
End-to-end Rule Learning from Knowledge Graphs by Ensembling Expert
Logical Rules

Anonymous ACL submission

Abstract
Increasing attention has been paid to learn-001
ing logical rules automatically on knowledge002
graphs to explain why a missing fact is in-003
ferred. Previous approaches focus on directly004
learning logical rules from numerous instances,005
overlooking expert rules that are commonly006
present in practice. Therefore, we examine the007
problem of incremental rule learning, which008
aims to learn new rules via ensembling ex-009
pert logical rules on knowledge graphs. The010
challenge of rule learning upon expert rules011
lies in how to preserve the reasoning seman-012
tics of expert rules. We present a framework013
to allow existing end-to-end rule learning ap-014
proaches to integrate expert logical rules with-015
out losing their logical entailments. In more016
details, we introduce the notion of complete017
onehop-transformed set of rules to integrate018
rules into neural networks for single-step rea-019
soning. To preserve all logical entailments of020
expert rules, we develop an algorithm based021
on reasoning path extraction and optimized by022
backward reasoning to compute a complete023
onehop-transformed set of rules. Experimental024
results on four benchmark datasets demonstrate025
that the incorporation of expert rules signifi-026
cantly enhances the performance of link predic-027
tion on knowledge graphs.028

1 Introduction029

Knowledge graphs (KGs) have gained extensive ap-030

plication across various real-world domains, includ-031

ing question answering (Mitra and Baral, 2016),032

recommendation (Lyu et al., 2020) and information033

retrieval (Xiong et al., 2017a). KGs is composed034

of a set of facts (also called triples) of the form035

(h, r, t), where h is the head entity, r the relation036

and t the tail entity. Nevertheless, even the largest037

KGs remain incomplete due to the data collection038

process is laborious and error-prone. Thus, judging039

the existence of new facts from existing facts is a040

crucial task in KG, which is commonly referred to041

as knowledge graph completion (KGC).042

Rules Σ :

𝑅! : aunt(X, Y) ← sister(𝑋, 𝑉!) ∧ aunt(𝑉!, 𝑌).

𝑅" : aunt(X, Y) ← sister(X, 𝑉!) ∧ son(𝑌, 𝑉!).

𝑅# : sister(𝑋, Y) ← sister(𝑋, 𝑉!) ∧ sister(𝑉!, 𝑌).

𝑅$: sister(X, Y) ← sister(X, 𝑉") ∧ brother(𝑌, X).

𝐾𝐺!: { sister(Mary, Alice), son(Tom, Alice), sister(Diana, Mary) }

aunt(Mary, Tom) ← sister(Mary, Alice) ∧ son(Tom, Alice) application of 𝑅"
aunt(Diana, Tom) ← aunt(Mary, Tom) ∧ sister(Diana, Mary) application of 𝑅!

𝐾𝐺": { sister(Mary, Alice), sister(Alice, Jane), sister(Jane, Diana) }

sister(Mary, Jane) ← sister(Mary, Alice) ∧ sister(Alice, Jane) application of 𝑅#
sister(Mary, Diana) ← sister(Mary, Jane) ∧ sister(Jane, Diana) application of 𝑅#

Ex 1

Ex 2

Figure 1: Two examples from the dataset Family.

Logical rules play a pivotal role in KGC and 043

can explain why a missing fact is inferred. Early 044

rule learning methods studied in the field of In- 045

ductive Logic Programming (ILP) (Quinlan, 1990; 046

Muggleton, 1995; Schüller and Benz, 2018; Wu 047

et al., 2022), where logical rules are learnt from 048

both positive and negative facts by a generate-and- 049

test manner. Recently, neural logic programming 050

approaches (Yang et al., 2017a; Sadeghian et al., 051

2019; Yang and Song, 2020; Qu et al., 2021; Cheng 052

et al., 2022; Wang et al., 2024), are proposed to 053

learn logical rules. The end-to-end neural learn- 054

ing of logical rules uses tensor operators to learn 055

continuous parameters from triples in a KG, and 056

extract logical rules from the learned parameters to 057

constitute explanations for reasoning. Compared 058

with traditional ILP methods, neural methods are 059

better at learning rules from imperfect data. 060

However, most existing approaches have focused 061

on directly learning logical rules from existing 062

triples in KG, ignoring the existence of background 063

rules. In practice, there tends to be a set of domain- 064

specific expert rules. Incremental learning is a 065

methodology of machine learning where the trained 066

model can learn new information to extend the ex- 067

isting knowledge, which has seen extensive appli- 068

1

cation in fields such as widely applied in natural069

language processing (Wang et al., 2023) and image070

classification (Liu et al., 2025). Incremental learn-071

ing is particularly beneficial in scenarios where072

the learning system must dynamically evolve to073

incorporate novel information or adapt to chang-074

ing requirements, while maintaining the reasoning075

capabilities of the original system. Therefore, we076

examine the problem of incremental rule learning,077

which aims to learn rules via ensembling expert078

logical rules on knowledge graphs.079

Figure 1 shows examples from the dataset Fam-080

ily. There exist four expert rules. A rule R′ is said081

to depend on a rule R if the head predicate of R is082

a predicate in the body of R′. In Figure 1, R1 de-083

pends on R2, R2 depends on R3 or R4. The triple084

“aunt(Diana, Tom)” derived from KG1 in Figure 1085

must be applied with R2 followed by R1. There086

also exist some self-dependent rules, namely R1,087

R3 and R4. The triple “sister(Mary, Diana)” de-088

rived from KG2 in Figure 1 must be applied with089

R3 twice. Due to rule dependencies, utilizing exist-090

ing rules to derive new triples from existing triples091

typically requires multi-step reasoning. However,092

existing neural-based rule learning models typically093

employ single-step reasoning for rules. Assuming094

that expert rules are correct, it follows that all their095

logical entailments are also correct. Thus, the chal-096

lenging of incremental rule learning beyond expert097

rules lies in how to enable single-step reasoning098

without losing logical entailments of expert rules.099

To tackle this challenge, we present a frame-100

work to allow existing end-to-end rule learning101

approaches to incrementally learn rules beyond ex-102

pert logical rules. To facilitate the integration of103

rules into neural networks for single-step reason-104

ing, we introduce the notion of complete onehop-105

transformed set of rules, which preserves all logical106

entailments of expert rules by single-step reason-107

ing. Moreover, we propose the formal definition108

of reasoning path to obtain a complete onehop-109

transformed set of rules. Considering the com-110

putational expense associated with deriving rea-111

soning paths, we have developed an optimization112

algorithm based on backward reasoning. Subse-113

quently, we propose an end-to-end rule learning114

model to learn rules based on the computed com-115

plete onehop-transformed set of rules, by building116

upon any existing rule learning approach.117

We conduct empirical evaluations on four bench-118

mark datasets. Experimental results indicate that119

the integration of expert rules significantly im-120

proves the performance of link prediction on knowl- 121

edge graphs. Additionally, comparative experi- 122

ments have demonstrated the efficacy of the com- 123

plete onehop-transformed set of rules. 124

2 Related Work 125

Rule-based methods aim at building effective rule- 126

based systems for KGC. Learning logical rules 127

was previously studied in the field of Inductive 128

Logic Programming (Quinlan, 1990; Muggle- 129

ton, 1995; Schüller and Benz, 2018; Wu et al., 130

2022), where logical rules are learnt by a generate- 131

and-test manner. Classical ILP methods such as 132

FOIL (Quinlan and Cameron-Jones, 1995) and 133

QuickFOIL (Zeng et al., 2014) cannot be directly 134

applicable to KGs because there exist no negative 135

examples and the data size is large. Recent ILP 136

methods like AMIE+ (Galárraga et al., 2015) and 137

AnyBURL (Meilicke et al., 2019) treat triples out- 138

side a KG as negative examples and can efficiently 139

learn rules through different search algorithms. 140

More recently, there is an emerging inter- 141

est in exploiting neural-based methods for rule 142

learning. There exist some end-to-end neural 143

approximate methods that learn continuous pa- 144

rameters based on the Tensorlog (Cohen et al., 145

2020) operators, such as NeuralLP (Yang et al., 146

2017a), DRUM (Sadeghian et al., 2019) and 147

NLIL (Yang et al., 2017b). NeuralLP (Yang et al., 148

2017a) is the first neural approximate method us- 149

ing Tensorlog operators to learn chain-like rules. 150

DRUM (Sadeghian et al., 2019) tackles the lim- 151

itation of learning meaningless rules for Neu- 152

ralLP by introducing the identity relation and bi- 153

directional LSTM (Hochreiter and Schmidhuber, 154

1997) to prune the potential incorrect rule bodies. 155

Besides, FaithfulRE (Wang et al., 2024) is pro- 156

posed to study faithfulness guarantees in the con- 157

text of DRUM. In addition to applying Tensorlog, 158

there are several methods that extend the generate- 159

and-test manner to learn logical rules by neural 160

models, including RNNLogic (Qu et al., 2021), 161

RLogic (Cheng et al., 2022) and NCLR (Cheng 162

et al., 2023). Besides, other neural approximate 163

methods such as NTP (Rocktäschel and Riedel, 164

2017) and CTP (Minervini et al., 2020) learn logi- 165

cal rules based on neural theorem provers. 166

Compared with ILP methods, neural-based meth- 167

ods are better at learning rules from imperfect data. 168

However, all these methods learn rule-based sys- 169

tems from structural knowledge alone, ignoring the 170

2

existence of known expert logical rules.171

3 Preliminaries172

3.1 Basic concepts173

An atom α is a basic first-order logic formula of the174

form p(t1, · · · , tk) where p is predicate with arity175

k, and the ti are terms that denote either variables176

or constants. Given an atom α, pred(α),vars(α),177

consts(α) and terms(α) denote respectively, its178

predicate, its set of variables, of constants and of179

terms, which can be naturally extended to a set of180

atoms. A fact is an atom without variables.181

Given a set of variables V and a set of terms T ,182

a substitution σ of V by T is a mapping from V to183

T . It is called ground if it maps to only constants.184

Given an atom α, σ(α) denotes the atom obtained185

from α by replacing each variable x in α with σ(x).186

This naturally extends to sets of atoms.187

A plain datalog rule (simply a rule) R is a for-188

mula r(x⃗) ← ∃y⃗ : ϕ(x⃗, y⃗), where ϕ(x⃗, y⃗) is a189

conjunction of atoms on x⃗ and y⃗, x⃗ and y⃗ are sets190

of variables, r denotes the predicate of the atom191

inferred by the rule. The part of R at the left (resp.192

right) of ← is called the head (resp. body) of R.193

By HR and BR we denote the atom in the head194

of R and the set of atoms in the body of R, re-195

spectively. The number of atoms in BR is called196

the length of R. A fact γ can be regarded as a197

rule R s.t. BR = ∅. Let R and R′ be two rules.198

R subsumes R′ if there exists a substitution σ s.t.199

σ(HR) = HR′ and σ(BR) ⊆ BR′ .200

Let R be a rule, Σ a set of rules, ∆ a set of atoms.201

∆ is said to be a model of R if for any substitution202

σ, if σ(BR) ⊆ ∆, then σ(HR) ∈ ∆. ∆ is said to203

be a model of Σ if for any R ∈ Σ, ∆ is the model of204

R. Rules considered in this paper are plain datalog205

rules, thus there exists a unique least model of Σ.206

Let Γ be a set of facts. Let ∆0 = Γ, ∆t =207

∆t−1 ∪ {σ(HR)|σ(BR) ⊆ ∆t−1, R ∈ Σ and σ is208

a ground substitution}. When ∆t+1 = ∆t, ∆t is209

the fixpoint of Γ w.r.t. Σ. ∆t is the unique least210

model of Σ ∪ Γ. A fact γ is said to be entailed211

by Γ ∪ Σ if any model of Γ ∪ Σ contains γ; i.e.,212

γ ∈ ∆t, denoted by Γ ∪ Σ |= γ.213

3.2 Knowledge graph214

Let E be a set of entities, R a set of relations. A215

knowledge graph G is a subset of {(h, r, t)|h, t ∈216

E , r ∈ R}, where h denotes the head entity, r the217

relation and t the tail entity. Note that (h, r, t) can218

be formed into a binary fact r(h, t). By r− we219

denote the inverse relation of r ∈ R. Accordingly, 220

the equivalent set of triples for G composed by 221

inverse relations, namely {(t, r−, h)|(h, r, t) ∈ G}, 222

is denoted by G−. 223

Given a knowledge graph G, let K = G ∪ G−, 224

we say a triple (h, r, t) or a fact r(h, t) is inferred 225

(resp. potentially inferred) from G if there exists 226

(resp. could be) a set of rules Σ s.t. K∪Σ |= r(h, t). 227

Given a head query (?, r, t) or a tail query (h, r, ?), 228

the task of link prediction aims to find all entities 229

e ∈ E such that (e, r, t) for (?, r, t) or (h, r, e) for 230

(h, r, ?) is potentially inferred from G. 231

4 Approach 232

4.1 Problem Definition 233

Traditional rule learning methods on knowledge 234

graph directly learn logical rules from numerous 235

instances. Acknowledging the presence of expert 236

rules, we propose incremental rule learning in this 237

paper. Let G be a given knowledge graph, Σ be a 238

set of plain datalog rules, K = G ∪ G−. Given an 239

unverifed triple (h, r, t), the problem is to calculate 240

the truth degree Pr(h,t) of the triple (h, r, t) ∈ E ∗ 241

P ∗ E , where Pr(h,t) reflects the degree of whether 242

the triple (h, r, t) can be potentially inferred by the 243

rules learned from K and Σ. 244

4.2 Overview of Approach 245

Assuming that all rules in Σ are correct, it follows 246

that all logical entailments of Σ are also correct. 247

Thus, it is crucial to ensure the preservation of the 248

reasoning semantics of expert rules while learning 249

rules based on expert rules. Considering the depen- 250

dency among rules mentioned in the example of 251

Figure 1, multi-step reasoning is essential for infer- 252

ring all triples. To integrate expert rules into neural 253

networks for single-step reasoning, we introduce 254

the notion of onehop-transformed set of rules to 255

optimize the architecture of the neural network. 256

Definition 1. Let Σ, Ω be two sets of rules. Let 257

Γ be a specific set of fact. Ω is called a Γ-specific 258

onehop-transformed set of rules from Σ if for any 259

fact γ /∈ Γ , Γ ∪ Σ |= γ if there is a rule R ∈ Ω 260

and a substitution σ for R s.t. σ(BR) ⊆ Γ and 261

σ(HR) = γ. Ω is further called complete if for any 262

fact γ /∈ Γ, Γ ∪ Σ |= γ iff there is a rule R ∈ Ω 263

and a substitution σ for R s.t. σ(BR) ⊆ Γ and 264

σ(HR) = γ. 265

To preserve all logical entailments of the expert 266

rules Σ, we need to calculate a completeK-specific 267

onehop-transformed set Ω from Σ. In view of the 268

3

Backgroud
knowledge 𝒦

Input triple
(ℎ, 𝑟, 𝑡)

Inputs

Existing rule
learning model

Complete 𝒦-specific onehop-
transformed set Ω

Weighted
sum

Estimated
truth degrees
𝑃!(#,%)

Outputs
Truth degrees

𝑀!(#,%)

Truth degrees
𝑆!(#,%)

Application of
rules in Ω

Backgroud
knowledge 𝒦

Input triple
(ℎ, 𝑟, 𝑡)

Inputs

Existing rule
learning model

Complete 𝒦-specific onehop-
transformed set Ω

Weighted
sum

Estimated
truth degree
𝑃!(#,%)

Outputs

Application of
rules in Ω

Figure 2: Illustration of the proposed incremental end-to-end rule learning model.

inference efficiency of the rule learning models269

based on K and Ω, it is desirable to have as few270

rules as possible in Ω. Consequently, we proceed271

to remove any redundant rules that are subsumed272

by other rules within Ω.273

Since rules in Σ are plain datalog rules, all triples274

entailed by K ∪ Σ are in the fixpoint of K w.r.t. Σ.275

To obtain the rules for single-step reasoning, we276

calculate the reasoning path, defined as follows,277

for each fact in the fixpoint of K w.r.t. Σ. Through278

substituting constants in reasoning paths, a rule in279

onehop-transformed set can be derived. In EX 1 of280

Figure 1, {aunt(Diana, Tom)← aunt(Mary, Tom)281

∧ sister(Diana, Mary), aunt(Diana, Tom) ← sis-282

ter(Mary, Alice) ∧ son(Tom, Alice) ∧ sister(Diana,283

Mary)} is a reasoning path for the fact aunt(Diana,284

Tom) w.r.t. σ and KG1.285

Definition 2. Given a set of rules Σ and a set of286

facts Γ. ∆Γ,Σ is the fixpoint of Γ w.r.t. Σ. For287

any γ ∈ ∆Γ,Σ \ Γ, there exists a set of ground288

rules { σ1(R1), · · · , σm(Rm)} s.t. Ri ∈ Σ, σi is289

a substitution for Ri, σ1(R1) = γ and let P1 :290

γ ← σ1(BR1), Pj : γ ← BPj−1 ∪ σj(BRj) \291

σi(HRj), BPm ⊆ Γ, 1 < j ≤ m, {P1, · · · , Pm}292

is a reasoning path of γ w.r.t. Γ and Σ. Pm is the293

corresponding ground rule.294

As depicted in Definition 2, computing a rea-295

soning path of a given fact requires considering all296

the substitutions for all rules, leading to high com-297

putational cost. Consequently, it is impractical to298

obtain a complete K-specific onehop-transformed299

set by calculating reasoning paths for all facts in the300

fixpoint of K w.r.t. Σ while excluding the facts al-301

ready in K. We have discovered that by employing302

backward reasoning which considers only the rule303

set without the facts, we can identify the single-step304

reasoning rules for most new facts. Therefore, we305

introduce backward reasoning as an optimization306

algorithm. Ultimately, we are required to compute307

reasoning paths only for those facts that cannot be308

inferred through single-step reasoning of the rules309

obtained via backward reasoning. By substituting310

constants, we can obtain a complete K-specific 311

onehop-transformed set. 312

After calculating a complete K-specific onehop- 313

transformed set Ω from Σ, we propose a model 314

for learning rules based on K and Ω. An overview 315

of the proposed model is illustrated in Figure 2. 316

Intuitively, the model aggregates the rules in Ω 317

along with those from existing rule learning models 318

to obtain the final estimated truth degrees. Though 319

rules in Ω are accurate, it is worth to note that 320

the facts in K may contain errors (e.g., outdated 321

facts), rendering a direct application of the rules in 322

Ω inappropriate. Moreover, each rule R in Ω with 323

the same predicate in HR can be conceptualized 324

as an individual classifier. Similarly, rules from 325

existing rule learning model also can be regarded 326

as classifiers. By employing the weighted sum, a 327

widely-used ensemble learning technique, the final 328

estimated truth degree is calculated. 329

4.3 Rule Completion 330

Given a set of facts K and a set of plain datalog 331

rules Σ, the target of rule completion is to calculate 332

a complete K-specific onehop-transformed set Ω 333

of rules from Σ. 334

Let ∆K,Σ be the fixpoint of K w.r.t. Σ. There is 335

a reasoning path of each fact γ ∈ ∆K,Σ \ K. Algo- 336

rithm 1 is developed to extract a reasoning path and 337

substitute constants. The function GetReasoning- 338

Path() is designed to extract reasoning paths of δ 339

based on the definition of reasoning path. It adopts 340

a depth-first search strategy to recursively search 341

the reasoning path of δ and obtains the correspond- 342

ing ground rule R until all facts in Γ are in K. The 343

function LiftRule() is designed to map constants 344

in the corresponding ground rule into variables. 345

During the process of mapping, we need to ensure 346

that the confidence of the rule is equal to 1.0. Let 347

Γ = {σ(HR)|σ(BR) ⊆ K, σ is a substitution for 348

R}, the confidence of a rule R is defined as the 349

ratio of the size of Γ ∩∆K,Σ, and the size of Γ . 350

Theorem 1. Given a set of facts K, a set of rules 351

4

Algorithm 1: GetRule(K, Σ, ∆K,Σ, t, m)
Input: A set of facts K, a set of rules Σ, the fixpoint

∆K,Σ of K w.r.t. Σ, the minimum number of
iterations t, a fact γ ∈ ∆K,Σ \ K, and m.

Output: A rule Rγ .
1 Φ← {};
2 GetReasoningPath(γ, 0, ∅);
3 Rγ ← argmaxR′∈Φ|vars(R′)|;
4 Function GetReasoningPath(δ, l, Γ):
5 if l = t or |Φ| ≥ m then
6 return;

7 for R ∈ Σ s.t. pred(HR) = r do
8 for substitution σ s.t. σ(HR) = δ,

σ(BR) ⊆ ∆K,Σ do
9 Γ← Γ ∪ {σ(BR)};

10 if ∀α ∈ Γ s.t. α ∈ K then
11 R′ ← LiftRule(Γ);
12 Φ← Φ ∪ {R′};
13 for α ∈ Γ s.t. α /∈ K do
14 GetReasoningPath(α, l + 1,

Γ \ {α});

15 Function LiftRule(Γ):
16 HR′ ← γ;
17 BR′ ← Γ;
18 R← R′;
19 for constant c ∈ consts(R′) do
20 R′′ ← mapping(c, R);
21 s← confidence(R′′, K, ∆K,Σ) ;
22 if s == 1.0 then
23 R← R′′;

24 return R

25 return Rγ

Σ, the fixpoint ∆K,Σ of K w.r.t. Σ, the minimum352

number of iterations t , a fact γ ∈ ∆K,Σ\K, and the353

maximum number m of inference paths discovered354

, Rγ = ExtractRule(K, Σ, ∆K,Σ, t, m) is a rule s.t.355

there is a substitution σ for Rγ s.t. σ(BRγ) ⊆ K356

and σ(HRγ) = γ.357

Proof. In Algorithm 1, γ ∈ ∆K,Σ\K, m is the max358

number of reasoning paths found for γ. The func-359

tion GetReasoningPath() obtains the corresponding360

ground rule R until all facts in Γ are inK. HR = γ.361

Then the corresponding ground rule R is lifted into362

R′ through function LiftRule(). Abviously, there363

is a substitution σ for R′ s.t. σ(HR′) = HR and364

σ(BR′) = BR. When the number of reasoning365

paths found for the missing fact γ is greater than366

m, the algorithm terminates and returns the rule Rγ367

with the most variables in Φ. There is a substitution368

σ for Rγ s.t. σ(BRγ) ⊆ K and σ(HRγ) = γ.369

Due to the computational expense of obtain-370

ing reasoning paths and substituting constants, we371

propose a backward reasoning algorithm in Al-372

Algorithm 2: BackwardReasoning()
Input: A set of rules Σ, a relation r, a max length of

L, a set of facts K and the fixpoint ∆K,Σ of K
w.r.t. Σ.

Output: A rule set Ψr .
1 R0 ← “r(x, y)← r(x, y)”;
2 Ψr ← {};
3 Q ← A sorted queue constructed of rules, ordered by

the length of rules in ascending order;
4 Q.add(R0);
5 whileQ ̸= ∅ do
6 Rc ← Q.poll();
7 Ψr ← Ψr ∪ {Rc};
8 Φ← ∅;
9 for R ∈ Σ do

10 for substitution µ that can rewrite Rc w.r.t.
R do

11 R′ ←rewriting(Rc, R, µ);
12 if len(R′) > L then
13 if R′ can be collapsed then
14 Φ← Φ∪ Collapse(R′);

15 else
16 Φ← Φ ∪ {R′};

17 Φ← filterLength(Φ, L) ;
18 Q ← Q∪ (Φ\(Ψr ∪Q))
19 Ψr ← filterConfidence(Ψr , K, ∆K,Σ);
20 Ψr ← filterSupport(Ψr , K);
21 Function Collapse(R):
22 Φ← {} ;
23 for substitution σ that can collapse R do
24 R′ ← collapsing(R, σ);
25 Φ← Φ ∪ {R′};
26 if R′ can be collapsed then
27 Φ← Φ∪ Collapse(R′);

28 return Φ;

29 return Ψr

gorithm 2 to compute a possibly incomplete K- 373

specific onehop-transformed set Ψ from Σ, which 374

is implemented based on the rewriting of a rule 375

defined as follows. 376

Definition 3. Given two rules R and R′. A rule 377

R′′ is a rewriting of R w.r.t. R′ if there exists a 378

substitution σ s.t. σ(HR′) ⊆ BR, HR′′ = HR and 379

BR′′ = BR ∪ σ(BR′) \ {σ(HR′)}. 380

Considering the process of backward reasoning 381

may be infinite, we introduce the collapsing of the 382

rule under the constraint of the rule length. 383

Definition 4. Given a rule R. Let α and β be 384

two atoms in BR. A rule R′ is a collapsing of R 385

if there exists a substitution σ s.t. σ(α) = σ(β), 386

HR′ = σ(HR) and BR′ = σ(BR) \ {σ(α)}. 387

For each relation r, Algorithm 2 calculates a 388

rules set Ψr s.t. for any R ∈ Ψr, pred(HR) = r. As 389

described in Algorithm 2, we start rewriting rules 390

5

Algorithm 3: RemoveRedundant(Φ)
Input: A set of rules Φ.
Output: An irreducible subset of rules Ψ.

1 Ψ← Φ;
2 for each R ∈ Ψ do
3 for each R′ ∈ Ψ do
4 if R ̸= R′ and R′ subsumes R then
5 Ψ← Ψ \ {R};
6 break;

7 return Ψ

from “r(x, y)← r(x, y)” and proceed by travers-391

ing rules in Σ. The function rewriting() is crafted392

to rewrite the rule Rc by the rule R based on the393

substitution µ. Given the constraint on the length394

of rules, we introduce the function Collapse() to395

generate all possible collapsings of a given rule.396

The function collapsing() is to collapse the rule397

R based on σ. The function filterLength() is uti-398

lized to remove rules whose length is larger than399

L. In order to ensure the correctness of rewriting400

rules, the function filterConfidence() is designed401

to filter rules whose confidence is less than 1.0.402

Furthermore, the function filterSupport() is used to403

preserve the rules in Ψr where for each R there404

exist a substitution σ s.t. BR ⊆ K. For any405

fact γ s.t. there is a rule R ∈ Ψr and a substi-406

tution for R s.t. σ(BR) ⊆ K and σ(HR) = γ,407

K ∪ Σ |= γ. Therefore, Ψ = {Ψr|r ∈ R}408

is a K-specific onehop-transformed set of rules409

from Σ. However, Ψ is possibly incomplete. Let410

ΓΨ = {σ(HR)|R ∈ Ψ, σ(BR) ⊆ K, σ is a substi-411

tution for R}. We complete Ψ to Π by invoking412

Algorithm 1 for each fact γ ∈ ∆K,Σ \ K, γ /∈ ΓΨ.413

There may be redundant rules in Π. We can obtain414

an irreducible subset of rules Ω by removing the415

rules in Π that are subsumed by others.416

Definition 5. Let Φ be a set of rules. An irre-417

ducible subset of rules Ψ of Φ is a subset of Φ s.t.418

for any R′ ∈ Ψ, there is no R ∈ Ψ such that R419

subsumes R′.420

The algorithm is shown in Algorithm 3 and Ω421

is a complete K-specific onehop-transformed set422

from Σ as illustrated in Theorem 2.423

Theorem 2. Given a set of factsK, a set of rules Σ,424

the fixpoint ∆K,Σ of K w.r.t. Σ, the max number425

m of reasoning paths found for a fact, a K-specific426

onehop-transformed set Ψ of rules from Σ. Let427

ΓΨ = {σ(HR)|R ∈ Ψ, σ(BR) ⊆ K, σ is a substi-428

tution for R}, Φ = {GetRule(K, Σ, ∆K,Σ, m) |γ ∈429

∆K,Σ\(K∪ΓΨ)}, Ω = RemoveRedundant(Ψ∪Φ).430

Ω is a complete K-specific onehop-transformed set 431

from Σ. 432

Proof. Let ΓΦ = {σ(HR)|R ∈ Φ, σ(BR) ⊆ K, σ 433

is a substitution for R}. Obviously, ΓΦ ∪ ΓΨ = 434

∆K,Σ \ K. According to the Algorithm 3, for any 435

rule R in Ψ∪Φ, there is a rule R′ in Ω s.t. there ex- 436

ists a substitution σ for R′ s.t. σ(HR′) = HR 437

and σ(BR′) ⊆ BR. Let ΓΩ = {σ(HR)|R ∈ 438

Ω, σ(BR) ⊆ K, σ is a substitution for R}. Ob- 439

viously, ΓΩ = ΓΦ∪ΓΨ = ∆K,Σ \K. Then for any 440

fact γ /∈ Γ, Γ ∪ Σ |= γ iff there is a rule R ∈ Ω 441

and a substitution σ for R s.t. σ(BR) ⊆ Γ and 442

σ(HR) = γ. 443

4.4 Rule Learning 444

To learn rules based on expert rules in an end-to- 445

end manner, we propose a neural model based on 446

utilizing traditional end-to-end rule learning meth- 447

ods. As shown in Figure 2, the proposed model 448

mainly includes two modules: existing rule learn- 449

ing model and application of rules in Ω. 450

For the existing rule learning model, we se- 451

lect three neural-based models: Neural-LP (Yang 452

et al., 2017a), DRUM (Sadeghian et al., 2019), sm- 453

DRUM (Wang et al., 2024), implemented utilizing 454

Tensorlog. For each step, the model calculates 455

the intermediate truth degrees based on estimat- 456

ing predicate weights and predicate selection for 457

chained atoms. All of them generate N rules to cal- 458

culate the truth degree Mr(h,t) of the triple (h, r, t): 459

Mr(h,t) =
N∑
j=0

bjM
Rj

r(h,t) (1) 460

where bj is trainable and M
rj
r(x,y) represents the 461

truth degree of (h, q, t) based on j-th rules from 462

traditional end-to-end rule learning methods. bj is 463

constrained to [0, 1] by a sigmoid layer. Intuitively, 464

the use of the sigmoid function enables the model 465

to learn a positive weight for each rule. 466

Incremental end-to-end rule learning mines rules 467

based on Ωr. Application of rules in Ω is to com- 468

pute all scores SRi

r(h,t), where Ri ∈ Ωr. The score 469

SRi

r(h,t) represents the confidence that r(h, t) can be 470

inferred from Ri. ΓRi = {σ(HRi)|σ(BRi) ⊆ K, 471

σ is a substitution for Ri}. 472

Then SRi

r(h,t) can be defined as: 473

SRi

r(h,t) = wiI(r(h, t) ∈ ΓRi) (2) 474

where wi ∈ w is a trainable parameter that repre- 475

sents the weight of Ri. I(ϕ) is an indicator function 476

6

that returns 1 if ϕ is true or 0 otherwise. The size of477

Ωr and w are both K. wi is confined to [0, 1] by a478

sigmoid layer. The background rules Ωr integrated479

into rule learning is defined as follows.480

Sr(h,t) =
∑

Ri∈Ωr

SRi

r(h,t) (3)481

Then the estimated truth probability Pr(h,t) is482

calculated by:483

Pr(h,t) = Mr(h,t) + Sr(h,t) (4)484

The incremental model is trained by minimizing485

the following objective function.486

L = −
∑

(h,r,t)∈K
logPr(h,t) (5)487

Incremental rule learning requires maintaining488

all logical entailments of the given expert rules,489

which can be theoretically proved by Theorem 3.490

Theorem 3. Let G be a knowledge graph,K = G∪491

G−, Σ a set of existing rules, and Ω a complete K-492

specific onehop-transformed set from Σ. Suppose493

∀1 ≤ i ≤ K: wi = 1, for an arbitrary triple494

(h, r, t), K ∪ Σ |= r(h, t) iff Sr(h,t) ≥ 1.495

Proof. If K∪Σ |= r(h, t), there exists a rule Ri ∈496

Ωr and a substitution σ for R s.t. σ(HR) = r(h, t)497

and σ(BR) ⊆ K. Then SRi

r(h,t) = 1. According to498

Equation 2, Sr(h,t) ≥ 1. If Sr(h,t) ≥ 1, then there499

exist a Ri ∈ Ωr s.t. SRi

r(h,t) = 1 due to that each500

wi = 1. Then we can conclude that r(h, t) ∈ ΓRi .501

Thus, K ∪ Σ |= r(h, t).502

5 Experimental Evaluation503

5.1 Experimental Setups504

5.1.1 Datasets505

To compare our incremental rule learning with tra-506

dition rule learning for KGC, we used four well-507

known benchmark datasets for empirical evalua-508

tion, including UMLS (Kok and Domingos, 2007),509

Family (Yang et al., 2017b), CODEX-S (Safavi and510

Koutra, 2020), NELL-995 (Xiong et al., 2017b).511

Statistics for these datasets are reported in Table 1.512

5.1.2 Evaluation Metrics513

Following (Sadeghian et al., 2019), we computed514

the truth degrees for corrupted triples and computed515

the rank of the correct answer. Based on the rank,516

we calculate the Mean Reciprocal Rank(MRR) and517

Hit@k metrics for empirical evaluation under the518

Dataset |E| |Σ| |Gtrain| |Gvalid| |Gtest|

UMLS 135 46 5327 569 633
Family 3007 12 23484 2038 2835

CODEX-S 2034 42 32888 1827 1828
NELL-995 57016 199 118304 11221 11099

Table 1: Statistics for experimental datasets.

UMLS Family CODEX NELL-995

max-length 2 2 2 3
|Σ| 44 36 18 143
|Ω| 303 260 53 245

Table 2: Statistics for expert rules for experiment. Max-
length, |Σ|, |Ω| represent the max length of extracted
rules, the number of original rules and the number of
rules completed respectively.

filtered setting introduced by (Bordes et al., 2013). 519

Following (Qu et al., 2021), for a query r(?, t), the 520

rank of the correct answer is defined by i+(j+1)/2 521

in our proposed setting, where i is the number of 522

entities with higher truth degrees than the correct 523

answer, and j is the number of entities with the 524

same truth degree as the correct answer. 525

5.1.3 Implementation Details 526

Due to the lack of the background rules, we utilize 527

an ILP method AnyBURL (Meilicke et al., 2019) 528

to extract rules from KGs. We set a high threshold 529

to ensure the extracted rules are as accurate as pos- 530

sible. Then, we manually screen the extracted rule 531

set to obtain the plain datalog rules for incremental 532

rule learning. Statistics for background rules are 533

reported in Table 2. 534

Algorithms in Section 4.3 are implemented in 535

Java. And we implement the incremental end- 536

to-end rule learning based on three neural-based 537

methods: NeuralLP, DRUM, smDRUM. The im- 538

plementation environments of these methods are 539

respectively followed. We implemented the end- 540

to-end rule learning model on an NVIDIA A100 541

GPU with 40GB RAM. The model was trained 542

by Adam (Kingma and Ba, 2015) with 10 training 543

epochs. An early stopping strategy was applied to 544

maximize the MRR score on the validation set. The 545

initial learning rate was set to 1e-3 and the mini- 546

batch size was set to 64. We applied dropout (Sri- 547

vastava et al., 2014) by setting the dropout rate to 548

0.1. The maximum length of rules was set to 3. The 549

number of rules learnt from existing rule learning 550

method was set 1 for NeuralLP, 3 for DRUM and 551

smDRUM. All experimental results are the average 552

of experiments conducted with 5 different random 553

7

UMLS Family CODEX-S NELL-995
H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR

NeuralLP 66.0 93.5 96.8 0.800 87.5 97.4 98.7 0.926 31.1 45.5 58.9 0.407 36.3 50.0 62.8 0.455
Incre-NeuralLP 86.1 94.4 97.0 0.906 97.5 98.7 99.0 0.982 33.6 45.1 58.2 0.420 36.6 49.9 62.1 0.455

DRUM 69.5 94.1 97.4 0.822 89.8 97.6 98.9 0.938 31.0 45.8 59.2 0.408 36.4 50.0 62.7 0.455
Incre-DRUM 86.1 94.6 97.5 0.908 97.9 98.8 99.0 0.984 32.3 45.2 57.8 0.412 37.2 50.4 62.5 0.460

smDRUM 69.0 93.1 98.1 0.818 89.5 97.5 98.9 0.937 17.8 29.8 48.0 0.282 28.3 41.6 54.5 0.379
Incre-smDRUM 86.7 94.3 97.5 0.910 98.0 98.8 99.0 0.984 20.9 32.5 49.8 0.308 28.1 40.9 53.8 0.374

Table 3: Comparison results on four benchmark datasets. DRUM, NeuralLP, and smDRUM denote the results
trained with the original models. The “Incre-” versions represent the proposed models for incremental rule learning.

seeds. For each metric and dataset, the best results554

are highlighted in bold.555

5.2 Main Empirical Results556

We conducted experiments on four datasets for link557

prediction. As mentioned before, we propose a558

novel setting to learn rules upon the existing expert559

rules. We verify the effectiveness of the framework560

upon three existing rule learning methods.561

Table 3 reports the comparison results on four562

datasets. Results show that for all the three ex-563

isting rule learning methods, the incremental ver-564

sion significantly outperforms the original version565

on UMLS, Family, and CODEX-S. For exam-566

ple, Incre-DRUM outperforms DRUM by absolute567

gains of 16.6, 8.1 and 1.3 in the Hit@1 scores on568

UMLS, Family and CODEX-S, respectively. These569

results confirm that incremental rule learning is ef-570

fective and helps to significantly improve perfor-571

mance in KGC. The results on NELL-995 indicate572

that incremental rule learning has an improvement573

for NeuralLP and DRUM, and can also achieve574

comparable performance for smDRUM.575

As previously discussed, we propose to extract576

a complete K-specific onehop-transformed set Ω577

from the given rules Σ to maintain all the logical578

entailments. Thus, to access the impact of rule579

completion, we conducted further experiments on580

UMLS and Family, as presented in Table 4. We581

train the incremental rule learning model using582

Σ and Ω separately. For the corresponding three583

existing rule learning methods, we conducted a584

statistical analysis on the results for both versions.585

Additionally, Table 4 also compares the outcomes586

of link prediction when using Σ alone versus Ω587

alone, with the aggregation method of rules being588

the maximum value selection. The results indi-589

cate that the performance of the model using Ω590

alone surpasses that of the model using Σ alone,591

thereby validating the significance of computing a592

complete K-specific onehop-transformed set. Due593

UMLS Family
H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR

Σ 61.2 62.7 62.7 0.628 79.1 79.1 79.1 0.791
Ω 62.6 63.8 63.8 0.640 82.5 82.5 82.5 0.825

Neural-LP 66.0 93.5 96.8 0.800 87.5 97.4 98.7 0.926
Incre-NeuralLP(Σ) 85.1 94.4 97.0 0.900 96.6 98.6 99.0 0.976
Incre-NeuralLP(Ω) 86.1 94.4 97.0 0.906 97.6 98.7 99.0 0.982

DRUM 69.5 94.1 97.4 0.822 89.8 97.6 98.9 0.938
Incre-DRUM(Σ) 85.4 94.8 97.6 0.905 96.9 98.5 99.0 0.977
Incre-DRUM(Ω) 86.1 94.6 97.5 0.908 97.9 98.8 99.0 0.983

smDRUM 69.0 93.1 98.1 0.818 89.5 97.5 98.9 0.937
Incre-smDRUM(Σ) 85.8 94.2 98.0 0.905 96.8 98.4 99.0 0.977
Incre-smDRUM(Ω) 86.7 94.3 97.5 0.910 98.0 98.8 99.0 0.984

Table 4: Comparison results on UMLS and family to
verify the effectiveness of query rewriting.

to the dependence among rules, considering only 594

single-step reasoning with Σ leads to a degradation 595

in reasoning capability. As shown in Table 4, the 596

performance of incremental rule learning on Ω is 597

superior to that of models on Σ. Furthermore, the 598

results suggest that the performance of incremen- 599

tal rule learning is better than that of the original 600

models, regardless of which version of the rules 601

is employed. This further proves that incremen- 602

tal learning based on existing rules can effectively 603

improve the performance of link prediction. 604

Additionally, we analyze the impact of learning 605

rules of different length. The results are exhibited 606

in Appendix A.1. And there is a case study for com- 607

paring the learned rules from different NeuralLP 608

models on Family and UMLS in Appendix A.2. 609

6 Conclusion 610

In this paper, we have introduced a novel prob- 611

lem, named incremental rule learning, which mines 612

rules upon the existing expert rules. Furthermore 613

we develop an algorithm to compute a complete 614

onehop-transformed set of rules to preserve the rea- 615

soning ability of expert rules. Subsequently, an in- 616

cremental end-to-end model is proposed to learning 617

rules incorporated with expert rules. We conduct 618

experiments on four datasets, demonstrating the 619

effectiveness of incremental rule learning. 620

8

7 Limitations621

This paper proposes an end-to-end model to learn622

rules from KG by integrating expert logical rules.623

The employed ensembling methodology only in-624

volves learning a weight for each rule. In light of625

existing rule learning methods that learn rules di-626

rectly in the schema level via representation-based627

model (Cheng et al., 2022, 2023), we will explore628

embedding the existing rules to further enhance the629

rule learning capabilities of our model.630

References631

Antoine Bordes, Nicolas Usunier, Alberto García-632
Durán, Jason Weston, and Oksana Yakhnenko.633
2013. Translating embeddings for modeling multi-634
relational data. In NIPS, pages 2787–2795.635

Kewei Cheng, Nesreen K. Ahmed, and Yizhou Sun.636
2023. Neural compositional rule learning for knowl-637
edge graph reasoning. In ICLR.638

Kewei Cheng, Jiahao Liu, Wei Wang, and Yizhou Sun.639
2022. Rlogic: Recursive logical rule learning from640
knowledge graphs. In KDD, pages 179–189.641

William W. Cohen, Fan Yang, and Kathryn Mazaitis.642
2020. Tensorlog: A probabilistic database imple-643
mented using deep-learning infrastructure. J. Artif.644
Intell. Res., 67:285–325.645

Luis Galárraga, Christina Teflioudi, Katja Hose, and646
Fabian M. Suchanek. 2015. Fast rule mining in on-647
tological knowledge bases with AMIE+. VLDB J.,648
24(6):707–730.649

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long650
short-term memory. Neural Comput., 9(8):1735–651
1780.652

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A653
method for stochastic optimization. In ICLR (Poster).654

Stanley Kok and Pedro M. Domingos. 2007. Statistical655
predicate invention. In ICML, volume 227 of ACM656
International Conference Proceeding Series, pages657
433–440.658

Wenzhuo Liu, Xin-Jian Wu, Fei Zhu, Ming-Ming Yu,659
Chuang Wang, and Cheng-Lin Liu. 2025. Class incre-660
mental learning with self-supervised pre-training and661
prototype learning. Pattern Recognit., 157:110943.662

Xinze Lyu, Guangyao Li, Jiacheng Huang, and Wei663
Hu. 2020. Rule-guided graph neural networks for664
recommender systems. In ISWC (1), volume 12506665
of Lecture Notes in Computer Science, pages 384–666
401.667

Christian Meilicke, Melisachew Wudage Chekol, Daniel668
Ruffinelli, and Heiner Stuckenschmidt. 2019. Any-669
time bottom-up rule learning for knowledge graph670
completion. In IJCAI, pages 3137–3143.671

Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp, 672
Edward Grefenstette, and Tim Rocktäschel. 2020. 673
Learning reasoning strategies in end-to-end differen- 674
tiable proving. In ICML, volume 119 of Proceedings 675
of Machine Learning Research, pages 6938–6949. 676

Arindam Mitra and Chitta Baral. 2016. Addressing a 677
question answering challenge by combining statisti- 678
cal methods with inductive rule learning and reason- 679
ing. In AAAI, pages 2779–2785. 680

Stephen H. Muggleton. 1995. Inverse entailment and 681
progol. New Gener. Comput., 13(3&4):245–286. 682

Meng Qu, Junkun Chen, Louis-Pascal A. C. Xhonneux, 683
Yoshua Bengio, and Jian Tang. 2021. Rnnlogic: 684
Learning logic rules for reasoning on knowledge 685
graphs. In ICLR. 686

J. Ross Quinlan. 1990. Learning logical definitions 687
from relations. Mach. Learn., 5:239–266. 688

J. Ross Quinlan and R. Mike Cameron-Jones. 1995. 689
Induction of logic programs: Foil and related systems. 690
New Generation Computing, 13:287–312. 691

Tim Rocktäschel and Sebastian Riedel. 2017. End-to- 692
end differentiable proving. In NIPS, pages 3788– 693
3800. 694

Ali Sadeghian, Mohammadreza Armandpour, Patrick 695
Ding, and Daisy Zhe Wang. 2019. DRUM: end-to- 696
end differentiable rule mining on knowledge graphs. 697
In NeurIPS, pages 15321–15331. 698

Tara Safavi and Danai Koutra. 2020. Codex: A compre- 699
hensive knowledge graph completion benchmark. In 700
EMNLP (1), pages 8328–8350. 701

Peter Schüller and Mishal Benz. 2018. Best-effort 702
inductive logic programming via fine-grained cost- 703
based hypothesis generation - the inspire system at 704
the inductive logic programming competition. Mach. 705
Learn., 107(7):1141–1169. 706

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, 707
Ilya Sutskever, and Ruslan Salakhutdinov. 2014. 708
Dropout: a simple way to prevent neural networks 709
from overfitting. J. Mach. Learn. Res., 15(1):1929– 710
1958. 711

Xiaxia Wang, David Jaime Tena Cucala, 712
Bernardo Cuenca Grau, and Ian Horrocks. 2024. 713
Faithful rule extraction for differentiable rule 714
learning models. In ICLR. 715

Yigong Wang, Zhuoyi Wang, Yu Lin, Jinghui Guo, 716
Sadaf Md. Halim, and Latifur Khan. 2023. Dual 717
contrastive learning framework for incremental text 718
classification. In EMNLP (Findings), pages 194–206. 719

Lianlong Wu, Emanuel Sallinger, Evgeny Sherkhonov, 720
Sahar Vahdati, and Georg Gottlob. 2022. Rule learn- 721
ing over knowledge graphs with genetic logic pro- 722
gramming. In ICDE, pages 3373–3385. 723

9

Chenyan Xiong, Russell Power, and Jamie Callan.724
2017a. Explicit semantic ranking for academic725
search via knowledge graph embedding. In WWW,726
pages 1271–1279.727

Wenhan Xiong, Thien Hoang, and William Yang Wang.728
2017b. Deeppath: A reinforcement learning method729
for knowledge graph reasoning. In EMNLP, pages730
564–573.731

Fan Yang, Zhilin Yang, and William W. Cohen. 2017a.732
Differentiable learning of logical rules for knowledge733
base reasoning. In NIPS, pages 2319–2328.734

Fan Yang, Zhilin Yang, and William W. Cohen. 2017b.735
Differentiable learning of logical rules for knowledge736
base reasoning. In NIPS, pages 2319–2328.737

Yuan Yang and Le Song. 2020. Learn to explain effi-738
ciently via neural logic inductive learning. In ICLR.739

Qiang Zeng, Jignesh M Patel, and David Page. 2014.740
Quickfoil: Scalable inductive logic programming.741
Proceedings of the VLDB Endowment, 8(3):197–208.742

A Appendix743

A.1 Analysis for learning rules of different744

length745

The existing rule-based methods can learn rules746

with different lengths. To compare the impact of747

incremental rule learning on learning rules of dif-748

ferent lengths, we conducted experiments through749

setting different length on Family and UMLS. Ta-750

ble 5 illustrates the comparison results. We can751

observe that the performance of link prediction752

tasks on both the Family and UMLS datasets re-753

mains relatively stable, regardless of the lengths754

of the rules learned by the neural network models.755

Due to the smaller scale of these two datasets and756

the simplicity of the rules, shorter rules are often757

sufficient to capture the necessary information for758

effective reasoning.759

A.2 Case study on learned rules760

In this paper, we learn rules by ensembling expert761

logical rules. And we first calculate a complete762

K-specific onehop-transformed set Ω of rules from763

Σ. A fact inferred through single-step reasoning764

using a rule in Ω may require multi-step reasoning765

involving rules in Σ.766

Besides, we present a case study for compar-767

ing the learned rules from different NeuralLP768

on Family and UMLS, as shown in Figure 4.769

“Original" represents the corresponding model770

is trained without any rules. “Incre(Σ)" and771

“Incre(Ω)" denote the models are trained by772

UMLS Family
length H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR

NeuralLP 66.0 93.5 96.8 0.800 87.5 97.4 98.7 0.926

Incre-NeuralLP
2 86.2 93.9 96.5 0.904 97.2 98.7 98.9 0.979
3 86.1 94.4 97.0 0.906 97.5 98.7 99.0 0.982
4 85.6 94.2 96.9 0.902 97.8 98.8 99.0 0.983

DRUM 69.5 94.1 97.4 0.822 89.8 97.6 98.9 0.938

Incre-DRUM
2 85.6 95.6 98.1 0.911 97.9 98.8 99.0 0.984
3 86.1 94.6 97.5 0.908 97.9 98.8 99.0 0.984
4 87.4 95.4 97.7 0.916 97.7 98.8 99.0 0.983

smDRUM 69.0 93.1 98.1 0.818 89.5 97.5 98.9 0.937

Incre-smDRUM
2 87.0 94.1 98.0 0.912 98.0 98.9 98.9 0.984
3 86.7 94.2 97.5 0.910 98.0 98.8 99.0 0.984
4 85.8 93.4 97.0 0.902 97.7 98.7 99.0 0.983

Table 5: Results against different rule length on UMLS
and family.

Σ

aunt(X,Y) :- mother(V1, Y), sister(X, V1)

aunt(X,Y) :- sister(X, V1), son(Y, V1)

aunt(X,Y) :- brother(Y, V1), father(V2, V1), sister(X, V2)

aunt(X,Y) :- brother(Y, V1), mother(V2, V1), sister(X, V2)

aunt(X,Y) :- aunt(X, V1), brother(Y, V1)

aunt(X,Y) :- brother(Y, V1), father(V2, Y), sister(X, V2)

...

aunt(X,Y) :- aunt(X,A), brother(Y,A)

aunt(X,Y) :- sister(X,A), mother(A,Y)

aunt(X,Y) :- sister(X,A), son(Y,A)

son(X,Y) :- brother(X,A), mother(Y,A)

son(X,Y) :- brother(X,A), son(A,Y)

son(X,Y) :- brother(X,A), father(Y,A)

...

Ω

Figure 3: A case study for comparing the learned rules
from different rule learning systems on Family.

ensembling Σ and Ω respectively. We select the 773

top 5 rules with the highest scores for analysis. 774

It is illustrated that the Incre(Ω) approach has a 775

greater capacity for rule extraction, successfully 776

capturing a larger number of rules. This suggests 777

that incremental rule learning may enhance the 778

performance in identifying and utilizing relevant 779

rules compared to its counterparts. In addition, 780

we observe that the top rule R1:aunt(C,A) ← 781

inv_brother(B,A), aunt(C,B) learned by 782

Original NeuralLP already exists in Σ in Figure 3. 783

However, R1 was not extracted from Incre(Σ) 784

and Incre(Ω), which reflects that under incre- 785

mental learning, neural networks tend to learn 786

new rules. Similarly, rule R2: aunt(D,A) ← 787

father(B,A), inv_brother(C,B), sister(D,C) 788

is extracted from Incre(Σ), but not from Incre(Ω), 789

due to that R2 exists in Ω from Figure 3. Addi- 790

tionally, according to our statistics, all the rules 791

learned from Incre(Ω) that are not displayed in 792

Ω, which demonstrates the effectiveness of rule 793

learning with expert rules on knowledge graphs. 794

10

Original

Incre(Σ)

0.188 aunt(C, A) <- father(B, A), sister(C, B)
0.123 aunt(C, A) <- inv_daughter(B, A), sister(C, B)

0.119 aunt(C, A) <- uncle(B, A), sister(C, B)

0.111 aunt(D, A) <- father(B, A), sister(C, B), sister(D, C)

0.107 aunt(C, A) <- inv_nephew(B, A), sister(C, B)

Family UMLS

0.805 aunt(C, A) <- inv_brother(B, A), aunt(C, B)
0.101 aunt(C, A) <- inv_brother(B, A), sister(C, B)

0.046 aunt(D, A) <- inv_brother(B, A), sister(C, B), aunt(D, C)

0.012 aunt(C, A) <- inv_brother(B, A), inv_nephew(C, B)

0.085 uses(B, A) <- produces(B, A)
0.014 uses(C, A) <- produces(B, A), produces(C, B)

0.011 uses(B, A) <- assesses_effect_of(B, A)

0.011 uses(B, A) <- developmental_form_of(B, A)

0.655 aunt(D, A) <- father(B, A), inv_brother(C, B), sister(D, C)
0.306 aunt(C, A) <- father(B, A), sister(C, B)

0.022 aunt(C, A) <- father(B, A), inv_brother(C, B)

0.066 uses(C, A) <- performs(B, A), performs(C, B)
0.052 uses(B, A) <- performs(B, A)

0.029 uses(C, A) <- treats(B, A), performs(C, B)

0.013 uses(C, A) <- performs(B, A), treats(C, B)

0.010 uses(C, A) <- measures(B, A), performs(C, B)

Incre(Ω)

0.080 uses(B, A) <- inv_occurs_in(B, A)
0.040 uses(C, A) <- inv_occurs_in(B, A), inv_occurs_in(C, B)

0.020 uses(B, A) <- treats(B, A)

0.017 uses(C, A) <- treats(B, A), inv_occurs_in(C, B)

0.013 uses(C, A) <- assesses_effect_of(B, A), inv_occurs_in(C, B)

Figure 4: A case study for comparing the learned rules from different NeuralLP on Family and UMLS.

11

	Introduction
	Related Work
	Preliminaries
	Basic concepts
	Knowledge graph

	Approach
	Problem Definition
	Overview of Approach
	Rule Completion
	Rule Learning

	Experimental Evaluation
	Experimental Setups
	Datasets
	Evaluation Metrics
	Implementation Details

	Main Empirical Results

	Conclusion
	Limitations
	Appendix
	Analysis for learning rules of different length
	Case study on learned rules

