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Abstract

In computer vision, keypoint detection is a fun-
damental task, with applications spanning from
robotics to image retrieval; however, existing
learning-based methods suffer from scale depen-
dency and lack flexibility. This paper introduces
a novel approach that leverages Morse theory
and persistent homology, powerful tools rooted
in algebraic topology. We propose a novel loss
function based on the recent introduction of a no-
tion of subgradient in persistent homology which
achieves competitive performance in keypoint re-
peatability and introduces a principled and theo-
retically robust approach to the problem.

1. Introduction
The ability to extract points from an image in consistent
way across different views (keypoint detection) is a funda-
mental task of computer vision that found applications as
a basic step of many complex applications of visual local-
ization [1]–[3], SLAM [4]–[6], Structure-from-Motion and
3D reconstruction [7]–[9], as well as retrieval and place
recognition [10], [11].

A theoretical framework for the problem is provided by
scale-space theory [12], [13]. In this context, the keypoints
of an image I ∈ RH×W are modeled as the set of local
extrema (maxima and minima) of a suitable one-parameter
image operator F (I, s) ∈ RH×W , where the parameter
s represents the scale at which we are looking for. The
principle used to design the aforementioned scale-space
operator is the non-creation property: when processing the
image at multiple scales, what is noticeable from a distance
(on a coarse scale), should have already been visible in the
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details (on a fine-grained scale). Therefore, an ideal scale-
space operator should be coherent across different scales by
detecting, as local extrema, the same keypoints at a greater
scale s2 and also at the smaller scale s1 < s2. For an
appropriate relaxation of these requirements, under certain
hypotheses, the work in [14] indicated that the convolution
with a Gaussian of a variance equal to the scale parameter
is the best solution among linear operators.

Many classical handcrafted keypoints detectors exploit the
scale-space theoretical framework [15], [16], the most pop-
ular of which is SIFT [17]. In particular, the latter one
operates by building a feature maps pyramid from the image
by repeatedly applying Gaussian convolution and downsam-
ple operations. Ultimately, keypoints are detected as local
extrema of the features maps.

Recently, several learning-based detectors have been in-
troduced, which, in the spirit of deep learning, propose
to forego the formal definition of keypoints and rely on
a data-driven approach to teach a neural network how to
select salient points [18]–[25]. Inspired by scale-space the-
ory, at inference time, these approaches model keypoints as
local maxima of a scalar map that is the output of a respec-
tive learnable convolutional neural network. However, at
training time, several differentiable relaxations have been
applied. For example, D2Net [22] makes use of a pixel
score calculated in a fixed-size patch centered on the pixel.
Similarly, R2D2 [21] considers the local maxima within a
fixed-size N × N sliding window. DISK [23] provides a
probabilistic formulation where the probability of being a
keypoint still depends on a softmax logit calculated only on
a neighboring patch.

Despite these recent innovations based on deep learning,
classical handcrafted solutions still remain competitive and
often outperform their learnable counterparts. We hypothe-
size that one of the main reasons for this is that the current
formulation of keypoints adopted in the deep learning lit-
erature is based on a fixed-size patch-wise differentiable
relaxation of the concept of local maxima. Indeed, this ap-
proach incentivizes models to detect keypoints at a given
frequency, introducing a scale dependency that is in direct
contrast with the non-creation property that earlier litera-
ture has identified as a key requirement. Therefore, a new
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approach, based on a scale-agnostic and differentiable for-
mulation of local maxima, is needed to develop unbiased
learnable methods for keypoint detection.

To this end, we propose a novel scale-independent formula-
tion of keypoints based on Morse theory [26] and persistent
homology [27], [28] from algebraic topology. This for-
mulation leverages the connection between local maxima
and differentiable topological invariants [29], [30], offer-
ing a rigorous and differentiable solution without requiring
hardcoded hyperparameters that determine the density or
frequency of keypoints. Furthermore, we demonstrate the
validity of our approach by achieving promising results on
benchmarks for keypoints repeatability. Our implementa-
tion and trained models have been publicly released1.

2. Background
2.1. Morse Theory

The relationship between critical points of a function (ex-
trema and saddle points) and the evolution of a topology
can be intuitively explained using the following analogy:
picture the graph of a 2D scalar function as a landscape.
When we flood this landscape, we witness a series of trans-
formations: lakes emerge from the lowest valley regions;
lakes surround mountains, leaving only their peaks above
water, and, ultimately, the lakes blend when they submerge
the peaks.

Morse theory [26] is the mathematical framework that pre-
cisely captures the relationship between critical points and
changes in topology. Formally, a smooth scalar function
h defined on a smooth manifold is a Morse function if it
has only non-degenerate critical points, i.e., having non-
zero Hessian determinants only. This condition is not re-
strictive: indeed, up to an infinitesimal perturbation, every
differentiable function on a compact is Morse. Given a
2D compact surface X and the choice of a Morse func-
tion h, we can study the evolution of the sublevel sets
Xt = {x ∈ X : h(x) ≤ t} for an increasing t. These
sets can be considered the union of the bottom of the lakes
obtained by pouring water onto our landscape up to level t.
When t reaches the value corresponding to a minimum of
h, the sublevel changes by adding a new point: a new con-
nected component (lake) is born. When t reaches a saddle
point s = (p, t) with t = h(p), two things could happen: (i)
the saddle s merges two lakes into one, or (ii) the saddle s
creates a single span bridge over a lake, thus producing a
new closed path (loop) in the component. Therefore, a sad-
dle either reduces connected components or creates a loop.
Finally, when t reaches a maximum value, it corresponds to
completely submerging the terrain and its closed paths, and
this can be seen as filling the hole surrounded by a closed
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path. An example of this case can be seen in fig. 1.

2.2. Discrete Morse Theory

In the context of digital images, we rely on a discretized
version of the former theoretical framework, namely discrete
Morse theory [31], and the concept of cubical complex.

A cubical complex is a finite family K of objects Q ⊂
Rd, such that: for all Q ∈ K, there is a set of integers
IQ := {l1, . . . , ld} such that Q = I1 × · · · × Id, with
Ij = [lj , lj + 1] or Ij = [lj , lj ]; and, if P,Q ∈ K then
either P ∩ Q = ∅ or P ∩ Q ∈ K. When I = [l, l], it
is called degenerate, and the number of non-degenerate
intervals in Q is its dimension, while d is usually called its
embedding number. The 0−dimensional cubes are points,
1−dimensional cubes are edges, 2−dimensional cubes are
squares, and so on. Let P ⊂ Q ∈ K, then P is called a face
of Q, and, if the inclusion is proper, dimP ≤ dimQ− 1.
A cubical complex K is a partially ordered set (poset) via
inclusion and, if (P,≤P) is another poset with f : K → P
a monotonically not decreasing map, that is P ⊂ Q implies
f(P ) ≤P f(Q), then it is possible to create a sublevel
filtration of K as follows: ∅ ⊂ K1 ⊂ K2 · · · ⊂ Kt = K
where Ks := {Q ∈ K : f(Q) ≤P ps ∈ P}. Topological
invariants of these sublevel sets and their behavior along
the filtration are some of the main topics in topological data
analysis. In particular, they have been studied in Morse
theory, discrete Morse theory, and persistent homology.

In this setting a 2D−greyscale digital image is represented
as cubical complexes as follows: 0−cubes are the image
pixels laying on the vertices of an integral rectangular lattice
in R2; 1−dimensional cubes are the edges connecting pixel
that differ by 1 in precisely one coordinate; 2−dimensional
cubes, i.e. squares, are the obvious ones. Let I : {0 −
cubes} → [0, 1] be the function assigning to each pixel its
values. Then, we can associate I with a function f : KI →
[0, 1] by f(Q) = maxP∈K0 :P⊆QI(P ). The complex KI ,
with fI and the corresponding filtration will be called the
cubical complex associated to I. In layman’s terms, we can
think of the filtration of a cubical complex as the sublevel
sets of a step function, where vertices, edges, and faces
gradually appear. As shown in fig. 2, this process results
in loops forming and disappearing at certain critical times,
that are in correspondence with the respective saddle edge
or maximum face.

2.3. Persistent Homology

Every topological feature e, that appears in the evolution
of the sublevel sets, is associated with a pair of values
(b(e), d(e)), b(e) < d(e), the birth time and the death time
of e. If e is a connected component, b(e) corresponds to
a minimum of h, and d(e) must be a saddle. On the other
hand, if e is a loop, then b(e) corresponds to a saddle point
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z1

z2

Figure 1: The evolution of the sublevel sets of a surface filtered by height, i.e. value on the z axis. As the height crosses z1,
a new loop is born in correspondence with a saddle (green point), then the loop changes smoothly until z hits z2, the value
of a corresponding maximum (blue point), and the loop disappears. z1 and z2 are respectively the birth time and the death
time of the topological feature.

(a) (b)

(c) (d)

(e) (f)

Figure 2: (a) A scalar image can be associated with (b) a
cubical complex made of vertices, edges, and squares. In
both examples, the color represents the pixel value and the
filtration value of the cube, i.e., the maximum value among
its vertices. Adding the cubes according to the filtration
time, we observe the following sequence: (c) still no loop
exists, (d) a loop is born as a saddle edge is added, (e) the
loop persists, and (f) the loop gets closed by a maximum
square. The pixels responsible for the birth and death of the
loop are marked in red.

and d(e) to a maximum. The persistence is defined as
Pers(e) = d(e) − b(e) and it represents the life span of a
topological feature [27], [28].

3. Topological Detector Loss
We aim to learn a feature extractor Fθ that, given an in-
put image I ∈ RH×W×C , outputs a set of discrete pixel
locations {ki} ∈ R2. We propose a novel keypoint detec-
tor, which we call MorseDet, based on a CNN backbone,
that outputs a scalar feature map which we call height map,
in an analogy with the terminology used in Morse theory.
Thus, forwarding an image through the adopted network,
we obtain a response map Fθ(I) = H ∈ RH×W .

At inference time, the keypoints are simply obtained by
performing a fast non-maximum suppression algorithm that
selects the locations corresponding to a local maximum of
the height map with a value above a given threshold γ.

As for the previous approaches, a training instance is com-
posed of two images I1, I2 and a ground-truth correspon-
dences map between them U ∈ RH×W×2, more explicitly
U [i, j] = (i′, j′) if and only if the pixel (i′, j′) of the sec-
ond image corresponds to the pixel (i, j) in the first image;
notice that U is defined only on covisible regions.

In contrast with previous heuristical methods, during the
training process, we model keypoints bijectively with the
local maxima of the feature map. We refer to a local max-
imum via the associated topological feature, i.e. the loop
that spawns around the critical point and that gets closed
at its peak. Let G(H) be the set of such topological fea-
tures of the cubical complex associated with H. Every ele-
ment e ∈ G(H) can be associated with the coordinates of
a (creator) saddle s(e) ∈ R2 and a (destructor) maximum
m(e) ∈ R2. The birth time of e is the value attained by
H at its creator saddle, i.e., b(e) = H[s(e)], in the same
way, the death time of e is the value of a local maximum
d(e) = H[m(e)].

We make use of the persistence of e, as defined in sec. 2.3,
to measure the magnitude of a topological feature. Notice

3



A Differentiable Topological Notion of Local Maxima for Keypoint Detection

that this quantity does not depend on the shape or extension
of the region filled by the maximum, i.e. the scale, but only
on how prominent the peak is.

For convenience, we define the error matrix between two
height maps, H1 and H2, based on the correspondences map
U :

E[i, j] = H1[i, j]− H2[U [i, j]] (1)

if U is defined on (i, j), otherwise E[i, j] = 0. At this
point, we introduce a new term that takes into account how
the maps H1 and H2 differ at the topologically relevant
(correspondent through U ) positions, namely the boundary
similarity:

Sim(e) = E[s(e)]2 + E[m(e)]2 (2)

Given a positive constant α, our detector loss is finally
defined as

Ldet(H1,H2) = −
∑

e∈G(H1)

Pers(e) [Pers(e)− αSim(e)]

(3)

In practice, minimizing the loss function aims to increase
the number and prominence of local maxima in the height
map, as long as they are reproducible across similar images.

3.1. Differentiability

Consider a vectorized scalar image H ∈ RHW where all
entries are distinct, and let d be the minimum distance
between these values. When moving within a neighbor-
hood defined by the open ball B(H, d), the order in which
the cubes spawn along the associated filtration remains
unchanged, as do the critical times locations. Therefore,
within a region where the entries follow a strict order
S = {x ∈ RHW | xσ(1) < · · · < xσ(HW )}, the func-
tion PS that selects the relevant entries for the m critical
time pairs, PS(H) = (b1, d1, . . . , bm, dm), acts as a fixed
linear projection. The persistence and boundary similarity
terms of our loss can thus be expressed as compositions of
PS with the height maps H1 and H2. Consequently, the loss
function is differentiable almost everywhere.

A problem arises when multiple entries in H have the same
value. To address this, we can introduce an arbitrary pertur-
bation that ensures all values are distinct while preserving
any other order relations. For instance, Hϵ = H+ϵV , where
V [i, j] = i+Ij

2IJ and ϵ is smaller than d, the minimum posi-
tive difference between distinct entries. For ϵ ∈ (0, d), all
Hϵ belong to the same region S corresponding to a fixed
projection PS . This allows us to compute the loss and its

gradient by extending their values continuously along the
arbitrary direction.

For many functions of the persistence terms, such as their
sum, stronger results hold [29], [30]. These functions are
locally Lipschitz, and the process described above provides
a subgradient along the trajectory V . In these cases, we
have a guarantee for the convergence to a local minimum of
the gradient methods. In contrast, our loss function is not
continuous at the boundaries of the regions S and its value
strictly depends on the choice of the arbitrary perturbation,
but we still obtain a directional derivative.

4. Experiments
Our experiments assessed the ability of MorseDet to pre-
dict repeatable keypoints that are robust to changes in scale,
viewpoint, or illumination. We adopted the HPatches bench-
mark and repeatability metric to compare our model against
the best current deep learning detectors, namely D2-Net,
R2D2, SuperPoint, DISK, and ALIKED, as well as the clas-
sical handcrafted solution SIFT. Due to space constraints,
the details of the implementation, experimental settings, and
results are covered in app. A.

To summarize our findings, we observed that MorseDet per-
forms better than the other learned detectors against scale
shifts, ranking second on average in this scenario after SIFT.
Moreover, we found that, in viewpoint and illumination
tests, our model achieves the most consistent performance.
Notably, while SIFT demonstrates strong scale invariance
properties, it fails to generalize as effectively in noisy set-
tings, such as changes in illumination.

5. Conclusion and Limitations
In this paper, we introduce an algebraic topology technique
to address a ubiquitous problem in the image matching
literature: the scale dependency of keypoints due to patch-
wise differentiable relaxation of local maxima. By utiliz-
ing the concept of sublevel set filtration and its connec-
tion with Morse theory, we model local maxima in a scale-
independent manner that is, thanks to persistence homology,
suitable for gradient methods. Experimental results demon-
strate the validity of our approach, showing strong results
in terms of keypoints repeatability against changes in scale,
viewpoint, and illumination.

Nevertheless, challenges remain in terms of differentiabil-
ity (see sec. 3.1). The regularization term we introduced
meets only minimal requirements and lacks a guarantee of
convergence for gradient methods due to the discontinuous
nature of the loss function. Therefore, we believe there is
significant potential for further improvements by extending
our framework to achieve complete differentiability.
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A. Experiments Details
A.1. Dataset and Metrics

We assessed the capability of our method to predict repeatable keypoints using the well-established HPatches benchmark
[32]. This dataset comprises 116 scenes, split into 696 images, with the first 57 scenes emphasizing variations in illumination
and the subsequent 59 containing changes in viewpoint. Each sequence in the dataset comprises image pairs of increasing
difficulty. We focus on this dataset, given that it represents a classical, longstanding benchmark for the task of keypoint
detection, to assess the validity of our framework.

Regarding evaluation, our main concern is comparing the quality of the extracted keypoints for different detectors. Thus,
as a metric, we use the formulation of repeatability proposed in [33], which evaluates the consistency of keypoints across
different images while overcoming the issues of previous definitions of repeatability, which can bias toward detecting clusters
of keypoints [34]. This adaptation aims to assess the unique association of keypoints by preventing a single keypoint from
matching multiple counterparts, in detail, it quantifies the proportion of keypoints that are each other’s nearest neighbors in
the corresponding images and are closer than a predefined distance threshold, considering both the coordinate system of
both the images.

A.2. Baselines

In our study, we benchmark our model against a range of established detectors and state-of-the-art models to ensure a
comprehensive evaluation:

• SIFT [17]: a handcrafted detector designed to be robust against scale changes.
• D2-Net [22]: employs a multi-scale inference approach, detecting local maxima across multiple output maps.
• R2D2 [21]: an unsupervised detector that uses multi-scale inference.
• SuperPoint [35]: a semi-supervised detector trained to generalize to real images from labeled synthetic shapes.
• DISK [23]: utilizes a probabilistic formulation to jointly model detection and matching.
• ALIKED [25]: features deformable convolution, adapting receptor fields to the supports of keypoints.

A.3. Implementation Details

We adopted L2Net [20] as backbone with the last convolutional layer modified as in R2D2. For training, we employed
AdamW [36] as optimizer, with batches of 8 pairs of images with resolution 208 × 208. To generate image pairs, we follow
the protocol from R2D2, using the same training datasets (WASF). Hyperparameter search and early stopping are performed
on the validation split of MegaDepth [37] used in [35]. The final hyperparameters configuration included α = 10, weight
decay equal to 0.005, and repeatability threshold γ = 0.7 for inference. The training process on a single TITAN X GPU
with 12GB of VRAM concluded in approximately 10 hours until convergence.

Method Illumination Viewpoint
250 500 1000 2000 4000 250 500 1000 2000 4000

D2-Net 21.1 22.0 23.6 26.4 28.7 12.1 13.6 19.5 18.6 22.1
R2D2 27.3 28.6 29.8 30.5 30.7 24.3 25.5 26.5 27.6 28.3
SIFT 34.9 37.2 38.8 40.4 41.2 37.8 38.9 39.9 40.7 40.4
SuperPoint 42.4 47.7 49.8 49.5 49.4 27.5 36.0 43.6 46.8 46.4
DISK 42.2 45.9 49.8 54.2 57.4 30.6 35.0 39.3 44.0 47.6
ALIKED 14.8 24.4 37.3 47.0 51.9 6.5 10.6 18.1 29.7 43.1
MorseDet (ours) 44.3 47.3 50.3 53.4 55.2 40.6 42.8 44.6 46.1 47.2

Table 1: Repeatability for illumination and viewpoint splits of HPatches, computed using various values for the maximum
number of keypoints allowed. The best and second-best results are indicated in each column.
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Method Avg 75% 50% 25%
D2-Net 24.6 31.9 19.2 22.8
R2D2 48.5 55.7 56.2 33.7
SIFT 63.6 75.9 64.8 50.2
SuperPoint 60.6 73.3 63.0 45.6
DISK 56.0 71.8 57.4 38.8
ALIKED 18.7 24.2 16.5 15.4
MorseDet (ours) 62.2 82.2 63.0 41.3

Table 2: Repeatability of the detector on resized HPatches images as the scale factor progressively reduces. The best and
second-best results are indicated in each column.

A.4. HPatches Benchmarks

Detector Repeatability

In this experiment, we evaluate the detector repeatability across changes in point of view and illumination on the common
benchmark HPatches. Following [21], we provide results across different values for the maximum number of detected
keypoints allowed. The results are shown in the tab. 1, where the metrics are averaged across all thresholds up to 5px.

We can see that MorseDet’s keypoints achieve consistently good performances, regardless of the number of keypoints or
settings (i.e. illumination and viewpoint changes), being either best or second best across the table. Some other methods
perform competitively with MorseDet under specific settings, although none is competitive in all cases. Notably, DISK has
strong results with a high number of keypoints, and SIFT is second best with fewer keypoints under viewpoint changes but
performs poorly under illumination changes. On average, SuperPoint is second-best.

Scale Repeatability

We posit that models employing a fixed-size window approach for keypoint modeling during training learn to predict
keypoints at a specific frequency. Building on this premise, such models may struggle to consistently replicate keypoints
under rescaling transformations. To study this idea in isolation, we designed the following experiment using the images
of HPatches. We evaluated for every method the repeatability metric between every image resized to 1000×1000, and
the image resized to smaller sizes to have approximately 75%, 50%, and 25% the pixel area of the original image. As the
number of keypoints deeply influences repeatability, we limit keypoints to 500, to ensure that every method uses the same
number of keypoints at every scale for fair comparisons, thus also measuring how the methods can prioritize their most
robust keypoints. The metrics are summarized in the tab. 2 by their average above all the thresholds till 5px.

The results show that MorseDet obtains second-best results on average after SIFT. In particular, MorseDet shines with
75% image resize (i.e. to images of 750×750), outperforming the second best method, SIFT, by 6.3 points. For extreme
scale changes (i.e., 25% of the original resolution), the best model is SIFT, which is a handcrafted detector built to be
scale-invariant, followed by SuperPoint and MorseDet. Overall, the only learnable model competitive with MorseDet is
SuperPoint, which benefits from a human-informed prior on keypoints. Notably, despite SIFT being proposed nearly two
decades ago, it still outperforms modern detectors in this setup; MorseDet performs significantly better than every other
learnable method in this task. This is a direct consequence of the fact that previous learnable methods lack a principled
framework for modeling local maxima, which is our method’s core contribution.

A.5. Qualitative Results

Fig. 3 shows an example of our model’s height map and detected keypoints. It demonstrates how the model adapts the
frequency of keypoints to the image content, effectively detecting both large-scale corners and fine-grained details without
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(a) (b)

Figure 3: An example of MorseDet’s (a) height map and (b) detected keypoints on a HPatches image. Our model adapts the
frequency of its keypoints to the scale of the image content.

creating artifacts in low-textured regions.
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