
Provable and Practical: Efficient Exploration in
Reinforcement Learning via Langevin Monte Carlo

Haque Ishfaq∗
Mila, McGill University

haque.ishfaq@mail.mcgill.ca

Qingfeng Lan*

University of Alberta, Amii
qlan3@ualberta.ca

Pan Xu
Duke University

A. Rupam Mahmood
University of Alberta

CIFAR AI Chair, Amii

Doina Precup
Mila, McGill University

Google DeepMind

Anima Anandkumar
California Institute of Technology, Nvidia

Kamyar Azizzadenesheli
Nvidia

Abstract

We present a scalable and effective exploration strategy based on Thompson sam-
pling for reinforcement learning (RL). One of the key shortcomings of existing
Thompson sampling algorithms is the need to perform a Gaussian approximation of
the posterior distribution, which is not a good surrogate in most practical settings.
We instead directly sample the Q function from its posterior distribution, by using
Langevin Monte Carlo, an efficient type of Markov Chain Monte Carlo (MCMC)
method. Our method only needs to perform noisy gradient descent updates to learn
the exact posterior distribution of the Q function, which makes our approach easy
to deploy in deep RL. We provide a rigorous theoretical analysis for the proposed
method and demonstrate that, in the linear Markov decision process (linear MDP)
setting, it has a regret bound of Õ(d3/2H5/2

√
T), where d is the dimension of

the feature mapping, H is the planning horizon, and T is the total number of
steps. We apply this approach to deep RL, by using Adam optimizer to perform
gradient updates. Our approach achieves better or similar results compared with
state-of-the-art deep RL algorithms on several challenging exploration tasks from
the Atari57 suite.

1 Introduction

Balancing exploration with exploitation is a fundamental problem in reinforcement learning (RL)
[Sutton and Barto, 2018]. Numerous exploration algorithms have been proposed [Jaksch et al., 2010,
Osband and Van Roy, 2017, Ostrovski et al., 2017, Azizzadenesheli et al., 2018, Jin et al., 2018].
However, there is a big discrepancy between provably efficient algorithms, which are typically limited
to tabular or linear MDPs, and more heuristic-based algorithms for exploration in deep RL, which
scale well but have no guarantees.

A generic and widely used solution to the exploration-exploitation dilemma is the use of optimism in
the face of uncertainty (OFU) [Auer et al., 2002]. Most works of this type inject optimism through
bonuses added to the rewards or estimated Q functions [Jaksch et al., 2010, Azar et al., 2017, Jin et al.,
2018, 2020]. These bonuses, which are typically decreasing functions of counts on the number of

∗Equal contribution

16th European Workshop on Reinforcement Learning (EWRL 2023).

visits of state-action pairs, allow the agent to build upper confidence bounds (UCBs) on the optimal Q
functions and act greedily with respect to them. While UCB-based methods provide strong theoretical
guarantees in tabular and linear settings, they often perform poorly in practice [Osband et al., 2013,
Osband and Van Roy, 2017]. Generalizations to non-tabular and non-linear settings have also been
explored [Bellemare et al., 2016, Tang et al., 2017, Ostrovski et al., 2017, Burda et al., 2018].

Inspired by the well-known Thompson sampling [Thompson, 1933] for multi-armed bandits, another
line of work proposes posterior sampling for RL (PSRL) [Osband et al., 2013, Agrawal and Jia,
2017], which maintains a posterior distribution over the MDP model parameters of the problem at
hand. At the beginning of each episode, PSRL samples new parameters from this posterior, solves the
sampled MDP, and follows its optimal policy until the end of the episode. However, generating exact
posterior samples is only tractable in simple environments, such as tabular MDPs where Dirichlet
priors can be used over transition probability distribution. Another closely related algorithm is
randomized least-square value iteration (RLSVI), which induces exploration through noisy value
iteration [Osband et al., 2016a, Russo, 2019, Ishfaq et al., 2021]. Concretely, Gaussian noise is added
to the reward before applying the Bellman update. This results in a Q function estimate that is equal
to an empirical Bellman update with added Gaussian noise, which can be seen as approximating the
posterior distribution of the Q function using a Gaussian distribution. However, in practical problems,
Gaussian distributions may not be a good approximation of the true posterior of the Q function.
Moreover, choosing an appropriate variance is an onerous task; and unless the features are fixed, the
incremental computation of the posterior distribution is not possible.

Algorithms based on Langevin dynamics are widely used for training neural networks in Bayesian
settings [Welling and Teh, 2011]. For instance, by adding a small amount of exogenous noise,
Langevin Monte Carlo (LMC) provides regularization and allows quantifying the degree of uncertainty
on the parameters of the function approximator. Furthermore, the celebrated stochastic gradient
descent, resembles a Langevin process [Cheng et al., 2020]. Despite its huge influence in Bayesian
deep learning, the application of LMC in sequential decision making problems is relatively unexplored.
Mazumdar et al. [2020] proposed an LMC-based approximate Thompson sampling algorithm that
achieves optimal instance-dependent regret for the multi-armed bandit (MAB) problem. Recently,
Xu et al. [2022] used LMC to approximately sample model parameters from the posterior distribution
in contextual bandits and showed that their approach can achieve the same regret bound as the best
Thompson sampling algorithms for linear contextual bandits. Motivated by the success of the LMC
approach in bandit problems, in this paper, we study the use of LMC to approximate the posterior
distribution of the Q function, and thus provide an exploration approach which is principled, maintains
the simplicity and scalability of LMC, and can be easily applied in deep RL algoprithms.

Main contributions. We propose a practical and efficient online RL algorithm, Langevin Monte
Carlo Least-Squares Value Iteration (LMC-LSVI), which simply performs noisy gradient descent up-
dates to induce exploration. LMC-LSVI is easily implementable and can be used in high-dimensional
RL tasks, such as image-based control. We prove that LMC-LSVI achieves a Õ(d3/2H5/2

√
T) regret

in the linear MDP setting, where d is the dimension of the feature mapping, H is the planning horizon,
and T is the total number of steps. This bound provides the best possible dependency on d for any
randomized algorithms, while achieving sublinear regret in T .

Because preconditioned Langevin algorithms [Li et al., 2016] can avoid pathological curvature
problems and saddle points in the optimization landscape, we also propose Adam Langevin Monte
Carlo Deep Q-Network (Adam LMCDQN), a preconditioned variant of LMC-LSVI based on the
Adam optimizer [Kingma and Ba, 2014]. In experiments on both N -chain [Osband et al., 2016b]
and challenging Atari environments [Bellemare et al., 2013] that require deep exploration, Adam
LMCDQN performs similarly or better than state-of-the-art exploration approaches in deep RL.

2 Preliminary

Notation. For any positive integer n, we denote the set {1, 2, . . . , n} by [n]. For any set A, 〈·, ·〉A
denotes the inner product over set A. For a vector x ∈ Rd, ‖x‖2 =

√
x>x is the Euclidean norm of

x. � and � represent element-wise vector product and division respectively. For function growth, we
use Õ(·), ignoring poly-logarithmic factors.

2

We consider an episodic discrete-time Markov decision process (MDP) of the form (S,A, H,P, r)
where S is the state space, A is the action space, H is the episode length, P = {Ph}Hh=1 are the state
transition probability distributions, and r = {rh}Hh=1 are the reward functions. Moreover, for each
h ∈ [H], Ph(· | x, a) denotes the transition kernel at step h ∈ [H], which defines a non-stationary
environment. rh : S × A → [0, 1] is the deterministic reward function at step h.2 A policy π is
a collection of H functions {πh : S → A}h∈[H] where πh(x) is the action that the agent takes in
state x at the h-th step in the episode. Moreover, for each h ∈ [H], we define the value function
V πh : S → R as the expected value of cumulative rewards received under policy π when starting from
an arbitrary state xh = x at the h-th time step. In particular, we have

V πh (x) = Eπ
[∑H

h′=h rh′(xh′ , ah′)
∣∣xh = x

]
.

Similarly, we define the action-value function (or the Q function) Qπh : S ×A → R as the expected
value of cumulative rewards given the current state and action where the agent follows policy π
afterwards. Concretely,

Qπh(x, a) = Eπ
[∑H

h′=h rh′(xh′ , ah′)
∣∣xh = x, ah = a

]
.

We denote V ∗h (x) = V π
∗

h (x) and Q∗h(x, a) = Qπ
∗

h (x, a) where π∗ is the optimal policy. To simplify
notation, we denote [PhVh+1](x, a) = Ex′∼Ph(· | x,a)Vh+1(x′). Thus, we write the Bellman equation
associated with a policy π as

Qπh(x, a) = (rh + PhV πh+1)(x, a), V πh (x) = Qπh(x, πh(x)), V πH+1(x) = 0. (1)

Similarly, the Bellman optimality equation is

Q∗h(x, a) = (rh + PhV ∗h+1)(x, a), V ∗h (x) = Q∗h(x, π∗h(x)), V ∗H+1(x) = 0. (2)

The agent interacts with the environment for K episodes with the aim of learning the optimal policy.
At the beginning of each episode k, an adversary picks the initial state xk1 , and the agent chooses a
policy πk. We measure the suboptimality of an agent by the total regret defined as

Regret(K) =
∑K
k=1

[
V ∗1 (xk1)− V πk

1 (xk1)
]
.

Langevin Monte Carlo (LMC). LMC is an iterative algorithm [Rossky et al., 1978, Roberts and
Stramer, 2002, Neal et al., 2011], which adds isotropic Gaussian noise to the gradient descent update
at each step:

wk+1 = wk − ηk∇L(wk) +
√

2ηkβ−1εk, (3)
where L(w) is the objective function, ηk is the step-size parameter, β is the inverse temperature
parameter, and εk is an isotropic Gaussian random vector in Rd. Under certain assumptions, the
LMC update will generate a Markov chain whose distribution converges to a target distribution
∝ exp(−βL(w)) [Roberts and Tweedie, 1996, Bakry et al., 2014]. In practice, one can also replace
the true gradient∇L(wk) with some stochastic gradient estimators, resulting in the famous stochastic
gradient Langevin dynamics (SGLD) [Welling and Teh, 2011] algorithm.

3 Langevin Monte Carlo for Reinforcement Learning

In this section, we propose Langevin Monte Carlo Least-Squares Value Iteration (LMC-LSVI), as
shown in Algorithm 1. Assume we have collected data trajectories in the first k − 1 episodes as
{(xτ1 , aτ1 , r(xτ1 , aτ1), . . . , xτH , a

τ
H , r(x

τ
H , a

τ
H))}k−1

τ=1. To estimate the Q function for stage h at the k-th
episode of the learning process, we define the following loss function:

Lkh(wh) =
∑k−1
τ=1

[
rh(xτh, a

τ
h) + maxa∈AQ

k
h+1(xτh+1, a)−Q(wh;φ(xτh, a

τ
h))
]2

+ λ‖wh‖2,

where φ(·, ·) is a feature vector of the corresponding state-action pair and Q(wh;φ(xτh, a
τ
h)) denotes

any possible approximation of the Q function that is parameterized by wh and takes φ(xτh, a
τ
h) as

input. At stage h, we perform noisy gradient descent on Lkh(·) for Jk times as shown in Algorithm 1,
where Jk is also referred to as the update number for episode k. Note that the LMC-LSVI algorithm

2We study the deterministic reward functions for notational simplicity. Our results can be easily generalized
to the case when rewards are stochastic.

3

displayed here is a generic one, which works for all types of function approximation of the Q function.
Similar to the specification of Langevin Monte Carlo Thompson Sampling (LMCTS) to linear bandits,
generalized linear bandits, and neural contextual bandits [Xu et al., 2022], we can also derive different
variants of LMC-LSVI for different types of function approximations by replacing the functions
Q(wh;φ(xτh, a

τ
h)) and the loss function Lkh(wh).

In this paper, we will derive the theoretical analysis of LMC-LSVI under linear function approx-
imations. In particular, when the function approximation of the Q function is linear, the model
approximation of the Q function, denoted by Qkh in Line 11 of Algorithm 1 becomes

Qkh(·, ·)← min{φ(·, ·)>wk,Jkh , H − h+ 1}+. (4)

Denoting V kh+1(·) = maxa∈AQ
k
h+1(·, a), we have ∇Lkh(wh) = 2(Λkhwh − bkh), where

Λkh =

k−1∑
τ=1

φ(xτh, a
τ
h)φ(xτh, a

τ
h)> + λI and bkh =

k−1∑
τ=1

[
rh(xτh, a

τ
h) + V kh+1(xτh+1)

]
φ(xτh, a

τ
h). (5)

By setting ∇Lkh(wh) = 0, we get the minimizer of Lkh as ŵkh = (Λkh)−1bkh.

We can prove that the iterate wk,Jkh in Equation (4) follows the following Gaussian distribution.

Proposition 3.1. The parameter wk,Jkh used in episode k of Algorithm 1 follows a Gaussian distribu-
tion N (µk,Jkh ,Σk,Jkh), with mean and covariance matrix:

µk,Jkh = AJkk . . . AJ11 w1,0
h +

k∑
i=1

AJkk . . . A
Ji+1

i+1

(
I −AJii

)
ŵih,

Σk,Jkh =

k∑
i=1

1

βi
AJkk . . . A

Ji+1

i+1

(
I −A2Ji

i

) (
Λih
)−1

(I +Ai)
−1
A
Ji+1

i+1 . . . AJkk ,

where Ai = I − 2ηiΛ
i
h for i ∈ [k].

Proposition 3.1 shows that in linear setting the parameter wk,Jkh follows a tractable distribution. This
proposition allows us to provide a high probability bound for the parameter wk,Jkh in Lemma A.3,
which is then used in Lemma A.8 to show that the estimated Qkh function is optimistic with high
probability.

We note that the parameter update in Algorithm 1 is presented as a full gradient descent step plus an
isotropic noise for the purpose of theoretical analysis in Section 4. However, in practice, one can
use a stochastic gradient [Welling and Teh, 2011] or a variance-reduced stochastic gradient [Dubey
et al., 2016, Xu et al., 2018] of the loss function Lkh(wk,j−1

h) to improve the sample efficiency of
LMC-LSVI .

4 Theoretical Analysis

We now provide a regret analysis of LMC-LSVI under the linear MDP setting [Jin et al., 2020, Yang
and Wang, 2020, 2019]. First, we formally define a linear MDP.

Definition 4.1 (Linear MDP). A linear MDP is an MDP (S,A, H,P, r) with a feature φ : S ×A →
Rd, if for any h ∈ [H], there exist d unknown (signed) measures µh = (µ

(1)
h , µ

(1)
h , . . . , µ

(d)
h) over S

and an unknown vector θh ∈ Rd, such that for any (x, a) ∈ S ×A, we have

Ph(· | x, a) = 〈φ(x, a), µh(·)〉 and rh(x, a) = 〈φ(x, a), θh〉.

Without loss of generality, we assume ‖φ(x, a)‖2 ≤ 1 for all (x, a) ∈ S × A, and
max{‖µh(S)‖2, ‖θh‖2} ≤

√
d for all h ∈ [H].

We refer the readers to Wang et al. [2020], Lattimore et al. [2020], and Van Roy and Dong [2019] for
related discussions on such a linear representation. Next, we introduce our main theorem.

4

Algorithm 1 Langevin Monte Carlo Least-Squares Value Iteration (LMC-LSVI)

1: Input: step sizes {ηk > 0}k≥1, inverse temperature {βk}k≥1, loss function Lk(w)

2: Initialize w1,0
h = 0 for h ∈ [H], J0 = 0

3: for episode k = 1, 2, . . . ,K do
4: Receive the initial state sk1
5: for step h = H,H − 1, . . . , 1 do
6: wk,0h = w

k−1,Jk−1

h
7: for j = 1, . . . , Jk do
8: εk,jh ∼ N (0, I)

9: wk,jh = wk,j−1
h − ηk∇Lkh(wk,j−1

h) +
√

2ηkβ
−1
k εk,jh

10: end for
11: Qkh(·, ·)← min{Q(wk,Jkh ;φ(·, ·)), H − h+ 1}+
12: V kh (·)← maxa∈AQ

k
h(·, a)

13: end for
14: for step h = 1, 2, . . . ,H do
15: Take action akh ← argmaxa∈AQ

k
h(skh, a), observe reward rkh(skh, a

k
h) and next state skh+1

16: end for
17: end for

Theorem 4.2. Let λ = 1, 1√
βk

= Õ(H
√
d) in Algorithm 1, and δ ∈ (0, 1). For any k ∈ [K], let

the learning rate ηk = 1/(4λmax(Λkh)), the update number Jk = 2κk log(4HKd) where κk =
λmax(Λkh)/λmin(Λkh) is the condition number of Λkh. Under Definition 4.1, the regret of Algorithm 1
satisfies

Regret(K) = Õ(d3/2H5/2
√
T),

with probability at least 1− δ.

We compare the regret bound of our algorithm with the state-of-the-art results in the literature of
theoretical reinforcement learning in Table 1. Compared to the lower bound Ω(dH

√
T) proved in

Zhou et al. [2021], our regret bound is worse off by a factor of
√
dH3/2 under the linear MDP setting.

However, as shown in Hamidi and Bayati [2020], the gap of
√
d in worst-case regret between UCB

and TS based method is unavoidable. When converted to linear bandits by setting H = 1, our regret
bound matches that of LMCTS [Xu et al., 2022] and the best-known regret upper bound for LinTS
from Agrawal and Goyal [2013] and Abeille et al. [2017].

Table 1: Regret upper bound for episodic, non-stationary, linear MDPs.

ComputationalAlgorithm Regret Exploration Tractability Scalability

LSVI-UCB [Jin et al., 2020] Õ(d3/2H3/2
√
T) UCB Yes No

OPT-RLSVI [Zanette et al., 2020a] Õ(d2H2
√
T) TS Yes No

ELEANOR [Zanette et al., 2020b] Õ(dH3/2
√
T) Optimism No No

LSVI-PHE [Ishfaq et al., 2021] Õ(d3/2H3/2
√
T) TS Yes No

LMC-LSVI (this paper) Õ(d3/2H5/2
√
T) LMC Yes Yes

5 Deep Q-Network with LMC Exploration

In this section, we investigate the case where deep Q-networks (DQNs) [Mnih et al., 2015] are
used, which is used as the backbone of many deep RL algorithms and prevalent in real-world RL
applications due to its scalability and implementation ease.

While LMC and SGLD have been shown to converge to the true posterior under idealized settings
[Chen et al., 2015, Teh et al., 2016, Dalalyan, 2017], in practice, most deep neural networks often
exhibit pathological curvature and saddle points [Dauphin et al., 2014], which render the first-order

5

Algorithm 2 Adam LMCDQN

1: Input: step sizes {ηk > 0}k≥1, inverse temperature {βk}k≥1, smoothing factors α1 and α2, bias
factor a, loss function Lk(w).

2: Initialize w1,0
h from appropriate distribution for h ∈ [H], J0 = 0, m1,0

h = 0 and v1,0
h = 0 for

h ∈ [H] and k ∈ [K].
3: for episode k = 1, 2, . . . ,K do
4: Receive the initial state sk1 .
5: for step h = H,H − 1, . . . , 1 do
6: wk,0h = w

k−1,Jk−1

h ,mk,0
h = m

k−1,Jk−1

h , vk,0h = v
k−1,Jk−1

h
7: for j = 1, . . . , Jk do
8: εk,jh ∼ N (0, I)

9: wk,jh = wk,j−1
h − ηk

(
∇L̃kh(wk,j−1

h) + amk,j−1
h �

√
vk,j−1
h + λ11

)
+
√

2ηkβ
−1
k εk,jh

10: mk,j
h = α1m

k,j−1
h + (1− α1)∇L̃kh(wk,j−1

h)

11: vk,jh = α2v
k,j−1
h + (1− α2)∇L̃kh(wk,j−1

h)�∇L̃kh(wk,j−1
h)

12: end for
13: Qkh(·, ·)← Q(wk,Jkh ;φ(·, ·))
14: V kh (·)← maxa∈AQ

k
h(·, a)

15: end for
16: for step h = 1, 2, . . . ,H do
17: Take action akh ← argmaxa∈AQ

k
h(skh, a), observe reward rkh(skh, a

k
h) and next state skh+1.

18: end for
19: end for

gradient-based algorithms inefficient, such as SGLD. To mitigate this issue, Li et al. [2016] proposed
RMSprop [Tieleman et al., 2012] based preconditioned SGLD. Similarly, Kim et al. [2020] proposed
Adam based adaptive SGLD algorithm, where an adaptively adjusted bias term is included in the
drift function to enhance escape from saddle points and accelerate the convergence in the presence of
pathological curvatures.

Similarly, in sequential decision problems, there have been studies that show that deep RL algorithms
suffer from training instability due to the usage of deep neural networks [Sinha et al., 2020, Ota et al.,
2021, Sullivan et al., 2022]. Henderson et al. [2018] empirically analyzed the effects of different
adaptive gradient descent optimizers on the performance of deep RL algorithms and suggest that
while being sensitive to the learning rate, RMSProp or Adam [Kingma and Ba, 2014] provides the
best performance overall. Moreover, even though the original DQN algorithm [Mnih et al., 2015]
used RMSProp optimizer with Huber loss, Ceron and Castro [2021] showed that Adam optimizer
with mean-squared error (MSE) loss provides overwhelmingly superior performance.

Motivated by these developments both in the sampling community and the deep RL community, we
now endow DQN-style algorithms [Mnih et al., 2015] with Langevin Monte Carlo. In particular, we
propose Adam Langevin Monte Carlo Deep Q-Network (Adam LMCDQN) in Algorithm 2, where
we replace LMC in Algorithm 1 with the Adam SGLD (aSGLD) [Kim et al., 2020] algorithm in
learning the posterior distribution.

In Algorithm 2, ∇L̃kh(w) denotes an estimate of ∇Lkh(w) based on one mini-batch of data sampled
from the replay buffer. α1 and α2 are smoothing factors for the first and second moments of
stochastic gradients, respectively. a is the bias factor and λ1 is a small constant added to avoid
zero-divisors. Here, vk,jh can be viewed as an approximator of the true second-moment matrix

E(∇L̃kh(wk,j−1
h)∇L̃kh(wk,j−1

h)>) and the bias term mk,j−1
h �

√
vk,j−1
h + λ11 can be viewed as the

rescaled momentum which is isotropic near stationary points. Similar to Adam, the bias term, with
an appropriate choice of the bias factor a, is expected to guide the sampler to converge to a global
optimal region quickly.

6

6 Experiments

In this section, we present an empirical evaluation of Adam LMCDQN . First, we consider a hard
exploration problem and demonstrate the ability of deep exploration for our algorithm. We then
proceed to experiments with 8 hard Atari games, showing that Adam LMCDQN is able to outperform
several strong baselines. Our algorithm is implemented based on Tianshou’s DQN [Weng et al.,
2022]. Note that for implementation simplicity, in the following experiments, we set all the update
numbers Jk and the inverse temperature values βk to be the same number for all k ∈ [K]. Our code
is available at https://github.com/hmishfaq/LMC-LSVI.

Remark 6.1. We note that in our experiments, as baselines, we use commonly used algorithms
from deep RL literature as opposed to methods presented in Table 1. This is because while these
methods are provably efficient under linear MDP settings, they are not scalable to deep RL settings.
More precisely, these methods assume that a good feature is known in advance and Q values can
be approximated as a linear function over this feature. If the provided feature is not good and
fixed, the empirical performance of these methods is often poor. For example, LSVI-UCB [Jin
et al., 2020] computes UCB bonus function of the form ‖φ(s, a)‖Λ−1 , where Λ ∈ Rd×d is the
empirical feature covariance matrix. When we update the feature over iterations in deep RL, the
computational complexity of LSVI-UCB becomes unbearable as it needs to repeatedly compute the
feature covariance matrix to update the bonus function. In the same vein, OPT-RSLVI [Zanette et al.,
2020a] is not practical in the sense that while estimating the Q function, it needs to rely on the feature
norm with respect to the inverse covariance matrix. Lastly, even though LSVI-PHE [Ishfaq et al.,
2021] is computationally implementable in deep RL settings, it requires to sample independent and
identically distributed (i.i.d.) noise for the whole history every time to perturb the reward, which is
infeasible in most practical settings.

6.1 Demonstration of Deep Exploration

25 50 75 100
N

0

2

4

6

8

10

12

Re
tu

rn

DQN
Adam LMCDQN
Noisy-Net
Bootstrapped DQN

Figure 1: A comparison of Adam LMCDQN and
other baselines in N -chain with different chain
lengths N . All results are averaged over 20 runs
and the shaded areas represent standard errors. As
N increases, the exploration hardness increases.

We first conduct experiments in N -Chain [Os-
band et al., 2016b] to show that Adam LM-
CDQN is able to perform deep exploration. The
environment consists of a chain of N states,
namely s1, s2, . . . , sN . The agent always starts
in state s2, from where it can either move left
or right. The agent receives a small reward
r = 0.001 in state s1 and a larger reward r = 1
in state sN . The horizon length is N + 9, so
the optimal return is 10. Please refer to Ap-
pendix D.1 for a depiction of the environment.

In our experiments, we consider N to be 25, 50,
75, or 100. For each chain length, we train dif-
ferent algorithms for 105 steps across 20 seeds.
We use DQN [Mnih et al., 2015], Bootstrapped
DQN [Osband et al., 2016b] and Noisy-Net [For-
tunato et al., 2017] as the baseline algorithms.
We use DQN with ε-greedy exploration strategy, where ε decays linearly from 1.0 to 0.01 for the first
1, 000 training steps and then is fixed as 0.01. For evaluation, we set ε = 0 in DQN. We measure the
performance of each algorithm in each run by the mean return of the last 10 evaluation episodes. For
all algorithms, we sweep the learning rate and pick the one with the best performance. For Adam
LMCDQN , we sweep a and βk in small ranges. For more details, please check Appendix D.1.

In Figure 1, we show the performance of Adam LMCDQN and the baseline methods under different
chain lengths. The solid lines represent the averaged return over 20 random seeds and the shaded
areas represent standard errors. Note that for Adam LMCDQN , we set Jk = 4 for all chain lengths.
As N increases, the hardness of exploration increases, and Adam LMCDQN is able to maintain high
performance while the performance of other baselines especially Bootstrapped DQN and Noisy-Net
drop quickly. Clearly, Adam LMCDQN achieves significantly more robust performance than other
baselines as N increases, showing its deep exploration ability.

7

https://github.com/hmishfaq/LMC-LSVI

500

0

500

1000

1500

2000

Re
tu

rn

Alien

20

0

20

40

60
Freeway

250

0

250

500

750

1000
Gravitar

5000

0

5000

10000

15000

20000
H.E.R.O.

0 10 20 30 40 50
Frame (millions)

1000

500

0

500

Re
tu

rn

Pitfall!

0 10 20 30 40 50
Frame (millions)

5000

0

5000

10000

15000

20000
Q*bert

0 10 20 30 40 50
Frame (millions)

1000

0

1000

2000

3000
Solaris

0 10 20 30 40 50
Frame (millions)

500

0

500

1000

1500
Venture

Adam LMCDQN NoisyNet DQN Double DQN Prioritized DQN C51 QR-DQN Bootstrapped DQN IQN

Figure 2: The return curves of various algorithms in eight Atari tasks over 50 million training
frames. Solid lines correspond to the median performance over 5 random seeds, and the shaded areas
correspond to 90% confidence interval.

6.2 Evaluation in Atari Games

To further evaluate our algorithm, we conduct experiments in Atari games [Bellemare et al., 2013].
Specifically, 8 visually complicated hard exploration games [Bellemare et al., 2016] are selected,
including Alien, Freeway, Gravitar, H.E.R.O., Pitfall, Qbert, Solaris, and Venture. Among these
games, Alien, H.E.R.O., and Qbert are dense reward environments, while Freeway, Gravitar, Pitfall,
Solaris, and Venture are sparse reward environments, according to Bellemare et al. [2013].

Main Results We consider 7 baselines: Double DQN [Van Hasselt et al., 2016], Prioritized DQN
[Schaul et al., 2015], C51 [Bellemare et al., 2017], QR-DQN [Dabney et al., 2018a], IQN [Dabney
et al., 2018b], Bootstrapped DQN [Osband et al., 2016b] and Noisy-Net [Fortunato et al., 2017]. For
our algorithm Adam LMCDQN , we implement it based on the DQN implementation in Tianshou
[Weng et al., 2022]. Except for some unique hyper-parameters of Adam LMCDQN , we use the
default hyper-parameters of Tianshou’s DQN in Adam LMCDQN . Since a large Jk greatly increases
training time, we set Jk = 1 in Adam LMCDQN so that all experiments can be finished in a
reasonable time. We also incorporate the double Q trick [Van Hasselt, 2010, Van Hasselt et al., 2016],
which is shown to slightly boost performance. We train Adam LMCDQN for 50M frames (i.e., 12.5M
steps) and summarize results across over 5 random seeds. Please check Appendix D.2.1 for more
details about the training and hyper-parameters settings.

In Figure 2, we present the learning curves of all methods in 8 Atari games. We implement Boot-
strapped DQN and Noisy-Net based on Tianshou’s DQN and train them to gather results. For other
five baseline algorithms, we take the results from DQN Zoo [Quan and Ostrovski, 2020]3. The solid
lines correspond to the median performance over 5 random seeds, while the shaded areas represent
90% confidence intervals. Overall, the results show that our algorithm Adam LMCDQN is quite
competitive compared to the baseline algorithms. In particular, Adam LMCDQN exhibit a strong
advantage against all other methods in Gravitar and Venture.

Sensitivity Analysis In Figure 3a, we draw the learning curves of Adam LMCDQN with different
bias factors a in Qbert. The performance of our algorithm is greatly affected by the value of the bias
factor. Overall, by setting a = 0.1, Adam LMCDQN achieves good performance in Qbert as well as
in other Atari games. On the contrary, Adam LMCDQN is less sensitive to the inverse temperature
βk, as shown in Figure 3b.

Ablation Study In Appendix D.2.2, we also present results for Adam LMCDQN without applying
double Q functions. The performance of Adam LMCDQN is only slightly worse without using double
Q functions, proving the effectiveness of our approach. Moreover, we implement Langevin DQN
[Dwaracherla and Van Roy, 2020] with double Q functions and compare it with our algorithm Adam
LMCDQN . Overall, Adam LMCDQN outperforms Langevin DQN significantly in most Atari games.

3https://github.com/deepmind/dqn_zoo/blob/master/results.tar.gz

8

https://github.com/deepmind/dqn_zoo/blob/master/results.tar.gz

0 10 20 30 40 50
Frame (millions)

0

2000

4000

6000

8000

10000

12000

14000

16000

Re
tu

rn

a=10
a=1
a=0.1
a=0.01
a=0.001

(a) Different bias factor a in Adam LMCDQN

0 10 20 30 40 50
Frame (millions)

0

5000

10000

15000

20000

25000

30000

35000

Re
tu

rn

βk = 1020

βk = 1018

βk = 1016

βk = 1014

βk = 1012

βk = 1010

βk = 108

(b) Different temperatures βk in Adam LMCDQN

Figure 3: (a) A comparison of Adam LMCDQN with different bias factor a in Qbert. Solid lines
correspond to the average performance over 5 random seeds, and shaded areas correspond to standard
errors. The performance of Adam LMCDQN is greatly affected by the value of the bias factor. (b) A
comparison of Adam LMCDQN with different values of inverse temperature parameter βk in Qbert.
Adam LMCDQN is not very sensitive to large inverse temperature βk.

Similar to Adam LMCDQN , there is no significant performance drop for Langevin DQN without
applying double Q functions.

7 Related Work

Posterior Sampling in Reinforcement Learning. Our work is closely related to a line of work
that uses posterior sampling, i.e., Thompson sampling in RL [Strens, 2000]. Osband et al. [2016a],
Russo [2019] and Xiong et al. [2022] propose randomized least-squares value iteration (RLSVI) with
frequentist regret analysis under tabular MDP setting. RLSVI carefully injects tuned random noise to
the value function in order to induce exploration. Recently, Zanette et al. [2020a] and Ishfaq et al.
[2021] extended RLSVI to the linear setting. While RLSVI enjoys favorable regret bound under
tabular and linear settings, it can only be applied when a good feature is known and fixed during
training, making it impractical for deep RL [Li et al., 2021]. Osband et al. [2016b, 2018] addressed
this issue by training an ensemble of randomly initialized neural networks and viewing them as
approximate posterior samples of Q functions. However, training an ensemble of neural networks is
computationally prohibitive. Another line of work directly injects noise to parameters [Fortunato
et al., 2017, Plappert et al., 2017]. Noisy-Net [Fortunato et al., 2017] learns noisy parameters using
gradient descent, whereas Plappert et al. [2017] added constant Gaussian noise to the parameters
of the neural network. However, Noisy-Net is not ensured to approximate the posterior distribution
[Fortunato et al., 2017].

Comparison to Dwaracherla and Van Roy [2020]. Proposed by Dwaracherla and Van Roy [2020],
Langevin DQN is the closest algorithm to our work. Even though Langevin DQN is also inspired by
SGLD [Welling and Teh, 2011], Dwaracherla and Van Roy [2020] did not provide any theoretical
study nor regret bound for their algorithm under any setting. On the algorithmic side, at each time
step, Langevin DQN performs only one gradient update, while we perform multiple (i.e., Jk) noisy
gradient updates, as shown in Algorithm 1 and Algorithm 2). This is a crucial difference as a large
enough value for Jk allows us to learn the exact posterior distribution of the parameters {wh}h∈[H]

up to high precision. Moreover, they also proposed to use preconditioned SGLD optimizer which is
starkly different from our Adam LMCDQN . Their optimizer is more akin to a heuristic variant of the
original Adam optimizer [Kingma and Ba, 2014] with a Gaussian noise term added to the gradient
term. Moreover, they do not use any temperature parameter in the noise term. On the contrary, Adam
LMCDQN is inspired by Adam SGLD [Kim et al., 2020], which enjoys convergence guarantees
in the supervised learning setting. Lastly, while Dwaracherla and Van Roy [2020] provided some
empirical study in the tabular deep sea environment [Osband et al., 2019a,b], they did not perform
any experiment in challenging pixel-based environment (e.g., Atari). We conducted a comparison in

9

such environments in Appendix D.2.2, showing that Adam LMCDQN outperforms Langevin DQN in
several hard Atari environments.

8 Conclusion and Future Work

We proposed the LMC-LSVI algorithm, a provably efficient and practical exploration algorithm
for reinforcement learning. It uses Langevin Monte Carlo to directly sample a Q function from
the posterior distribution with arbitrary precision. Furthermore, we proposed Adam LMCDQN, a
practical variant of LMC-LSVI, that demonstrates competitive empirical performance in challenging
exploration tasks. There are several avenues for future research. The regret bound of LMC-LSVI
under linear MDP setting is far from the optimal rate by a factor of

√
dH3/2. While the

√
d gap is

unavoidable as discussed in Section 4, whether we can improve the dependency on H is an interesting
open question. We believe that the current gap of H in the regret bound is due to the proof technique
and is not inherent to Langevin style algorithms. On the empirical side, it would be interesting to see
whether LMC based approaches can be used in continuous control tasks for efficient exploration.

10

References
Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

(p. 1.)

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(Apr):1563–1600, 2010. (p. 1.)

Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for reinforcement
learning? In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 2701–2710. JMLR. org, 2017. (pp. 1 and 2.)

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with
neural density models. In International conference on machine learning, pages 2721–2730. PMLR,
2017. (pp. 1 and 2.)

Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient exploration
through bayesian deep q-networks. In 2018 Information Theory and Applications Workshop (ITA),
pages 1–9. IEEE, 2018. (p. 1.)

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably efficient?
In Advances in Neural Information Processing Systems, 2018. (p. 1.)

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235–256, 2002. (p. 1.)

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-
ment learning. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 263–272. JMLR. org, 2017. (p. 1.)

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pages 2137–2143.
PMLR, 2020. (pp. 1, 4, 5, 7, and 35.)

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via
posterior sampling. In Advances in Neural Information Processing Systems, pages 3003–3011,
2013. (p. 2.)

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information
processing systems, 29, 2016. (pp. 2 and 8.)

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John
Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration
for deep reinforcement learning. Advances in neural information processing systems, 30, 2017. (p.
2.)

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018. (p. 2.)

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933. (p. 2.)

Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning: worst-case
regret bounds. In Advances in Neural Information Processing Systems, pages 1184–1194, 2017.
(p. 2.)

Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized
value functions. In International Conference on Machine Learning, pages 2377–2386. PMLR,
2016a. (pp. 2 and 9.)

Daniel Russo. Worst-case regret bounds for exploration via randomized value functions. In Advances
in Neural Information Processing Systems, pages 14410–14420, 2019. (pp. 2 and 9.)

11

Haque Ishfaq, Qiwen Cui, Viet Nguyen, Alex Ayoub, Zhuoran Yang, Zhaoran Wang, Doina Precup,
and Lin Yang. Randomized exploration in reinforcement learning with general value function
approximation. In International Conference on Machine Learning, pages 4607–4616. PMLR,
2021. (pp. 2, 5, 7, 9, and 35.)

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pages 681–688,
2011. (pp. 2, 3, 4, and 9.)

Xiang Cheng, Dong Yin, Peter Bartlett, and Michael Jordan. Stochastic gradient and langevin
processes. In International Conference on Machine Learning, pages 1810–1819. PMLR, 2020. (p.
2.)

Eric Mazumdar, Aldo Pacchiano, Yi-an Ma, Peter L Bartlett, and Michael I Jordan. On thompson
sampling with langevin algorithms. arXiv preprint arXiv:2002.10002, 2020. (p. 2.)

Pan Xu, Hongkai Zheng, Eric V Mazumdar, Kamyar Azizzadenesheli, and Animashree Anandkumar.
Langevin monte carlo for contextual bandits. In International Conference on Machine Learning,
pages 24830–24850. PMLR, 2022. (pp. 2, 4, and 5.)

Chunyuan Li, Changyou Chen, David Carlson, and Lawrence Carin. Preconditioned stochastic
gradient langevin dynamics for deep neural networks. In Thirtieth AAAI Conference on Artificial
Intelligence, 2016. (pp. 2 and 6.)

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. (pp. 2, 6, and 9.)

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. arXiv preprint arXiv:1602.04621, 2016b. (pp. 2, 7, 8, 9, 36, and 37.)

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013. (pp. 2 and 8.)

Peter J Rossky, Jimmie D Doll, and Harold L Friedman. Brownian dynamics as smart monte carlo
simulation. The Journal of Chemical Physics, 69(10):4628–4633, 1978. (p. 3.)

Gareth O Roberts and Osnat Stramer. Langevin diffusions and metropolis-hastings algorithms.
Methodology and computing in applied probability, 4(4):337–357, 2002. (p. 3.)

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo,
2(11):2, 2011. (p. 3.)

Gareth O Roberts and Richard L Tweedie. Exponential convergence of langevin distributions and
their discrete approximations. Bernoulli, pages 341–363, 1996. (p. 3.)

Dominique Bakry, Ivan Gentil, Michel Ledoux, et al. Analysis and geometry of Markov diffusion
operators, volume 103. Springer, 2014. (p. 3.)

Kumar Avinava Dubey, Sashank J Reddi, Sinead A Williamson, Barnabas Poczos, Alexander J Smola,
and Eric P Xing. Variance reduction in stochastic gradient langevin dynamics. Advances in neural
information processing systems, 29, 2016. (p. 4.)

Pan Xu, Jinghui Chen, Difan Zou, and Quanquan Gu. Global convergence of langevin dynamics
based algorithms for nonconvex optimization. Advances in Neural Information Processing Systems,
31, 2018. (p. 4.)

Lin Yang and Mengdi Wang. Reinforcement learning in feature space: Matrix bandit, kernels, and
regret bound. In International Conference on Machine Learning, pages 10746–10756. PMLR,
2020. (p. 4.)

Lin Yang and Mengdi Wang. Sample-optimal parametric q-learning using linearly additive features.
In International Conference on Machine Learning, pages 6995–7004. PMLR, 2019. (p. 4.)

12

Ruosong Wang, Russ R Salakhutdinov, and Lin Yang. Reinforcement learning with general value
function approximation: Provably efficient approach via bounded eluder dimension. Advances in
Neural Information Processing Systems, 33, 2020. (p. 4.)

Tor Lattimore, Csaba Szepesvari, and Gellert Weisz. Learning with good feature representations
in bandits and in rl with a generative model. In International Conference on Machine Learning,
pages 5662–5670. PMLR, 2020. (p. 4.)

Benjamin Van Roy and Shi Dong. Comments on the du-kakade-wang-yang lower bounds. arXiv
preprint arXiv:1911.07910, 2019. (p. 4.)

Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari. Nearly minimax optimal reinforcement
learning for linear mixture markov decision processes. In Conference on Learning Theory, pages
4532–4576. PMLR, 2021. (p. 5.)

Nima Hamidi and Mohsen Bayati. On worst-case regret of linear thompson sampling. arXiv preprint
arXiv:2006.06790, 2020. (p. 5.)

Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs. In
International Conference on Machine Learning, pages 127–135, 2013. (p. 5.)

Marc Abeille, Alessandro Lazaric, et al. Linear thompson sampling revisited. Electronic Journal of
Statistics, 11(2):5165–5197, 2017. (p. 5.)

Andrea Zanette, David Brandfonbrener, Emma Brunskill, Matteo Pirotta, and Alessandro Lazaric.
Frequentist regret bounds for randomized least-squares value iteration. In International Conference
on Artificial Intelligence and Statistics, pages 1954–1964. PMLR, 2020a. (pp. 5, 7, and 9.)

Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near
optimal policies with low inherent bellman error. In International Conference on Machine Learning,
pages 10978–10989. PMLR, 2020b. (p. 5.)

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015. (pp. 5, 6, 7, and 37.)

Changyou Chen, Nan Ding, and Lawrence Carin. On the convergence of stochastic gradient mcmc
algorithms with high-order integrators. Advances in neural information processing systems, 28,
2015. (p. 5.)

Yee Whye Teh, Alexandre H Thiery, and Sebastian J Vollmer. Consistency and fluctuations for
stochastic gradient langevin dynamics. Journal of Machine Learning Research, 17, 2016. (p. 5.)

Arnak S Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave
densities. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3):
651–676, 2017. (p. 5.)

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization. Advances in neural information processing systems, 27, 2014. (p. 5.)

Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31,
2012. (p. 6.)

Sehwan Kim, Qifan Song, and Faming Liang. Stochastic gradient langevin dynamics algorithms with
adaptive drifts. arXiv preprint arXiv:2009.09535, 2020. (pp. 6 and 9.)

Samarth Sinha, Homanga Bharadhwaj, Aravind Srinivas, and Animesh Garg. D2rl: Deep dense
architectures in reinforcement learning. arXiv preprint arXiv:2010.09163, 2020. (p. 6.)

Kei Ota, Devesh K Jha, and Asako Kanezaki. Training larger networks for deep reinforcement
learning. arXiv preprint arXiv:2102.07920, 2021. (p. 6.)

13

Ryan Sullivan, Justin K Terry, Benjamin Black, and John P Dickerson. Cliff diving: Exploring reward
surfaces in reinforcement learning environments. arXiv preprint arXiv:2205.07015, 2022. (p. 6.)

Peter Henderson, Joshua Romoff, and Joelle Pineau. Where did my optimum go?: An empirical anal-
ysis of gradient descent optimization in policy gradient methods. arXiv preprint arXiv:1810.02525,
2018. (p. 6.)

Johan Samir Obando Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more insightful
and inclusive deep reinforcement learning research. In International Conference on Machine
Learning, pages 1373–1383. PMLR, 2021. (p. 6.)

Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su, Hang
Su, and Jun Zhu. Tianshou: A highly modularized deep reinforcement learning library. Journal of
Machine Learning Research, 2022. (pp. 7, 8, and 37.)

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for exploration.
arXiv preprint arXiv:1706.10295, 2017. (pp. 7, 8, and 9.)

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, 2016. (p. 8.)

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015. (p. 8.)

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, pages 449–458. PMLR, 2017. (p. 8.)

Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Proceedings of the AAAI Conference on Artificial Intelligence,
2018a. (p. 8.)

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In International conference on machine learning, pages
1096–1105. PMLR, 2018b. (p. 8.)

Hado Van Hasselt. Double q-learning. Advances in neural information processing systems, 23, 2010.
(p. 8.)

John Quan and Georg Ostrovski. DQN Zoo: Reference implementations of DQN-based agents, 2020.
URL http://github.com/deepmind/dqn_zoo. (p. 8.)

Vikranth Dwaracherla and Benjamin Van Roy. Langevin dqn. arXiv preprint arXiv:2002.07282,
2020. (pp. 8, 9, and 37.)

Malcolm Strens. A bayesian framework for reinforcement learning. In ICML, volume 2000, pages
943–950, 2000. (p. 9.)

Zhihan Xiong, Ruoqi Shen, Qiwen Cui, Maryam Fazel, and Simon Shaolei Du. Near-optimal
randomized exploration for tabular markov decision processes. In Advances in Neural Information
Processing Systems, 2022. (p. 9.)

Ziniu Li, Yingru Li, Yushun Zhang, Tong Zhang, and Zhi-Quan Luo. Hyperdqn: A randomized
exploration method for deep reinforcement learning. In International Conference on Learning
Representations, 2021. (p. 9.)

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. Advances in Neural Information Processing Systems, 31, 2018. (p. 9.)

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
arXiv preprint arXiv:1706.01905, 2017. (p. 9.)

Ian Osband, Benjamin Van Roy, Daniel J Russo, and Zheng Wen. Deep exploration via randomized
value functions. Journal of Machine Learning Research, 20(124):1–62, 2019a. (p. 9.)

14

http://github.com/deepmind/dqn_zoo

Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, et al. Behaviour suite for reinforce-
ment learning. arXiv preprint arXiv:1908.03568, 2019b. (p. 9.)

Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy optimiza-
tion. arXiv preprint arXiv:1912.05830, 2019. (p. 18.)

Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions with formulas, graphs,
and mathematical tables, volume 55. US Government printing office, 1964. (p. 35.)

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. In Advances in Neural Information Processing Systems, pages 2312–2320, 2011. (p. 35.)

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012. (p. 35.)

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018. (p. 36.)

15

Contents

1 Introduction 1

2 Preliminary 2

3 Langevin Monte Carlo for Reinforcement Learning 3

4 Theoretical Analysis 4

5 Deep Q-Network with LMC Exploration 5

6 Experiments 7

6.1 Demonstration of Deep Exploration . 7

6.2 Evaluation in Atari Games . 8

7 Related Work 9

8 Conclusion and Future Work 10

A Proof of the Regret Bound of LMC-LSVI 17

A.1 Supporting Lemmas . 17

A.2 Regret Analysis . 18

B Proof of Supporting Lemmas 20

B.1 Proof of Proposition A.1 . 21

B.2 Proof of Lemma A.3 . 22

B.3 Proof of Lemma A.5 . 28

B.4 Proof of Lemma A.6 . 29

B.5 Proof of Lemma A.7 . 31

B.6 Proof of Lemma A.8 . 31

C Auxiliary Lemmas 34

C.1 Gaussian Concentration . 34

C.2 Inequalities for summations . 35

C.3 Linear Algebra Lemmas . 35

C.4 Covering numbers and self-normalized processes 35

D Experiment Details 36

D.1 N -Chain . 36

D.2 Atari . 37

D.2.1 Experiment Setup . 37

D.2.2 Additional Results . 37

16

A Proof of the Regret Bound of LMC-LSVI

Additional Notation. For any set A, 〈·, ·〉A denotes the inner product over set A. For a vector
x ∈ Rd, ‖x‖2 =

√
x>x is the Euclidean norm of x. For a matrix V ∈ Rm×n, we denote the operator

norm and Frobenius norm by ‖V ‖2 and ‖V ‖F respectively. For a positive definite matrix V ∈ Rd×d

and a vector x ∈ Rd, we denote ‖x‖V =
√
x>V x.

A.1 Supporting Lemmas

Before deriving the regret bound of LMC-LSVI , we first outline the necessary technical lemmas that
are helpful in our regret analysis. The first result below shows that the parameter obtained from LMC
follows a Gaussian distribution.
Proposition A.1. The parameter wk,Jkh used in episode k of Algorithm 1 follows a Gaussian distri-
bution N (µk,Jkh ,Σk,Jkh), where the mean vector and the covariance matrix are defined as

µk,Jkh = AJkk . . . AJ11 w1,0
h +

k∑
i=1

AJkk . . . A
Ji+1

i+1

(
I −AJii

)
ŵih, (6)

Σk,Jkh =

k∑
i=1

1

βi
AJkk . . . A

Ji+1

i+1

(
I −A2Ji

i

) (
Λih
)−1

(I +Ai)
−1
A
Ji+1

i+1 . . . AJkk , (7)

where Ai = I − 2ηiΛ
i
h for i ∈ [k].

Definition A.2 (Model prediction error). For all (k, h) ∈ [K]× [H], we define the model prediction
error associated with the reward rkh,

lkh(x, a) = rkh(x, a) + PhV kh+1(x, a)−Qkh(x, a).

Lemma A.3. Let λ = 1 in Algorithm 1. For any (k, h) ∈ [K]× [H], we have∥∥∥wk,Jkh

∥∥∥
2
≤ 16

3
Hd
√
K +

√
2K

3βKδ
d3/2,

with probability at least 1− δ, where c is a constant.
Definition A.4 (Good events). For any δ > 0, we define the following events

Gkh(δ)
def
=

{∥∥∥wk,Jkh

∥∥∥
2
≤ 16

3
Hd
√
K +

√
2K

3βKδ
d3/2

}
,

G(K,H, δ)
def
=
⋂
k≤K

⋂
h≤H

Gkh(δ).

Lemma A.5. Let λ = 1 in Algorithm 1. For any fixed δ1 > 0, conditioned on the event G(K,H, δ),
we have for all (k, h) ∈ [K]× [H],∥∥∥∥∥

k−1∑
τ=1

φ(xτh, a
τ
h)
[(
V kh+1 − PhV kh+1

)
(xτh, a

τ
h)
]∥∥∥∥∥

(Λk
h)−1

≤ c1H

√
d log

(
HKd

βKδδ1

)
,

with probability at least 1− δ1, for some constant c1 > 0.
Lemma A.6. Let λ = 1 in Algorithm 1. Define the following event

E(K,H, δ1)

=

{∣∣φ(x, a)>ŵkh − rkh(x, a)− PhV kh+1(x, a)
∣∣ ≤ c2H

√
d

βK
log

(
HKd

δδ1

)
‖φ(x, a)‖(Λk

h)−1 ,

∀(h, k) ∈ [H]× [K] and ∀(x, a) ∈ S ×A
}
, (8)

where c2 is a positive constant. Then under the event G(K,H, δ), we have P(E(K,H, δ1)) ≥ 1− δ1.

17

Lemma A.7 (Error bound). Let λ = 1 in Algorithm 1. For any δ > 0 conditioned on the event
G(K,H, δ), for all (h, k) ∈ [H]× [K] and (x, a) ∈ S ×A, with probability at least 1− (δ1 + δ2

2),
we have

−lkh(x, a) ≤

(
c2H

√
d

βK
log

(
HKd

δδ1

)
+ 5

√
2d log (1/δ2)

3βK
+ 4/3

)
‖φ(x, a)‖(Λk

h)−1 . (9)

Lemma A.8 (Optimism). Let λ = 1 in Algorithm 1. Conditioned on the event G(K,H, δ) and
E(K,H, δ1), for all (h, k) ∈ [H] × [K] and (x, a) ∈ S × A, with probability at least 1

2
√

2eπ
, we

have
lkh(x, a) ≤ 0. (10)

A.2 Regret Analysis

We first restate the main theorem as follows.

Theorem A.9. Let λ = 1, 1√
βk

= Õ(H
√
d) in Algorithm 1 and δ ∈ (0, 1). For any k ∈ [K], let

the learning rate ηk = 1/(4λmax(Λkh)), the update number Jk = 2κk log(4HKd) where κk =
λmax(Λkh)/λmin(Λkh) is the condition number of Λkh. Under Definition 4.1, the regret of Algorithm 1
satisfies

Regret(K) = Õ(d3/2H5/2
√
T),

with probability at least 1− δ.

Proof of Theorem A.9. By Lemma 4.2 in Cai et al. [2019], it holds that

Regret(T) =

K∑
k=1

(
V ∗1 (xk1)− V π

k

1 (xk1)
)

=

K∑
k=1

H∑
t=1

Eπ∗
[
〈Qkh(xh, ·), π∗h(· | xh)− πkh(· | xh)〉

∣∣x1 = xk1
]

︸ ︷︷ ︸
(i)

+

K∑
k=1

H∑
t=1

Dkh︸ ︷︷ ︸
(ii)

+

K∑
k=1

H∑
t=1

Mk
h︸ ︷︷ ︸

(iii)

+

K∑
k=1

H∑
h=1

(
Eπ∗

[
lkh(xh, ah) | x1 = xk1

]
− lkh(xkh, a

k
h)
)

︸ ︷︷ ︸
(iv)

, (11)

where Dkh andMk
h are defined as

Dkh := 〈(Qkh −Qπ
k

h)(xkh, ·), πkh(·, xkh)〉 − (Qkh −Qπ
k

h)(xkh, a
k
h), (12)

Mk
h := Ph((V kh+1 − V π

k

h+1))(xkh, a
k
h)− (V kh+1 − V π

k

h+1)(xkh). (13)

Next, we will bound the above terms respectively.

Bounding Term (i): For the policy πkh at time step h of episode k, we will prove that

K∑
k=1

H∑
h=1

Eπ∗ [〈Qkh(xh, ·), π∗h(· | xh)− πkh(· | xh)〉 | x1 = xk1] ≤ 0. (14)

To this end, note that πkh acts greedily with respect to action-value function Qkh. If πkh = π∗h, then the
difference π∗h(· | xh)− πkh(· | xh) is 0. Otherwise, the difference is negative since πkh is deterministic
with respect to Qkh. Concretely, πkh takes a value of 1 where π∗h would take a value of 0. Moreover,
Qkh would have the greatest value at the state-action pair where πkh equals 1. This completes the
proof.

Bounding Terms (ii) and (iii): From (4), note that we truncate Qkh to the range [0, H − h + 1].
This implies for any (h, k) ∈ [K] × [H], we have |Dkh| ≤ 2H . Moreover, E[Dkh|Fkh] = 0, where

18

Fkh is a corresponding filtration. Thus, Dkh is a martingale difference sequence. So, applying
Azuma-Hoeffding inequality, we have with probability 1− δ/3,

K∑
k=1

H∑
h=1

Dkh ≤
√

2H2T log(3/δ),

where T = KH . Similarly, we can show thatMk
h is a martingale difference sequence. Applying

Azuma-Hoeffding inequality, we have with probability 1− δ/3,

K∑
k=1

H∑
h=1

Mk
h ≤

√
2H2T log(3/δ).

Therefore, by applying union bound, we have that for any δ > 0, with probability 1− 2δ/3, it holds
that

K∑
k=1

H∑
h=1

Dkh +

K∑
k=1

H∑
h=1

Mk
h ≤ 2

√
2H2T log(3/δ), (15)

where T = KH .

Bounding Term (iv):

Define event

Ekh(δ1, δ2)

=

{
− lkh(x, a) ≤

(
c2H

√
d

βK
log

(
HKd

δδ1

)
+ 5

√
2d log (1/δ2)

3βK
+ 4/3

)
‖φ(x, a)‖(Λk

h)−1

:= gkh(φ(x, a))

}
. (16)

By Lemma A.7, we know P (E(K,H, δ1, δ2)) ≥ 1 − (δ1 + δ2
2) where E(K,H, δ1, δ2) =⋂

k≤K
⋂
h≤H E

k
h(δ1, δ2). Define the set

Ukh = {a : lkh(x, π∗)− lkh(x, a) ≤ gkh(φ(x, a))} (17)

Note that conditional on event E(K,H, δ1, δ2), we have P (U) ≥ 1/(2
√

2eπ), where U =⋂
k≤K

⋂
h≤H Ukh .

Let ā = arg mina∈Uk
h
gkh(φ(x, a)). The regret is

lkh(x, π∗)− lkh(x, a) = lkh(x, π∗)− lkh(x, ā) + lkh(x, ā)− lkh(x, a)

≤ gkh(φ(x, ā)) + gkh(φ(x, ā)) + gkh(φ(x, a)),

where the first part in the inequality is due to the definition of ā, and the next two terms are due to the
assumption that E(K,H, δ1, δ2) holds. Now we have

gkh(φ(x, a)) = E[gkh(φ(x, a))|a ∈ U]P (a ∈ U) + E[gkh(φ(x, a))|a /∈ U]P (a /∈ U) (18)

≥ 1

2
√

2eπ
gkh(φ(x, ā)). (19)

Then we have the following inequality

lkh(x, π∗)− lkh(x, a) ≤ (
√

2eπ + 1)gkh(φ(x, a)). (20)

19

Now we have

K∑
k=1

H∑
h=1

(
Eπ∗ [lkh(xh, ah) | x1 = xk1]− lkh(xkh, a

k
h)
)

=

K∑
k=1

H∑
h=1

Eπ∗ [lkh(xh, π
∗)− lkh(xkh, a

k
h) | x1 = xk1]

≤
K∑
k=1

H∑
h=1

(
√

2eπ + 1)gkh(φ(xkh, a
k
h))

= (
√

2eπ + 1)

K∑
k=1

H∑
h=1

(
c2H

√
d

βK
log

(
HKd

δδ1

)
+ 5

√
2d log (1/δ2)

3βK
+ 4/3

)
‖φ(xkh, a

k
h)‖(Λk

h)−1

= (
√

2eπ + 1)

(
c2H

√
d

βK
log

(
HKd

δδ1

)
+ 5

√
2d log (1/δ2)

3βK
+ 4/3

)
K∑
k=1

H∑
h=1

‖φ(xkh, a
k
h)‖(Λk

h)−1

≤ (
√

2eπ + 1)

(
c2H

√
d

βK
log

(
HKd

δδ1

)
+ 5

√
2d log (1/δ2)

3βK
+ 4/3

)
H∑
h=1

√
K

(
K∑
k=1

‖φ(xkh, a
k
h)‖2(Λk

h)−1

)1/2

≤ (
√

2eπ + 1)

(
c2H

√
d

βK
log

(
HKd

δδ1

)
+ 5

√
2d log (1/δ2)

3βK
+ 4/3

)
H
√

2dK log(1 +K)

= (
√

2eπ + 1)

(
c2H

√
d

βK
log

(
HKd

δδ1

)
+ 5

√
2d log (1/δ2)

3βK
+ 4/3

)√
2dHT log(1 +K)

= Õ(d3/2H5/2
√
T).

Here the first, the second, and the third inequalities follow from (20), Cauchy-Schwarz inequality

and Lemma C.4 respectively. The last equality follows from 1√
βk

= c3H
√
d log(HKdδδ1

) which we
defined in Lemma A.8. Therefore, for any δ1 > 0, conditioned on the event G(K,H, δ), we have

K∑
k=1

H∑
h=1

(
Eπ∗ [lkh(xh, ah) | x1 = xk1]− lkh(xkh, a

k
h)
)
≤ Õ(d3/2H5/2

√
T) (21)

with probability at least 1− (δ1 + δ2
2).

Note that by Lemma A.3 the good event G(K,H, δ′) happens with probability 1 − Tδ′ where
T = KH . Using Lemma A.8, the good event G(K,H, δ′) occurs and it holds that

K∑
k=1

H∑
h=1

(
Eπ∗ [lkh(xh, ah) | x1 = xk1]− lkh(xkh, a

k
h)
)
≤ Õ(d3/2H5/2

√
T)

with probability at least (1 − Tδ′)(1 − (δ1 + δ2
2)). Setting δ′ = δ

6T and δ1 = δ2 = δ/12, we can
show that

(1− Tδ′)(1− (δ1 + δ2
2)) > 1− δ/3.

The martingale inequalities from Equation (15) occur with probability 1− 2δ/3. By Equation (14)
and applying union bound, we get that the final regret bound is Õ(d3/2H5/2

√
T) with probability at

least 1− δ.

B Proof of Supporting Lemmas

In this section, we provide the proofs of the lemmas that we used in the regret analysis of LMC-
LSVI in the previous section.

20

B.1 Proof of Proposition A.1

Proof of Proposition A.1. First note that for linear MDP, we have

∇Lkh(wkh) = 2(Λkhw
k
h − bkh).

The update rule is:

wk,jh = wk,j−1
h − ηk∇Lkh(wk,j−1

h) +
√

2ηkβ
−1
k εk,jh ,

which leads to

wk,Jkh = wk,Jk−1
h − 2ηk

(
Λkhw

k,Jk−1
h − bkh

)
+
√

2ηkβ
−1
k εk,Jkh

=
(
I − 2ηkΛkh

)
wk,Jk−1
h + 2ηkb

k
h +

√
2ηkβ

−1
k εk,Jkh

=
(
I − 2ηkΛkh

)Jk
wk,0h +

Jk−1∑
l=0

(
I − 2ηkΛkh

)l(
2ηkb

k
h +

√
2ηkβ

−1
k εk,Jk−lh

)

=
(
I − 2ηkΛkh

)Jk
wk,0h + 2ηk

Jk−1∑
l=0

(
I − 2ηkΛkh

)l
bkh +

√
2ηkβ

−1
k

Jk−1∑
l=0

(
I − 2ηkΛkh

)l
εk,Jk−lh .

Note that in Line 6 of Algorithm 1, we warm-start from previous episode and set wk,0h = w
k−1,Jk−1

h .
Denoting Ai = I − 2ηiΛ

i
h, we note that Ai is symmetric. Moreover, when the step size is chosen

such that 0 < ηi < 1/(2λmax(Λih)), Ai satisfies I � Ai � 0. Therefore, we further have

wk,Jkh = AJkk w
k−1,Jk−1

h + 2ηk

Jk−1∑
l=0

AlkΛkhŵ
k
h +

√
2ηkβ

−1
k

Jk−1∑
l=0

Alkε
k,Jk−l
h

= AJkk w
k−1,Jk−1

h + (I −Ak)
(
A0
k +A1

k + . . .+AJk−1
k

)
ŵkh +

√
2ηkβ

−1
k

Jk−1∑
l=0

Alkε
k,Jk−l
h

= AJkk w
k−1,Jk−1

h +
(
I −AJkk

)
ŵkh +

√
2ηkβ

−1
k

Jk−1∑
l=0

Alkε
k,Jk−l
h

= AJkk . . . AJ11 w1,0
h +

k∑
i=1

AJkk . . . A
Ji+1

i+1

(
I −AJii

)
ŵih +

k∑
i=1

√
2ηiβ

−1
i AJkk . . . A

Ji+1

i+1

Ji−1∑
l=0

Aliε
i,Ji−l
h ,

where in the first equality we used bkh = Λkhŵ
k
h, in the second equality we used the definition of Λkh,

and in the third equality we used the fact that I + A + . . . + An−1 = (I − An)(I − A)−1. We
recall a property of multivariate Gaussian distribution: if ε ∼ N (0, Id×d), then we have Aε+ µ ∼
N (µ,AAT) for any A ∈ Rd×d and µ ∈ Rd. This implies wk,Jkh follows the Gaussian distribution
N (µk,Jkh ,Σk,Jkh), where

µk,Jkh = AJkk . . . AJ11 w1,0
h +

k∑
i=1

AJkk . . . A
Ji+1

i+1

(
I −AJii

)
ŵih. (22)

We now derive the covariance matrix Σk,Jkh . For a fixed i, denote Mi =
√

2ηiβ
−1
i AJkk . . . A

Ji+1

i+1 .
Then we have,

Mi

Ji−1∑
l=0

Aliε
i,Ji−l
h =

Ji−1∑
l=0

MiA
l
iε
i,Ji−l
h ∼ N

(
0,

Ji−1∑
l=0

MiA
l
i(MiA

l
i)
>

)
∼ N

(
0,Mi

(
Ji−1∑
l=0

A2l
i

)
M>i

)
.

21

Thus we further have

Σk,Jkh =

k∑
i=1

Mi

(
Ji−1∑
l=0

A2l
i

)
M>i

=

k∑
i=1

2ηiβ
−1
i AJkk . . . A

Ji+1

i+1

(
Ji−1∑
l=0

A2l
i

)
A
Ji+1

i+1 . . . AJkk

=

k∑
i=1

2ηiβ
−1
i AJkk . . . A

Ji+1

i+1

(
I −A2Ji

i

) (
I −A2

i

)−1
A
Ji+1

i+1 . . . AJkk

=

k∑
i=1

1

βi
AJkk . . . A

Ji+1

i+1

(
I −A2Ji

i

)(
Λih
)−1

(I +Ai)
−1A

Ji+1

i+1 . . . AJkk .

This completes the proof.

B.2 Proof of Lemma A.3

Before presenting the proof, we first need to prove the following two technical lemmas.
Lemma B.1. For any (k, h) ∈ [K]× [H], we have

‖ŵkh‖ ≤ 2H
√
kd/λ.

Proof of Lemma B.1. We have

‖ŵkh‖ =

∥∥∥∥∥(Λkh)−1
k−1∑
τ=1

[
rτh(xτh, a

τ
h) + V kh+1(xτh+1)

]
· φ(sτh, a

τ
h)

∥∥∥∥∥
≤ 1√

λ

√
k − 1

(
k−1∑
τ=1

∥∥[rτh(xτh, a
τ
h) + V kh+1(xτh+1)

]
· φ(xτh, a

τ
h)
∥∥2

(Λk
h)−1

)1/2

≤ 2H√
λ

√
k − 1

(
k−1∑
τ=1

‖φ(xτh, a
τ
h)‖2(Λk

h)−1

)1/2

≤ 2H
√
kd/λ,

where the first inequality follows from Lemma C.5, the second inequality is due to 0 ≤ V kh ≤ H and
the reward function being bounded by 1, and the last inequality follows from Lemma C.3.

Lemma B.2. Let λ = 1 in Algorithm 1. For any (h, k) ∈ [H]× [K] and (x, a) ∈ S ×A, we have∣∣∣φ(x, a)>wk,Jkh − φ(x, a)>ŵkh

∣∣∣ ≤ (5

√
2d log (1/δ)

3βK
+

4

3

)
‖φ(x, a)‖(Λk

h)−1 ,

with probability at least 1− δ2.

Proof of Lemma B.2. By the triangle inequality, we have∣∣∣φ(x, a)>wk,Jkh − φ(x, a)>ŵkh

∣∣∣ ≤ ∣∣∣φ(x, a)>
(
wk,Jkh − µk,Jkh

)∣∣∣+∣∣∣φ(x, a)>
(
µk,Jkh − ŵkh

)∣∣∣ . (23)

Bounding the term
∣∣∣φ(x, a)>

(
wk,Jkh − µk,Jkh

)∣∣∣: we have∣∣∣φ(x, a)>
(
wk,Jkh − µk,Jkh

)∣∣∣ ≤ ∥∥∥∥φ(x, a)>
(

Σk,Jkh

)1/2
∥∥∥∥

2

∥∥∥∥(Σk,Jkh

)−1/2 (
wk,Jkh − µk,Jkh

)∥∥∥∥
2

.

Since wk,Jkh ∼ N (µk,Jkh ,Σk,Jkh), we have
(

Σk,Jkh

)−1/2 (
wk,Jkh − µk,Jkh

)
∼ N (0, Id×d). Thus, we

have

P
(∥∥∥∥(Σk,Jkh

)−1/2 (
wk,Jkh − µk,Jkh

)∥∥∥∥
2

≥
√

4d log (1/δ)

)
≥ δ2. (24)

22

When we choose ηk ≤ 1/(4λmax(Λkh)) for all k, we have

1

2
I < Ak = I − 2ηkΛkh <

(
1− 2ηkλmin(Λkh)

)
I,

3

2
I < I +Ak = 2I − 2ηkΛkh < 2I.

(25)

Also note that Ak and (Λkh)−1 commute. Therefore, we have

A2Jk
k

(
Λkh
)−1

=
(
I − 2ηkΛkh

)
. . .
(
I − 2ηkΛkh

) (
I − 2ηkΛkh

) (
Λkh
)−1

=
(
I − 2ηkΛkh

)
. . .
(
I − 2ηkΛkh

) (
Λkh
)−1 (

I − 2ηkΛkh
)

= AJkk
(
Λkh
)−1

AJkk .

(26)

Recall the definition of Σk,Jkh . Then

φ(x, a)>Σk,Jkh φ(x, a)

=

k∑
i=1

1

βi
φ(x, a)>AJkk . . . A

Ji+1

i+1

(
I −A2Ji

) (
Λih
)−1

(I +Ai)
−1
A
Ji+1

i+1 . . . AJkk φ(x, a)

≤ 2

3βi
φ(x, a)>AJkk . . . A

Ji+1

i+1

((
Λih
)−1 −AJkk

(
Λih
)−1

AJkk

)
A
Ji+1

i+1 . . . AJkk φ(x, a)

=
2

3βK

k∑
i=1

φ(x, a)>AJkk . . . A
Ji+1

i+1

((
Λih
)−1 −

(
Λi+1
h

)−1
)
A
Ji+1

i+1 . . . AJkk φ(x, a)

− 2

3βK
φ(x, a)>AJkk . . . AJ11

(
Λ1
h

)−1
AJ11 . . . AJkk φ(x, a) +

2

3βK
φ(x, a)>

(
Λkh
)−1

φ(x, a),

where the first inequality is due to (25) and the last equality is due to setting βi = βK for all i ∈ [K].
By Sherman-Morrison formula and (5), we have(

Λih
)−1 −

(
Λi+1
h

)−1
=
(
Λih
)−1 −

(
Λih + φ(xih, a

i
h)φ(xih, a

i
h)>
)−1

=

(
Λih
)−1

φ(xih, a
i
h)φ(xih, a

i
h)>

(
Λih
)−1

1 + ‖φ(xih, a
i
h)‖2

(Λi
h)−1

.

This implies

φ(x, a)>AJkk . . . A
Ji+1

i+1

((
Λih
)−1 −

(
Λi+1
h

)−1
)
A
Ji+1

i+1 . . . AJkk φ(x, a)

= φ(x, a)>AJkk . . . A
Ji+1

i+1

(
Λih
)−1

φ(xih, a
i
h)φ(xih, a

i
h)>

(
Λih
)−1

1 + ‖φ(xih, a
i
h)‖2

(Λi
h)−1

A
Ji+1

i+1 . . . AJkk φ(x, a)

≤
(
φ(x, a)>AJkk . . . A

Ji+1

i+1

(
Λih
)−1

φ(xih, a
i
h)
)2

≤
∥∥∥AJkk . . . A

Ji+1

i+1

(
Λih
)−1/2

φ(x, a)
∥∥∥2

2
·
∥∥∥(Λih)−1/2

φ(xih, a
i
h)
∥∥∥2

2

≤
k∏

j=i+1

(
1− 2ηjλmin

(
Λjh

))2Jj ∥∥φ(xih, a
i
h)
∥∥2

(Λi
h)−1 ‖φ(x, a)‖2(Λi

h)−1 ,

where the last inequality is due to (25). So, we have

φ(x, a)>Σk,Jkh φ(x, a) ≤ 2

3βK

k∑
i=1

k∏
j=i+1

(
1− 2ηjλmin

(
Λjh

))2Jj ∥∥φ(xih, a
i
h)
∥∥2

(Λi
h)−1 ‖φ(x, a)‖2(Λi

h)−1

+
2

3βK
‖φ(x, a)‖2(Λk

h)−1 .

23

Using the inequality
√
a2 + b2 ≤ a+ b for a, b > 0, we thus get

‖φ(x, a)‖
Σ

k,Jk
h

≤
√

2

3βK

(
‖φ(x, a)‖(Λk

h)−1+

k∑
i=1

k∏
j=i+1

(
1− 2ηjλmin

(
Λjh

))Jj ∥∥φ(xih, a
i
h)
∥∥

(Λi
h)−1 ‖φ(x, a)‖(Λi

h)−1

)
(27)

Let’s denote the R.H.S. of (27) as ĝkh(φ(x, a)).

Therefore, it holds that

P
(∣∣∣φ(x, a)>wk,Jkh − φ(x, a)>µk,Jkh

∣∣∣ ≥ 2ĝkh(φ(x, a))
√
d log (1/δ)

)
≤ P

(∣∣∣φ(x, a)>wk,Jkh − φ(x, a)>µk,Jkh

∣∣∣ ≥ 2
√
d log (1/δ)‖φ(x, a)‖

Σ
k,Jk
h

)
≤ P

(∥∥∥∥φ(x, a)>
(

Σk,Jkh

)1/2
∥∥∥∥

2

∥∥∥∥(Σk,Jkh

)−1/2 (
wk,Jkh − µk,Jkh

)∥∥∥∥
2

≥ 2
√
d log (1/δ)‖φ(x, a)‖

Σ
k,Jk
h

)
≤ δ2,

(28)

where the last inequality follows from (24).

Bounding the term φ(x, a)>
(
µk,Jkh − ŵkh

)
: Recall that,

µk,Jkh = AJkk . . . AJ11 w1,0
h +

k∑
i=1

AJkk . . . A
Ji+1

i+1

(
I −AJii

)
ŵih

= AJkk . . . AJ11 w1,0
h +

k−1∑
i=1

AJkk . . . A
Ji+1

i+1

(
ŵih − ŵi+1

h

)
−AJkk . . . AJ11 ŵ1

h + ŵkh

= AJkk . . . AJ11

(
w1,0
h − ŵ

1
h

)
+

k−1∑
i=1

AJkk . . . A
Ji+1

i+1

(
ŵih − ŵi+1

h

)
+ ŵkh.

This implies that

φ(x, a)>
(
µk,Jkh − ŵkh

)
= φ(x, a)>AJkk . . . AJ11

(
w1,0
h − ŵ

1
h

)
︸ ︷︷ ︸

I1

+φ(x, a)>
k−1∑
i=1

AJkk . . . A
Ji+1

i+1

(
ŵih − ŵi+1

h

)
︸ ︷︷ ︸

I2
(29)

In Algorithm 1, we choose w1,0
h = 0 and ŵ1

h = (Λ1
h)−1b1h = 0. Thus we have, I1 = 0. Using

inequalities in (25) and Lemma B.1, we have

I2 ≤

∣∣∣∣∣φ(x, a)>
k−1∑
i=1

AJkk . . . A
Ji+1

i+1

(
ŵih − ŵi+1

h

)∣∣∣∣∣
=

∣∣∣∣∣
k−1∑
i=1

φ(x, a)>AJkk . . . A
Ji+1

i+1

(
ŵih − ŵi+1

h

)∣∣∣∣∣
≤
k−1∑
i=1

k∏
j=i+1

(
1− 2ηjλmin

(
Λjh

))Jj
‖φ(x, a)‖2‖ŵih − ŵi+1

h ‖2

≤
k−1∑
i=1

k∏
j=i+1

(
1− 2ηjλmin

(
Λjh

))Jj
‖φ(x, a)‖2

(
‖ŵih‖2 + ‖ŵi+1

h ‖2
)

≤
k−1∑
i=1

k∏
j=i+1

(
1− 2ηjλmin

(
Λjh

))Jj
‖φ(x, a)‖2

(
2H
√
id/λ+ 2H

√
(i+ 1)d/λ

)

≤ 4H
√
Kd/λ

k−1∑
i=1

k∏
j=i+1

(
1− 2ηjλmin

(
Λjh

))Jj
‖φ(x, a)‖2.

24

So, it holds that

φ(x, a)>
(
µk,Jkh − ŵkh

)
≤ 4H

√
Kd/λ

k−1∑
i=1

k∏
j=i+1

(
1− 2ηjλmin

(
Λjh

))Jj
‖φ(x, a)‖2. (30)

Substituting (28) and (30) into (23), we get with probability at least 1− δ2,∣∣∣φ(x, a)>wk,Jkh − φ(x, a)>ŵkh

∣∣∣
≤ 4H

√
Kd/λ

k−1∑
i=1

k∏
j=i+1

(
1− 2ηjλmin

(
Λjh

))Jj
‖φ(x, a)‖2 + 2

√
2d log (1/δ)

3βK
‖φ(x, a)‖(Λk

h)−1

+ 2

√
2d log (1/δ)

3βK

k∑
i=1

k∏
j=i+1

(
1− 2ηjλmin

(
Λjh

))Jj ∥∥φ(xih, a
i
h)
∥∥

(Λi
h)−1 ‖φ(x, a)‖(Λi

h)−1 .

(31)

Let’s denote the R.H.S. of (31) as Q. Recall that, for any j ∈ [K], we require ηj ≤ 1/(4λmax(Λjh)).
Choosing ηj = 1/(4λmax(Λjh)) yields(

1− 2ηjλmin(Λjh)
)Jj

= (1− 1/(2κj))
Jj ,

where κj = λmax(Λjh)/λmin(Λjh). In order to have (1− 1/(2κj))
Jj < ε, we need to pick Jj such

that

Jj ≥
log (1/ε)

log
(

1
1−1/(2κj)

) .
Now we use the well-known fact that e−x > 1 − x for 0 < x < 1. Since 1/(2κj) ≤ 1/2,
we have log (1/(1− 1/2κj)) ≥ 1/2κj . Thus, it suffices to set Jj ≥ 2κj log (1/ε) to ensure
(1 − 1/2κj)

Jj ≤ ε. Also, note that since Λih > I , we have 1 ≥ ‖φ(x, a)‖2 ≥ ‖φ(x, a)‖(Λi
h)−1 .

Setting ε = 1/(4HKd) and λ = 1, we obtain

Q ≤
k−1∑
i=1

εk−i4H

√
Kd

λ
‖φ(x, a)‖2 + 2

√
2d log (1/δ)

3βK

(
‖φ(x, a)‖(Λk

h)−1 +

k−1∑
i=1

εk−i‖φ(x, a)‖2

)

≤
k−1∑
i=1

εk−i4H

√
Kd

λ

√
k‖φ(x, a)‖(Λk

h)−1

+ 2

√
2d log (1/δ)

3βK

(
‖φ(x, a)‖(Λk

h)−1 +

k−1∑
i=1

εk−i
√
k‖φ(x, a)‖(Λk

h)−1

)

≤
k−1∑
i=1

εk−i−1‖φ(x, a)‖(Λk
h)−1 + 2

√
2d log (1/δ)

3βK

(
‖φ(x, a)‖(Λk

h)−1 +

k−1∑
i=1

εk−i−1‖φ(x, a)‖(Λk
h)−1

)

≤

(
5

√
2d log (1/δ)

3βK
+

4

3

)
‖φ(x, a)‖(Λk

h)−1 ,

where the second inequality is due to ‖φ(x, a)‖(Λk
h)−1 ≥ 1/

√
k‖φ(x, a)‖2 and the fourth inequality

is due to
∑k−1
i=1 ε

k−i−1 =
∑k−2
i=0 ε

i < 1/(1− ε) ≤ 4/3. So, we have

P

(∣∣∣φ(x, a)>wk,Jkh − φ(x, a)>ŵkh

∣∣∣ ≤ (5

√
2d log (1/δ)

3βK
+

4

3

)
‖φ(x, a)‖(Λk

h)−1

)
≥ P

(∣∣∣φ(x, a)>wk,Jkh − φ(x, a)>ŵkh

∣∣∣ ≤ Q)
≥ 1− δ2.

This completes the proof.

25

Proof of Lemma A.3. From Proposition A.1, we know wk,Jkh follows Gaussian distribution
N (µk,Jkh ,Σk,Jkh). Thus we can write,

∥∥∥wk,Jkh

∥∥∥
2

=
∥∥∥µk,Jkh + ξk,Jkh

∥∥∥
2
≤
∥∥∥µk,Jkh

∥∥∥
2

+
∥∥∥ξk,Jkh

∥∥∥
2
,

where ξk,Jkh ∼ N (0,Σk,Jkh).

Bounding ‖µk,Jkh ‖2: From Proposition A.1, we have,

∥∥∥µk,Jkh

∥∥∥
2

=

∥∥∥∥∥AJkk . . . AJ11 w1,0
h +

k∑
i=1

AJkk . . . A
Ji+1

i+1

(
I −AJii

)
ŵih

∥∥∥∥∥
2

≤
k∑
i=1

∥∥∥AJkk . . . A
Ji+1

i+1

(
I −AJii

)
ŵih

∥∥∥
2
,

where the inequality follows from the fact that we set w1,0
h = 0 in Algorithm 1 and triangle inequality.

Denoting the Frobenius of a matrix X by ‖X‖F , we have

k∑
i=1

∥∥∥AJkk . . . A
Ji+1

i+1

(
I −AJii

)
ŵih

∥∥∥
2

≤
k∑
i=1

∥∥∥AJkk . . . A
Ji+1

i+1

(
I −AJii

)∥∥∥
F

∥∥ŵih∥∥2

≤ 2H

√
Kd

λ

k∑
i=1

∥∥∥AJkk . . . A
Ji+1

i+1

(
I −AJii

)∥∥∥
F

≤ 2H

√
Kd

λ

k∑
i=1

√
d
∥∥∥AJkk . . . A

Ji+1

i+1

(
I −AJii

)∥∥∥
2

≤ 2Hd

√
K

λ

k∑
i=1

‖Ak‖Jk2 . . . ‖Ai+1‖Ji+1

2

∥∥∥(I −AJii)∥∥∥
2

≤ 2Hd

√
K

λ

k∑
i=1

k∏
j=i+1

(
1− 2ηjλmin(Λjh)

)Jj (
‖I‖2 + ‖AJii ‖2

)

≤ 2Hd

√
K

λ

k∑
i=1

k∏
j=i+1

(
1− 2ηjλmin(Λjh)

)Jj (
‖I‖2 + ‖Ai‖Ji2

)

≤ 2Hd

√
K

λ

k∑
i=1

k∏
j=i+1

(
1− 2ηjλmin(Λjh)

)Jj (
1 +

(
1− 2ηiλmin(Λih)

)Ji)

≤ 2Hd

√
K

λ

k∑
i=1

(
k∏

j=i+1

(
1− 2ηjλmin(Λjh)

)Jj
+

k∏
j=i

(
1− 2ηjλmin(Λjh)

)Jj)
,

where the second inequality is from Lemma B.1, the third inequality is due to the fact that
rank(AJkk . . . A

Ji+1

i+1 (I − AJii)) ≤ d, the fourth one uses the submultiplicativity of matrix norm,
and the fifth one is from Lemma C.6 and (25).

26

As in Lemma B.2, setting Jj ≥ 2κj log (1/ε) where κj = λmax(Λjh)/λmin(Λjh) and ε = 1/(4HKd),
λ = 1, we further get

k∑
i=1

∥∥∥AJkk . . . A
Ji+1

i+1

(
I −AJii

)
ŵih

∥∥∥
2
≤ 2Hd

√
K

λ

k∑
i=1

(
εk−i + εk−i+1

)
≤ 4Hd

√
K

λ

∞∑
i=0

εi

= 4Hd

√
K

λ

(
1

1− ε

)
≤ 4Hd

√
K

λ
· 4

3

=
16

3
Hd

√
K

λ
.

Thus, setting λ = 1, we have

‖µk,Jkh ‖2 ≤
16

3
Hd
√
K.

Bounding ‖ξk,Jkh ‖2: Since ξk,Jkh ∼ N (0,Σk,Jkh), using Lemma C.1, we have

P

(∥∥∥ξk,Jkh

∥∥∥
2
≤
√

1

δ
Tr
(

Σk,Jkh

))
≥ 1− δ.

Recall from Proposition A.1, that

Σk,Jkh =

k∑
i=1

1

βi
AJkk . . . A

Ji+1

i+1

(
I −A2Ji

i

) (
Λih
)−1

(I +Ai)
−1
A
Ji+1

i+1 . . . AJkk .

Thus,

Tr
(

Σk,Jkh

)
=

k∑
i=1

1

βi
Tr
(
AJkk . . . A

Ji+1

i+1

(
I −A2Ji

i

) (
Λih
)−1

(I +Ai)
−1
A
Ji+1

i+1 . . . AJkk

)
≤

k∑
i=1

1

βi
Tr
(
AJkk

)
. . .Tr

(
A
Ji+1

i+1

)
Tr
(
I −A2Ji

i

)
Tr
((

Λih
)−1
)

Tr
(

(I +Ai)
−1
)

× Tr
(
A
Ji+1

i+1

)
. . .Tr

(
AJkk

)
,

where we used Lemma C.7. Note that if matrix A and B are positive definite matrix such that
A > B > 0, then Tr(A) > Tr(B). Also, recall from (25) that, when ηk ≤ 1/(4λmax(Λkh)) for all k,
we have

1

2
I < Ak = I − 2ηkΛkh <

(
1− 2ηkλmin(Λkh)

)
I,

3

2
I < I +Ak = 2I − 2ηkΛkh < 2I.

So, we have AJii <
(
1− 2ηkλmin(Λkh)

)Jj
I and

Tr
(
AJii

)
≤ Tr

((
1− 2ηkλmin(Λkh)

)Jj
I
)

≤ d
(
1− 2ηkλmin(Λkh)

)Jj
≤ dε

=
d

4HKd
≤ 1,

27

where third inequality follows from the fact that in Lemma B.2, we chose Jj such that(
1− 2ηjλmin(Λjh)

)Jj
≤ ε and the first equality follows from the choice of ε = 1/(4HKd).

Similarly, we have I −A2Ji
i <

(
1− 1

22Ji

)
I and thus,

Tr
(
I −A2Ji

i

)
≤
(

1− 1

22Ji

)
d < d.

Likewise, using (I +Ai)
−1 ≤ 2

3I , we have

Tr
(
(I +Ai)

−1
)
≤ 2

3
d.

Finally, note that all eigenvalues of Λih are greater than or equal to 1, which implies all eigenvalues of
(Λih)−1 are less than or equal to 1. Since the trace of a matrix is equal to the sum of its eigenvalues,
we have

Tr
(
(Λih)−1

)
≤ d · 1 = d.

Using the above observations and the choice of βi = βK for all i ∈ [K], we have

Tr
(

Σk,Jkh

)
≤

K∑
i=1

1

βk
· 2

3
· d3 =

2

3βK
Kd3.

Thus we have

P
(∥∥∥ξk,Jkh

∥∥∥
2
≤
√

1

δ
· 2

3βK
Kd3

)
≥ P

(∥∥∥ξk,Jkh

∥∥∥
2
≤
√

1

δ
Tr
(

Σk,Jkh

))
≥ 1− δ.

So, with probability at least 1− δ, we have

∥∥∥wk,Jkh

∥∥∥
2
≤ 16

3
Hd
√
K +

√
2K

3βKδ
d3/2,

which completes the proof.

B.3 Proof of Lemma A.5

Proof of Lemma A.5. Under the event, G(K,H, δ), for all (k, h) ∈ [K]× [H], we have

∥∥∥wk,Jkh

∥∥∥
2
≤ 16

3
Hd
√
K +

√
2K

3βKδ
d3/2.

Combining Lemma C.8 and Lemma C.10, we have that for any ε > 0 and δ1 > 0, with probability at
least 1− δ1,∥∥∥∥∥

k−1∑
τ=1

φ(xτh, a
τ
h)
[(
V kh+1 − PhV kh+1

)
(xτh, a

τ
h)
]∥∥∥∥∥

(Λk
h)−1

≤

4H2

d
2

log

(
k + λ

λ

)
+ d log

16Hd
√
K +

√
6K
βKδ

d3/2

ε

+ log
1

δ1

+
8k2ε2

λ

1/2

≤ 2H

d
2

log

(
k + λ

λ

)
+ d log

16Hd
√
K +

√
6K
βKδ

d3/2

ε

+ log
1

δ1

1/2

+
2
√

2kε√
λ

.

(32)

28

Setting λ = 1, ε = H
√
d

K
√
βK

, we get

∥∥∥∥∥
k−1∑
τ=1

φ(xτh, a
τ
h)
[(
V kh+1 − PhV kh+1

)
(xτh, a

τ
h)
]∥∥∥∥∥

(Λk
h)−1

≤ 2H
√
d

1

2
log(k + 1) + log

16Hd
√
K +

√
6K
βKδ

d3/2

H
√
d

K
√
βK

+ log
1

δ1

1/2

+ 2
√

2H
√
d/
√
βK

≤ c1H

√
d

βK
log

(
HKd

δδ1

)
,

for some constant c1 > 0.

B.4 Proof of Lemma A.6

Proof of Lemma A.6. We denote the inner product over S by 〈·, ·〉S . Using Definition 4.1, we have

PhV kh+1(x, a) = φ(x, a)>〈µh, V kh+1〉S
= φ(x, a)>

(
Λkh
)−1

Λkh〈µh, V kh+1〉S

= φ(x, a)>
(
Λkh
)−1

(
k−1∑
τ=1

φ(xτh, a
τ
h)φ(xτh, a

τ
h)> + λI

)
〈µh, V kh+1〉S

= φ(x, a)>
(
Λkh
)−1

(
k−1∑
τ=1

φ(xτh, a
τ
h)(PhV kh+1)(xτh, a

τ
h) + λI〈µh, V kh+1〉S

)
.

(33)

Using (33) we obtain,

φ(x, a)>ŵkh − rkh(x, a)− PhV kh+1(x, a)

= φ(x, a)>
(
Λkh
)−1

k−1∑
τ=1

[
rτh(xτh, a

τ
h) + V kh+1(xτh+1)

]
· φ(xτh, a

τ
h)− rkh(x, a)

− φ(x, a)>
(
Λkh
)−1

(
k−1∑
τ=1

φ(xτh, a
τ
h)(PhV kh+1)(xτh, a

τ
h) + λI〈µh, V kh+1〉S

)

= φ(x, a)>(Λkh)−1

(
k−1∑
τ=1

φ(xτh, a
τ
h)
[(
V kh+1 − PhV kh+1

)
(xτh, a

τ
h)
])

︸ ︷︷ ︸
(i)

+ φ(x, a)>(Λkh)−1

(
k−1∑
τ=1

rτh(xτh, a
τ
h)φ(xτh, a

τ
h)

)
− rkh(x, a)︸ ︷︷ ︸

(ii)

− λφ(x, a)>(Λkh)−1〈µh, V kh+1〉S︸ ︷︷ ︸
(iii)

. (34)

We now provide an upper bound for each of the terms in (34).

29

Term(i). Using Cauchy-Schwarz inequality and Lemma A.5, with probability at least 1 − δ1, we
have

φ(x, a)>(Λkh)−1

(
k−1∑
τ=1

φ(xτh, a
τ
h)
[(
V kh+1 − PhV kh+1

)
(xτh, a

τ
h)
])

≤

∥∥∥∥∥
k−1∑
τ=1

φ(xτh, a
τ
h)
[(
V kh+1 − PV kh+1

)
(xτh, a

τ
h)
]∥∥∥∥∥

(Λk
h)−1

‖φ(x, a)‖(Λk
h)−1

≤ c1H

√
d

βK
log

(
HKd

δδ1

)
‖φ(x, a)‖(Λk

h)−1 . (35)

Term (ii). First note that,

φ(x, a)>(Λkh)−1

(
k−1∑
τ=1

rτh(xτh, a
τ
h)φ(xτh, a

τ
h)

)
− rkh(x, a)

= φ(x, a)>(Λkh)−1

(
k−1∑
τ=1

rτh(xτh, a
τ
h)φ(xτh, a

τ
h)

)
− φ(x, a)>θh

= φ(x, a)>(Λkh)−1

(
k−1∑
τ=1

rτh(xτh, a
τ
h)φ(xτh, a

τ
h)− Λkhθh

)

= φ(x, a)>(Λkh)−1

(
k−1∑
τ=1

rτh(xτh, a
τ
h)φ(xτh, a

τ
h)−

k−1∑
τ=1

φ(xτh, a
τ
h)φ(xτh, a

τ
h)>θh − λIθh

)

= φ(x, a)>(Λkh)−1

(
k−1∑
τ=1

rτh(xτh, a
τ
h)φ(xτh, a

τ
h)−

k−1∑
τ=1

φ(xτh, a
τ
h)rh(xτh, a

τ
h)− λIθh

)
= −λφ(x, a)>(Λkh)−1θh. (36)

Here we used the definition rh(x, a) = 〈φ(x, a), θh〉 from Definition 4.1. Applying Cauchy-Schwarz
inequality, we further get,

−λφ(x, a)>(Λkh)−1θh ≤ λ‖φ(x, a)‖(Λk
h)−1‖θh‖(Λk

h)−1

≤
√
λ‖φ(x, a)‖(Λk

h)−1‖θh‖2

≤
√
λd‖φ(x, a)‖(Λk

h)−1 .

(37)

Here we used the observation that the largest eigenvalue of (Λkh)−1 is at most 1/λ and ‖θh‖2 ≤
√
d

from Definition 4.1. Combining (36) and (37), we get,

φ(x, a)>(Λkh)−1

(
k−1∑
τ=1

rτh(xτh, a
τ
h)φ(xτh, a

τ
h)

)
− rkh(x, a) ≤

√
λd‖φ(x, a)‖(Λk

h)−1 . (38)

Term(iii). Applying Cauchy-Schwarz inequality, we get,

λφ(x, a)>(Λkh)−1〈µh, V kh+1〉S ≤ λ‖φ(x, a)‖(Λk
h)−1‖〈µh, V kh+1〉S‖(Λk

h)−1

≤
√
λ‖φ(x, a)‖(Λk

h)−1‖〈µh, V kh+1〉S‖2

≤
√
λ‖φ(x, a)‖(Λk

h)−1

(
d∑
τ=1

‖µτh‖21

) 1
2

‖V kh+1‖∞

≤ H
√
λd‖φ(x, a)‖(Λk

h)−1 ,

(39)

30

where the the last inequality follows from
∑d
τ=1 ‖µτh‖21 ≤ d in Definition 4.1. Combining (35), (38)

and (39), and letting λ = 1, we get, with probability at least 1− δ1∣∣φ(x, a)>ŵkh − rkh(x, a)− PhV kh+1(x, a)
∣∣

≤

(
c1H

√
d

βK
log

(
HKd

δδ1

)
+
√
λd+H

√
λd

)
‖φ(x, a)‖(Λk

h)−1

= c2H

√
d

βK
log

(
HKd

δδ1

)
‖φ(x, a)‖(Λk

h)−1 ,

where c2 is some positive constant

B.5 Proof of Lemma A.7

Proof of Lemma A.7. First note that,

−lkh(x, a) = Qkh(x, a)− rkh(x, a)− PhV kh+1(x, a)

= min{φ(x, a)>wk,Jkh , H − h+ 1} − rkh(x, a)− PhV kh+1(x, a)

≤ φ(x, a)>wk,Jkh − rkh(x, a)− PhV kh+1(x, a)

= φ(x, a)>wk,Jkh − φ(x, a)>ŵkh + φ(x, a)>ŵkh − rkh(x, a)− PhV kh+1(x, a)

≤
∣∣∣φ(x, a)>wk,Jkh − φ(x, a)>ŵkh

∣∣∣︸ ︷︷ ︸
(i)

+
∣∣φ(x, a)>ŵkh − rkh(x, a)− PhV kh+1(x, a)

∣∣︸ ︷︷ ︸
(ii)

.

Applying Lemma B.2, for any (h, k) ∈ [H]× [K] and (x, a) ∈ S ×A, we have

∣∣∣φ(x, a)>wk,Jkh − φ(x, a)>ŵkh

∣∣∣ ≤ (5

√
2d log (1/δ2)

3βK
+

4

3

)
‖φ(x, a)‖(Λk

h)−1 ,

with probability at least 1− δ2
2 .

Applying Lemma A.6, conditioned on the event G(K,H, δ), for all (h, k) ∈ [H]× [K] and (x, a) ∈
S ×A, we have

∣∣φ(x, a)>ŵkh − rkh(x, a)− PhV kh+1(x, a)
∣∣ ≤ c2H

√
d

βK
log

(
HKd

δδ1

)
‖φ(x, a)‖(Λk

h)−1 ,

with probability 1− δ1. So, with probability 1− (δ1 + δ2
2),

−lkh(x, a) ≤ (i) + (ii)

≤

(
c2H

√
d

βK
log

(
HKd

δδ1

)
+ 5

√
2d log (1/δ2)

3βK
+ 4/3

)
‖φ(x, a)‖(Λk

h)−1 .

This completes the proof.

B.6 Proof of Lemma A.8

Proof of Lemma A.8. We want to show Qkh(x, a) ≥ rkh(x, a) + PhV kh+1(x, a) with high probability.
We note that

Qkh(x, a) = min{φ(x, a)>wk,Jkh , H − h+ 1} ≤ φ(x, a)>wk,Jkh .

Based on the mean and covariance matrix defined in Proposition A.1, we have that φ(x, a)>wk,Jkh

follows the distribution N (φ(x, a)>µk,Jkh , φ(x, a)>Σk,Jkh φ(x, a)).

31

Define, Zk =
rkh(x,a)+PhV

k
h+1(x,a)−φ(x,a)>µ

k,Jk
h√

φ(x,a)>Σ
k,Jk
h φ(x,a)

. When |Zk| < 1, by Lemma C.2, we have

P
(
φ(x, a)>wk,Jkh ≥ rkh(x, a) + PhV kh+1(x, a)

)
= P

φ(x, a)>wk,Jkh − φ(x, a)>µk,Jkh√
φ(x, a)>Σk,Jkh φ(x, a)

≥
rkh(x, a) + PhV kh+1(x, a)− φ(x, a)>µk,Jkh√

φ(x, a)>Σk,Jkh φ(x, a)


≥ 1

2
√

2π
exp (−Z2

k/2)

≥ 1

2
√

2eπ
.

We now show that |Zk| < 1 under the event G(K,H, δ). First note that by triangle inequality, we
have ∣∣∣rkh(x, a) + PhV kh+1(x, a)− φ(x, a)>µk,Jkh

∣∣∣
≤
∣∣rkh(x, a) + PhV kh+1(x, a)− φ(x, a)>ŵkh

∣∣+
∣∣∣φ(x, a)>ŵkh − φ(x, a)>µk,Jkh

∣∣∣ .
By definition of the event E(K,H, δ1) from Lemma A.6, we have,

∣∣rkh(x, a) + PhV kh+1(x, a)− φ(x, a)>ŵkh
∣∣ ≤ c2H

√
d

βK
log

(
HKd

δδ1

)
‖φ(x, a)‖(Λk

h)−1 ,

From (30), we have∣∣∣φ(x, a)>ŵkh − φ(x, a)>µk,Jkh

∣∣∣ ≤ 4H
√
Kd/λ

k−1∑
i=1

k∏
j=i+1

(
1− 2ηjλmin

(
Λjh

))Jj
‖φ(x, a)‖2.

As in proof of Lemma B.2, setting ηj = 1/(4λmax(Λjh)), Jj ≥ 2κj log(1/ε), we have for all j ∈ [K],(
1− 2ηjλmin

(
Λjh

))Jj
≤ ε. Setting ε = 1/(4HKD), we have,

∣∣∣φ(x, a)>ŵkh − φ(x, a)>µk,Jkh

∣∣∣ ≤ 4H
√
Kd

k−1∑
i=1

εk−i‖φ(x, a)‖2

≤
k−1∑
i=1

εk−i−1 1

4HKd
4H
√
Kd
√
K‖φ(x, a)‖(Λk

h)−1

≤
k−1∑
i=1

εk−i−1‖φ(x, a)‖(Λk
h)−1

≤
k−2∑
i=0

εi‖φ(x, a)‖(Λk
h)−1

≤ 1

1− ε
‖φ(x, a)‖(Λk

h)−1

≤ 4

3
‖φ(x, a)‖(Λk

h)−1 .

So, we have∣∣∣rkh(x, a) + PhV kh+1(x, a)− φ(x, a)>µk,Jkh

∣∣∣ ≤ (c2H
√

d

βK
log

(
HKd

δδ1

)
+

4

3

)
‖φ(x, a)‖(Λk

h)−1 .

(40)

32

Now, recall the definition of Σk,Jkh from Proposition A.1:

φ(x, a)>Σk,Jkh φ(x, a)

=

k∑
i=1

1

βi
φ(x, a)>AJkk . . . A

Ji+1

i+1

(
I −A2Ji

) (
Λih
)−1

(I +Ai)
−1
A
Ji+1

i+1 . . . AJkk φ(x, a)

≥
k∑
i=1

1

2βi
φ(x, a)>AJkk . . . A

Ji+1

i+1

(
I −A2Ji

) (
Λih
)−1

A
Ji+1

i+1 . . . AJkk φ(x, a),

where we used the fact that 1
2I < (I + Ak)−1. Recall that in (26), we showed A2Jk

k

(
Λkh
)−1

=

AJkk
(
Λkh
)−1

AJkk . So,

φ(x, a)>Σk,Jkh φ(x, a)

≥
k∑
i=1

1

2βi
φ(x, a)>AJkk . . . A

Ji+1

i+1

((
Λih
)−1 −AJkk

(
Λih
)−1

AJkk

)
A
Ji+1

i+1 . . . AJkk φ(x, a)

=
1

2βK

k−1∑
i=1

φ(x, a)>AJkk . . . A
Ji+1

i+1

(
(Λih)−1 − (Λi+1

h)−1
)
A
Ji+1

i+1 . . . AJkk φ(x, a)

− 1

2βK
φ(x, a)>AJkk . . . AJ11 (Λ1

h)−1AJ11 . . . AJkk φ(x, a) +
1

2βK
φ(x, a)>(Λkh)−1φ(x, a),

where we used the choice of 1
βi

= 1
βK

for all i ∈ [K]. By Sherman-Morrison formula and (5), we
have (

Λih
)−1 −

(
Λi+1
h

)−1
=
(
Λih
)−1 −

(
Λih + φ(xih, a

i
h)φ(xih, a

i
h)>
)−1

=

(
Λih
)−1

φ(xih, a
i
h)φ(xih, a

i
h)>

(
Λih
)−1

1 + ‖φ(xih, a
i
h)‖2

(Λi
h)−1

,

which implies∣∣∣φ(x, a)>AJkk . . . A
Ji+1

i+1

(
(Λih)−1 − (Λi+1

h)−1
)
A
Ji+1

i+1 . . . AJkk φ(x, a)
∣∣∣

=

∣∣∣∣∣φ(x, a)>AJkk . . . A
Ji+1

i+1

(
Λih
)−1

φ(xih, a
i
h)φ(xih, a

i
h)>

(
Λih
)−1

1 + ‖φ(xih, a
i
h)‖2

(Λi
h)−1

A
Ji+1

i+1 . . . AJkk φ(x, a)

∣∣∣∣∣
≤
(
φ(x, a)>AJkk . . . A

Ji+1

i+1 (Λih)−1φ(xih, a
i
h)
)2

≤
∥∥∥AJkk . . . A

Ji+1

i+1 (Λih)−1/2φ(x, a)
∥∥∥2

2

∥∥∥(Λih)−1/2φ(xih, a
i
h)
∥∥∥2

2

≤
k∏

j=i+1

(
1− 2ηjλmin(Λjh)

)2Jj
‖φ(xih, a

i
h)‖2(Λi

h)−1‖φ(x, a)‖2(Λi
h)−1 ,

where we used 0 < 1/i ≤ ‖φ(x, a)‖(Λi
h)−1 ≤ 1. Therefore, we have

φ(x, a)>Σk,Jkh φ(x, a)

≥ 1

2βK
‖φ(x, a)‖2(Λk

h)−1 −
1

2βK

k∏
i=1

(
1− 2ηiλmin(Λih)

)2Ji ‖φ(x, a)‖2(Λ1
h)−1

− 1

2βK

k−1∑
i=1

k∏
j=i+1

(
1− 2ηjλmin(Λjh)

)2Jj
‖φ(xih, a

i
h)‖2(Λi

h)−1‖φ(x, a)‖2(Λi
h)−1 .

33

Similar to the proof of Lemma B.2, when we choose Jj ≥ κj log(3
√
k), we have

‖φ(x, a)‖
Σ

k,Jk
h

≥ 1

2βK

(
‖φ(x, a)‖(Λk

h)−1 −
‖φ(x, a)‖2

(3
√
k)k

−
k−1∑
i=1

1

(
√

3k)k−i
‖φ(x, a)‖2

)

≥ 1

2βK

(
‖φ(x, a)‖(Λk

h)−1 −
1

3
√
k
‖φ(x, a)‖2 −

1

6
√
k
‖φ(x, a)‖2

)
≥ 1

4βK
‖φ(x, a)‖(Λk

h)−1 ,

(41)

where we used the fact that λmin((Λkh)−1) ≥ 1/k. Therefore, according to (40) and (41), it holds that

|Zk| =

∣∣∣∣∣∣r
k
h(x, a) + PhV kh+1(x, a)− φ(x, a)>µk,Jkh√

φ(x, a)>Σk,Jkh φ(x, a)

∣∣∣∣∣∣
≤
c2H

√
d
βK

log
(
HKd
δδ1

)
+ 4

3

1
4βK

,

(42)

which implies |Zk| < 1 when 1√
βk

= c3H
√
d log(HKdδδ1

) for some constant c3 > 0.

C Auxiliary Lemmas

C.1 Gaussian Concentration

In this section, we present some auxiliary technical lemmas that are of general interest instead of
closely related to our problem setting.

Lemma C.1. Given a multivariate normal distribution X ∼ N (0,Σd×d), we have,

P

(
‖X‖2 ≤

√
1

δ
Tr(Σ)

)
≥ 1− δ.

Proof of Lemma C.1. From the properties of multivariate Gaussian distribution, X = Σ1/2ξ for
ξ ∼ N (0, Id×d). As Σ1/2 is symmetric, it can be decomposed as Σ1/2 = QΛQ>, where Q is
orthogonal and Λ is diagonal. Hence,

P
(
‖X‖2 ≤ C

2
)

= P
(
‖X‖22 ≤ C

2
)

= P
(∥∥QΛQT ξ

∥∥2

2
≤ C2

)
= P

(∥∥ΛQT ξ
∥∥2

2
≤ C2

)
,

since orthogonal transformation preserves the norm. Another property of standard Gaussian distribu-
tion is that it is spherically symmetric. That is, Qξ d

= ξ for any orthogonal matrix Q. So,

P
(∥∥ΛQT ξ

∥∥2

2
≤ C2

)
= P

(
‖Λξ‖22 ≤ C

2
)
,

as Q> is also orthogonal. Observe that ‖Λξ‖22 =
∑d
i=1 λ

2
i ξ

2
i is the sum of the independent χ2

1-

distributed variables with E
(
‖Λξ‖22

)
=
∑d
i=1 λ

2
i = Tr(Λ2) =

∑d
i=1 Var(Xi). From Markov’s

inequality,

P
(
‖Λξ‖22 ≤ C

2
)
≥ 1− 1

C2
· E
(
‖Λξ‖22

)
.

So,

δ =
1

C2
· E
(
‖Λξ‖22

)
⇔ C =

√√√√1

δ

d∑
i=1

Var(Xi) =

√
1

δ
Tr(Σ),

which completes the proof.

34

Lemma C.2 (Abramowitz and Stegun [1964]). Suppose Z is a Gaussian random variable Z ∼
N (µ, σ2), where σ > 0. For 0 ≤ z ≤ 1, we have

P(Z > µ+ zσ) ≥ 1√
8π
e
−z2

2 , P(Z < µ− zσ) ≥ 1√
8π
e
−z2

2 .

And for z ≥ 1, we have
e−z

2/2

2z
√
π
≤ P(|Z − µ| > zσ) ≤ e−z

2/2

z
√
π
.

C.2 Inequalities for summations

Lemma C.3 (Lemma D.1 in Jin et al. [2020]). Let Λh = λI +
∑t
i=1 φiφ

>
i , where φi ∈ Rd and

λ > 0. Then it holds that
t∑
i=1

φ>i (Λh)−1φi ≤ d.

Lemma C.4 (Lemma 11 in Abbasi-Yadkori et al. [2011]). Using the same notation as defined in this
paper

K∑
k=1

∥∥φ(skh, a
k
h)
∥∥2

(Λk
h)−1 ≤ 2d log

(λ+K

λ

)
.

Lemma C.5 (Lemma D.5 in Ishfaq et al. [2021]). Let A ∈ Rd×d be a positive definite matrix where
its largest eigenvalue λmax(A) ≤ λ. Let x1, . . . , xk be k vectors in Rd. Then it holds that

∥∥∥A k∑
i=1

xi

∥∥∥ ≤ √λk(k∑
i=1

‖xi‖2A

)1/2

.

C.3 Linear Algebra Lemmas

Lemma C.6. Consider two symmetric positive semidefinite square matrices A and B. If A ≥ B,
then ‖A‖2 ≥ ‖B‖2.

Proof of Lemma C.6. Note that A−B is also positive semidefinite. Now,

‖B‖2 = sup
‖x‖=1

x>Bx ≤ sup
‖x‖=1

(
x>Bx+ x>(A−B)x

)
= sup
‖x‖=1

x>Ax = ‖A‖2. (43)

This completes the proof.

Lemma C.7 ([Horn and Johnson, 2012]). If A and B are positive semi-definite square matrices of
the same size, then

0 ≤ [Tr(AB)]2 ≤ Tr(A2) Tr(B2) ≤ [Tr(A)]2[Tr(B)]2.

C.4 Covering numbers and self-normalized processes

Lemma C.8 (Lemma D.4 in Jin et al. [2020]). Let {si}∞i=1 be a stochastic process on state space
S with corresponding filtration {Fi}∞i=1. Let {φi}∞i=1 be an Rd-valued stochastic process where
φi ∈ Fi−1, and ‖φi‖ ≤ 1. Let Λk = λI +

∑k
i=1 φiφ

>
i . Then for any δ > 0, with probability at least

1− δ, for all k ≥ 0, and any V ∈ V with sups∈S |V (s)| ≤ H , we have

∥∥∥ k∑
i=1

φi
{
V (si)− E[V (si) | Fi−1]

}∥∥∥2

Λ−1
k

≤ 4H2
[d

2
log
(k + λ

λ

)
+ log

Nε
δ

]
+

8k2ε2

λ
,

where Nε is the ε-covering number of V with respect to the distance dist(V, V ′) = sups∈S |V (s)−
V ′(s)|.

35

Lemma C.9 (Covering number of Euclidean ball, Vershynin [2018]). For any ε > 0, the ε-covering
number, Nε, of the Euclidean ball of radius B > 0 in Rd satisfies

Nε ≤
(

1 +
2B

ε

)d
≤
(3B

ε

)d
.

Lemma C.10. Let V denote a class of functions mapping from S to R with the following parametric
form

V (·) = min

{
max
a∈A

φ(·, a)>w,H

}
,

where the parameter w satisifies ‖w‖ ≤ B and for all (x, a) ∈ S ×A, we have ‖φ(x, a)‖ ≤ 1. Let
NV,ε be the ε-covering number of V with respect to the distance dist(V, V ′) = supx |V (x)− V ′(x)|.
Then

logNV,ε ≤ d log (1 + 2B/ε) ≤ d log (3B/ε).

Proof of Lemma C.10. Consider any two functions V1, V2 ∈ V with parameters w1 and w2 respec-
tively. Since both min{·, H} and maxa are contraction maps, we have

dist(V1, V2) ≤ sup
x,a

∣∣φ(x, a)>w1 − φ(x, a)>w2

∣∣
≤ sup
φ:‖φ‖≤1

∣∣φ>w1 − φ>w2

∣∣
= sup
φ:‖φ‖≤1

∣∣φ>(w1 − w2)
∣∣

≤ sup
φ:‖φ‖≤1

‖φ‖2‖w1 − w2‖2

≤ ‖w1 − w2‖,

(44)

Let Nw,ε denote the ε-covering number of {w ∈ Rd | ‖w‖ ≤ B}. Then, Lemma C.9 implies

Nw,ε ≤
(

1 +
2B

ε

)d
≤
(3B

ε

)d
.

Let Cw,ε be an ε-cover of {w ∈ Rd | ‖w‖ ≤ B}. For any V1 ∈ V , there exists w2 ∈ Cw,ε such that
V2 parameterized by w2 satisfies dist(V1, V2) ≤ ε. Thus, we have,

logNV,ε ≤ logNw,ε ≤ d log(1 + 2B/ε) ≤ d log(3B/ε),

which concludes the proof.

D Experiment Details

In this section, we provide more implementation details about experiments in N -Chain and Atari
games. Our code is available at https://github.com/hmishfaq/LMC-LSVI. In total, all experi-
ments (including hyper-parameter tuning) took about 2 GPU (V100) years and 20 CPU years.

D.1 N -Chain

There are two kinds of input features φ1hot(st) = (1{x = st}) and φtherm(st) = (1{x ≤ st}) in
{0, 1}N . Osband et al. [2016b] found that φtherm(st) has lightly better generalization. So following
Osband et al. [2016b], we use φtherm(st) as the input features.

For both DQN and Adam LMCDQN , the Q function is parameterized with a multi-layer perception
(MLP). The size of the hidden layers in the MLP is [32, 32], and ReLU is used as the activation
function. Both algorithms are trained for 105 steps with an experience replay buffer of size 104. We
measure the performance of each algorithm by the mean return of the last 10 test episodes. The
mini-batch size is 32, and we update the target network for every 100 steps. The discount factor
γ = 0.99.

DQN is optimized by Adam, and we do a hyper-parameter sweep for the learning rate with grid search.
Adam LMCDQN is optimized by Adam SGLD with α1 = 0.9, α2 = 0.99, and λ1 = 10−8. For
Adam LMCDQN , besides the learning rate, we also sweep the bias factor a, the inverse temperature
βk, and the update number Jk. We list the details of all swept hyper-parameters in Table 2.

36

https://github.com/hmishfaq/LMC-LSVI

Figure 4: N-Chain environment Osband et al. [2016b].

Table 2: The swept hyper-parameter in N -Chain.
HYPER-PARAMETER VALUES

LEARNING RATE ηk {10−1, 3× 10−2, 10−2, 3× 10−3, 10−3, 3× 10−4, 10−4}
BIAS FACTOR a {1.0, 0.1, 0.01}
INVERSE TEMPERATURE βk {1016, 1014, 1012, 1010, 108}
UPDATE NUMBER Jk {1, 4, 16, 32 }

D.2 Atari

D.2.1 Experiment Setup

We implement DQN and Adam LMCDQN with tianshou framework [Weng et al., 2022]. Both
algorithms use the same network structure, following the same observation process as in Mnih et al.
[2015]. To be specific, the observation is 4 stacked frames and is reshaped to (4, 84, 84). The raw
reward is clipped to {−1, 0,+1} for training, but the test performance is based on the raw reward
signals.

Unless mentioned explicitly, we use most of the default hyper-parameters from tianshou’s DQN 4.
For each task, there is just one training environment to reduce the exploration effect of training in
multiple environments. There are 5 test environments for a robust evaluation. The mini-batch size is
32. The buffer size is 1M . The discount factor is 0.99.

For DQN, we use the ε-greedy exploration strategy, where ε decays linearly from 1.0 to 0.01 for the
first 1M training steps and then is fixed as 0.05. During the test, we set ε = 0. The DQN agent is
optimized by Adam with a fixed learning rate 10−4.

For our algorithm Adam LMCDQN , since a large Jk significantly increases training time, so we set
Jk = 1 so that all experiments can be finished in a reasonable time. The Adam LMCDQN agent is
optimized by Adam SGLD with learning rate ηk = 10−4, α1 = 0.9, α2 = 0.99, and λ1 = 10−8. We
do a hyper-parameter sweep for the bias factor a and the inverse temperature βk, as listed in Table 3

Table 3: The swept hyper-parameter in Atari games.
HYPER-PARAMETER VALUES

BIAS FACTOR a {1.0, 0.1, 0.01}
INVERSE TEMPERATURE βk {1016, 1014, 1012}

D.2.2 Additional Results

Our implementation of Adam LMCDQN applies double Q networks by default. In Figure 5, we
compare the performance of Adam LMCDQN with and without applying double Q functions. The
performance of Adam LMCDQN is only slightly worse without using double Q functions, proving the
effectiveness of our approach. Similarly, there is no significant performance difference for Langevin
DQN [Dwaracherla and Van Roy, 2020] with and without double Q functions, as shown in Figure 6.

4https://github.com/thu-ml/tianshou/blob/master/examples/atari/atari_dqn.py

37

https://github.com/thu-ml/tianshou/blob/master/examples/atari/atari_dqn.py

500

0

500

1000

1500

2000

Re
tu

rn

Alien

10

0

10

20

30

40
Freeway

250

0

250

500

750

1000
Gravitar

5000

0

5000

10000

15000
H.E.R.O.

0 10 20 30 40 50
Frame (millions)

600

400

200

0

200

400

Re
tu

rn

Pitfall!

0 10 20 30 40 50
Frame (millions)

40000

20000

0

20000

40000

60000
Q*bert

0 10 20 30 40 50
Frame (millions)

500

0

500

1000

1500

2000
Solaris

0 10 20 30 40 50
Frame (millions)

500

0

500

1000

1500
Venture

Adam LMCDQN (with double Q) Adam LMCDQN (w.o. Double Q)

Figure 5: The return curves of Adam LMCDQN in Atari over 50 million training frames, with and
without double Q functions. Solid lines correspond to the median performance over 5 random seeds,
while shaded areas correspond to 90% confidence interval. The performance of Adam LMCDQN is
only slightly worse without using double Q functions, proving the effectiveness of our approach.

0

500

1000

1500

2000

2500

Re
tu

rn

Alien

10

0

10

20

30

40
Freeway

200

0

200

400

600

800
Gravitar

2500

0

2500

5000

7500

10000
H.E.R.O.

0 10 20 30 40 50
Frame (millions)

600

400

200

0

200

400

Re
tu

rn

Pitfall!

0 10 20 30 40 50
Frame (millions)

5000

0

5000

10000

15000
Q*bert

0 10 20 30 40 50
Frame (millions)

100

0

100

200

300

400
Solaris

0 10 20 30 40 50
Frame (millions)

500

0

500

1000

1500
Venture

Langevin DQN (with Double Q) Langevin DQN (w.o. Double Q)

Figure 6: The return curves of Langevin DQN in Atari over 50 million training frames, with and
without double Q functions. Solid lines correspond to the median performance over 5 random seeds,
while shaded areas correspond to 90% confidence interval. There is no significant performance
improvement by applying double Q functions in Langevin DQN.

Moreover, we also compare Langevin DQN with our algorithm Adam LMCDQN in Figure 7. Both
algorithms incorporate the double Q trick by default. Overall, Adam LMCDQN outperforms Langevin
DQN in most Atari games.

38

1000

0

1000

2000

3000

Re
tu

rn

Alien

10

0

10

20

30

40
Freeway

250

0

250

500

750

1000
Gravitar

5000

0

5000

10000

15000
H.E.R.O.

0 10 20 30 40 50
Frame (millions)

600

400

200

0

200

400

Re
tu

rn

Pitfall!

0 10 20 30 40 50
Frame (millions)

5000

0

5000

10000

15000

20000
Q*bert

0 10 20 30 40 50
Frame (millions)

500

0

500

1000

1500

2000
Solaris

0 10 20 30 40 50
Frame (millions)

500

0

500

1000

1500
Venture

Adam LMCDQN Langevin DQN

Figure 7: The return curves of Adam LMCDQN and Langevin DQN in Atari over 50 million training
frames. Solid lines correspond to the median performance over 5 random seeds, while shaded areas
correspond to 90% confidence interval. Overall, Adam LMCDQN outperforms Langevin DQN in
most Atari games.

39

	Introduction
	Preliminary
	Langevin Monte Carlo for Reinforcement Learning
	Theoretical Analysis
	Deep Q-Network with LMC Exploration
	Experiments
	Demonstration of Deep Exploration
	Evaluation in Atari Games

	Related Work
	Conclusion and Future Work
	Proof of the Regret Bound of LMC-LSVI
	Supporting Lemmas
	Regret Analysis

	Proof of Supporting Lemmas
	Proof of Prop:wgaussian
	Proof of Lemma:bound-2norm-wkjk
	Proof of Lemma:self-normalized-mdp
	Proof of Lemma:what-r-PV
	Proof of lemma:error-bound-on-l
	Proof of lemma:bound-on-l

	Auxiliary Lemmas
	Gaussian Concentration
	Inequalities for summations
	Linear Algebra Lemmas
	Covering numbers and self-normalized processes

	Experiment Details
	N-Chain
	Atari
	Experiment Setup
	Additional Results

