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Abstract

Increasing attention has been paid to learn-
ing logical rules automatically on knowledge
graphs to explain why a missing fact is in-
ferred. Previous approaches focus on directly
learning logical rules from numerous instances,
overlooking expert rules that are commonly
present in practice. Therefore, we examine the
problem of incremental rule learning, which
aims to learn new rules via ensembling ex-
pert logical rules on knowledge graphs. The
challenge of rule learning upon expert rules
lies in how to preserve the reasoning seman-
tics of expert rules. We present a framework
to allow existing end-to-end rule learning ap-
proaches to integrate expert logical rules with-
out losing their logical entailments. In more
details, we introduce the notion of complete
onehop-transformed set of rules to integrate
rules into neural networks for single-step rea-
soning. To preserve all logical entailments of
expert rules, we develop an algorithm based
on reasoning path extraction and optimized by
backward reasoning to compute a complete
onehop-transformed set of rules. Experimental
results on four benchmark datasets demonstrate
that the incorporation of expert rules signifi-
cantly enhances the performance of link predic-
tion on knowledge graphs.

1 Introduction

Knowledge graphs (KGs) have gained extensive ap-
plication across various real-world domains, includ-
ing question answering (Mitra and Baral, 2016),
recommendation (Lyu et al., 2020) and information
retrieval (Xiong et al., 2017a). KGs is composed
of a set of facts (also called triples) of the form
(h,r,t), where h is the head entity, r the relation
and ¢ the tail entity. Nevertheless, even the largest
KGs remain incomplete due to the data collection
process is laborious and error-prone. Thus, judging
the existence of new facts from existing facts is a
crucial task in KG, which is commonly referred to
as knowledge graph completion (KGC).

Rules X :
R; : aunt(X, Y) « sister(X, V;) A aunt(V;, Y).
R, : aunt(X, Y) « sister(X, V) A son(Y, V).
R :sister(X, Y) « sister(X, V;) A sister(Vy, V).
R, : sister(X, Y) « sister(X, V,) A brother(Y, X).
KGj: { sister(Mary, Alice), son(Tom, Alice), sister(Diana, Mary) }
aunt(Mary, Tom) « sister(Mary, Alice) A son(Tom, Alice) application of R,

aunt(Diana, Tom)|« aunt(Mary, Tom) A sister(Diana, Mary) application of Ry

KG,: {sister(Mary, Alice), sister(Alice, Jane), sister(Jane, Diana) }
sister(Mary, Jane) « sister(Mary, Alice) A sister(Alice, Jane) application of Ry

sister(Mary, Diana) |« sister(Mary, Jane) A sister(Jane, Diana) application of R3

Figure 1: Two examples from the dataset Family.

Logical rules play a pivotal role in KGC and
can explain why a missing fact is inferred. Early
rule learning methods studied in the field of In-
ductive Logic Programming (ILP) (Quinlan, 1990;
Muggleton, 1995; Schiiller and Benz, 2018; Wu
et al., 2022), where logical rules are learnt from
both positive and negative facts by a generate-and-
test manner. Recently, neural logic programming
approaches (Yang et al., 2017a; Sadeghian et al.,
2019; Yang and Song, 2020; Qu et al., 2021; Cheng
et al., 2022; Wang et al., 2024), are proposed to
learn logical rules. The end-to-end neural learn-
ing of logical rules uses tensor operators to learn
continuous parameters from triples in a KG, and
extract logical rules from the learned parameters to
constitute explanations for reasoning. Compared
with traditional ILP methods, neural methods are
better at learning rules from imperfect data.

However, most existing approaches have focused
on directly learning logical rules from existing
triples in KG, ignoring the existence of background
rules. In practice, there tends to be a set of domain-
specific expert rules. Incremental learning is a
methodology of machine learning where the trained
model can learn new information to extend the ex-
isting knowledge, which has seen extensive appli-



cation in fields such as widely applied in natural
language processing (Wang et al., 2023) and image
classification (Liu et al., 2025). Incremental learn-
ing is particularly beneficial in scenarios where
the learning system must dynamically evolve to
incorporate novel information or adapt to chang-
ing requirements, while maintaining the reasoning
capabilities of the original system. Therefore, we
examine the problem of incremental rule learning,
which aims to learn rules via ensembling expert
logical rules on knowledge graphs.

Figure 1 shows examples from the dataset Fam-
ily. There exist four expert rules. A rule R’ is said
to depend on a rule R if the head predicate of R is
a predicate in the body of R'. In Figure 1, Ry de-
pends on Rs, Ro depends on R3 or R4. The triple
“aunt(Diana, Tom)” derived from K G in Figure 1
must be applied with Ry followed by ;. There
also exist some self-dependent rules, namely Rj,
Rs and R4. The triple “sister(Mary, Diana)” de-
rived from K (G5 in Figure 1 must be applied with
R3 twice. Due to rule dependencies, utilizing exist-
ing rules to derive new triples from existing triples
typically requires multi-step reasoning. However,
existing neural-based rule learning models typically
employ single-step reasoning for rules. Assuming
that expert rules are correct, it follows that all their
logical entailments are also correct. Thus, the chal-
lenging of incremental rule learning beyond expert
rules lies in how to enable single-step reasoning
without losing logical entailments of expert rules.

To tackle this challenge, we present a frame-
work to allow existing end-to-end rule learning
approaches to incrementally learn rules beyond ex-
pert logical rules. To facilitate the integration of
rules into neural networks for single-step reason-
ing, we introduce the notion of complete onehop-
transformed set of rules, which preserves all logical
entailments of expert rules by single-step reason-
ing. Moreover, we propose the formal definition
of reasoning path to obtain a complete onehop-
transformed set of rules. Considering the com-
putational expense associated with deriving rea-
soning paths, we have developed an optimization
algorithm based on backward reasoning. Subse-
quently, we propose an end-to-end rule learning
model to learn rules based on the computed com-
plete onehop-transformed set of rules, by building
upon any existing rule learning approach.

We conduct empirical evaluations on four bench-
mark datasets. Experimental results indicate that
the integration of expert rules significantly im-

proves the performance of link prediction on knowl-
edge graphs. Additionally, comparative experi-
ments have demonstrated the efficacy of the com-
plete onehop-transformed set of rules.

2 Related Work

Rule-based methods aim at building effective rule-
based systems for KGC. Learning logical rules
was previously studied in the field of Inductive
Logic Programming (Quinlan, 1990; Muggle-
ton, 1995; Schiiller and Benz, 2018; Wu et al.,
2022), where logical rules are learnt by a generate-
and-test manner. Classical ILP methods such as
FOIL (Quinlan and Cameron-Jones, 1995) and
QuickFOIL (Zeng et al., 2014) cannot be directly
applicable to KGs because there exist no negative
examples and the data size is large. Recent ILP
methods like AMIE+ (Galarraga et al., 2015) and
AnyBURL (Meilicke et al., 2019) treat triples out-
side a KG as negative examples and can efficiently
learn rules through different search algorithms.
More recently, there is an emerging inter-
est in exploiting neural-based methods for rule
learning. There exist some end-to-end neural
approximate methods that learn continuous pa-
rameters based on the Tensorlog (Cohen et al.,
2020) operators, such as NeuralLP (Yang et al.,
2017a), DRUM (Sadeghian et al., 2019) and
NLIL (Yang et al., 2017b). NeuralLP (Yang et al.,
2017a) is the first neural approximate method us-
ing Tensorlog operators to learn chain-like rules.
DRUM (Sadeghian et al., 2019) tackles the lim-
itation of learning meaningless rules for Neu-
ralLP by introducing the identity relation and bi-
directional LSTM (Hochreiter and Schmidhuber,
1997) to prune the potential incorrect rule bodies.
Besides, FaithfulRE (Wang et al., 2024) is pro-
posed to study faithfulness guarantees in the con-
text of DRUM. In addition to applying Tensorlog,
there are several methods that extend the generate-
and-test manner to learn logical rules by neural
models, including RNNLogic (Qu et al., 2021),
RLogic (Cheng et al., 2022) and NCLR (Cheng
et al., 2023). Besides, other neural approximate
methods such as NTP (Rocktédschel and Riedel,
2017) and CTP (Minervini et al., 2020) learn logi-
cal rules based on neural theorem provers.
Compared with ILP methods, neural-based meth-
ods are better at learning rules from imperfect data.
However, all these methods learn rule-based sys-
tems from structural knowledge alone, ignoring the



existence of known expert logical rules.

3 Preliminaries

3.1 Basic concepts

An atom « is a basic first-order logic formula of the
form p(t1,- - -, t;) where p is predicate with arity
k, and the t; are terms that denote either variables
or constants. Given an atom «, pred(«),vars(«),
consts(«) and terms(c) denote respectively, its
predicate, its set of variables, of constants and of
terms, which can be naturally extended to a set of
atoms. A fact is an atom without variables.

Given a set of variables V' and a set of terms 7',
a substitution o of V by T' is a mapping from V to
T. It is called ground if it maps to only constants.
Given an atom «, o(«a) denotes the atom obtained
from « by replacing each variable x in o with o' ().
This naturally extends to sets of atoms.

A plain datalog rule (simply a rule) R is a for-
mula r(Z¥) < 37 : ¢(Z,7), where ¢(Z,7) is a
conjunction of atoms on & and ¥/, & and i are sets
of variables, r denotes the predicate of the atom
inferred by the rule. The part of R at the left (resp.
right) of < is called the head (resp. body) of R.
By Hg and Br we denote the atom in the head
of R and the set of atoms in the body of R, re-
spectively. The number of atoms in By, is called
the length of R. A fact v can be regarded as a
rule R s.t. Bgp = (). Let R and R’ be two rules.
R subsumes R’ if there exists a substitution o s.t.
O‘(HR) = HR/ and O’(BR) - BR/.

Let R be arule, ¥ a set of rules, A a set of atoms.
A is said to be a model of R if for any substitution
o,if 0(Br) C A, then o(Hp) € A. A is said to
be a model of X if for any R € 35, A is the model of
R. Rules considered in this paper are plain datalog
rules, thus there exists a unique least model of X.

Let I be a set of facts. Let Ag = I', Ay =
Ay U {O'(HR)|O'(BR) CA;1,ReXandois
a ground substitution}. When Ay = Ay, Ay is
the fixpoint of I' w.r.t. X. A; is the unique least
model of X UT. A fact ~y is said to be entailed
by I' U ¥ if any model of I" U X contains 7; i.e.,
v € Ay, denotedby ' U X |= 7.

3.2 Knowledge graph

Let £ be a set of entities, R a set of relations. A
knowledge graph G is a subset of {(h,r,t)|h,t €
E,r € R}, where h denotes the head entity, r the
relation and ¢ the tail entity. Note that (h, r,t) can
be formed into a binary fact r(h,t). By r~ we

denote the inverse relation of r € R. Accordingly,
the equivalent set of triples for G composed by
inverse relations, namely {(¢,7~, h)|(h,r,t) € G},
is denoted by G .

Given a knowledge graph G, let L = GU G,
we say a triple (h, 7, t) or a fact r(h, t) is inferred
(resp. potentially inferred) from G if there exists
(resp. could be) a set of rules X s.t. KUY = r(h, t).
Given a head query (?,r,t) or a tail query (h,,7),
the task of link prediction aims to find all entities
e € & such that (e, r,t) for (?,r,t) or (h,r,e) for
(h,r,7) is potentially inferred from G.

4 Approach
4.1 Problem Definition

Traditional rule learning methods on knowledge
graph directly learn logical rules from numerous
instances. Acknowledging the presence of expert
rules, we propose incremental rule learning in this
paper. Let G be a given knowledge graph, X be a
set of plain datalog rules, = G U G™. Given an
unverifed triple (h, 7, t), the problem is to calculate
the truth degree P, ;) of the triple (h,r,1) € £ *
P * &, where P,y ) reflects the degree of whether
the triple (h, r,t) can be potentially inferred by the
rules learned from /C and 3.

4.2 Overview of Approach

Assuming that all rules in X are correct, it follows
that all logical entailments of 3 are also correct.
Thus, it is crucial to ensure the preservation of the
reasoning semantics of expert rules while learning
rules based on expert rules. Considering the depen-
dency among rules mentioned in the example of
Figure 1, multi-step reasoning is essential for infer-
ring all triples. To integrate expert rules into neural
networks for single-step reasoning, we introduce
the notion of onehop-transformed set of rules to
optimize the architecture of the neural network.

Definition 1. Let X, Q be two sets of rules. Let
I" be a specific set of fact. €2 is called a I'-specific
onehop-transformed set of rules from 3. if for any
facty ¢ I' , 'UX = v if there is arule R € 2
and a substitution o for R s.t. o(Bgr) C I' and
o(HR) = . Q is further called complete if for any
facty ¢ I, ' UX = v iff there is arule R € 2
and a substitution o for R s.t. o(Bgr) C I' and
o(Hg) = .

To preserve all logical entailments of the expert
rules 3, we need to calculate a complete K-specific
onehop-transformed set {2 from X. In view of the
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Figure 2: Illustration of the proposed incremental end-to-end rule learning model.

inference efficiency of the rule learning models
based on /C and (), it is desirable to have as few
rules as possible in €2. Consequently, we proceed
to remove any redundant rules that are subsumed
by other rules within 2.

Since rules in X are plain datalog rules, all triples
entailed by /IC U X are in the fixpoint of /C w.r.t. 3.
To obtain the rules for single-step reasoning, we
calculate the reasoning path, defined as follows,
for each fact in the fixpoint of K w.r.t. 2. Through
substituting constants in reasoning paths, a rule in
onehop-transformed set can be derived. In EX 1 of
Figure 1, {aunt(Diana, Tom) <+ aunt(Mary, Tom)
A sister(Diana, Mary), aunt(Diana, Tom) < sis-
ter(Mary, Alice) A son(Tom, Alice) A sister(Diana,
Mary)} is a reasoning path for the fact aunt(Diana,
Tom) w.r.t. o and K(Gy.

Definition 2. Given a set of rules X and a set of
facts I'. Ary is the fixpoint of I' w.r.t. ¥. For
any v € Ary \ I, there exists a set of ground
rules { 01(R1), -, 0m(Rm)} s.t. R; € X, 05 is
a substitution for R;, o1(R;) = 7 and let P :
Yo al(BRl)’ Pj Y = Bijl U Uj(BRj)\
oi(Hp,), Bp, €T, 1< j <m, {P, -, P}
is a reasoning path of v w.r.t. ' and X. P, is the
corresponding ground rule.

As depicted in Definition 2, computing a rea-
soning path of a given fact requires considering all
the substitutions for all rules, leading to high com-
putational cost. Consequently, it is impractical to
obtain a complete C-specific onehop-transformed
set by calculating reasoning paths for all facts in the
fixpoint of I w.r.t. ¥ while excluding the facts al-
ready in KC. We have discovered that by employing
backward reasoning which considers only the rule
set without the facts, we can identify the single-step
reasoning rules for most new facts. Therefore, we
introduce backward reasoning as an optimization
algorithm. Ultimately, we are required to compute
reasoning paths only for those facts that cannot be
inferred through single-step reasoning of the rules
obtained via backward reasoning. By substituting

constants, we can obtain a complete K-specific
onehop-transformed set.

After calculating a complete K-specific onehop-
transformed set 2 from X, we propose a model
for learning rules based on X and 2. An overview
of the proposed model is illustrated in Figure 2.
Intuitively, the model aggregates the rules in 2
along with those from existing rule learning models
to obtain the final estimated truth degrees. Though
rules in () are accurate, it is worth to note that
the facts in L may contain errors (e.g., outdated
facts), rendering a direct application of the rules in
Q) inappropriate. Moreover, each rule R in €2 with
the same predicate in Hg can be conceptualized
as an individual classifier. Similarly, rules from
existing rule learning model also can be regarded
as classifiers. By employing the weighted sum, a
widely-used ensemble learning technique, the final
estimated truth degree is calculated.

4.3 Rule Completion

Given a set of facts /C and a set of plain datalog
rules X, the target of rule completion is to calculate
a complete K-specific onehop-transformed set €2
of rules from 3.

Let Ak x; be the fixpoint of I w.r.t. 3. There is
a reasoning path of each fact y € A x; \ K. Algo-
rithm 1 is developed to extract a reasoning path and
substitute constants. The function GetReasoning-
Path() is designed to extract reasoning paths of §
based on the definition of reasoning path. It adopts
a depth-first search strategy to recursively search
the reasoning path of § and obtains the correspond-
ing ground rule R until all facts in I" are in IC. The
function LiftRule() is designed to map constants
in the corresponding ground rule into variables.
During the process of mapping, we need to ensure
that the confidence of the rule is equal to 1.0. Let
I' = {o(HR)|o(Br) C K, o is a substitution for
R}, the confidence of a rule R is defined as the
ratio of the size of I' N Ak, and the size of I .

Theorem 1. Given a set of facts /C, a set of rules



Algorithm 1: GetRule(KC, 3, Ak s, t, m)

Input: A set of facts /C, a set of rules X, the fixpoint
Ax,s of K w.r.t. ¥, the minimum number of
iterations ¢, a fact v € Ax,x= \ K, and m.

Output: A rule R,.

1 ¢+ {};

2 GetReasoningPath(v, 0, 0);

3 R, + argmaxpco|vars(R')[;

4 Function GetReasoningPath(d, [, I'):
5 ifl = tor |®| > m then

6 | return;

7 for R € ¥ s.t. pred(Hg) =r do

for substitution o s.t. o(Hg) = 4,
O’(BR) C Ak,x do
9 I' <~ TU{o(Br)}:
10 ifVa € T's.t. a € K then
1 R+ LiftRule(I');
12 L D+ dU{R'};
13 fora €T'st a ¢ Kdo
14 GetReasoningPath(a, [ + 1,
L I\ {a});

15 Function LiftRule(I"):
16 Hg < 7;

17 Br T

18 R+ R;

19 for constant ¢ € consts(R’) do

20 R" + mapping(c, R);

21 s + confidence(R", K, Ax.x);
22 if s == 1.0 then

23 | R« R

24 return R

25 return R,

3, the fixpoint A s of K w.r.t. 3, the minimum
number of iterations ¢, a fact v € Ax »\ K, and the
maximum number m of inference paths discovered
, Ry = ExtractRule(KC, 3, Ak », t, m)is arule s.t.
there is a substitution ¢ for R, s.t. o(Bg,) C K
and o(Hg,) = 7.

Proof. In Algorithm 1, v € Ay »\/C, m is the max
number of reasoning paths found for . The func-
tion GetReasoningPath() obtains the corresponding
ground rule R until all factsin I" arein IC. Hr = 7.
Then the corresponding ground rule R is lifted into
R’ through function LiftRule(). Abviously, there
is a substitution o for R’ s.t. o(Hg/) = Hg and
o0(Br') = Bgr. When the number of reasoning
paths found for the missing fact y is greater than
m, the algorithm terminates and returns the rule 2,
with the most variables in ®. There is a substitution
ofor Rys.t.o(Bgr,) CKando(Hg,) =v. O

Due to the computational expense of obtain-
ing reasoning paths and substituting constants, we
propose a backward reasoning algorithm in Al-

Algorithm 2: BackwardReasoning()

Input: A set of rules 3, a relation r, a max length of
L, a set of facts IC and the fixpoint Ax s of K
w.rt. 2.
Output: A rule set V...
1 Ro + “r(z,y) < r(z,y)”;
2 U+ {}
3 Q < A sorted queue constructed of rules, ordered by
the length of rules in ascending order;
4 Q.add(Ro);
s while Q # 0 do

6 R. < Q.poll();

7 U, U, U{R:};

8 O <«

9 for R € ¥ do

10 for substitution p that can rewrite R, w.r.t.
Rdo

1 R’ +rewriting(R., R, 11);

12 if len(R’) > L then

13 if R’ can be collapsed then

14 | @« ®UCollapse(R');

15 else

16 | @« PU{R'};

17 ® < filterLength(®, L) ;

18 | Q++ QU(P\(T,UQ))

19 ¥, « filterConfidence(¥,, K, Ak x);
20 U, « filterSupport(¥,., K);
21 Function Collapse(R):

2 D+ {};

23 for substitution o that can collapse R do
24 R’ < collapsing(R, o);

25 b+ dU{R'};

26 if R’ can be collapsed then

27 | @ < ®UCollapse(R');

28 | return P;

29 return V.,

gorithm 2 to compute a possibly incomplete /-
specific onehop-transformed set ¥ from 3., which
is implemented based on the rewriting of a rule
defined as follows.

Definition 3. Given two rules R and R’. A rule
R" is a rewriting of R w.r.t. R’ if there exists a
substitution o s.t. 0(Hp/) C Br, Hgpr = Hp and
Brr = BRUo(Br) \ {o(Hr)}-

Considering the process of backward reasoning
may be infinite, we introduce the collapsing of the
rule under the constraint of the rule length.

Definition 4. Given a rule R. Let o and (§ be
two atoms in Bg. A rule R’ is a collapsing of R
if there exists a substitution o s.t. o(a) = o(8),

Hp = o(HR) and Brr = o(Bgr) \ {o(a)}.

For each relation r, Algorithm 2 calculates a
rules set W, s.t. forany R € U, pred(HR) =r. As
described in Algorithm 2, we start rewriting rules



Algorithm 3: RemoveRedundant(®)

Input: A set of rules P.
Output: An irreducible subset of rules U.
U+ &,
for each R € ¥ do

for each R’ € ¥ do

if R # R’ and R’ subsumes R then
U+ U\ {R};
L break;

ENE I

return W

N

from “r(x,y) < r(x,y)” and proceed by travers-
ing rules in X. The function rewriting() is crafted
to rewrite the rule R, by the rule R based on the
substitution p. Given the constraint on the length
of rules, we introduce the function Collapse() to
generate all possible collapsings of a given rule.
The function collapsing() is to collapse the rule
R based on o. The function filterLength() is uti-
lized to remove rules whose length is larger than
L. In order to ensure the correctness of rewriting
rules, the function filterConfidence() is designed
to filter rules whose confidence is less than 1.0.
Furthermore, the function filterSupport() is used to
preserve the rules in W, where for each R there
exist a substitution o s.t. Br C K. For any
fact vy s.t. there is a rule R € ¥, and a substi-
tution for R s.t. o(Bgr) € K and o(Hg) = 7,
KUY [ 5. Therefore, ¥ = {U,|r € R}
is a KC-specific onehop-transformed set of rules
from Y. However, W is possibly incomplete. Let
I'y ={o(HR)|R € ¥,0(Br) C K, 0o is a substi-
tution for R}. We complete ¥ to II by invoking
Algorithm 1 for each fact v € A x \ K, v ¢ T'y.
There may be redundant rules in II. We can obtain
an irreducible subset of rules {2 by removing the
rules in II that are subsumed by others.

Definition 5. Let ® be a set of rules. An irre-
ducible subset of rules ¥ of ® is a subset of P s.t.
for any R’ € U, there is no R € ¥ such that R
subsumes R’.

The algorithm is shown in Algorithm 3 and €2
is a complete K-specific onehop-transformed set
from X as illustrated in Theorem 2.

Theorem 2. Given a set of facts /C, a set of rules X,
the fixpoint Ag . of K w.r.t. 3, the max number
m of reasoning paths found for a fact, a IC-specific
onehop-transformed set ¥ of rules from 3. Let
I'y = {o(HR)|R € ¥,0(Br) C K, 0o is a substi-
tution for R}, ® = {GetRule(K’, X, Ak s, m) |y €
Ak x\ (KUT'y)}, © = RemoveRedundant(¥ U ).

2 is a complete K-specific onehop-transformed set
from X.

Proof. LetT'y = {o(HR)|R € ®,0(Br) CK,0o
is a substitution for R}. Obviously, I'e UT'y =
Ak s \ K. According to the Algorithm 3, for any
rule R in ¥ U ®, there is arule R in ) s.t. there ex-
ists a substitution o for R’ s.t. o(Hp) = Hp
and O'(BR/) C Bpr. LetI'qg = {O‘(HR)‘R S
Q,0(Br) C K,o is a substitution for R}. Ob-
viously, I'o = ' UI'y = Ak 2 \ K. Then for any
facty ¢ I', ' UX | « iff there is arule R € 2
and a substitution o for R s.t. o(Bgr) C I' and
o(Hg) = 1. [

4.4 Rule Learning

To learn rules based on expert rules in an end-to-
end manner, we propose a neural model based on
utilizing traditional end-to-end rule learning meth-
ods. As shown in Figure 2, the proposed model
mainly includes two modules: existing rule learn-
ing model and application of rules in €.

For the existing rule learning model, we se-
lect three neural-based models: Neural-LP (Yang
et al., 2017a), DRUM (Sadeghian et al., 2019), sm-
DRUM (Wang et al., 2024), implemented utilizing
Tensorlog. For each step, the model calculates
the intermediate truth degrees based on estimat-
ing predicate weights and predicate selection for
chained atoms. All of them generate NV rules to cal-
culate the truth degree M, 4 of the triple (h, 7, 1):

N
Moy = D biMyihy, )
j=0

where b; is trainable and M:&y)
truth degree of (h,q,t) based on j-th rules from
traditional end-to-end rule learning methods. b; is
constrained to [0, 1] by a sigmoid layer. Intuitively,
the use of the sigmoid function enables the model

to learn a positive weight for each rule.
Incremental end-to-end rule learning mines rules
based on §2,.. Application of rules in 2 is to com-
pute all scores Srl‘%(lﬁ, "t where R; € .. The score

represents the

Sfé;} ) Tepresents the confidence that r(h,t) can be
inferred from R;. I'r, = {o(HRg,)|0c(Bg,) C K,
o is a substitution for R;}.
Then S ﬁ% 4 can be defined as:
Sl = wil(r(h,t) € Tg,) 2)

where w; € w is a trainable parameter that repre-
sents the weight of R;. I(¢) is an indicator function



that returns 1 if ¢ is true or O otherwise. The size of
Q, and w are both K. wj is confined to [0, 1] by a
sigmoid layer. The background rules €, integrated
into rule learning is defined as follows.

Srint) = D Syih (3)
RiEQr

Then the estimated truth probability P, ) is
calculated by:

Prhgy = Mrng) + Srinyg 4)

The incremental model is trained by minimizing
the following objective function.

L=— Y logPuy (5)
(h,rt)EK

Incremental rule learning requires maintaining
all logical entailments of the given expert rules,
which can be theoretically proved by Theorem 3.

Theorem 3. Let G be a knowledge graph, L = GU
G, X a set of existing rules, and () a complete /C-
specific onehop-transformed set from Y. Suppose
V1l < ¢ < K: w; = 1, for an arbitrary triple
(h,r,t), CUX | r(h,t) iff Sr(h,t) > 1.

Proof. f KUY = r(h,t), there exists arule R; €
2, and a substitution o for R s.t. o(Hg) = r(h,t)
and o(Br) C K. Then Slet = 1. According to

7(ht)
Equation 2, S,.;,) > 1. If S, 1) > 1, then there
exista R; € Q, s.t. Sf& By = 1 due to that each

w; = 1. Then we can conclude that (h,t) € I'p,.
Thus, CU X = r(h,t). O

5 Experimental Evaluation

5.1 Experimental Setups
5.1.1 Datasets

To compare our incremental rule learning with tra-
dition rule learning for KGC, we used four well-
known benchmark datasets for empirical evalua-
tion, including UMLS (Kok and Domingos, 2007),
Family (Yang et al., 2017b), CODEX-S (Safavi and
Koutra, 2020), NELL-995 (Xiong et al., 2017b).
Statistics for these datasets are reported in Table 1.

5.1.2 Evaluation Metrics

Following (Sadeghian et al., 2019), we computed
the truth degrees for corrupted triples and computed
the rank of the correct answer. Based on the rank,
we calculate the Mean Reciprocal Rank(MRR) and
Hit@k metrics for empirical evaluation under the

Dataset ‘£| |E ‘ ‘gtrain| |gvalid| ‘gtest ‘

UMLS 135 46 5327 569 633

Family 3007 12 23484 2038 2835
CODEX-S 2034 42 32888 1827 1828
NELL-995 57016 199 118304 11221 11099

Table 1: Statistics for experimental datasets.

UMLS Family CODEX NELL-995

max-length 2 2 2 3
12 44 36 18 143
19]] 303 260 53 245

Table 2: Statistics for expert rules for experiment. Max-
length, |X|, || represent the max length of extracted
rules, the number of original rules and the number of
rules completed respectively.

filtered setting introduced by (Bordes et al., 2013).
Following (Qu et al., 2021), for a query r(?, ), the
rank of the correct answer is defined by i+ (j+1)/2
in our proposed setting, where ¢ is the number of
entities with higher truth degrees than the correct
answer, and j is the number of entities with the
same truth degree as the correct answer.

5.1.3 Implementation Details

Due to the lack of the background rules, we utilize
an ILP method AnyBURL (Meilicke et al., 2019)
to extract rules from KGs. We set a high threshold
to ensure the extracted rules are as accurate as pos-
sible. Then, we manually screen the extracted rule
set to obtain the plain datalog rules for incremental
rule learning. Statistics for background rules are
reported in Table 2.

Algorithms in Section 4.3 are implemented in
Java. And we implement the incremental end-
to-end rule learning based on three neural-based
methods: NeuralLP, DRUM, smDRUM. The im-
plementation environments of these methods are
respectively followed. We implemented the end-
to-end rule learning model on an NVIDIA A100
GPU with 40GB RAM. The model was trained
by Adam (Kingma and Ba, 2015) with 10 training
epochs. An early stopping strategy was applied to
maximize the MRR score on the validation set. The
initial learning rate was set to le-3 and the mini-
batch size was set to 64. We applied dropout (Sri-
vastava et al., 2014) by setting the dropout rate to
0.1. The maximum length of rules was set to 3. The
number of rules learnt from existing rule learning
method was set 1 for NeuralLP, 3 for DRUM and
smDRUM. All experimental results are the average
of experiments conducted with 5 different random



UMLS Family CODEX-S NELL-995
He@l H@3 H@l0 MRR | Hel H@3 H@10 MRR | Hel H@3 H@l10 MRR | Hel H@3 H@l10 MRR
NeuralLP 66.0 935 968 0800 | 87.5 974 987 0926 | 31.1 455 589 0407 | 36.3 50.0 628 0455
Incre-NeuralLP | 86.1 944 97.0 0906 | 97.5 987 99.0 0982 | 33.6 45.1 582 0.420 | 36.6 499 62.1 0455
DRUM 69.5 94.1 974 0.822 | 898 976 989 0938 | 31.0 458 592 0408 | 364 500 627 0455
Incre-DRUM 8.1 946 975 0908 | 979 988 99.0 0984 | 323 452 578 0412 | 372 504 625 0.460
smDRUM 69.0 93.1 981 0.818 | 895 975 989 0937 | 178 298 480 0282 | 283 416 545 0.379
Incre-smDRUM | 86.7 943 975 0910 | 98.0 988 99.0 0984 | 209 325 498 0308 | 28.1 409 538 0374

Table 3: Comparison results on four benchmark datasets. DRUM, NeuralLP, and smDRUM denote the results
trained with the original models. The “Incre-" versions represent the proposed models for incremental rule learning.

seeds. For each metric and dataset, the best results
are highlighted in bold.

5.2 Main Empirical Results

We conducted experiments on four datasets for link
prediction. As mentioned before, we propose a
novel setting to learn rules upon the existing expert
rules. We verify the effectiveness of the framework
upon three existing rule learning methods.

Table 3 reports the comparison results on four
datasets. Results show that for all the three ex-
isting rule learning methods, the incremental ver-
sion significantly outperforms the original version
on UMLS, Family, and CODEX-S. For exam-
ple, Incre-DRUM outperforms DRUM by absolute
gains of 16.6, 8.1 and 1.3 in the Hit@]1 scores on
UMLS, Family and CODEX-S, respectively. These
results confirm that incremental rule learning is ef-
fective and helps to significantly improve perfor-
mance in KGC. The results on NELL-995 indicate
that incremental rule learning has an improvement
for NeuralLP and DRUM, and can also achieve
comparable performance for smnDRUM.

As previously discussed, we propose to extract
a complete KC-specific onehop-transformed set €2
from the given rules X to maintain all the logical
entailments. Thus, to access the impact of rule
completion, we conducted further experiments on
UMLS and Family, as presented in Table 4. We
train the incremental rule learning model using
> and () separately. For the corresponding three
existing rule learning methods, we conducted a
statistical analysis on the results for both versions.
Additionally, Table 4 also compares the outcomes
of link prediction when using X alone versus €2
alone, with the aggregation method of rules being
the maximum value selection. The results indi-
cate that the performance of the model using {2
alone surpasses that of the model using > alone,
thereby validating the significance of computing a
complete KC-specific onehop-transformed set. Due

UMLS Family
H@l H@3 H@10 MRR | H@l H@3 H@I0 MRR
= 612 627 627 0628 | 79.1 79.1 79.1 0.791
Q 62.6 638 638 0.640 | 825 825 825 0.825
Neural-LP 66.0 935 968 0.800 | 87.5 974 987 0.926
Incre-NeuralLP(X) | 85.1 944  97.0 0900 | 96.6 986 99.0 0.976
Incre-NeuralLP(2) | 86.1 944  97.0 0.906 | 97.6 987 99.0 0.982
DRUM 69.5 941 974 0.822] 898 97.6 989 0938

94.8
94.6

97.6
97.5

0.905
0.908

96.9
97.9

98.5
98.8

99.0
99.0

0.977
0.983

Incre-DRUM(X)
Incre-DRUM(2) 86.1

smDRUM 69.0
Incre-smDRUM(Y) | 85.8
Incre-smDRUM(Q?) | 86.7

93.1
94.2
94.3

98.1
98.0
97.5

0.818
0.905
0.910

89.5
96.8
98.0

97.5
98.4
98.8

98.9
99.0
99.0

0.937
0.977
0.984

Table 4: Comparison results on UMLS and family to
verify the effectiveness of query rewriting.

to the dependence among rules, considering only
single-step reasoning with ¥ leads to a degradation
in reasoning capability. As shown in Table 4, the
performance of incremental rule learning on €2 is
superior to that of models on Y. Furthermore, the
results suggest that the performance of incremen-
tal rule learning is better than that of the original
models, regardless of which version of the rules
is employed. This further proves that incremen-
tal learning based on existing rules can effectively
improve the performance of link prediction.
Additionally, we analyze the impact of learning
rules of different length. The results are exhibited
in Appendix A.1. And there is a case study for com-
paring the learned rules from different NeuralLP
models on Family and UMLS in Appendix A.2.

6 Conclusion

In this paper, we have introduced a novel prob-
lem, named incremental rule learning, which mines
rules upon the existing expert rules. Furthermore
we develop an algorithm to compute a complete
onehop-transformed set of rules to preserve the rea-
soning ability of expert rules. Subsequently, an in-
cremental end-to-end model is proposed to learning
rules incorporated with expert rules. We conduct
experiments on four datasets, demonstrating the
effectiveness of incremental rule learning.



7 Limitations

This paper proposes an end-to-end model to learn
rules from KG by integrating expert logical rules.
The employed ensembling methodology only in-
volves learning a weight for each rule. In light of
existing rule learning methods that learn rules di-
rectly in the schema level via representation-based
model (Cheng et al., 2022, 2023), we will explore
embedding the existing rules to further enhance the
rule learning capabilities of our model.
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A Appendix

A.1 Analysis for learning rules of different
length

The existing rule-based methods can learn rules
with different lengths. To compare the impact of
incremental rule learning on learning rules of dif-
ferent lengths, we conducted experiments through
setting different length on Family and UMLS. Ta-
ble 5 illustrates the comparison results. We can
observe that the performance of link prediction
tasks on both the Family and UMLS datasets re-
mains relatively stable, regardless of the lengths
of the rules learned by the neural network models.
Due to the smaller scale of these two datasets and
the simplicity of the rules, shorter rules are often
sufficient to capture the necessary information for
effective reasoning.

A.2 Case study on learned rules

In this paper, we learn rules by ensembling expert
logical rules. And we first calculate a complete
KC-specific onehop-transformed set {2 of rules from
3. A fact inferred through single-step reasoning
using a rule in {2 may require multi-step reasoning
involving rules in X..

Besides, we present a case study for compar-
ing the learned rules from different NeuralLP
on Family and UMLS, as shown in Figure 4.
“Original" represents the corresponding model
is trained without any rules. “Incre(X)" and
“Incre(£2)" denote the models are trained by
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UMLS Family
length | HQl H@3 H@10 MRR | H@l H@3 H@I0 MRR
NeuralLP 66.0 935 968 0.800 | 875 974 987 0.926
2 862 939 965 0904 | 972 987 989 0979
Incre-NeuralLP 3 86.1 944 970 0906 | 975 987 99.0 0.982
4 856 942 969 0902 | 97.8 98.8  99.0 0.983
DRUM 69.5 94.1 974 0822 89.8 976 989 0.938
2 856 956 981 0911 ] 979 988  99.0 0.984
Incre-DRUM 3 86.1 946 975 0908 | 979 988  99.0 0.984
4 874 954 977 0916 | 97.7 988  99.0 0.983
smDRUM 69.0 93.1 98.1 0818 | 895 975 989 0.937
2 87.0 941 98.0 0912 | 98.0 989 989 0.984
Incre-smDRUM 3 86.7 942 975 0910 | 98.0 988  99.0 0.984
4 858 934 970 0902 | 97.7 987 99.0 0.983

Table 5: Results against different rule length on UMLS
and family.

| aunt(X,Y) :- aunt(X,A), brother(Y,A)
E aunt(X,Y) :- sister(X,A), mother(A,Y)
1 aunt(X,Y) :- sister(X,A), son(Y,A)
P E son(X,Y) :- brother(X,A), mother(Y,A)
1 son(X,Y) :- brother(X,A), son(A,Y)
E son(X,Y) :- brother(X,A), father(Y,A)
1
______ U
| aunt(X,Y) :- mother(Vl, Y), sister(X, Vi)
E aunt(X,Y) :- sister(X, V1), son(Y, V1)
| aunt(X,Y) :- brother(Y, V1), father(V2, V1), sister(X, V2)
Q E aunt(X,Y) :- brother(Y, V1), mother(v2, V1), sister(X, V2)
1 aunt(X,Y) :- aunt(X, V1), brother(Y, V1)
E aunt(X,Y) :- brother(Y, V1), father(v2, Y), sister(X, V2)
1
'
'

Figure 3: A case study for comparing the learned rules
from different rule learning systems on Family.

ensembling > and (2 respectively. We select the
top 5 rules with the highest scores for analysis.
It is illustrated that the Incre(f2) approach has a
greater capacity for rule extraction, successfully
capturing a larger number of rules. This suggests
that incremental rule learning may enhance the
performance in identifying and utilizing relevant
rules compared to its counterparts. In addition,
we observe that the top rule R;:aunt(C,A) <+
inv_brother(B, A),aunt(C,B) learned by
Original NeuralLP already exists in 3 in Figure 3.
However, R; was not extracted from Incre(3:)
and Incre(f)), which reflects that under incre-
mental learning, neural networks tend to learn
new rules. Similarly, rule Ro: aunt(D,A) <+
father(B, A),inv_brother(C, B), sister(D, C)
is extracted from Incre(X), but not from Incre(£2),
due to that Ry exists in €2 from Figure 3. Addi-
tionally, according to our statistics, all the rules
learned from Incre({2) that are not displayed in
), which demonstrates the effectiveness of rule
learning with expert rules on knowledge graphs.



0.119 aunt(C, A) <- uncle(B, A), sister(C, B)
0.111 aunt(D, A) <- father(B, A), sister(C, B), sister(D, C)
0.107 aunt(C, A) <- inv_nephew(B, A), sister(C, B)

0.020 uses(B, A) <- treats(B, A)
0.017 uses(C, A) <- treats(B, A), inv_occurs_in(C, B)
0.013 uses(C, A) <- assesses_effect_of(B, A), inv_occurs_in(C, B)

T T
I I
I '
........... T e T nnnEEEEE T EEE PP R
| 0.805 aunt(C, A) <- inv_brother(B, A), aunt(C, B) 1 0.085 uses(B, A) <- produces(B, A)
' '
Original ! 0.101 aunt(C, A) <- inv_brother(B, A), sister(C, B) ! 0.014 uses(C, A) <- produces(B, A), produces(C, B)
i 0.046 aunt(D, A) <- inv_brother(B, A), sister(C, B), aunt(D, C) i0.011 uses(B, A) <- assesses_effect_of(B, A)
| 0.012 aunt(C, A) <- inv_brother(B, A), inv_nephew(C, B) 1 0.011 uses(B, A) <- developmental_form_of(B, A)
___________
H 1 0.066 uses(C, A) <— performs(B, A), performs(C, B)
I I
| 0.655 aunt(D, A) <- father(B, A), inv_brother(C, B), sister(D, C) | 0.052 uses(B, A) <- performs(B, A)
| |
Incre(Z) ' 9.306 aunt(C, A) <- father(B, A), sister(C, B) 10.029 uses(C, A) <- treats(B, A), performs(C, B)
E 0.022 aunt(C, A) <- father(B, A), inv_brother(C, B) E0.013 uses(C, A) <- performs(B, A), treats(C, B)
H | 0.010 uses(C, A) <- measures(B, A), performs(C, B)
........... U gty et AP gD o USSP
v |
| 0.188 aunt(C, A) <- father(B, A), sister(C, B) 1 0.080 uses(B, A) <— inv_occurs_in(B, A)
|
1 0.123 aunt(C, A) <- inv_daughter(B, A), sister(C, B) 50.040 uses(C, A) <- inv_occurs_in(B, A), inv_occurs_in(C, B)
Incre(Q) ! |
1 1
| |
I I
I I
I '

Figure 4: A case study for comparing the learned rules from different NeuralLP on Family and UMLS.
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