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ABSTRACT

This paper proposes a novel hue-like angular parameter to model the structure
of deep convolutional neural network (CNN) activation space, referred to as the
activation hue, for the purpose of regularizing models for more effective learn-
ing. The activation hue generalizes the notion of color hue angle in standard
3-channel RGB intensity space to N -channel activation space. A series of obser-
vations based on nearest neighbor indexing of activation vectors with pre-trained
networks indicate that class-informative activations are concentrated about an an-
gle θ in both the (x, y) image plane and in multi-channel activation space. A
regularization term in the form of hue-like angular θ labels is proposed to com-
plement standard one-hot loss. Training from scratch using combined one-hot +
activation hue loss improves classification performance modestly for a wide vari-
ety of classification tasks, including ImageNet.

1 INTRODUCTION

The success of deep convolutional neural networks (CNNs) is largely due to trainable multi-channel
filter banks and the informative activation spaces they produce Krizhevsky et al. (2012). A signifi-
cant body of research thus focuses on understanding the activation space for the purpose of improv-
ing or regularizing models for more effective learning. Examples include geometrical regularization
based on hyperspheres Mettes et al. (2019); Shen et al. (2021), enforcing constant radial distance
from the feature space origin Zheng et al. (2018) or angular loss between prototypes Wang et al.
(2017). Similar works try to leverage this activation space after training by extracting specific fea-
tures with various optimized methods Kornblith et al. (2019); Azizpour et al. (2015); Cimpoi et al.
(2016).

Our work is inspired by the well-known fact that in standard three-channel (red, green, blue) in-
tensity space, human color perception is largely determined by the angular hue parameter. Might
an analogous hue-like parameter play a similarly important role in image classification from multi-
channel activation space? Our contribution is to propose a novel angular parameter θ, which we refer
to as the activation hue, that can be used to model and regularize activation space. The activation
hue may be viewed as a generalization of the standard hue parameter from 3D red-green-blue (RGB)
color space to general multi-dimensional activation space, as shown in Figure 1. The RGB space
may be viewed as a 3D cube, where colorless pixels lie along a medial greyscale axis signifying a
maximum entropy or uniform distribution. The hue angle θ is measured in the plane perpendicular
to the greyscale axis and thus encodes the bias of a lower entropy non-uniform distribution towards
a dominant color. The multi-channel activation space of a CNN layer may be thought of analo-
gously, i.e. uniform or uninformative vectors lie along a medial axis in activation space, similar to
the RGB greyscale line, and a class-informative activation hue angle θ may be defined in the plane
perpendicular to the uniform axis.

Observations and experiments demonstrate the role of the activation hue in both pre-trained networks
and model training from scratch. Initial observations investigate classification via memory-based
indexing of activations Cover & Hart (1967) using generic networks pre-trained on the ImageNet
dataset Deng et al. (2009) with standard one-hot loss, focusing on transfer learning from activations
in bottleneck layers similarly to Zeiler & Fergus (2014); Lenc & Vedaldi (2015). Distributions of
correct indexing solutions exhibit consistent class-specific bias towards an angular direction θ in both
the image plane and activation space. Training from scratch using a combined one-hot + activation
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Figure 1: Illustrating Activation Hue in deep CNN layers. a) Shows a deep neural network (CNN-
based encoder), where information is increasingly concentrated into a class-informative activation
distribution via standard loss from one-hot labels. b) Shows the standard RGB space with color
characterized by a hue angle θ. c) Our proposed model of activation hue angle θ with respect to the
(x, y) image plane and activation space I(x, y) ∈ RN . Deep CNN activations exhibit consistent
angular bias or activation hue θ according to the class (e.g., the rainbow lorikeet), and a novel
activation hue loss improves classification for a variety of networks and classification tasks.

hue loss function leads to consistently higher accuracy across a variety of CNN architectures and
classification tasks of varying specificity. In order to draw the broadest possible conclusions, we use
a variety of architectures (ResNet He et al. (2016), DenseNet Huang et al. (2016), Inception Szegedy
et al. (2016), VGG Simonyan & Zisserman (2014)) and various in and out-of-distribution datasets
specifically not used in training, including textures (DTD) Cimpoi et al. (2014), specific object
datasets: sex and family classification from brain MRI (HCP) Van Essen et al. (2013), sex from
face images (UTKFaces) Zhang et al. (2017), dog species (Stanford Dogs) Khosla et al. (2011),
and general object categories including Caltech 101 Fei-Fei et al. (2006) and Imagenet Deng et al.
(2009).

2 RELATED WORK

We propose to generalize the notion of hue from standard RGB color space to the space of deep
CNN activations, which to our knowledge is novel in the computer vision and machine learning
literature. In standard notion in tri-chromatic color analysis Fairchild (2013), hue is closely related
to human color perception. It is represented by an angle θ ∈ [0, 2π] in the 2D plane perpendicular
to the greyscale axis or uniform color spectrum. Whereas standard color hue has been modeled
using deep networks Flachot et al. (2022); Avi-Aharon et al. (2019), we propose activation hue as
an analogy to hue in general multi-channel CNN activation space.

In our work, we consider a generic CNN activation layer an vector-valued image It,x̄ or I(t, x̄),
where I ∈ RN is an N -channel activation image, x̄ = (x, y) ∈ R2 are 2D pixels coordinates
centered upon (x, y) = (0, 0) and t ∈ R1 represents the CNN layer. Activation hue is a single
unitary U(1) variable defined by (x, y) coordinates constrained to the unit circle x2 + y2 = 1 or
equivalently an angle θ = atan2(y, x). Unitary variables are well known in mathematical analysis
and increasingly used in machine learning formulations Kiani et al. (2022); Tang et al. (2021),
however our model of a hue-like angle in activation space is unique in the literature.
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Our preliminary observations of activation hue in pre-trained networks are based on nearest neigh-
bor (NN) indexing and classification Cover & Hart (1967), specifically using spatially-localized
activation vectors. This follows the transfer learning approach, where networks pre-trained on large
generic datasets such as ImageNet Deng et al. (2009) are used as general feature extractors for new
tasks Kornblith et al. (2019); Azizpour et al. (2015); Cimpoi et al. (2016). Deep bottleneck acti-
vations tend to outperform specialized shallower networks and meta-learning methods Chen et al.
(2019), particularly in the case of few training data and a large domain shift between training and
testing data Guo et al. (2020). Various approaches seek to adapt ImageNet models to fine-grained
tasks by encoding activations at bottleneck layers, such as via descriptor information (e.g. extracted
off-the-shelf features Sharif Razavian et al. (2014), VLAD Arandjelović et al. (2016)), global av-
erage or max pooling Razavian et al. (2016), generalized mean (GeM) Radenović et al. (2018),
regional max pooling (R-MAC) Tolias et al. (2015) in intermediate layers or modulated by atten-
tion operators Noh et al. (2017). Additional training may consider joint loss between classification
and instance retrieval terms Berman et al. (2019). The mechanism of spatially localized activa-
tions (as opposed to global descriptors) is closely linked to the attention mechanisms Huang et al.
(2019), including non-local networks Wang et al. (2018), squeeze-and-excitation networks Hu et al.
(2018), transformer architectures Vaswani et al. (2017); Carion et al. (2020); Han et al. (2020) in-
cluding hierarchically shifted windows Liu et al. (2021), thin bottleneck layers Sandler et al. (2018),
self-attention mechanisms considering locations and channels Woo et al. (2018), intra-kernel cor-
relations Haase & Amthor (2020), multi-layer perceptrons incorporating Euler’s angle Tang et al.
(2021), correspondence-based transformers Jiang et al. (2021) and detectors Sun et al. (2021), and
geometrical embedding of spatial information via graphs Kipf & Welling (2016); Henaff et al.
(2015). Whereas these works typically seek end-to-end learning solutions fitting within GPU mem-
ory constraints Gordo et al. (2016), we first demonstrate the hue-regularized model in basic memory
lookup observations, then propose a novel loss function based on activation hue.

Our final results training from scratch using one-hot + hue loss are similar in spirit to work seeking
to regularize the label and/or the activation space, including using real-valued rather than strictly
one-hot training labels Rodrı́guez et al. (2018), learning-based classifiers Wang et al. (2019); Wen
et al. (2016), prototypical networks for few-shot learning Nguyen et al. (2020); Snell et al. (2017),
deep k-nearest neighbors Papernot & McDaniel (2018), geometrical regularization based on hyper-
spheres Mettes et al. (2019); Shen et al. (2021), enforcing constant radial distance from the feature
space origin Zheng et al. (2018) or angular loss between prototypes Wang et al. (2017). We seek
to present our theory in the general context, we deliberately eschew architectural modifications that
might limit the generality of our analysis. We demonstrate our model using a wide variety of pre-
trained off-the-shelf CNN architectures including DenseNet Huang et al. (2016), Inception Szegedy
et al. (2016), ResNet He et al. (2016), VGG Simonyan & Zisserman (2014) directly imported from
TensorFlow Abadi et al. (2015). We consider a variety of testing datasets both used and not used
in ImageNet Deng et al. (2009) training (datasets in and out of distributions), including general cat-
egories (e.g. Caltech 101 Fei-Fei et al. (2006)), and specific instances (e.g. birds Welinder et al.
(2010), human brain MRIs of family members Van Essen et al. (2013), faces Zhang et al. (2017)).

3 PRELIMINARY OBSERVATIONS FROM PRE-TRAINED NETWORKS

We begin by presenting several novel observations regarding the structure of activation information
in generic deep CNN layers, which are not widely known in the computer vision community, and
motivate our model of activation hue in the following section. Our observations are based on rudi-
mentary nearest neighbor classification Cover & Hart (1967), specifically using spatially-localized
activation vectors I(x̄) ∈ RN of bottleneck layers of Imagenet pre-trained networks, and stored
in a memory along with their x̄ = (x, y) positions. Using pixel-level activations rather than spa-
tially pooled or flattened features leads to improved classification and allows observation of the fine
structure of activation information with respect to the geometry of image space. In order to make
generally pertinent observations, we consider a variety of generic CNN architectures trained on
the ImageNet dataset Deng et al. (2009), and tested in basic memory-based retrieval settings using
various in and out-of-distribution datasets specifically not used in training, including general objects
(Caltech 101 Fei-Fei et al. (2006)), textures (DTD) Cimpoi et al. (2014), and specific object datasets:
sex and family classification from brain MRI (HCP) Van Essen et al. (2013), sex from face images
(UTKFaces) Zhang et al. (2017), and dog species (Stanford Dogs) Khosla et al. (2011).
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Figure 2: Our proposed retrieval architecture where classification is achieved from K=10 nearest
neighbor matches between pixel-wise activation vectors (white bars) derived from a query image and
labeled images stored in memory. Matches between images of the same class (a) generally exhibit
lower spatial variability than (b) matches to unrelated class images, focusing towards a specific
angular θ position relative to the image center (x, y) = (0, 0).

Nearest Neighbor Retrieval: Figure 2 illustrates our proposed retrieval architecture, where indi-
vidual vectors It,x̄ in a query image are matched with vectors in memory extracted from images of
similar classes. Individual vectors may match to similar vectors at any image locations in order to
achieve classification via the procedure described below.

Classification is achieved by maximising the likelihood function p(I|C, {I ′}) of class C associated
with input image I from set of image examples {I ′} stored in memory:

C∗ = argmax
C

p(I|C, {I ′}), (1)

where C∗ is a maximum likelihood estimate of the image class. The likelihood function is de-
fined as follows. An activation image I of resolution W × H is represented as a set I =
{I1, . . . , Ii, . . . , IW×H} of N-channel activation vectors Ii located at pixel index i. Similarly,
{I ′} = {I ′1, . . . , I ′j , . . . , I ′M×W×H} represents a set of pixel-wise activation vectors I ′j from M
activation images stored in memory. For each input pixel vector Ii, a set of K nearest neighbors
NNi is defined as NNi : {j : ‖Ii − I ′j‖ ≤ ‖Ii − I ′k‖}, where I ′k is the kth nearest neighbor of Ii
in memory. The likelihood may be expressed as a kernel density as a sum over input pixels i and
nearest neighbors NNi

p(I|C, {I ′}) ∝
∑W×H

i

∑
j∈NNi

f(Ii, I
′
j)[C = C ′j ]∑

j [C = C ′j ]
, (2)

where in Equation equation 2, f(Ii, I
′
j) is a kernel function, [C = C ′j ] is the Iverson bracket evalu-

ating to 1 upon equality and 0 otherwise and the denominator normalizes for class frequency across
the entire memory set

∑
j [C = C ′j ]. The kernel function f(Ii, I

′
j) is based on activation vector

(dis)similarity and is defined as:

f(Ii, I
′
j) = exp−

{
‖Ii − I ′j‖2

α2
i + ε

}
, (3)

where in Equation equation 3, αi = min
j
‖Ii−I ′j‖ is an adaptive kernel bandwidth parameter defined

as the distance to nearest activation vector in memory I ′j ∈ {I ′}, and ε is a small positive constant
ensuring a non-zero denominator. Note all activation vectors are normalized to unit length ‖Ii‖ =
‖I ′j‖ = 1.
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Figure 3: Activation energy mapsEt,x̄ = ‖It,x̄‖2 computed from spatial bottleneck layers of various
ImageNet pre-trained networks and one-hot loss on the Caltech 101 Fei-Fei et al. (2006) dataset from
the pixel-level K-nearest neighbor indexing setup.

Observation 1: Activation energy is concentrated symmetrically about the (x, y) image center.
Figure 3 shows the scalar energy Et,x̄ = ‖It,x̄‖2 ∈ R+ of bottleneck activation layers It,x̄ from a
variety of generic architectures pre-trained on the ImageNet dataset Deng et al. (2009) in response to
input images not used in training but with a similar distribution, here classes of the Caltech 101 Fei-
Fei et al. (2006). Note how the activation energy maps trained via standard cross-entropy loss and
one-hot labeling are generally symmetric and concentrated in the center of the image plane center.
However, successful classification requires that the activation distribution exhibit an asymmetric
bias towards an angle θ shared across individuals of a class, effectively breaking this symmetry, and
this motivated us to investigate ways to leverage this hue-like observed behaviour in from-scratch
training of models. We note that centrally concentrated activation energy may be in part due to
the object-centered nature of datasets such as ImageNet or Caltech 101, however our experiments
training from scratch extend also to non-object centered datasets such as DTD textures Cimpoi et al.
(2014).

Observation 2: Pixel-wise activations lead to the highest classification accuracy. Figure 4 es-
tablishes baseline classification results across CNN architectures and descriptors, showing that lo-
calized pixel vector matching leads to the highest accuracy amongst alternatives, particularly for
DenseNet Huang et al. (2016). The high accuracy of pixel vector matching is notably due to the
trade-off between memory and computation (e.g. 7x7 = 49 pixels vs. 1 global descriptor in the case
of DenseNet). Note that our goal is to observe the asymmetry via accurate spatially localized activa-
tions, and efficiency is not an immediate concern in our work here. Nevertheless relatively efficient
retrieval is achieved using the Approximate Nearest Neighbor library (Annoy) Bernhardsson (2015)
indexing method with a rapid tree-based algorithm of O(log N) query complexity for N elements
in memory, and further efficiency could be achieved via compression (e.g PCA F.R.S. (1901)) or
specialized architectures Sun et al. (2021); Jiang et al. (2021).

Observation 3: Class-specific activation information is concentrated according to an angle θ
about the (x, y) image center. Figures 5 shows example distributions of NN activation matches,
based on 1920-dimensional activation vectors following ReLu Ix ∈ R1920+ from the 7 × 7 = 49-
pixel bottleneck layer of an ImageNet-pre-trained DenseNet-201 Huang et al. (2016) architecture
and test images from the Caltech 101 dataset Fei-Fei et al. (2006) not used in training, but in-
distribution for the trained network. Note how distributions of NN pixel vector matches between
images of the same class (Figures 5 a) are consistently biased towards a similar angle θ relative
to the image center, for both specific classes and individuals, validating class-specific angular bias.
Matches to unrelated classes tend to be scattered about the image periphery (Figures 5 b).

Observation 4: Activations are highly informative regarding (x, y) pixel location. Figure 6
shows distributions of nearest neighbor match locations conditioned on query pixel locations in order
to understand the variability with respect to correct (same class a) vs. incorrect (unrelated class b)
matches. Matches in both cases generally tend to be concentrated about the query pixel location,
indicating that each pixel occupies a center in activation space, and that neighboring pixels in image
space map to neighboring centers in activation space. Activation matching between instances of the
same class a) exhibit much less variability than those between unrelated classes b). Our proposed
activation hue loss in the following section seeks to minimize this source of variability.
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Figure 4: Baseline classification performance of architectures and descriptors on six memory-based
classification tasks with (K = 10) nearest neighbors. Dashed lines indicate the superior perfor-
mance of the DenseNet201 Huang et al. (2016) architecture (max in 5 of 6 tasks) (left) and pixel
vector descriptors (max for all) (right).

Figure 5: Distributions p(x, y) of matching NN pixel locations a) Matches between activations from
the same class are concentrated near the image center (0, 0) and consistently biased towards a similar
angle θ for specific classes and individuals of the same class (e.g. class A and B, blue arrows). b)
Matches between images of unrelated classes are scattered about the periphery.

4 METHOD

Observations from the previous section revealed that while CNN activation energy or magnitude
in deep layers is generally concentrated symmetrically about the center of the (x, y) image plane
(Observation 1), activation information for specific classes tends to be concentrated asymmetrically
and according to angle θ with respect to the image center as in Figure 5 (Observation 3). Further-
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Figure 6: Conditional distributions p(x, y|x̄i) of matching NN pixel locations given query loca-
tion x̄i. Distributions are shown for a selection of individual query pixel locations x̄i. Note tight
concentration around the original query pixel locations xi (brightest pixels), and lower variance for
matches to instances of the same class (top) vs. unrelated class (bottom). Variations for same class
a) are generally stronger in tangential (as opposed to radial) directions, indicating hue-like angular
θ deviations about the center.

Figure 7: Illustration of our hue loss complementing the one-hot loss through an angular regulariza-
tion term in order to model the activation hue θ of the image signal in the activation space, similar
to the hue angle used to represent colors in the RGB space.

more, activation vectors are highly informative regarding spatial image location (x, y), i.e. nearest
neighbor pixel vector activations are tightly concentrated about the original pixel location as in Fig-
ure 6 (Observation 4). Together, these observations lead us to hypothesize that in deep CNN layers,
class-informative activations tend to follow a hue-like angle in both the image plane and activation
space.

Figure 7 illustrates the geometry of activation hue in a deep CNN layer, including the (x, y) ∈ R2

image space and the multi-channel activation space I ∈ RN . Multi-channel activation information
is non-negative following rectification (ReLu) Nair & Hinton (2010), and thus located in the positive
orthant of activation space, i.e. within the larger circle of Figure 7. Standard CNN training from one-
hot loss labels provides no information regarding the arrangement of activation information in the
(x, y) image plane and may be considered to operate orthogonally to the image plane. Nevertheless,
preliminary observations revealed that class-specific activations tend to be distributed according to
a hue-like angular variable θ in both the image space and activation space. We refer to this variable
as activation hue and note that it characterizes dominant activation channels analogously to how hue
characterizes color in RGB space.
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We thus propose a novel loss function leveraging activation hue, that may be used as a training sig-
nal in the (x, y) image plane of arbitrary CNN layers, most notably bottleneck layers with minimal
spatial extent. We first note that the ubiquitous one-hot loss Lone−hot used imposes no constraint
regarding the geometry of activations in (x, y), and may thus be considered as operating symmet-
rically across the CNN bottleneck layer. We thus propose augmenting standard loss functions such
as cross-entropy-based one-hot labels Lone−hot with an additional loss term Lhue based on angular
class label θc = {θcx, θcy} ∈ U(1) as follows:

L = Lone−hot + Lhue = −
M∑
c=1

(log
exp (xc)∑M
i=1 exp (xi)

+ log
exp (−dθc)∑M
i=1 exp (−dθi)

)yc, (4)

where M is the number of classes, yc is a binary indicator equal to 1 for a correct class and 0
otherwise and xc is the one-hot prediction vector for class c. In our proposed loss Lhue, dθc is the
angular difference computed as the Euclidean distance between predicted θ′c and assigned θc angular
labels:

dθc =

√
(θcx − θ′cx)2 + (θcy − θ′cy)2

2×M
(5)

Note that similarly to how classes are assigned an arbitrary one-hot label index, in training experi-
ments here an angular label is assigned to each class c from a set of M angles equally distributed
over the range θc = [0, 2π].

5 EXPERIMENTS

Our work hypothesizes that information in deep neural network activation layers may be character-
ized analogously to color hue in RGB space, and motivates our model of a hue-like angle θ linking
(x, y) image space and activation space. This hypothesis was based on initial observations from
nearest neighbor indexing trials, where activations in generic pre-trained CNNs exhibited noticeable
class-specific angular bias. Here, we show how training with an additional hue-inspired component
to the loss generally improves classification accuracy for a variety of tasks.

In the previous sections, we observed consistent class-related angular bias in activation layers of
pre-trained networks, which was was surprizing as standard cross-entropy loss with one-hot class
labels provides no explicit training mechanism for achieving this. We thus hypothesized that an
additional Lhue loss term based angular class labels θc as in Equation equation 4 might improve
classification. We performed experiments comparing standard cross-entropy with one-hot labels
alone with a combined loss function regularized by hue loss and an additional angular training label
θc. As in Equation equation 4, hue loss uses a single angular training label θc assigned randomly for
each class as a pair θc = (θcx, θcy) of point coordinates constrained to the unit circle θ2

cx + θ2
cy = 1,

and predicted via fully-connected layers immediately following the network bottleneck. The hue
loss Lhue is estimated as the L2 distance between angular labels θc and predicted (x, y) parameters
as in Equation equation 4 and mixed in equal weighting with the one-hot difference to generate a
combined cross-entropy loss for the backward step. We trained over a fixed 100 epochs, with original
train, validation, and test sets and 5-fold cross-validation on a single Titan RTX GPU. We used the
Adam optimizer Kingma & Ba (2014) and CosineAnnealingLR scheduler Loshchilov & Hutter
(2016) with default parameters from PyTorch Paszke et al. (2019) in all experiments, along with
basic data augmentation in the form of horizontal flips and random crops. Training and classification
were evaluated in diverse few-shot learning tasks of varying degrees of granularity, including the
Describable Textures Dataset (DTD) Cimpoi et al. (2014), Caltech-UCSD Birds Welinder et al.
(2010), Stanford Dogs Khosla et al. (2011), Flowers Nilsback & Zisserman (2008), Pets Parkhi
et al. (2012), Indoor67 Quattoni & Torralba (2009), FGVC-Aircraft Maji et al. (2013), Cars Krause
et al. (2013), and ImageNet Deng et al. (2009).

Training with one-hot + hue loss improved classification for all tested networks compared to one-hot
alone. Table 1 reports results for the network architectures leading to the highest overall accuracy
(EfficientNet-B0 Tan & Le (2019)) and the most improved (Resnet-18 He et al. (2016)). Simi-
lar improvements were observed with a variety of different network architectures including VGG,
Inception v3, DenseNet (as shown with the activation energy in 3).
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Table 1: Classification results training from scratch, comparing our proposed one-hot + hue loss
with conventional loss based on one-hot encoding with ResNet and EfficientNet baselines. Com-
bined one-hot + hue loss resulted in improved classification in all cases tested (bold).

Model DTD Cim-
poi et al.
(2014)

UCSD
Birds Welin-
der et al.
(2010)

Stanford
Dogs Khosla
et al. (2011)

Flowers Nils-
back &
Zisserman
(2008)

Pets Parkhi
et al. (2012)

Indoor67 Quat-
toni &
Torralba
(2009)

FGVC-
Aircraft Maji
et al. (2013)

Cars Krause
et al. (2013)

ImageNet Deng
et al. (2009)

ResNet-
18 He et al.
(2016)

One-hot 0.4153 0.3875 0.4015 0.4863 0.4090 0.4866 0.8703 0.3575 0.6350
One-hot + hue 0.5230 0.5313 0.5754 0.6487 0.5919 0.6224 0.8920 0.8011 0.6621
EfficientNet-
B0 Tan &
Le (2019)

One-hot 0.5310 0.4907 0.5655 0.7252 0.6689 0.5458 0.8685 0.7882 0.7144
One-hot + hue 0.5368 0.5569 0.5764 0.7438 0.6797 0.5477 0.8768 0.8079 0.7171

6 DISCUSSION

Our paper proposes a novel angular parameter entitled activation hue in order to characterize and
regularize deep CNN activation space. The activation hue represents a high-dimensional generaliza-
tion of the standard hue angle, which is closely linked to human color perception in RGB intensity
space, and thus represents an intuitively appealing mechanism for modeling activation space for
general classification tasks.

We first motivate the activation hue through a number of preliminary observations in the context of
kNN activation vector retrieval, which provide a number of novel insights regarding the structure
of information in deep activation layers. Notably, activation vectors tend to be highly informative
regarding pixel location in the image plane in general, and class-informative vectors tend to cluster
according to an angle about the (x, y) image center. These observations motivate the hypothesis of
a class-informative hue-like angle, defined both in 2D image space and in multi-channel activation
space.

We then describe a novel activation hue loss function that makes use of angular θc class label infor-
mation, and thereby complements standard loss functions such as cross-entropy from one-hot labels
that provide no explicit information regarding the spatial distribution of activations in image space.
In experiments training from scratch, combined one-hot + activation hue loss improves classifica-
tion modestly but consistently in comparison to standard one-hot loss alone on a diverse variety of
classification tasks, including Imagenet.

The mechanism behind the activation hue may be understood by considering an activation vector,
including an RGB intensity vector, as representing a measurement distribution or spectrum. A uni-
form activation spectrum is generally uninformative regarding class and lies along an uninformative
medial axis in activation space, similarly to how a pixel lying along the greyscale axis in RGB space
is uninformative regarding color. An angular activation hue parameter in the plane perpendicular
to the medial axis may thus be used to characterize bias towards a non-uniform, class-informative
activation distribution, similarly to how standard hue characterizes a dominant color in RGB space.

Several practical aspects of our work are worth noting. Experiments made use of multiple widely-
known, generic neural network architectures, diverse datasets with a wide range of task granularity
including ImageNet, and basic NN classification methods Cover & Hart (1967), in order to demon-
strate our hue-based model in the broadest possible context. We note that this angular loss behaviour
is not limited to object-centric datasets like ImageNet or animal pictures. Our observations were con-
firmed on non-centric objects datasets, including the Describable Textures Dataset (DTD) Cimpoi
et al. (2014).

Further investigation into the training scheme would be interesting, such as label modification during
training for better convergence instead of forced assigned labels. The pixel vector matching method
was more effective than other widely used bottleneck encodings, including pooling and flattened
representations. To our knowledge, this is a novel result that may be useful if the computational
requirement may be optimized for applications with tight memory or timing constraints. Finally, we
believe activation hue may prove insightful to researchers investigating optics, information propa-
gation, and next-generation computer vision systems, based on deep CNN models and activations.
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Pau Rodrı́guez, Miguel A Bautista, Jordi Gonzàlez, and Sergio Escalera. Beyond one-hot encoding:
Lower dimensional target embedding. Image and Vision Computing, 75:21–31, 2018.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn features off-
the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pp. 806–813, 2014.

Jiayi Shen, Zehao Xiao, Xiantong Zhen, and Lei Zhang. Spherical zero-shot learning. IEEE Trans-
actions on Circuits and Systems for Video Technology, 32(2):634–645, 2021.

12

http://arxiv.org/abs/1306.5151
http://arxiv.org/abs/1306.5151
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


Under review as a conference paper at ICLR 2024

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30, 2017.

Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and Xiaowei Zhou. Loftr: Detector-free local
feature matching with transformers. arXiv preprint arXiv:2104.00680, 2021.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. CoRR, abs/1905.11946, 2019. URL http://arxiv.org/abs/1905.11946.

Yehui Tang, Kai Han, Jianyuan Guo, Chang Xu, Yanxi Li, Chao Xu, and Yunhe Wang. An image
patch is a wave: Phase-aware vision mlp. arXiv preprint arXiv:2111.12294, 2021.
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