih,k1 and Ih,k2 .

Ih,k1 =

∑nk
h

i=1

(
V ref,li
h+1 (slih+1) + V̂ ref,li

h+1 (slih+1)
)(

V ref,li
h+1 (slih+1)− V̂ ref,li

h+1 (slih+1)
)

nk
h(s

k
h, a

k
h)

≤

∑nk
h

i=1 2H
(
V ref,li
h+1 (slih+1)− V̂ ref,li

h+1 (slih+1)
)

nk
h(s

k
h, a

k
h)

≜
2HΓk

h(s
k
h, a

k
h)

nk
h(s

k
h, a

k
h)

, (59)

where

Γk
h(s

k
h, a

k
h) =

nk
h∑

i=1

(
V ref,li
h+1 (slih+1)− V̂ ref,li

h+1 (slih+1)
)
.

For the second term Ih,k2 , because of Cauchy’s Inequality, we have:

Ih,k2 =

∑nk
h

i=1

(
V̂ ref,li
h+1 (slih+1)−

∑nk
h

n=1 V̂ ref,ln
h+1 (slnh+1)

nk
h(s

k
h,a

k
h)

)2

nk
h(s

k
h, a

k
h)

≤ 2
(
Ih,k2,1 + Ih,k2,2

)
,

where:

Ih,k2,1 =

∑nk
h

i=1

(
V̂ ref,li
h+1 (slih+1)− V ⋆

h+1(s
li
h+1) +

∑nk
h

n=1 V ⋆
h+1(s

ln
h+1)

nk
h(s

k
h,a

k
h)

−
∑nk

h
n=1 V̂ ref,ln

h+1 (slnh+1)

nk
h(s

k
h,a

k
h)

)2

nk
h(s

k
h, a

k
h)

,

and

Ih,k2,2 =

∑nk
h

i=1

(
V ⋆
h+1(s

li
h+1)−

∑nk
h

n=1 V ⋆
h+1(s

ln
h+1)

nk
h(s

k
h,a

k
h)

)2

nk
h(s

k
h, a

k
h)

=

∑nk
h

i=1

(
V ⋆
h+1(s

li
h+1)

)2
nk
h(s

k
h, a

k
h)

−

∑nk
h

i=1 V
⋆
h+1(s

li
h+1)

nk
h(s

k
h, a

k
h)

2

.
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Since V ⋆
h+1(s

li
h+1) ≤ V̂ ref,li

h+1 (slih+1) ≤ V ⋆
h+1(s

li
h+1) + β, it holds that:∣∣∣∣∣∣V̂ ref,li

h+1 (slih+1)− V ⋆
h+1(s

li
h+1) +

∑nk
h

n=1 V
⋆
h+1(s

ln
h+1)

nk
h(s

k
h, a

k
h)

−
∑nk

h
n=1 V̂

ref,ln
h+1 (slnh+1)

nk
h(s

k
h, a

k
h)

∣∣∣∣∣∣
≤
∣∣∣V̂ ref,li

h+1 (slih+1)− V ⋆
h+1(s

li
h+1)

∣∣∣+
∣∣∣∣∣∣
∑nk

h
n=1 V

⋆
h+1(s

ln
h+1)

nk
h(s

k
h, a

k
h)

−
∑nk

h
n=1 V̂

ref,ln
h+1 (slnh+1)

nk
h(s

k
h, a

k
h)

∣∣∣∣∣∣ ≤ 2β.

Using this inequality, we have Ih,k2,1 ≤ 4β2. Moreover, according to the definition of Q⋆, it holds

Ih,k2,2 −Q⋆ ≤ Ih,k2,2 −
(
Pskh,a

k
h,h

(V ⋆
h+1)

2 −
(
Pskh,a

k
h,h

V ⋆
h+1

)2)

= −

∑nk
h

i=1 V
⋆
h+1(s

li
h+1)

nk
h(s

k
h, a

k
h)

+ Pskh,a
k
h,h

V ⋆
h+1



∑nk

h
i=1

(
1
s
li
h+1

− Pskh,a
k
h,h

)
V ⋆
h+1

nk
h(s

k
h, a

k
h)


+

∑nk
h

i=1

(
1
s
li
h+1

− Pskh,a
k
h,h

)
(V ⋆

h+1)
2

nk
h(s

k
h, a

k
h)

≤ 2H

∣∣∣∣∣∣∣
∑nk

h
i=1

(
1
s
li
h+1

− Pskh,a
k
h,h

)
V ⋆
h+1

nk
h(s

k
h, a

k
h)

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
∑nk

h
i=1

(
1
s
li
h+1

− Pskh,a
k
h,h

)
(V ⋆

h+1)
2

nk
h(s

k
h, a

k
h)

∣∣∣∣∣∣∣
≲ H2

√
ι

nk
h(s

k
h, a

k
h)

.

The last inequality is because of the event E7 and the event E8 in Lemma D.1. Therefore, we have

Ih,k2,2 ≲ Q⋆ +H2

√
ι

nk
h(s

k
h, a

k
h)

.

By combining the upper bound of Ih,k1 in Equation (59), along with those of Ih,k2,1 and Ih,k2,2 , we have:√
νref,k
h ι

nk
h

≲

√
HΓk

h(s
k
h, a

k
h)ι

nk
h(s

k
h, a

k
h)

+

√
(Q⋆ + β2)ι

nk
h(s

k
h, a

k
h)

+
Hι

3
4

nk
h(s

k
h, a

k
h)

3
4

. (60)

Using the first inequality of inequality (80) in Zhang et al. (2020), we have:

ν̌kh ≲
1

ňk
h

ňk
h∑

i=1

((
V ref,ľi
h+1 (sľih+1)− V̂ ref,ľi

h+1 (sľih+1)
)2

+
(
V̂ ref,ľi
h+1 (sľih+1)− V ∗

h+1(s
ľi
h+1)

)2)

≲ β2 +
1

ňk
h

ňk
h∑

i=1

(
V̂ ref,ľi
h+1 (sľih+1)− V ∗

h+1(s
ľi
h+1)

)2
and thus√

ν̌khι

ňk
h

≲

√
β2ι

ňk
h

+

√∑ňk
h

i=1

(
V ref,ľi
h+1 (sľih+1)− V̂ ref,ľi

h+1 (sľih+1)
)2

ι

ňk
h

≲

√
β2Hι

nk
h

+

√
HΓ̌k

h(s
k
h, a

k
h)ι

ňk
h

.

(61)

where Γ̌k
h(s

k
h, a

k
h) =

∑ňk
h

i=1

(
V ref,ľi
h+1 (sľih+1)− V̂ ref,ľi

h+1 (sľih+1)
)
. The last inequality is by Lemma D.3

and 0 ≤ V ref,ľi
h+1 (sľih+1)− V̂ ref,ľi

h+1 (sľih+1) ≤ H .

Applying Equation (60) and Equation (61) to Equation (58), we have:

bkh(s
k
h, a

k
h) ≲

√
HΓk

h(s
k
h, a

k
h)ι

nk
h(s

k
h, a

k
h)

+

√
(Q⋆ + β2H)ι

nk
h(s

k
h, a

k
h)

+
Hι

3
4

ňk
h(s

k
h, a

k
h)

3
4

+

√
HΓ̌k

h(s
k
h, a

k
h)ι+Hι

ňk
h(s

k
h, a

k
h)

.

(62)
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D.5 REARRANGE THE WEIGHTED SUM OF G3

Similar to Equation (41), it holds that:

K∑
k=1

ωh,kI
[
ňk
h ̸= 0

]
G3 =

K∑
k=1

ωh,kI
[
ňk
h ̸= 0

] ∑ňk
h

i=1

(
V ľi
h+1(s

ľi
h+1)− V ⋆

h+1(s
ľi
h+1)

)
ňk
h(s

k
h, a

k
h)

=

K∑
j=1

(
K∑

k=1

ωh,k

∑ňk
h

i=1 I
[
ľi = j, ňk

h ̸= 0
]

ňk
h(s

k
h, a

k
h)

)(
V j
h+1(s

j
h+1)− V ⋆

h+1(s
j
h+1)

)

≤
K∑
j=1

 K∑
k=1

ωh,k

∑ňk
h

i=1 I
[
ľi = j, ňk

h ̸= 0
]

ňk
h(s

k
h, a

k
h)

(Qj
h+1 −Q⋆

h+1

)
(sjh+1, a

j
h+1)

(63)

=

K∑
j=1

ωh+1,j(h)
(
Qj

h+1(s
j
h+1, a

j
h+1)−Q⋆

h+1(s
j
h+1, a

j
h+1)

)
. (64)

D.6 BOUNDING THE TERM
∑H

h′=1

∑K
k=1 Y

k
h′

K∑
k=1

Y k
h′ =

K∑
k=1

I
[
nk
h′ = 0

]
H

+

K∑
k=1

I
[
nk
h′ ̸= 0

]
nk
h′(skh′ , akh′)

nk
h′∑

i=1

H

(
1
s
li
h′+1

+ Psk
h′ ,a

k
h′ ,h

′

)
λli
h′+1 +

√
HΓk

h′(skh′ , akh′)ι


+

K∑
k=1

I
[
ňk
h′ ̸= 0

]
ňk
h′(skh′ , akh′)

 ňk
h′∑

i=1

H

(
Psk

h′ ,a
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′ + 1
s
ľi
h′+1

)
λľi
h′+1 +

√
HΓ̌k

h′(skh′ , akh′)ι+Hι

 .

(65)

In this equation,

H∑
h′=1

K∑
k=1

I
[
nk
h′(skh′ , akh′) = 0

]
H =

H∑
h′=1

∑
s,a

H
K∑

k=1

I
[
nk
h′(s, a) = 0, (skh′ , akh′) = (s, a)

]
≤ H3SA.

(66)
By Lemma D.4, we have the following inequalities:

H∑
h′=1

K∑
k=1

I
[
ňk
h′ ̸= 0

]
ňk
h′(skh′ , akh′)

Hι ≲ H3SAι log(T ). (67)

According to Lemma D.5, we have:

K∑
k=1

I
[
nk
h′ ̸= 0

]
nk
h′(skh′ , akh′)

nk
h′∑

i=1

H
(
1
s
li
h′+1

+ Psk
h′ ,a

k
h′ ,h

′

)
λli
h′+1 ≤ 3H log T

K∑
k=1

(
1sk

h′+1
+ Psk

h′ ,a
k
h′ ,h

′

)
λk
h′+1.

(68)
and

K∑
k=1

I
[
ňk
h′ ̸= 0

]
ňk
h′(skh′ , akh′)

ňk
h′∑

i=1

H

(
Psk

h′ ,a
k
h′ ,h

′ + 1
s
ľi
h′+1

)
λľi
h′+1 ≤ 2H

K∑
k=1

(
Psk

h′ ,a
k
h′ ,h

′ + 1sk
h′+1

)
λk
h′+1.

(69)
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Let k0(s) = max{k | k ≤ K,Nk
h′+1(s) < N0}. When there is no ambiguity, we use k0 for short.

Note that
K∑

k=1

λk
h′+1(s

k
h′+1) =

K∑
k=1

I
[
Nk

h′+1(s
k
h′+1) < N0

]
=
∑
s

K∑
k=1

I
[
Nk

h′+1(s) < N0, s
k
h′+1 = s

]
=
∑
s,a

k0∑
k=1

I
[
skh′+1 = s, akh′+1 = a

]
. (70)

Let (k0, h′ + 1) be in the j(s, a, h)-th state of (s, a, h). Because N0 > H , we know j(s, a, h) > 1.
Then we have Nk0

h′+1(s, a) =
∑j−1

i=1 ei and thus
k0∑
k=1

I
[
skh′+1 = s, akh′+1 = a

]
≤ Nk0

h′+1(s, a)+ej ≤ Nk0

h′+1(s, a)+
(
1+

1

H

)
ej−1 ≤ 3Nk0

h′+1(s, a).

(71)
Applying this inequality to Equation (70), we have

K∑
k=1

λk
h′+1(s

k
h′+1) ≤

∑
s,a

3Nk0

h′+1(s, a) = 3
∑
s

Nk0

h′+1(s) ≤ 3SN0. (72)

Under the event E3 in Lemma D.1, it also holds that:
K∑

k=1

Psk
h′ ,a

k
h′ ,h

′λk
h′+1 ≤ 3

K∑
k=1

λk
h′+1 + ι ≤ 10SN0. (73)

Applying Equation (72) and Equation (73) to Equation (68) and Equation (69) respectively, then the
following two inequalities holds:

H∑
h′=1

K∑
k=1

I
[
nk
h′ ̸= 0

]
nk
h′(skh′ , akh′)

nk
h′∑

i=1

H

(
1
s
li
h′+1

+ Psk
h′ ,a

k
h′ ,h

′

)
λli
h′+1 ≲ H2SN0 log(T ), (74)

and
H∑

h′=1

K∑
k=1

I
[
ňk
h′ ̸= 0

]
ňk
h′(skh′ , akh′)

ňk
h′∑

i=1

H

(
Psk

h′ ,a
k
h′ ,h

′ + 1
s
ľi
h′+1

)
λľi
h′+1 ≲ H2SN0. (75)

Meanwhile, according to Lemma D.2, we have:

Γk
h′(skh′ , akh′) =

nk
h′∑

i=1

(
V ref,li
h′+1(s

li
h′+1)− V̂ ref,li

h′+1(s
li
h′+1)

)
≤ H

nk
h′∑

i=1

λli
h′+1(s

li
h′+1) ≜ Θk

h′(skh′ , akh′).

Then it holds that:
K∑

k=1

√
Γk
h′(skh′ , akh′)

nk
h′(skh′ , akh′)

≤
K∑

k=1

√
Θk

h′(skh′ , akh′)

nk
h′(skh′ , akh′)

≤
∑
s,a

∑
j∈C

ej∑j−1
i=1 ei

√ΘK
h′(s, a)I

[
(skh′ , akh′) = (s, a)

]
≲ log T

∑
s,a

√
ΘK

h′(s, a)I
[
(skh′ , akh′) = (s, a)

]
≤ log T

√
SA

∑
s,a

ΘK
h′(s, a)I

[
(skh′ , akh′) = (s, a)

]
. (76)

Here, C = {j : H ≤
∑j−1

i=1 ei ≤ T}. The second inequality is by Equation (40) and the mononicity
of Θn

h′(s, a). The last inequality is by Cauchy’s inequality. To continue, note that:√∑
s,a

ΘK
h′(s, a)I

[
(skh′ , akh′) = (s, a)

]
≤

√√√√H

K∑
k=1

λk
h′+1(s

k
h′+1) ≲

√
HSN0.
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The last inequality is by Equation (71). Together with Equation (76), it holds:

H∑
h′=1

K∑
k=1

√
HΓk

h′(skh′ , akh′)ι

nk
h′(skh′ , akh′)

≲ H2S log(T )
√
AN0ι. (77)

Since Γ̌k
h′(skh′ , akh′) ≤ Γk

h′(skh′ , akh′) and 4Hňk
h′(skh′ , akh′) ≥ nk

h′(skh′ , akh′) by Lemma D.3, it holds:

H∑
h′=1

K∑
k=1

√
HΓ̌k

h′(skh′ , akh′)ι

ňk
h′(skh′ , akh′)

≲ H3S log(T )
√
AN0ι. (78)

Applying the inequalities Equation (66), Equation (67), Equation (74), Equation (75), Equation (77)
and Equation (78) to Equation (65), since N0 = O(SAH5ι

β2 ), we have:

H∑
h′=1

K∑
k=1

Y k
h′ ≤ O

(
H7S2Aι log(T )

β2

)
.

E PROOF OF THEOREM 3.3

Proof. For δ ∈ (0, 1), let p ← δ
40SAH2T 4 , then ι = log( 2p ) = O(SAT

δ ). Now with probability at

least 1− δ,
⋂8

i=1 Ei holds. Next, we will prove Theorem 3.3 under the event
⋂8

i=1 Ei.
From the proof of Theorem 2 in Zhang et al. (2020), we have:

Nswitch ≤
∑
s,a,h

4H log

(
NK+1

h (s, a)

2H
+ 1

)
.

Next for any (s, a, h) ∈ S × A× [H], we will bound the term NK+1
h (s, a). Let A∗

h(s) = {a | a =
argmaxa′ Q∗

h(s, a
′)}, which is the set of optimal actions for state-step pair (s, h). For a /∈ A⋆

h(s),
we have ∆h(s, a) > 0 and then ∆h(s, a) ≥ ∆min. For any h ∈ [H], let set Dh be all triples of
(s, a, h) such that a /∈ A⋆

h(s), i.e., Dh = {(s, a, h)|a /∈ A⋆
h(s)}.

We also let the set D =
⋃H

h=1 Dh and the set Dopt = {(s, a, h)|a ∈ A⋆
h(s)}. Then we have

|D|+ |Dopt| = SAH . Since for every state-step pair (s, h), there exists at least one optimal action.
Therefore we know |Dopt| ≥ SH and then 0 ≤ |D| ≤ SA(H − 1).

If for given (h, k) ∈ [H]× [k], (skh, a
k
h, h) ∈ Dh, we have ∆h(s

k
h, a

k
h) ≥ ∆min. Then it holds that:

Qk
h(s

k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h) = V k

h (skh)−Q⋆
h(s

k
h, a

k
h) ≥ ∆h(s

k
h, a

k
h) ≥ ∆min.

The first inequality is because V k
h (s) ≥ V ⋆

h (s). Therefore, we have∑
(s,a,h)∈Dh

I[(skh, akh) = (s, a)] = I[(skh, akh, h) ∈ Dh]

≤ I
[
Qk

h(s
k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h) ≥ ∆min

]
=

N∑
n=1

ω
(n)
h,k.

and then∑
(s,a,h)∈D

NK+1
h (s, a) =

H∑
h=1

∑
(s,a,h)∈Dh

NK+1
h (s, a) =

H∑
h=1

∑
(s,a,h)∈Dh

K∑
k=1

I[(skh, akh) = (s, a)]

≤
H∑

h=1

K∑
k=1

N∑
n=1

ω
(n)
h,k =

H∑
h=1

N∑
n=1

∥ω(n)∥1,h.

By Equation (51), we know:∑
(s,a,h)∈Dc

opt

NK+1
h (s, a) ≤

H∑
h=1

N∑
n=1

∥ω(n)∥1,h ≤ O

((
Q⋆ + β2H

)
SAH3ι

∆2
min

+
H8S2Aι log(T )

β2∆min

)
.

(79)
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Therefore we have:

Nswitch ≤
∑
s,a,h

4H log

(
NK+1

h (s, a)

2H
+ 1

)

=
∑

(s,a,h)∈Dc
opt

4H log

(
NK+1

h (s, a)

2H
+ 1

)
+

∑
(s,a,h)/∈Dopt

4H log

(
NK+1

h (s, a)

2H
+ 1

)
(80)

≤ 4H(SAH − |Dopt|) log

(
1 +

∑H
h=1

∑N
n=1 ∥ω(n)∥1,h

2H(SAH − |Dopt|)

)
+ 4H|Dopt| log

(
T

2H|Dopt|
+ 1

)

≤ O

(
H(SAH − |Dopt|) log

(
(Q⋆ + β2H)H2SAι

(SAH − |Dopt|)∆2
min

+
H7S2Aι log(T )

β2(SAH − |Dopt|)∆min

)

+H|Dopt| log
( K

|Dopt|
+ 1
))

. (81)

The first inequality is because of Jensen’s Inequality. The last inequality is by Equation (51). Since
Q⋆ ≤ H2 and β ≤ H , then we have:

(Q⋆ + β2H)H2SAι

(SAH − |Dopt|)∆2
min
≤ H7SAι

β2(SAH − |Dopt|)∆2
min

.

By ∆min ≤ H , we also have:

H7S2Aι log(T )

β2(SAH − |Dopt|)∆min
≤ H8S2Aι log(T )

β2(SAH − |Dopt|)∆2
min

.

For δ ∈ (0, 1), let p ← δ
60SAH2T 5 , then ι = log( 2p ) ≤ O(log(SAT

δ )). Applying the above two
inequalities to Equation (81), with probability at least 1− δ, we have it holds that:

Nswitch ≤ O

(
H(SAH − |Dopt|) log

(
H8S2Aι log(T )

β2(SAH − |Dopt|)∆2
min

)
+H|Dopt| log

( K

|Dopt|
+ 1
))

= O

(
H(SAH − |Dopt|) log

(
H4SA

1
2 ι

β
√
(SAH − |Dopt|)∆min

)
+H|Dopt| log

( K

|Dopt|
+ 1
))

= O

H|Dc
opt| log

H4SA
1
2 log(SAT

δ )

β
√
|Dc

opt|∆min

+H|Dopt| log
(

K

|Dopt|
+ 1

) .

Especially, if the optimal policy is deterministic and unique, which means |Dopt| = SH , then the
policy switching cost is upper bounded by:

O

(
H2SA log

(
H

7
2S

1
2 log(SAT

δ )

β∆min

)
+H2S log

(
K

HS
+ 1

))
.

F PROOF OF THEOREM 3.2

F.1 ALGORITHM DETAILS

Before continuing, we briefly introduce the refined Q-EarlySettled-Advantage algorithm, which is
similar to the original version in Li et al. (2021). We will first discuss the key auxiliary functions
used for estimating the Q-value functions. For any δ ∈ [0, 1], let ι = log(SAT

δ ).

The algorithm updates µref
h and σref

h to represent the current mean and second moment of the refer-
ence function. µadv

h and σadv
h denotes the current weighted mean and weighted second moment of
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the reference function with weight to be the learning rate ηn = H+1
H+n . bR

h is the exploration bonus.
Then we present the details of Q-EarlySettled-Advantage algorithm below.

Algorithm 2 Auxiliary functions

1: function UPDATE-UCB-Q

2: QUCB
h (sh, ah)← (1− ηn)Q

UCB
h (sh, ah) + ηn

(
rh(sh, ah) + Vh+1(sh+1) + cb

√
H3ι
n

)
.

3: function UPDATE-LCB-Q

4: QLCB
h (sh, ah)← (1− ηn)Q

LCB
h (sh, ah) + ηn

(
rh(sh, ah) + V LCB

h+1 (sh+1)− cb

√
H3ι
n

)
.

5: function UPDATE-UCB-ADVANTAGE
6: [µref

h , σref
h , µadv

h , σadv
h ](sh, ah)← UPDATE-MOMENTS;

7: [δR
h , B

R
h ](sh, ah)← UPDATE-BONUS;

8: bR
h ← BR

h(sh, ah) + (1− ηn)
δR
h(sh,ah)

ηn
+ cb

H2ι
n3/4 ;

9: QR
h(sh, ah)← (1− ηn)Q

R
h(sh, ah)

+ηn
(
rh(sh, ah) + Vh+1(sh+1)− V R

h+1(sh+1) + µref
h (sh, ah) + bR

h

)
.

10: function UPDATE-MOMENTS
11: µref

h (sh, ah)←
(
1− 1

n

)
µref
h (sh, ah) +

1
nV

R
h+1(sh+1);

12: σref
h (sh, ah)←

(
1− 1

n

)
σref
h (sh, ah) +

1
n

(
V R
h+1(sh+1)

)2
;

13: µadv
h (sh, ah)← (1− ηn)µ

adv
h (sh, ah) + ηn

(
Vh+1(sh+1)− V R

h+1(sh+1)
)
;

14: σadv
h (sh, ah)← (1− ηn)σ

adv
h (sh, ah) + ηn

(
Vh+1(sh+1)− V R

h+1(sh+1)
)2

;
15: function UPDATE-BONUS
16: Bnext

h (sh, ah)←

cb
√

ι
n

(√
σref
h (sh, ah)−

(
µref
h (sh, ah)

)2
+
√
H

√
σadv
h (sh, ah)−

(
µadv
h (sh, ah)

)2)
;

17: δR
h(sh, ah) = Bnext

h (sh, ah)−BR
h(sh, ah);

18: BR
h(sh, ah)← Bnext

h (sh, ah).

Algorithm 3 Refined Q-EarlySettled-Advantage

1: Parameters: Some universal constant cb > 0 and probability of failure δ ∈ (0, 1);
2: Initialize Q1

h(s, a), Q
UCB,1
h (s, a), QR,1

h (s, a)← H, QLCB,1
h (s, a)← 0; V R,1

h (s), V 1
h (s)← H;

N1
h(s, a), µ

ref
h (s, a), σref

h (s, a), µadv
h (s, a), σadv

h (s, a), δR
h(s, a), B

R
h(s, a)← 0;

and u1
h(s)← True, for all (s, a, h) ∈ S ×A× [H].

3: for Episode k = 1 to K do
4: Set initial state sk1 ← sk1 ;
5: for Step h = 1 to H do
6: Take action akh = πk

h(s
k
h) = argmaxa Q

k
h(s

k
h, a), and draw skh+1 ∼ Ph(·|skh, akh);

7: Nk
h (s

k
h, a

k
h)← Nk−1

h (skh, a
k
h) + 1; n← Nk

h (s
k
h, a

k
h);

8: QUCB,k+1
h (skh, a

k
h)← UPDATE-UCB-Q.

9: QLCB,k+1
h (skh, a

k
h)← UPDATE-LCB-Q.

10: QR,k+1
h (skh, a

k
h)← UPDATE-UCB-ADVANTAGE.

11: Qk+1
h (skh, a

k
h)← min{QR,k+1

h (skh, a
k
h), Q

UCB,k+1
h (skh, a

k
h), Q

k
h(s

k
h, a

k
h)};

12: V k+1
h (skh)← maxa Q

k+1
h (skh, a);

13: V LCB,k+1
h (skh)← max

{
maxa Q

LCB,k+1
h (skh, a), V

LCB,k
h (skh)

}
;

14: if V k+1
h (skh)− V LCB,k+1

h (skh) > β then
15: V R,k+1

h (skh)← V k+1
h (skh);

16: else if uk
h(s

k
h) = True then

17: V R,k+1
h (skh)← V k+1

h (skh); u
k+1
h (skh) = False.
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At the beginning of the k-th episode, we can obtain V -estimate V k
h (s), the reference function

V R,k
h (s) and the policy πk from the previous episode k − 1 and select a initial state sk1 (For the

first episode, we randomly choose a policy π1 and V 1
h (s) = V R,1

h = H). At step h ∈ [H], we
can process the trajectory with akh = πk

h(s
k
h) and skh+1 ∼ Ph(·|skh, akh). Now we need to update the

estimates of both Q-value and V -value functions at the end of k-th episode. In the algorithm, the
estimate learned from the UCB by the end of k-th episode, denoted as QUCB,k+1

h , is updated to:

QUCB,k+1
h = rkh(s

k
h, a

k
h) +

Nk+1
h∑

n=1

η
Nk+1

h
n

(
V kn

h+1(s
kn

h+1) + cb

√
H3ι

n

)
(82)

Here we define Nk
h = Nk

h (s
k
h, a

k
h) as the number of times that the state-action pair (skh, a

k
h) has

been visited at step h at the beginning of the k-th episode and kn = knh(s
k
h, a

k
h) denotes the index

of the episode in which the state-action pair (skh, a
k
h) is visited for the n-th time at step h. The term

cb

√
H3ι
n represents the exploration bonus for n-th visit, where cb > 0 is a sufficiently large constant.

Another Q-estimate obtained from LCB at the end of k-th episode, denoted as QLCB,k+1
h , is updated

similarly to QUCB,k+1
h , but with the exploration bonus subtracted instead.

The last estimate of Q-value function, denoted as QR,k+1
h , uses reference-advantage decomposition

techniques. At the end of k-th episode, QR,k+1
h is updated to:

QR,k+1
h = rkh(s

k
h, a

k
h)+

Nk+1
h∑

n=1

η
Nk+1

h
n

(
V kn

h+1(s
kn

h+1)−V
R,kn

h+1 (sk
n

h+1)+

∑n
i=1 V

R,ki

h+1 (s
ki

h+1)

n
+bR,kn+1

h

)
.

(83)
In Equation (83), V R,k

h (s) is the reference function learned at the end of episode k−1. The key idea
of the reference-advantage decomposition is that we expect to maintain a collection of reference
values {V R,k

h (s)}s,k,h, which form reasonable estimates of {V ⋆
h (s)}s,h and become increasingly

more accurate as the algorithm progresses. It means for any s ∈ S , sufficiently large k and some
given β ∈ (0, H], it holds |V R,k

h (s)− V ⋆
h (s)| ≤ β.

With two additional Q-estimates in hand — QUCB,k+1
h learned from UCB and QR,k+1

h obtained from
the reference-advantage decomposition, we can update Qk+1

h (skh, a
k
h) as follows:

Qk+1
h (skh, a

k
h) = min{QUCB,k+1

h (skh, a
k
h), Q

R,k+1
h (skh, a

k
h), Q

k
h(s

k
h, a

k
h)}. (84)

We also incorporate Qk
h(s

k
h, a

k
h) here to keep the monotonicity of the update. Then we can learn

V k+1
h (skh, a

k
h) and V LCB,k+1

h (skh, a
k
h) by a greedy policy with respect to these Q-estimates:

V k+1
h (skh) = max

a
Qk+1

h (skh, a), V
LCB,k+1
h (skh) = max

{
max

a
QLCB,k+1

h (skh, a), V
LCB,k
h (skh)

}
.

In the algorithm, V LCB,k
h (s) serves as a lower bound of V ⋆

h (s). We determine the final value
V R,K+1
h (s) of the reference function for the state-step pair (s, h) when the condition V k

h (s) −
V LCB,k
h (s) ≤ β is met for the first time.

F.2 AUXILIARY LEMMAS

As can be easily verified, we have

N∑
n=1

ηNn =

{
1, if N > 0,

0, if N = 0.
(85)

Lemma F.1. For any integer N > 0, the following properties hold:

1

Na
≤

N∑
n=1

ηNn
na
≤ 2

Na
, for all

1

2
≤ a ≤ 1, (86)
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max
1≤n≤N

ηNn ≤
2H

N
,

N∑
n=1

(ηNn )2 ≤ 2H

N
,

∞∑
N=n

ηNn ≤ 1 +
1

H
. (87)

Proof. It is proved in Appendix B of Li et al. (2021).

Let uN
i =

∑N
n=i

ηN
n

n . Then according to Equation (86), we know uN
i ≤ 2

N for any i ≤ N ∈ N+.
Lemma F.2. Using ∀(s, a, h, k) as the simplified notation for ∀(s, a, h, k) ∈ S×A× [H]× [K] and
∀(s, h, k) as the simplified notation for ∀(s, a, h, k) ∈ S × [H]× [K]. Then we have the following
conclusions:

(a) (Lemma 2 of Li et al. (2021)) With probability at least 1− δ, the following event holds:

E1 =
{
Q⋆

h(s, a) ≤ Qk+1
h (s, a) ≤ Qk

h(s, a), V
⋆
h (s) ≤ V k

h (s) ≤ V R,k
h (s), ∀(s, a, h, k)

}
.

(b) (Lemma 3 of Li et al. (2021)) With probability at least 1− δ, the following event holds:

E2 =

{
QLCB,k

h (s, a) ≤ Q⋆
h(s, a), V

LCB,k
h (s) ≤ V ⋆

h (s), ∀(s, a, h, k) and

H∑
h=1

K∑
k=1

I
[
Qk

h(s
k
h, a

k
h)−QLCB,k

h (skh, a
k
h) > ε

]
≲

H6SAι

ε2
, for any ϵ ∈ (0, H]

}
.

(c) (Paraphrased from Lemma 4 of Li et al. (2021)) With probability at least 1−δ, the following
event holds:

E3 =

{∣∣∣V k
h (s)− V R,k

h (s)
∣∣∣ ≤ 2β and

H∑
h=1

K∑
k=1

(
V k
h − V LCB,k

h

)
(skh) I

[(
V k
h − V LCB,k

h

)
(skh) > β

]
≤ H6SAι

β
,∀(s, h, k)

}
.

(d) With probability at least 1− δ, the following event holds:

E4 =


Nk

h∑
i=1

u
Nk

h
i

(
1
sk

i

h+1
− Ps,a,h

) (
V̂ R,ki

h+1 − V ⋆
h+1

)
≤ 2

√
2β2ι

Nk
h (s, a)

, ∀(s, a, h, k)

 .

(e) With probability at least 1− δ, the following event holds:

E5 =


Nk

h∑
i=1

u
Nk

h
i

(
1
sk

i

h+1
− Ps,a,h

)
V ⋆
h+1 ≤ 8

√
Q⋆ι

Nk
h (s, a)

+ 16
Hι

Nk
h (s, a)

, ∀(s, a, h, k)

 .

(f) With probability at least 1− δ, the following event holds:

E6 =


Nk

h∑
n=1

η
Nk

h
n

(
Ps,a,h − 1sk

n

h+1

)(
V̂ R,ki

h+1 − V ⋆
h+1

)
≤ 2

√
β2Hι

Nk
h (s, a)

, ∀(s, a, h, k)

 .

(g) With probability at least 1− δ, the following event holds:

E7 =

{
H∑

h=1

K∑
k=1

Pskh,a
k
h,h

{(
V k
h+1 − V LCB,k

h+1

)
(skh+1)I

[(
V k
h+1 − V LCB,k

h+1

)
(skh+1) > β

]}
≤ 3

H∑
h=1

K∑
k=1

(
V k
h+1 − V LCB,k

h+1

)
(skh+1)I

[(
V k
h+1 − V LCB,k

h+1

)
(skh+1) > β

]
+Hι

}
.
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Proof. (c) The proof is adapted from the proof of Equation (146) in Li et al. (2021), with the
substitution of

(
V j
h − V LCB,k

h

)
(skh) > 1 by

(
V j
h − V LCB,k

h

)
(skh) > β.

(d) From the definition of V̂ R,k
h (s), we know that for any k ∈ [K]:

V ⋆
h (s) ≤ V̂ R,k

h (s) ≤ V ⋆
h (s) + β. (88)

Then the sequence{
j∑

i=1

uN
i

(
1
sk

i

h+1
− Ps,a,h

)(
V̂ R,ki

h+1 − V ⋆
h+1

)}
j∈N+

is a martingale sequence with∣∣∣uN
i

(
1
sk

i

h+1
− Ps,a,h

)(
V̂ R,ki

h+1 − V ⋆
h+1

)∣∣∣ ≤ 2β

N
.

Then according to Azuma-Hoeffding inequality, for any δ ∈ (0, 1), with probability at least
1− δ

SAT , it holds for given Nk
H(s, a) = N ∈ N+ that:

N∑
i=1

(
1
sk

i

h+1
− Ps,a,h

)(
V̂ R,ki

h+1 − V ⋆
h+1

)
≤ 2

√
2β2ι

N
.

For any all (s, a, h, k) ∈ S ×A× [H]× [K], we have Nk
h (s, a) ∈ [ TH ]. Considering all the

possible combinations (s, a, h,N) ∈ S × A × [H] × [ TH ], with probability at least 1 − δ,
it holds simultaneously for all (s, a, h, k) ∈ S ×A× [H]× [K] that:

Nk
h∑

i=1

u
Nk

h
i

(
1
sk

i

h+1
− Ps,a,h

) (
V̂ R,ki

h+1 − V ⋆
h+1

)
≤ 2

√
2β2ι

Nk
h (s, a)

.

(e) The sequence {
j∑

i=1

uN
i

(
1
sk

i

h+1
− Ps,a,h

)
V ⋆
h+1

}
j∈N+

is a martingale sequence with∣∣∣uN
i

(
1
s
li
h+1

− Ps,a,h

)
V ⋆
h+1

∣∣∣ ≤ 2H

N
.

Using Lemma C.3 with c = 2H
N , ϵ = c2 and δ being δ

SAT 2 , for any given Nk
h (s, a) = N ∈

[T/H], with probability at least 1− 2(log2(N) + 1) δ
SAT 2 ≥ 1− δ

SAT , we have:

N∑
i=1

uN
i

(
1
sk

i

h+1
− Ps,a,h

)
V ⋆
h+1 ≤ 8

√
Q⋆ι

N
+ 16

Hι

N
.

For any all (s, a, h, k) ∈ S ×A× [H]× [K], we have Nk
h (s, a) ∈ [ TH ]. Considering all the

possible combinations (s, a, h,N) ∈ S × A × [H] × [ TH ], with probability at least 1 − δ,
it holds simultaneously for all (s, a, h, k) ∈ S ×A× [H]× [K]:

Nk
h∑

i=1

u
Nk

h
i

(
1
sk

i

h+1
− Ps,a,h

)
V ⋆
h+1 ≤ 8

√
Q⋆ι

Nk
h (s, a)

+ 16
Hι

Nk
h (s, a)

.

(f) The sequence {
j∑

n=1

ηNn

(
Ps,a,h − 1sk

n

h+1

)(
V̂ R,kn

h+1 − V ⋆
h+1

)}
j∈N+
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is a martingale sequence with

ηNn

(
Ps,a,h − 1sk

n

h+1

)(
V̂ R,kn

h+1 − V ⋆
h+1

)
≤ ηNn β.

Then according to Azuma-Hoeffding inequality and Equation (87), for any δ ∈ (0, 1), with
probability at least 1− δ

SAT , it holds for given Nk
h (s, a) = N ∈ N+ that:

N∑
n=1

ηNn

(
Ps,a,h − 1sk

n

h+1

)(
V̂ R,ki

h+1 − V ⋆
h+1

)
≤ 2

√
β2Hι

N
.

For any all (s, a, h, k) ∈ S ×A× [H]× [K], we have Nk
h (s, a) ∈ [ TH ]. Considering all the

possible combinations (s, a, h,N) ∈ S × A × [H] × [ TH ], with probability at least 1 − δ,
it holds simultaneously for all (s, a, h, k) ∈ S ×A× [H]× [K] that:

Nk
h∑

n=1

η
Nk

h
n

(
Ps,a,h − 1sk

n

h+1

)(
V̂ R,ki

h+1 − V ⋆
h+1

)
≤ 2

√
β2Hι

Nk
h (s, a)

(g) This conclusion is directly proved by Lemma C.2 with l = H .

Lemma F.3. For any non-negative weight sequence {ωh,k}h,k and α ∈ (0, 1), it holds that:
K∑

k=1

ωh,k

Nk
h (s

k
h, a

k
h)

α
≤ 1

1− α
(SA∥ω∥∞,h)

α∥ω∥1−α
1,h ,

Here, ∥ω∥∞,h = max
k
{ωh,k} and ∥ω∥1,h =

∑K
k=1 ωh,k.

For α = 1, we have the following conclusions:
K∑

k=1

1

Nk
h (s

k
h, a

k
h)
≤ SA log(T ),

Proof.
K∑

k=1

ωh,k

Nk
h (s

k
h, a

k
h)

α
=
∑
s,a

NK
h (s,a)∑
i=1

ωh,ki(s,a)

iα
(89)

Here ki(s, a) is the episode index of the i-th visits to (s, a, h). Let ch(s, a) =
∑NK

h (s,a)
i=1 ωh,ki(s,a)

and then we have
∑

s,a ch(s, a) =
∑K

k=1 ωh,k = ∥ω∥1,h. Given the term
∑K

k=1

ωh,ki(s,a)

iα , when the
weights ωh,ki(s,a) concentrates on former terms, we can obtain the largest value. Let

ks,a,h =

⌈
ch(s, a)

∥ω∥∞,h

⌉
and ds,a,h = ch(s, a)− (ks,a,h − 1)∥ω∥∞,h.

Then we have:
K∑

k=1

ωh,k

Nk
h (s

k
h, a

k
h)

α
≤
∑
s,a

ks,a,h−1∑
i=1

∥ω∥∞,h

iα
+

ds,a,h
kαs,a,h

≤
∑
s,a

∥ω∥∞,h

ks,a,h−1∑
i=1

i1−α − (i− 1)1−α

1− α
+

ds,a,h
kαs,a,h

=
∑
s,a

∥ω∥∞,h(ks,a,h − 1)1−α

1− α
+

ds,a,h
kαs,a,h

=
∑
s,a

∥ω∥α∞,h

(
[(ks,a,h − 1)∥ω∥∞,h]

1−α

1− α
+

ds,a,h
(ks,a,h∥ω∥∞,h)α

)

≤
∑
s,a

∥ω∥α∞,h

(
[(ks,a,h − 1)∥ω∥∞,h]

1−α

1− α
+

ds,a,h
ch(s, a)α

)
. (90)
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Here the last inequality is because ks,a,h∥ω∥∞,h ≥ ch(s, a). The second inequality is because for
any 0 < y < x and α ∈ (0, 1), we have:

x− y

xα
≤ 1

1− α
(x1−α − y1−α).

Then, let x = i and y = i− 1, it holds that:
1

iα
≤ 1

1− α
(i1−α − (i− 1)1−α).

Also let x = ch(s, a) and y = (ks,a,h − 1)∥ω∥∞,h, we have:

ds,a,h
ch(s, a)α

+
[(ks,a,h − 1)∥ω∥∞,h]

1−α

1− α
≤ ch(s, a)

1−α

1− α
.

Applying this inequality to Equation (90), we have:
K∑

k=1

ωh,k

Nk
h (s

k
h, a

k
h)

α
≤
∑
s,a

∥ω∥α∞,h

ch(s, a)
1−α

1− α
≤ 1

1− α
(SA∥ω∥∞,h)

α∥ω∥1−α
1,h

The last inequality is by Hölder’s inequality, as
∑

s,a ch(s, a)
1−α ≤ (SA)α∥ω∥1−α

1,h .
For α = 1, it holds that:

K∑
k=1

1

Nk
h (s

k
h, a

k
h)

=
∑
s,a

NK
h (s,a)∑
i=1

1

i
≤
∑
s,a

(
log(NK

h (s, a)) + 1
)
≤ SA log T.

Lemma F.4. For any non-negative functions {Xk
h : S → R | k ∈ [K], h ∈ [H]} and any h ∈ [H],

we have that
K∑

k=1

Nk
h (skh,a

k
h)∑

n=1

u
Nk

h
n Xkn

h+1 ≲ log(T )

K∑
k=1

Xk
h+1,

K∑
k=1

Nk
h (skh,a

k
h)∑

n=1

η
Nk

h
n Xkn

h+1 ≤
(
1 +

1

H

) K∑
k=1

Xk
h+1.

Here, Xk
H+1 = 0 for any k ∈ [K] and s ∈ S.

Proof. For the first conclusion, we have
K∑

k=1

Nk
h (skh,a

k
h)∑

n=1

u
Nk

h
n Xkn

h+1 =

K∑
k=1

Nk
h∑

n=1

u
Nk

h
n Xkn

h+1

 K∑
j=1

I[kn = j]


=

K∑
j=1

( K∑
k=1

Nk
h∑

n=1

u
Nk

h
n I [kn = j]

)
Xj

h+1. (91)

Here I [kn = j] = 1 if and only if (sjh, a
j
h) = (skh, a

k
h), j ≤ k−1 and n = N j+1

h (sjh, a
j
h) > 0. Then

we have:
K∑

k=1

Nk
h∑

n=1

u
Nk

h
n I [kn = j] =

K∑
k=j+1

u
Nk

h

Nj+1
h

I
[
(sjh, a

j
h) = (skh, a

k
h)
]
≤

NK
h∑

t=Nj+1
h

ut
Nj+1

h

≲ log T. (92)

The last inequality is because for any N ∈ N+ and i ∈ [N ], uN
i ≤ 2

N . Applying Equation (92) to
Equation (91), we finish the proof of the first conclusion. For the second conclusion, it holds:

K∑
k=1

Nk
h (skh,a

k
h)∑

n=1

η
Nk

h
n Xkn

h+1 =

K∑
k=1

Nk
h∑

n=1

η
Nk

h
n Xkn

h+1

 K∑
j=1

I[kn = j]


=

K∑
j=1

( K∑
k=1

Nk
h∑

n=1

η
Nk

h
n I [kn = j]

)
Xj

h+1. (93)
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According to the definition of kn, I [kn = j] = 1 if and only if (sjh, a
j
h) = (skh, a

k
h), j ≤ k − 1 and

n = N j+1
h (sjh, a

j
h). Then by Equation (87) in Lemma F.1, we have:

K∑
k=1

Nk
h∑

n=1

η
Nk

h
n I [kn = j] =

K∑
k=j+1

η
Nk

h

Nj+1
h

I
[
(sjh, a

j
h) = (skh, a

k
h)
]
≤

∞∑
t=Nj+1

h

ηt
Nj+1

h

≤ 1 +
1

H
. (94)

Applying Equation (94) to Lemma F.1, we have proven the second conclusion.

Lemma F.5. For any h ∈ [H] and k ∈ [K], we have the following two conclusions:

• If V k
h+1(s)− V LCB,k

h+1 (s) ≤ β, then V R,K+1
h+1 (s) = V R,k

h+1(s) = V̂ R,k
h+1(s).

• If V k
h+1(s)− V LCB,k

h+1 (s) > β, then we have:

0 ≤ V R,k
h+1(s)− V̂ R,k

h+1(s) ≤ V k
h+1(s)− V LCB,k

h+1 (s),

and
|V̂ R,k

h+1(s)− V R,K+1
h+1 (s)| ≤ V k

h+1(s)− V LCB,k
h+1 (s).

Proof. • If for given k ∈ [K], V k
h+1(s) − V LCB,k

h+1 (s) ≤ β, then there exists k1 ∈ [K] such
that:

k1 = min
{
k : V k

h+1(s)− V LCB,k
h+1 (s) ≤ β

}
.

Then according the algorithm, we have uk1−1
h+1 (s) = True, or it is contradictory to the

minimality of k1. Therefore, in this case we have:

V R,K+1
h+1 (s) = V R,k

h+1(s) = V R,k1

h+1 (s) = V k1

h+1(s) ≤ V LCB,k1

h+1 (s) + β ≤ V ⋆
h+1(s) + β,

and
V R,k
h+1(s) = V R,k1

h+1 (s) = V k1

h+1(s) ≥ V ⋆
h+1(s).

According to the definition of V̂ R,k
h+1(s), we have V̂ R,k

h+1(s) = V R,k
h+1(s) = V R,K+1

h+1 (s). Thus
V k
h+1(s)−V LCB,k

h+1 (s) ≤ β is the sufficient condition of V R,k
h+1(s) = V̂ R,k

h+1(s) = V R,K+1
h+1 (s).

• Moreover, if V k
h+1(s) − V LCB,k

h+1 (s) > β, according to the algorithm, we have V R,k
h+1(s) =

V k
h+1(s) and then 0 ≤ V R,k

h+1(s)− V̂ R,k
h+1(s) ≤ V k

h+1(s)− V LCB,k
h+1 (s).

In this case, we also have V LCB,k
h+1 (s) ≤ V ∗

h+1(s) ≤ V R,K+1
h+1 (s) ≤ V R,k

h+1(s) = V k
h+1(s)

and then V LCB,k
h+1 (s) ≤ V ∗

h+1(s) ≤ V̂ R,k
h+1(s) ≤ V R,k

h+1(s) = V k
h+1(s). These two inequalities

imply that |V̂ R,k
h+1(s)− V R,K+1

h+1 (s)| ≤ V k
h+1(s)− V LCB,k

h+1 (s).

F.3 STEP 1: BOUNDING Qk
h −Q⋆

h

F.3.1 BOUNDING THE EMPIRICAL ESTIMATION ERRORS

By E6 in Lemma F.2 we have:

(
Padv
h,k − Êadv

h,k

)
V̂ adv,kn

h+1 =

Nk
h∑

n=1

η
Nk

h
n

(
Pskh,a

k
h,h
− 1sk

n

h+1

)(
V̂ R,ki

h+1 − V ⋆
h+1

)
≤ 2

√
β2Hι

Nk
h (s

k
h, a

k
h)

.

(95)
By E4 in Lemma F.2, it holds that:

(
Êref
h,k − Pref

h,k

)
(V̂ R,kn

h+1 −V
⋆
h+1) =

Nk
h∑

i=1

u
Nk

h
i

(
1
sk

i

h+1
− Pskh,a

k
h,h

) (
V̂ R,ki

h+1 −V
⋆
h+1

)
≤ 2

√
2β2ι

Nk
h (s

k
h, a

k
h)

.
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By E5 in Lemma F.2, it holds that:

(
Êref
h,k − Pref

h,k

)
V ⋆
h+1 =

Nk
h∑

i=1

u
Nk

h
i

(
1
sk

i

h+1
− Pskh,a

k
h,h

)
V ⋆
h+1 ≤ 8

√
Q⋆ι

Nk
h (s

k
h, a

k
h)

+ 16
Hι

Nk
h (s

k
h, a

k
h)

.

Therefore, combining these two inequalities, we have:(
Êref
h,k − Pref

h,k

)
V̂ R,kn

h+1 ≲

√
Q⋆ + β2

Nk
h (s

k
h, a

k
h)

ι+
Hι

Nk
h (s

k
h, a

k
h)

. (96)

F.3.2 BOUNDING THE BONUS

Since the term ι2 in the last inequality of Lemma 7 in Li et al. (2021) can be easily improved to ι,
we can paraphrase the equation (87) and equation (88) of Li et al. (2021) to the following form:

bR,kn+1
h =

(
1− 1

ηn

)
BR,kn

h

(
skh, a

k
h

)
+

1

ηn
BR,kn+1

h

(
skh, a

k
h

)
+

cb
n3/4

H2ι. (97)

This taken collectively with the definition of ηNn allows us to expand

Rh,k =

Nk
h∑

n=1

ηNn bR,kn+1
h

=

Nk
h∑

n=1

ηn

Nk
h∏

i=n+1

(1− ηi)

((
1− 1

ηn

)
BR,kn

h

(
skh, a

k
h

)
+

1

ηn
BR,kn+1

h

(
skh, a

k
h

))
+ cb

Nk
h∑

n=1

η
Nk

h
n

n3/4
H2ι

= BR,kNk
h+1

h + cb

Nk
h∑

n=1

η
Nk

h
n

n3/4
H2ι. (98)

Then with BR,kNk
h+1

h = BR,k
h and Equation (86) in Lemma F.1, it holds that

Rh,k ≲ BR,k
h +

H2ι

Nk
h (s

k
h, a

k
h)

3
4

. (99)

Similar to equation (158) of Li et al. (2021), we have:√√√√√σadv,k
h (skh, a

k
h)−

(
µadv,k
h (skh, a

k
h)
)2

Nk
h (s

k
h, a

k
h)

≤

√√√√√∑Nk
h

n=1 η
Nk

h
n

(
V kn

h+1(s
kn

h+1)− V R,kn

h+1 (sk
n

h+1)
)2

Nk
h (s

k
h, a

k
h)

≤ 2β

(100)

Equation (100) is because |V kn

h+1(s
kn

h+1)−V
R,kn

h+1 (sk
n

h+1)| ≤ 2β by E3 in Lemma F.2 and
∑Nk

h
n=1 η

Nk
h

n ≤
1. Meanwhile, since V R,kn

h+1 (sk
n

h+1) ≥ V̂ R,kn

h+1 (sk
n

h+1), it also holds that√√√√√σref,k
h (skh, a

k
h)−

(
µref,k
h (skh, a

k
h)
)2

Nk
h (s

k
h, a

k
h)

≤

√
Jh,k
1 + Jh,k

2

Nk
h (s

k
h, a

k
h)

,

where:

Jh,k
1 =

∑Nk
h

n=1

((
V R,kn

h+1 (sk
n

h+1)
)2
−
(
V̂ R,kn

h+1 (sk
n

h+1)
)2)

Nk
h (s

k
h, a

k
h)

,

and

Jh,k
2 =

∑Nk
h

n=1

(
V̂ R,kn

h+1 (sk
n

h+1)
)2

Nk
h (s

k
h, a

k
h)

−

∑Nk
h

n=1 V̂
R,kn

h+1 (sk
n

h+1)

Nk
h (s

k
h, a

k
h)

2

.
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Next we want to bound both Jh,k
1 and Jh,k

2 .

Jh,k
1 =

∑Nk
h

n=1

(
V R,kn

h+1 (sk
n

h+1) + V̂ R,kn

h+1 (sk
n

h+1)
)(

V R,kn

h+1 (sk
n

h+1)− V̂ R,kn

h+1 (sk
n

h+1)
)

Nk
h (s

k
h, a

k
h)

≤

∑Nk
h

n=1 2H
(
V R,kn

h+1 (sk
n

h+1)− V̂ R,kn

h+1 (sk
n

h+1)
)

Nk
h (s

k
h, a

k
h)

.

Therefore, we have

Jh,k
1 ≤ 2HΨk

h(s
k
h, a

k
h)

Nk
h (s

k
h, a

k
h)

, (101)

where

Ψk
h(s

k
h, a

k
h) =

Nk
h∑

n=1

(
V R,kn

h+1 (sk
n

h+1)− V̂ R,kn

h+1 (sk
n

h+1)
)
.

For the second term Jh,k
2 , because of Cauchy’s Inequality, we have:

Jh,k
2 =

∑Nk
h

n=1

(
V̂ R,kn

h+1 (sk
n

h+1)−
∑Nk

h
i=1 V̂ R,kn

h+1 (sk
n

h+1)

Nk
h (skh,a

k
h)

)2

Nk
h (s

k
h, a

k
h)

≤ 2(Jh,k
2,1 + Jh,k

2,2 ),

where:

Jh,k
2,1 =

∑Nk
h

n=1

(
V̂ R,kn

h+1 (sk
n

h+1)− V ⋆
h+1(s

kn

h+1) +
∑Nk

h
i=1 V ⋆

h+1(s
kn

h+1)

Nk
h (skh,a

k
h)

−
∑Nk

h
i=1 V̂ R,kn

h+1 (sk
n

h+1)

Nk
h (skh,a

k
h)

)2

Nk
h (s

k
h, a

k
h)

,

and

Jh,k
2,2 =

∑Nk
h

n=1

(
V ⋆
h+1(s

kn

h+1)−
∑Nk

h
i=1 V ⋆

h+1(s
kn

h+1)

Nk
h (skh,a

k
h)

)2

Nk
h (s

k
h, a

k
h)

=

∑Nk
h

n=1

(
V ⋆
h+1(s

kn

h+1)
)2

Nk
h (s

k
h, a

k
h)

−

∑Nk
h

n=1 V
⋆
h+1(s

kn

h+1)

Nk
h (s

k
h, a

k
h)

2

.

Since V ⋆
h+1(s

kn

h+1) ≤ V̂ R,kn

h+1 (sk
n

h+1) ≤ V ⋆
h+1(s

kn

h+1) + β, it holds that:∣∣∣∣∣∣V̂ R,kn

h+1 (sk
n

h+1)− V ⋆
h+1(s

kn

h+1) +

∑Nk
h

i=1 V
⋆
h+1(s

kn

h+1)

Nk
h (s

k
h, a

k
h)

−
∑Nk

h
i=1 V̂

R,kn

h+1 (sk
n

h+1)

Nk
h (s

k
h, a

k
h)

∣∣∣∣∣∣
≤
∣∣∣V̂ R,kn

h+1 (sk
n

h+1)− V ⋆
h+1(s

kn

h+1)
∣∣∣+
∣∣∣∣∣∣
∑Nk

h
i=1 V

⋆
h+1(s

kn

h+1)

Nk
h (s

k
h, a

k
h)

−
∑Nk

h
i=1 V̂

R,kn

h+1 (sk
n

h+1)

Nk
h (s

k
h, a

k
h)

∣∣∣∣∣∣ ≤ 2β.

Therefore, applying this inequality to Jh,k
2,1 , we have Jh,k

2,1 ≤ 4β2. Moreover, according to equation
(165) of Li et al. (2021), the following inequality holds:

Jh,k
2,2 ≲ Q⋆ +H2

√
ι

Nk
h (s

k
h, a

k
h)

.

Combining the upper bounds of Jh,k
1 Equation (101), Jh,k

2,1 and Jh,k
2,2 , we have:√√√√√σref,k

h (skh, a
k
h)−

(
µref,k
h (skh, a

k
h)
)2

Nk
h (s

k
h, a

k
h)

≲

√
HΨk

h(s
k
h, a

k
h)

Nk
h (s

k
h, a

k
h)

+

√
Q⋆ + β2

Nk
h (s

k
h, a

k
h)

+
Hι

1
4

Nk
h (s

k
h, a

k
h)

3
4

.

(102)
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Back to the definition of BR,k
h in Algorithm 2, combining Equation (100) and Equation (102), it

holds:

BR,k
h ≤ cb

√
ι

√√√√√σref,k
h (skh, a

k
h)−

(
µref,k
h (skh, a

k
h)
)2

Nk
h (s

k
h, a

k
h)

+ cb
√
Hι

√√√√√σadv,k
h (skh, a

k
h)−

(
µadv,k
h (skh, a

k
h)
)2

Nk
h (s

k
h, a

k
h)

≲

√
HΨk

h(s
k
h, a

k
h)ι

Nk
h (s

k
h, a

k
h)

+

√
(Q⋆ + β2H)ι

Nk
h (s

k
h, a

k
h)

+
Hι

3
4

Nk
h (s

k
h, a

k
h)

3
4

.

Then by Equation (99), we have

Rh,k ≲

√
HΨk

h(s
k
h, a

k
h)ι

Nk
h (s

k
h, a

k
h)

+

√
(Q⋆ + β2H)ι

Nk
h (s

k
h, a

k
h)

+
H2ι

Nk
h (s

k
h, a

k
h)

3
4

. (103)

Applying Equation (95), Equation (96), Equation (103) to Equation (14), it holds that:

(Qk
h −Q⋆

h)(s
k
h, a

k
h) ≤ Êadv

h,k(V
kn

h+1 − V ⋆
h+1) +

√
(Q⋆ + β2H)ι

Nk
h (s

k
h, a

k
h)

+
H2ι

Nk
h (s

k
h, a

k
h)

3
4

+Rh,k
else . (104)

Here

Rh,k
else = η

Nk
h

0 H + Êref
h,k(V

R,kn

h − V̂ R,kn

h )+
(
Pref
h,k − Padv

h,k

)
V̂ R,kn

h+1 +

√
HΨk

h(s
k
h, a

k
h)ι

Nk
h (s

k
h, a

k
h)

+
Hι

Nk
h (s

k
h, a

k
h)

.

F.4 STEP 2: BOUNDING THE WEIGHTED SUM

F.4.1 REARRANGING THE SUMMATION

K∑
k=1

ωh,kÊadv
h,k(V

kn

h+1 − V ⋆
h+1) =

K∑
k=1

Nk
h∑

n=1

ωh,kη
Nk

h
n

(
V kn

h+1(s
kn

h+1)− V ⋆
h+1(s

kn

h+1)
)

=

K∑
j=1

 K∑
k=1

Nk
h∑

n=1

ωh,kη
Nk

h
n I [kn = j]

(V j
h+1(s

j
h+1)− V ⋆

h+1(s
j
h+1)

)

≤
K∑
j=1

 K∑
k=1

Nk
h∑

n=1

ωh,kη
Nk

h
n I [kn = j]

(Qj
h+1 −Q⋆

h+1

)
(sjh+1, a

j
h+1)

≜
K∑
j=1

ωh+1,j(h)
(
Qj

h+1(s
j
h+1, a

j
h+1)−Q⋆

h+1(s
j
h+1, a

j
h+1)

)
.

(105)

Here, for any j ∈ [K]

ωh+1,j(h) =

K∑
k=1

Nk
h∑

n=1

ωh,kη
Nk

h
n I [kn = j] .

The inequality is because Qj
h+1(s

j
h+1, a

j
h+1) = V j

h+1(s
j
h+1), Q

⋆
h+1(s

j
h+1, a

j
h+1) ≤ V ⋆

h+1(s
j
h+1).

F.4.2 PROOF OF EQUATION (20)

By Equation (94), for h < h′ ≤ H and any j ∈ [K], it holds that:

ωh′,j(h) ≤ ∥ω(h)∥∞,h′−1

K∑
k=1

Nk
h∑

n=1

η
Nk

h
n I [kn = j] ≤ (1 +

1

H
)∥ω(h)∥∞,h′−1. (106)
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It also holds that:
K∑
j=1

ωh′,j(h) =

K∑
k=1

ωh,k

Nk
h∑

n=1

η
Nk

h
n ≤ ∥ω(h)∥1,h′−1. (107)

Combining Equation (104) with Equation (105), the weighted sum
∑K

k=1 ωh,k(Q
k
h − Q⋆

h)(s
k
h, a

k
h)

can be bounded by

K∑
k=1

ωh,k(Q
k
h(s

k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h))

≲
K∑

k=1

ωh+1,k(h)(Q
k
h+1 −Q⋆

h+1)(s
k
h+1, a

k
h+1) +

K∑
k=1

ωh,k

(√
(Q⋆ + β2H)ι

Nk
h (s

k
h, a

k
h)

+
H2ι

(Nk
h )

3
4

+Rh,k
else

)

≤
K∑

k=1

ωh+1,k(h)(Q
k
h+1 −Q⋆

h+1)(s
k
h+1, a

k
h+1) +

√
(Q⋆ + β2)SA∥ω∥∞,h∥ω∥1,hι

+H2ι(SA∥ω∥∞,h)
3
4 ∥ω∥

1
4

1,h +

K∑
k=1

ωh,kR
h,k
else . (108)

The last inequality is by Lemma F.3 with α = 1
2 and 3

4 . Recurring Equation (108) with regard to
h, h + 1, . . . ,H , since Qk

H+1(s, a) = Q⋆
H+1(s, a) = 0 and the weight relationship Equation (106)

and Equation (107), we have

K∑
k=1

ωh,k(Q
k
h(s

k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h))

≲ H
√
(Q⋆ + β2H)SA∥ω∥∞,h∥ω∥1,hι+H3ι(SA∥ω∥∞,h)

3
4 ∥ω∥

1
4

1,h +

K∑
k=1

H∑
h′=h

ωh′,k(h)R
h′,k
else .

(109)

F.5 STEP 3: INTEGRATING MULTIPLE WEIGHTED SUMS

F.5.1 PROOF OF EQUATION (25)

For any N = ⌈log2(H/∆min)⌉, i ∈ [N ], k ∈ [K] and the given h ∈ [H], let:

ω
(i)
h,k = I

[
Qk

h(s
k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h) ∈ [2i−1∆min, 2

i∆min)
]
,

and
ω
(N)
h,k = I

[
Qk

h(s
k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h) ∈ [2N−1∆min, H]

]
.

Then

∥ω(i)∥∞,h = max
k

ω
(i)
h,k ≤ 1, ∥ω(i)∥1,h =

K∑
k=1

ω
(i)
h,k.

For any given i ∈ [N ] and h ≤ h′ ≤ H , the weight {ω(i)
h′,k}k can be defined recursively by

Equation (18). Therefore, for any j ∈ [K], it holds that:

N∑
i=1

ω
(i)
h′+1,j(h) =

K∑
k=1

Nk
h′∑

n=1

(
N∑
i=1

ω
(i)
h′,k(h)

)
η
Nk

h′
n I [kn = j] .

Here for any i ∈ [N ], ω(i)
h,k(h) = ω

(i)
h,k. Then by mathematical induction on h′ ∈ [h,H], it is

straightforward to prove that for any j ∈ [K],

N∑
i=1

ω
(i)
h′,j(h) ≤

(
1 +

1

H

)h′−h

< 3, (110)
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given that for any j ∈ [K]

K∑
k=1

Nk
h′∑

n=1

η
Nk

h′
n I [kn = j] ≤ 1 +

1

H

by Equation (94) and
∑N

i=1 ω
(i)
h,j(h) =

∑N
i=1 ω

(i)
h,j ≤ 1.

Applying the weight {ω(i)
h,k}k to Equation (109), since ∥ω(i)∥∞,h ≤ 1, then for any i ∈ [N ], it holds:

K∑
k=1

ω
(i)
h,k(Q

k
h(s

k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h)) ≲ H

√
(Q⋆ + β2H)SA∥ω(i)∥1,hι

+H3ι(SA)
3
4 (∥ω(i)∥1,h)

1
4 +

K∑
k=1

H∑
h′=h

ω
(i)
h′,k(h)R

h′,k
else .

On the other hand, according to the definition of ω(i)
h,k, we have

K∑
k=1

ω
(i)
h,k

(
Qk

h(s
k
h, a

k
h)−Q⋆

h(s
k
h, a

k
h)
)
≥ 2i−1∆min∥ω(i)∥1,h.

Therefore, since ∥ω(i)∥∞,h ≤ 1, we obtain the following inequality for any i ∈ [N ]:

2i−1∆min∥ω(i)∥1,h ≲ H
√
(Q⋆ + β2H)SA∥ω(i)∥1,hι+H3ι(SA)

3
4 (∥ω(i)∥1,h)

1
4

+

K∑
k=1

H∑
h′=h

ω
(i)
h′,k(h)R

h′,k
else . (111)

Then at least one of the following three inequalities holds:

2i−1∆min∥ω(i)∥1,h ≲ H
√
(Q⋆ + β2H)SA∥ω(i)∥1,hι

2i−1∆min∥ω(i)∥1,h ≲ H3ι(SA)
3
4 (∥ω(i)∥1,h)

1
4 ,

2i−1∆min∥ω(i)∥1,h ≲
K∑

k=1

H∑
h′=h

ω
(i)
h′,k(h)R

h′,k
else .

Solving this three inequalities, we know that:

∥ω(i)∥1,h ≤ O

(
max

{(
Q⋆ + β2H

)
SAH2ι

4i−1∆2
min

,
H4SAι

4
3

(2i−1∆min)
4
3

,

∑K
k=1

∑H
h′=h ω

(i)
h′,k(h)R

h′,k
else

2i−1∆min

})

≤ O

((
Q⋆ + β2H

)
SAH2ι

4i−1∆2
min

+
H4SAι

4
3

(2i−1∆min)
4
3

+

∑K
k=1

∑H
h′=h ω

(i)
h′,k(h)R

h′,k
else

2i−1∆min

)
.

(112)

By Equation (110), we have:

N∑
i=1

K∑
k=1

H∑
h′=h

ω
(i)
h′,k(h)R

h′,k
else =

H∑
h′=h

K∑
k=1

(
N∑
i=1

ω
(i)
h′,k(h)

)
Rh′,k

else ≤ 3

H∑
h′=1

K∑
k=1

Rh′,k
else .

Using this inequality, we have

N∑
i=1

2i∆min∥ω(i)∥1,h ≤ O

((
Q⋆ + β2H

)
SAH2ι

∆min
+

H4SAι
4
3

(∆min)
1
3

+

H∑
h′=1

K∑
k=1

Rh′,k
else

)
. (113)
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F.5.2 PROOF OF EQUATION (26) AND EQUATION (27)

Next we will bound the term
∑H

h′=1

∑K
k=1 R

h′,k
else , where

Rh′,k
else = η

Nk
h′

0 H + Êref
h′,k

(
V R,kn

h′+1 − V̂ R,kn

h′+1

)
+
(
Pref
h′,kV̂

R,kn

h′+1 − Padv
h′,kV̂

R,kn

h′+1

)
+

√
HΨk

h′ι

Nk
h′

+
Hι

Nk
h′
.

According to equation (149) of Li et al. (2021), we have:

H∑
h′=1

K∑
k=1

η
Nk

h′
0 H ≤ H2SA ≤ H6SA log(T )ι

β
. (114)

By Lemma F.4, we have

H∑
h′=1

K∑
k=1

Êref
h′,k

(
V R,kn

h′+1 − V̂ R,kn

h′+1

)
≲ log T

H∑
h′=1

K∑
j=1

(
V R,j
h′+1 − V̂ R,j

h′+1

)
(sk

i

h′+1). (115)

By Lemma F.5, the following inequality holds:

H∑
h′=1

K∑
j=1

(
V R,j
h′+1(s

j
h′+1)− V̂ R,j

h′+1(s
j
h′+1)

)

≤
H∑

h′=1

K∑
j=1

(
V j
h′+1(s

j
h′+1)− V LCB,j

h′+1 (sjh′+1)
)
I
[
V j
h′+1(s

j
h′+1)− V LCB,j

h′+1 (sjh′+1) > β
]
≲

H6SAι

β
.

The last inequality is by E3 in Lemma F.2. Applying this inequality to Equation (115), it holds that:

H∑
h′=1

K∑
k=1

Êref
h′,k

(
V R,kn

h′ − V̂ R,kn

h′

)
≲

H6SA log(T )ι

β
(116)

For the third term in Rh′,k
else , because

∑Nk
h′

n=1 u
Nk

h′
n =

∑Nk
h′

n=1 η
Nk

h′
n , then

Pref
h′,kV̂

R,kn

h′+1 − Padv
h′,kV̂

R,kn

h′+1

=

Nk
h′∑

n=1

u
Nk

h′
n Psk

h′ ,a
k
h′ ,h

′(V̂
R,kn

h′+1 − V R,K+1
h′+1 )−

Nk
h′∑

n=1

η
Nk

h′
n Psk

h′ ,a
k
h′ ,h

′(V̂
R,kn

h′+1 − V R,K+1
h′+1 )

≤
Nk

h′∑
n=1

u
Nk

h′
n Psk

h′ ,a
k
h′ ,h

′

∣∣∣V̂ R,kn

h′+1 − V R,K+1
h′+1

∣∣∣+ Nk
h′∑

n=1

η
Nk

h′
n Psk

h′ ,a
k
h′ ,h

′

∣∣∣V̂ R,kn

h′+1 − V R,K+1
h′+1

∣∣∣
By Lemma F.4, we have:

H∑
h′=1

K∑
k=1

Nk
h′∑

n=1

u
Nk

h′
n Psk

h′ ,a
k
h′ ,h

′

∣∣∣V̂ R,kn

h′+1 − V R,K+1
h′+1

∣∣∣ ≲ log(T )

H∑
h′=1

K∑
j=1

Psk
h′ ,a

k
h′ ,h

′

∣∣∣V̂ R,j
h′+1 − V R,K+1

h′+1

∣∣∣ .
and

H∑
h′=1

K∑
k=1

Nk
h′∑

n=1

η
Nk

h′
n Psk

h′ ,a
k
h′ ,h

′

∣∣∣V̂ R,kn

h′+1 − V R,K+1
h′+1

∣∣∣ ≲ H∑
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K∑
j=1

Psk
h′ ,a

k
h′ ,h

′

∣∣∣V̂ R,j
h′+1 − V R,K+1

h′+1

∣∣∣
Combining these two inequalities, we have:

H∑
h′=1

K∑
k=1

(
Pref
h′,kV̂

R,kn

h′+1 − Padv
h′,kV̂

R,kn

h′+1

)
≲ log(T )

H∑
h′=1

K∑
j=1

Psk
h′ ,a

k
h′ ,h

′

∣∣∣V̂ R,j
h′+1 − V R,K+1

h′+1

∣∣∣ . (117)
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According to Lemma F.5, the following inequality holds:
H∑

h′=1

K∑
j=1

Psk
h′ ,a

k
h′ ,h

′

∣∣∣V̂ R,j
h′+1(s

j
h′+1)− V R,K+1

h′+1 (sjh′+1)
∣∣∣

≤
H∑

h′=1

K∑
j=1

Psk
h′ ,a

k
h′ ,h

′

{(
V j
h′+1 − V LCB,j

h′+1

)
(sjh′+1)I

[(
V j
h′+1 − V LCB,j

h′+1

)
(sjh′+1) > β

]}
≲

H6SAι

β
.

The last inequality is because of the events E3 and E7 in Lemma F.2. Together with Equation (117),
we have:

H∑
h′=1

K∑
k=1

(
Pref
h′,kV̂

R,kn

h′+1 − Padv
h′,kV̂

R,kn

h′+1

)
≲

H6SA log(T )ι

β
. (118)

Now we move to the fourth term in Rh,k
else . By Lemma F.5 we have:

Ψk
h′(skh′ , akh′) =

Nk
h′∑

n=1

(
V R,kn

h′+1 (s
kn

h′+1)− V̂ R,kn

h′+1 (s
kn

h′+1)
)

≤
Nk

h′∑
n=1

(
V kn

h′+1(s
kn

h′+1)− V LCB,kn

h′+1 (sk
n

h′+1)
)
· I
[
V kn

h′+1(s
kn

h′+1)− V LCB,kn

h′+1 (sk
n

h′+1) > β
]

≜ Φk
h′(skh′ , akh′)

Then it holds that:
K∑

k=1

√
Ψk

h′(skh′ , akh′)

Nk
h′(skh′ , akh′)

≤
K∑
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√
Φk
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=
∑
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√
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[
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]
n

≤ log T
∑
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√
ΦK
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[
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]
≤ log T

√
SA

∑
s,a

ΦK
h′(s, a)I

[
(skh′ , akh′) = (s, a)

]
(119)

The second inequality is because of the mononicity of Φn
h′(s, a). The last inequality is by Cauchy-

Schwartz inequality. To continue, note that:
H∑

h′=1
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s,a

ΦK
h′(s, a)I

[
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=

H∑
h′=1

√√√√ K∑
k=1

(
V k
h′+1(s

k
h′+1)− V LCB,k

h′+1 (skh′+1)
)
· I
[
V k
h′+1(s

k
h′+1)− V LCB,k

h′+1 (skh′+1) > β
]

≤

√√√√H

H∑
h′=1

K∑
k=1

(
V k
h′+1(s

k
h′+1)− V LCB,k

h′+1 (skh′+1)
)
· I
[
V k
h′+1(s

k
h′+1)− V LCB,k

h′+1 (skh′+1) > β
]

≤

√
H7SAι

β

The first inequality uses Cauchy-Schwartz inequality and the last inequality is by E3 in Lemma F.2.
Together with Equation (119), it holds:

H∑
h′=1

K∑
k=1

√
HΨk

h′(skh′ , akh′)ι

Nk
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≲
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. (120)
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By Lemma F.3 with α = 1, we have:
H∑

h′=1

K∑
k=1

Hι

Nk
h′(skh′ , akh′)

≤ H2SA log(T )ι. (121)

By summing Equation (114), Equation (116), Equation (118), Equation (120) and Equation (121),
since β ∈ (0, H], we can conclude that:

H∑
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K∑
k=1

Rh′,k
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H6SA log(T )ι

β
.

Then we have
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The last inequality is because

H4SAι
4
3

(∆min)
1
3

≤ β2H3SAι

∆min
+

H5SAι

β
+

H5SAι2

β

by AM-GM inequality.

F.6 STEP 4: BOUNDING THE EXPECTED GAP-DEPENDENT REGRET

By Equation (9), Qk
h(s

k
h, a

k
h) = V k

h (skh) ≥ V ⋆
h (s

k
h). Thus, for any episode-step pair (k, h)
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By Equation (4) in Yang et al. (2021), we have E (Regret(K)) = E
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,

which further implies
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.

Finally, let δ = 1
7T and E =

⋂7
i=1 Ei with Ei in Lemma F.2. Then the event E holds with probability

at least 1− 7δ = 1− 1
T and we also have:
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. (123)

The last inequality is because under the event E , we have proved that
K∑

k=1

H∑
h=1
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)
by Equation (122) and under the event Ec,
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