
Efficient Molecular Conformer Generation with
SO(3)-Averaged Flow Matching and Reflow

Zhonglin Cao * 1 Mario Geiger * 1 Allan dos Santos Costa 1 2 3 Danny Reidenbach 1 Karsten Kreis 1

Tomas Geffner 1 Franco Pellegrini 1 Guoqing Zhou 1 Emine Kucukbenli 1

Abstract

Fast and accurate generation of molecular con-
formers is desired for downstream computational
chemistry and drug discovery tasks. Currently,
training and sampling state-of-the-art diffusion or
flow-based models for conformer generation re-
quire significant computational resources. In this
work, we build upon flow-matching and propose
two mechanisms for accelerating training and in-
ference of generative models for 3D molecular
conformer generation. For fast training, we intro-
duce the SO(3)-Averaged Flow training objective,
which leads to faster convergence to better gen-
eration quality compared to conditional optimal
transport flow or Kabsch-aligned flow. We demon-
strate that models trained using SO(3)-Averaged
Flow can reach state-of-the-art conformer gener-
ation quality. For fast inference, we show that
the reflow and distillation methods of flow-based
models enable few-steps or even one-step molec-
ular conformer generation with high quality. The
training techniques proposed in this work show a
path towards highly efficient molecular conformer
generation with flow-based models.

1. Introduction
Molecular conformer generation is the task to predict the
ensemble of 3D conformations of molecules given their
2D molecular graphs (Hawkins, 2017). Generating high
quality molecular conformers that fit their natural 3D struc-
tures is a crucial task for computational chemistry because
many physical and chemical properties (Guimarães et al.,
2012; Schwab, 2010; Shim & MacKerell Jr, 2011) are de-

*Equal contribution 1NVIDIA 2MIT Center for Bits and Atoms
3Work was completed during internship with NVIDIA. Correspon-
dence to: Zhonglin Cao <zhonglinc@nvidia.com>, Mario Geiger
<mgeiger@nvidia.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

termined by the conformers. In the domain of drug dis-
covery, molecular conformer generation is a prerequisite
for both structure-based (Trott & Olson, 2010) and ligand-
based (Rush et al., 2005) compound virtual screening. For
established computational chemistry molecular conformer
generation tools, there is a trade-off between generation
speed and the quality or diversity of generated conformers
(Axelrod & Gomez-Bombarelli, 2022). For example, en-
hanced molecular dynamics simulation (Grimme, 2019) can
generate diverse conformers by sampling the conformation
space rather exhaustively, but this approach is slow due to
the need of multiple energy function evaluations. RDKit
(Landrum, 2016) and some rule-based tools (Hawkins et al.,
2010) are faster but may miss many low-energy conformer,
and the generation quality can deteriorate when molecule
size increases. Thus, deep generative models are being
sought as potential solutions to overcome such trade-off and
bring fast, diverse, and high-quality molecular conformer
generation.

Many earlier works are based on generative models (Simm
& Hernández-Lobato, 2019; Zhu et al., 2022; Luo et al.,
2021; Shi et al., 2021; Xu et al., 2022), given the
stochastic nature of the molecular conformer generation
task. However, established cheminformatics tools such as
OMEGA (Hawkins et al., 2010) still have better generation
quality and faster sampling speed compared to early deep-
learning based methods. Torsional diffusion (Jing et al.,
2022) is the first diffusion model to achieve better genera-
tion quality than cheminformatics model. By restricting the
degree-of-freedom on the torsion angles, torsional diffusion
can generate diverse conformers with a lightweight model
and fewer number of reverse diffusion steps. More recent
works, such as Molecular conformer field (MCF) (Wang
et al., 2024) and ET-Flow (Hassan et al., 2024), perform
diffusion or flow-matching directly on the Cartesian coordi-
nates of the atoms. With more scalable transformer architec-
tures, they have achieved the state-of-the-art conformer gen-
eration quality. However, iterative ODE or SDE solving with
large transformer models to generate every conformer can
still be computationally infeasible when the virtual screen-
ing library contains billions of compounds (Bellmann et al.,
2022).

1

Efficient Molecular Conformer Generation with SO(3)-Averaged Flow Matching and Reflow

Figure 1. SO(3)-Averaged Flow and Reflow (a) We illustrate a comparison between our approach Averaged Flow, conditional OT and
Kabsch + Flow. While conditional OT randomly assigns any rotation of the data, Kabsch + Flow assigns the rotation of largest overlap.
Our method instead computes the expected flow across all rotations. (b) Flow trajectory visualization before and after the reflow with 100
Euler steps. The flow trajectories are effectively straightened after reflow. Carbon, hydrogen, oxygen, and nitrogen are colored as black,
gray, red, and blue, respectively.

In this work, we propose a novel flow-matching training ap-
proach to improve the efficiency of deep learning model
training and sampling for molecular conformer genera-
tion. To improve training efficiency, we design a new flow-
matching objective called SO(3)-Averaged Flow (Fig. 1a).
As an objective, Averaged Flow avoids the need to rota-
tionally align prior and data distributions by analytically
computing the averaged probability flow path from the prior
to all the rotations of the data sample. Models trained with
Averaged Flow are experimentally shown to converge faster
to better performance. To improve the sampling efficiency,
we adopt the reflow and distillation technique (Liu et al.,
2022) to straighten the flow trajectories (Fig. 1b). Straight-
ened trajectories enable high quality molecular conformer
generation with few-step or even one-step ODE solving,
thus significantly reducing the computational cost.

Our main contribution can be summarized as follows: (i)
We propose a novel SO(3)-Averaged Flow training objective.
Averaged Flow eliminates the need for rotational alignment
between prior and data by training the model to learn the
average probability path over all rotations of the data. This
leads to faster convergence to better performance for molec-
ular conformer generation, and can be extended to other sim-
ilar tasks. Models trained using Averaged Flow can achieve
state-of-the-art conformer generation quality. (ii) We adopt
reflow and distillation to reduce the number of ODE steps
required for the model to generate high quality conform-
ers. Such technique significantly improves the sampling
efficiency of flow-matching models in molecular conformer
generation. (iii) Both Averaged Flow and reflow+distillation
are model architecture-agnostic, meaning that our proposed
methods can be directly applicable to both equivariant and
non-equivariant neural network architectures.

2. Background and Related Works
2.1. Generative Models for Conformer Generation

The task of molecular conformer generation in its core is
to sample from the intractable conformer distribution con-
ditioned on the 2D molecular graph. Therefore, generative
deep learning models are well-suited for this task, and many
methods have been proposed. Deep learning model are
usually trained on datasets containing molecular conform-
ers generated by CREST (Pracht et al., 2020), which uses
computationally expensive semi-empirical quantum chem-
istry method (Bannwarth et al., 2019) under the hood. The
earliest works in this field use variational autoencoder to gen-
erate intrinsic inter-atomic distance (Simm & Hernández-
Lobato, 2019; Xu et al., 2021). Shi et al. (2021) proposes a
score-matching method that learns the gradient of intrinsic
atom coordinates in molecular graph. Ganea et al. (2021)
addresses molecular conformer generation by designing a
message passing neural network to predict the local 3D
structure and torsion angles. Xu et al. (2022) adopts a diffu-
sion model and equivariant graph neural network to generate
molecular conformers by iteratively denoising the Euclidean
atom coordinates from sampled noise. Besides generating
conformers from scratch, some works focus on optimizing
molecular conformers to lower energy states (Lee et al.,
2024a; Guan et al., 2021). Torsional diffusion (Jing et al.,
2022) reduces the degree-of-freedom by refining the torsion
angles of RDKit-generated (Landrum, 2016) initial conform-
ers with a diffusion process on the hypertorus. Such design
allows torsional diffusion to significantly reduce sampling
steps. One drawback of torsional diffusion is that it relies
on an RDKit-generated conformer as the starting point of
diffusion, which adds computational overhead to the gener-
ation process. The generation quality of RDKit, especially
for atom coordinates in rings, can also impact the sample

2

Efficient Molecular Conformer Generation with SO(3)-Averaged Flow Matching and Reflow

quality of torsional diffusion. Molecular conformer field
(MCF) proposed by Wang et al. (2024) is a recent work
that leverages the scaling power of the transformer architec-
ture (Jaegle et al., 2021) and diffusion model. MCF achieves
state-of-the-art performance in molecular conformer genera-
tion by training models with tens to hundreds million of pa-
rameters to denoise the atoms’ Euclidean coordinates using
DDPM paradigm (Ho et al., 2020). Equivariant Transformer
Flow (ET-Flow) is a concurrent work that trains an equiv-
ariant flow-matching model to generate conformers from a
prior distribution. By combining harmonic prior (Jing et al.,
2023), flow-matching, and Kabsch alignment that reduces
transport cost, ET-Flow is reported to outperform MCF on
several metrics with fewer ODE steps.

Overall, the trade-off between conformer generation quality
and speed is a prevailing issue. Specifically, semi-empirical
quantum chemistry can sample very high-quality conform-
ers at high computational cost. Diffusion or flow-matching
models can generate high-quality conformers but the itera-
tive ODE/SDE solving process can be slow, making them
less practical for large-scale virtual screening. Cheminfor-
matics tools such as RDKit and OMEGA are very fast but
generate conformers with limited diversity.

2.2. Flow-Matching

Averaged Flow is based on Flow Matching (Lipman et al.,
2023; Liu et al., 2023a; Albergo & Vanden-Eijnden, 2023),
which models a probability density path pt(xt) that grad-
ually transforms an analytically tractable noise distribu-
tion (t = 0) into a data distribution (t = 1), following
a time variable t ∈ [0, 1]. Formally, the path pt(xt) corre-
sponds to a flow ψt that pushes samples from p0 to pt via
pt = [ψ]t ∗ p0, where ∗ denotes the push-forward. In prac-
tice, the flow is modeled via an ordinary differential equa-
tion (ODE) dxt = vθt (xt)dt, defined through a learnable
vector field vθt (xt) with parameters θ. Initialized from noise
x0 ∼ p0(x0), this ODE simulates the flow and transforms
noise into approximate data distribution samples. The prob-
ability density path pt(xt) and the (intractable) ground-truth
vector field ut(xt) are related via the continuity equation
dpt(x)/dt = −∇x · (pt(x)ut(x)). To construct pt, Lipman
et al. (2023) introduce a conditional probability pt(x|x1)
and conditional vector field ut(x|x1), both related to their
unconditional counterparts as follow:

pt(x) =

∫
pt(x|x1)q(x1)dx1. (FM6)

ut(x) =

∫
ut(x|x1)

pt(x|x1)q(x1)
pt(x)

dx1 (FM8)

With the following simple choices of conditional probability
and flow

pt(x|x1) = N (x;µt(x1), σ
2
t (x1)) (FM10)

ψt(x) = σt(x1)x+ µt(x1) (FM11)

they prove that

ut(x|x1) =
σ′
t(x1)

σt(x1)
(x− µt(x1)) + µ′

t(x1). (FM15)

It is noteworthy that we refer to the linear interpolant xt =
tx1 − (1− t)x0 between the noise and data distribution as
conditional optimal transport (OT) following Lipman et al.
(2023).

2.3. Techniques to Improve Sampling Efficiency

With the success of denoising diffusion probabilistic mod-
els (Ho et al., 2020), much attention has been drawn to im-
prove the sampling speed of diffusion models. DDIM (Song
et al., 2020) shows that the sampling steps can be signifi-
cantly reduced by formulating the sampling process as ODE
solving. Knowledge distillation techniques (Meng et al.,
2023; Salimans & Ho, 2022; Song et al., 2023; Song &
Dhariwal, 2023) have also been proposed to reduce sam-
pling steps and accelerate generation. Rectified flow (Liu
et al., 2022; Liu, 2022) is a method proposed to train the
model to learn straight probability flow that bridges prior
and data distribution. The reflow technique in rectified flow
can straighten the flow trajectory and reduce the transport
cost, allowing generation in very few steps with high qual-
ity. After reflow, the model can be further distilled to im-
prove one-step generation. The reflow and distillation tech-
nique has been proven effective in enabling few-step or
even single-step text-to-image (Esser et al., 2024; Liu et al.,
2023b) and point cloud (Wu et al., 2023) generation.

3. Method
3.1. SO(3)-Averaged Flow

The concept of Averaged Flow involves recognizing that the
data distribution q may exhibit group symmetries, which
can be explicitly integrated out. A symmetry group G of
q consists of transformations g : x 7→ g · x that leave the
distribution q unchanged, meaning q(x) = q(g · x).

If we focus on Lie groups with a Haar measure (Zee, 2016;
Nachbin & Bechtolsheim, 1965; Chirikjian & Kyatkin,
2000), we can express q as

q(x) =

∫
dx̂ q̂(x̂)

∫
dg δg·x̂(x) (1)

where q̂ represents the distribution over the group orbits,
x̂ is a representative point of the orbit, and the integral
over G uses the Haar measure. By substituting this into
equation FM8, we obtain the vector field:

ut(x) =

∫
dx̂ q̂(x̂)

∫
dg ut(x|g · x̂)

pt(x|g · x̂)
pt(x)

(2)

3

Efficient Molecular Conformer Generation with SO(3)-Averaged Flow Matching and Reflow

Notice that pt(x) =
∫
dx̂ q̂(x̂)

∫
dg pt(x|g · x̂) is the parti-

tion function.

Let’s consider the case of conformer generation:

1. x is a N × 3 matrix representing the 3D coordinates of
N atoms.

2. The group G is the rotation group SO(3). We will use
R to denote the rotation matrix, which acts on x as
x 7→ xRT .

3. The goal is to generate molecular conformers that
correspond to at least local minima in the conforma-
tional energy landscape. The orbits x̂ in this case cor-
respond to the different low-energy conformers of a
given molecule and their permutations that leave the
2D molecular graph invariant. Therefore, the integral∫
dx̂ q̂(x̂) in Eq.2, representing the entire conformer

ensemble, can be written as
∑

x̂∈X q̂(x̂), where X is
the set of conformers and q̂(x̂) is the weight associated
with each conformer.

4. pt(x|x1) is a Gaussian of the form:

pt(x|x1)

∝ exp
(1
2

1

(1− t)2

∑
ijδ

(x− tx1)iδΣij(x− tx1)jδ

)
≡ exp

(1
2

∥x− tx1∥2Σ
(1− t)2

)
where Σ is a RN×N matrix. We will use the notation
∥A∥2Σ = tr(ATΣA).

We can rewrite the vector field ut(x), averaged over all
conformers and the SO(3) group, in this case as:

ut(x) =

1

Zt(x, 0)

∑
x̂∈X

q̂(x̂)

∫
SO(3)

dR
x̂RT − x

1− t
e
− 1

2

∥x−tx̂RT ∥2Σ
(1−t)2

(3)

and define Zt(x, α) as:

Zt(x, α) =
∑
x̂∈X

q̂(x̂)

∫
SO(3)

dR e
− 1

2

∥x−tx̂RT ∥2Σ
(1−t)2

+tr(αT x̂RT)

(4)
where α is an N × 3 matrix that will be needed in the
following steps.

Note ut(x) can be calculated as the derivative of
logZt(x, α) with respect to α, evaluated at α = [0]N×3,

ut(xt) = ([∂α logZt(xt, α)]α=[0]N×3
− xt)/(1− t). (5)

The integral over R can be computed using the formula
from Mohlin et al. (2020), which provides a closed-form

solution for

F 7→ log

∫
SO(3)

dR exp(tr(FRT)) (6)

where F can be any 3 × 3 matrix. We can now
leverage Eq. 6 to solve for logZt(xt, α). Expand-
ing the quadratic term in Eq. 4, − 1

2
∥x−tx̂RT ∥2

Σ

(1−t)2 =

− 1
2
tr(xTΣx)+t2tr(x̂TΣx̂RTR)−2t tr(xTΣx̂RT)

(1−t)2 , we obtain the
following equation:

logZt(x, α) =

log
∑
x̂∈X

q̂(x̂) exp

 log

∫
SO(3)

dRe
tr((αT+ t

(1−t)2
xTΣ)x̂RT)

︸ ︷︷ ︸
closed-form solution using F = αT x̂ + t

(1−t)2
xTΣx̂

−c

(7)

where c = tr(xTΣx)+t2tr(x̂TΣx̂)
2(1−t)2 . Since we will take the

derivative with respect to α to compute ut(x), all terms that
neither depend on α nor R (note that RTR is the identity)
will contribute as multiplicative factors to the integral. Now,
we can plug the analytically solved ∂α logZt(xt, α) into
Eq. 5 to directly learn the SO(3)-Averaged Flow ut(xt)
with:

LAvgFlow(θ) = E
[
∥vθt (xt)− ut(xt)∥2

]
,with t ∈ [0, 1].

(8)

We provide the Python implementation of this formula in
Appendix C.1. While our Averaged Flow implementation is
capable of handling multiple conformer states in the summa-
tion in Eq 7, in practice, we approximate the expectation of
the conformer ensemble by sampling one conformer in each
training epoch. Following previous works (Jing et al., 2022),
q̂(x̂) is taken as a uniform distribution over all conformers.
The computation time benchmark (Table C.2) shows that
only a small overhead is introduced when using the Aver-
aged Flow objective. We empirically find that the choice of
interpolant (xt) during training should depend on the model
architecture. If equivariant neural network is used as vθt , a
linear interpolant (Liu et al., 2022; Lipman et al., 2023)

xt = t · x0 + (1− t) · x1 (9)

can be used. However, if a non-equivariant neural network
is used as vθt , training with Averaged Flow requires the
interpolant to be solved with simulating the probability flow
ODE:

xt = x0 +

∫ t

0

uτ (xτ)dτ (10)

where uτ (·) is the ground-truth Averaged Flow function
(Eq. 5). In practice, we simulate the ODE with fixed 20 Eu-
ler steps to compute xt, which we refer to as the integration
interpolant.

4

Efficient Molecular Conformer Generation with SO(3)-Averaged Flow Matching and Reflow

3.2. Reflow and Distillation

Diffusion and flow-based molecular conformer generation
models typically require hundreds or even thousands of steps
of numerical ODE or SDE solving during the sampling pro-
cess. Such iterative processes add computational overhead
and hinder the adoption of these model in industrial-scale
downstream applications, which require fast generation.
One effective technique to reduce the sampling steps without
significantly sacrificing generation quality is to straighten
the trajectory. Inspired by the success of such technique in
point-cloud generation (Wu et al., 2023) and text-to-image
generation (Esser et al., 2024; Liu et al., 2023b), we finetune
our model vθt , trained with Averaged Flow, using the reflow
algorithm proposed in previous rectified flow works (Liu
et al., 2022; Liu, 2022). Specifically, we first randomly
sample atom coordinates x′0 from standard Gaussian and
generates the corresponding conformer x′1 by simulating the
learned flow with ODE. The coupling (x′0, x

′
1) is then used

in the rectified flow objective to finetune the model:

LReflow(θ) = E
[
∥vθt (x′t, t)− (x′1−x′0)∥2

]
,with t ∈ [0, 1]

(11)
Liu et al. (2022) proved that the coupling (x′0, x

′
1) yields

equal or lower transport cost than (x0, x1), where x0 is
sampled from the noise distribution and x1 from the data
distribution. Therefore, applying the reflow algorithm to
fine-tune model with Eq. 11 can effectively reduce the trans-
port cost and straighten the trajectory.

We empirically find that the transport trajectories bridg-
ing Gaussian noise and molecular conformers demonstrates
high curvature when t is close to 0 (one example shown in
Fig. 1b). Therefore, inspired by Lee et al. (2024b), we sam-
ple t from an exponential distribution with the probability
density function as p(t) ∝ Exp(λt), where λ = −1.2 by
selection to focus the training more on t < 0.5. The distri-
bution of t is visualized in Fig. 7. After reflow, the sampling
speed can be further reduced by distilling the relationship
of the coupling (x′0, x

′
1) into model vθ to enable one-step

transport and eliminate the need of ODE solving. During
the distillation stage, we fine-tune the reflowed model vθ
with the following loss function:

LDistill(θ) = E
[
∥vθt (x′0, 0)− (x′1 − x′0)∥2

]
(12)

which is equivalent to Eq. 11 with t = 0.

3.3. Flow-Matching Model Architecture

To demonstrate that the Averaged Flow training objective
(Eq. 8) is architecture-agnostic, we implemented and trained
two different neural network for flow-matching including (i)
a SE(3)-equivariant graph neural networks (NequIP) which
is modified based from Batzner et al. (2022), and (ii) a
non-equivariant yet highly scalable diffusion transformer

with pairwise bias (DiT). Both model takes in the featurized
molecular graph as input. The featurization details can be
found in Sec. B.2.

For the NequIP model (Fig.5), the features of each atoms
(Z) and bonds (E) are first embedded by the model into
scalar features, along with coordinate of atoms (xt) at given
timestep t. These features are then mixed with the edge
vector through 6 interaction blocks of the model. Finally,
a linear layer is used to make prediction of the vector field
as type l = 1 geometric features. Noteworthy modifica-
tions to the original architecture include incorporating edge
features into the graph convolution layer, adding residual
connections, and equivariant layer normalization to stabilize
training. Our modified NequIP model contains ∼4.7 million
parameters and its details can be found in Sec.A.1.

Algorithm 1 Averaged Flow with Reflow+Distillation Train
Require: Molecule Dataset G = [G0, ..., GD], each with con-

formers XG = [xG,0, ...xG,N]
Require: Learnable Velocity Field Network vθ

1. Base SO(3) Averaged Flow Training
t, x0, G ∼ U(0, 1),N (0, 1),G
x1 ∼ XG

if vθt is equivariant then
xt ← t · x0 + (1− t) · x1 (linear interpolant Eq.9)

else
xt ← x0 +

∫ t

0
uτ (xτ)dτ (integration interpolant Eq.10)

end if
ut(xt)← Solve closed-form Eq. 5 for xt and t
Gradient Step -∥vθt (xt|G)− ut(xt)∥2
2. Reflow
x′
0 ∼ N (0, 1)

x′
1 ∼ ODESolve

(
vθt (·|G), x′

0

)
Finetune model with coupled pair (x′

0, x
′
1) through Eq. 11

3. Distillation
Train model with coupled pair (x′

0, x
′
1) through Eq. 12

Our DiT model (Fig. 6) is based on Diffusion Transform-
ers (Peebles & Xie, 2023). To include the critical covalent
bond information and add extra structural details, a pairwise
representation is constructed using the pairwise distances
between atoms and bond features, and is used to inject ad-
ditional learnable bias in the attention mechanism. This
design is inspired by AlphaFold3 (Abramson et al., 2024)
and has proven highly effective in the protein generation
task (Geffner et al., 2025). Our DiT model contains ∼52
million parameters. We also trained a slightly larger vari-
ant of it, DiT-L, which contains ∼64 million parameters
to match the size of a baseline MCF (Wang et al., 2024).
Details of our DiT models can be found in Sec.A.2. Both
model are trained and fine-tuned using Averaged Flow +
reflow + distillation following the Algorithm 1. Details of
model training and sampling are included in Sec. B.3.

5

Efficient Molecular Conformer Generation with SO(3)-Averaged Flow Matching and Reflow

Figure 2. Comparison between training objectives. Both (a) NequIP and (b) DiT model trained with Averaged Flow consistently
converge to better performance on a 300-molecule GEOM-Drugs test subset. The other two objectives we compared Averaged Flow to
are: (i) Conditional OT and (ii) Kabsch alignment of noise x0 with conformer x1 before conditional OT (Hassan et al., 2024).

4. Experiments
Following previous works, we train and evaluate our model
on the GEOM-QM9 and GEOM-Drugs datasets (Axelrod &
Gomez-Bombarelli, 2022). We follow the splitting strategy
proposed by Ganea et al. (2021); Jing et al. (2022), and test
our model on the same test set containing 1000 molecules
for both QM9 and Drugs datasets. Dataset and splitting de-
tails are included in Sec. B.1. The major model evaluation
metrics are the average minimum RMSD (AMR, the lower
the better) and coverage (COV, the higher the better). Both
AMR and coverage are reported for precision (AMR-P and
COV-P) and recall (AMR-R and COV-R). The definition
of metrics are specified in Sec.B.6. Intuitively, coverage
measures the percentage of ground truth conformers that
are generated (recall) or the percentage of generated con-
formers that are close enough to ground truth (precision),
while AMR measures the average RMSD between each
ground truth and its closest generated conformer (recall), or
vice versa (precision). There are three types of baselines
in this work: (a) methods with fast inference speed such
as cheminformatics tools (RDKit, OMEGA) and regression
model GeoMol (Ganea et al., 2021); (b) lightweight dif-
fusion models with reduced degree-of-freedom (Torsional
Diffusion); and (c) large transformer-based diffusion or
flow-based model operating on Euclidean atomistic coor-
dinates (MCF and ET-Flow). It is worth mentioning that
MCF has three variants, with number of parameters ranging
from 13 to 242 millions. MCF uses DDPM sampler for full
SDE simulation and DDIM sampler for few-step genera-
tion. ET-Flow has two variants: ET-Flow and ET-Flow-SS.
The former is shown to produce better few-step generation
quality, while the latter is shown to have better generation

quality with more simulation steps. Moreover, to fairly
validate the effectiveness of the Averaged Flow objective,
we compare the performance of both the NequIP and DiT
architectures (architecture details in Appendix A) trained
with different objectives on the Drugs dataset. Similarly, we
compare the performance of the NequIP architecture before
and after reflow+distillation to show the necessity of reflow
for few-step generation.

4.1. Averaged Flow Leads to Faster Convergence to
Better Performance

To showcase the advantage of the Averaged Flow over other
training objectives, we evaluate the performance of mod-
els trained on different objectives using a randomly sam-
pled GEOM-Drugs test subset containing 300 molecules.
The two other objectives compared are conditional OT and
Kabsch alignment. The Kabsch alignment objective is to
rotationally align the sampled noise x0 with conformer x1
before training with the conditional OT objective. Mod-
els are evaluated every 8 epochs of training starting from
4 to 100 epochs. Fig. 2 demonstrates that both models
trained with Averaged Flow are consistently better than
those trained with conditional OT and Kabsch alignment on
all four metrics.

With only 68 epochs of training, AvgFlowNequIP has COV-
R higher and AMR-R lower than the same architecture
trained with the other two objectives for 100 epochs
(Fig.2a). The COV-P (49.3%) and AMR-P (0.831Å) of
AvgFlowNequIP trained for 52 epochs are better than those
of Cond. OTNequIP (COV-P = 49.1% and AMR-P =
0.832Å) trained for 100 epochs. Also, AvgFlowNequIP

outperforms KabschNequIP trained for 100 epochs on

6

Efficient Molecular Conformer Generation with SO(3)-Averaged Flow Matching and Reflow

AMR-P (AvgFlowNequIP = 0.814Å and KabschNequIP

= 0.815Å) and on COV-P (AvgFlowNequIP = 50.9% and
KabschNequIP = 50.5%) after 76 and 84 epochs, respec-
tively.

The benefit of Averaged Flow is more significant with the
non-equivariant DiT architecture (Fig.2b). AvgFlowDiT

trained for only 12 epochs has better performance on all met-
rics than KabschDiT trained for 100 epochs. Compared to
Cond. OTDiT trained for 100 epochs, AvgFlowDiT achieves
better performance on precision metrics after 36 epochs of
training and on recall metrics after 52 epochs of training.
Overall, models trained with Averaged Flow converge in
fewer epochs to better performance in molecular conformer
generation.

4.2. GEOM-QM9

Table 1. GEOM-QM9 Benchmark. Quality of generated con-
former ensembles for GEOM-QM9 (δ = 0.5Å) test set in terms
of Coverage (COV) and Average Minimum RMSD (AMR). Best
scores are bold and second best underlined. Baseline values are
taken from the corresponding papers.

COV-R (%)↑ AMR-R (Å)↓ COV-P (%)↑ AMR-P (Å)↓
Model Mean Med Mean Med Mean Med Mean Med

Full Simulation and Non-diffusion/flow Baselines
RDKit 85.1 100 0.235 0.199 86.8 100 0.232 0.205
OMEGA 85.5 100 0.177 0.126 82.9 100 0.224 0.186
GeoMol 91.5 100 0.225 0.193 87.6 100 0.27 0.241
Tor. Diff. 92.8 100 0.178 0.147 92.7 100 0.221 0.195
ET-Flow-SS (8.3M) 95.0 100 0.083 0.035 91.0 100 0.116 0.047
MCF-B (64M) 95.0 100 0.103 0.044 93.7 100 0.119 0.055
AvgFlowNequIP (4.7M) 96.4 100 0.089 0.042 92.8 100 0.132 0.084
AvgFlowDiT (52M) 96.0 100 0.082 0.030 95.0 100 0.088 0.039

Two-step Generation
AvgFlowNequIP-R (4.7M) 95.9 100 0.151 0.104 87.7 100 0.236 0.207

One-step Generation
AvgFlowNequIP-D (4.7M) 95.1 100 0.220 0.195 84.8 100 0.304 0.283

On the GEOM-QM9 dataset, we compare our model
with two widely used cheminformatics tools: RDKit and
OMEGA1, along with GeoMol (Ganea et al., 2021), Tor-
sional Diffusion (Jing et al., 2022), ET-Flow-SS (Has-
san et al., 2024), and MCF (Wang et al., 2024). We de-
note our NequIP model trained with Averaged Flow as
AvgFlowNequIP and the DiT model as AvgFlowDiT. The
model finetuned with reflow and distillation are denoted
as AvgFlowarchitecture-R and AvgFlowarchitecture-D, respec-
tively. Table. 1 shows that AvgFlowNequIP outperforms all
other models in the COV-R metrics and nearly matches the
AMR-R of ET-Flow-SS, indicating it is capable of gener-
ating very diverse conformers on the GEOM-QM9 dataset.
The AvgFlowDiT model establishes a new state-of-the-art
on the GEOM-QM9 dataset by outperforming all baselines
in all metrics. More importantly, the AvgFlowNequIP-R
and AvgFlowNequIP-D achieve higher COV-R than other
models with only 2-step and 1-step ODE sampling, respec-
tively. AvgFlowNequIP-R also outperforms all cheminfor-
matics tools and GeoMol in all metrics. The benchmark
on GEOM-QM9 shows that our model can achieve state-of-

1Results adopted from (Jing et al., 2022)

the-art conformer generation performance on smaller scale
molecules. Table. 1 also shows that reflow and distillation
can effectively maintain the conformer generation quality
of flow-based model with only 1 or 2 steps of ODE solving.

4.3. GEOM-Drugs
We then train and benchmark our models on GEOM-Drugs,
which is a larger dataset containing conformers of drug-like
molecules. The top section of Table 2 shows a compari-
son between our models and all baselines with full simu-
lation (no SDE/ODE step limit). AvgFlowNequIP demon-
strates good performance on GEOM-Drugs by outperform-
ing torsional diffusion on all metrics. Compared with
MCF-S which has approximately 3 times more parameters,
AvgFlowNequIP achieves better COV-P and AMR-P, indi-
cating more conformers generated by AvgFlowNequIP are
close to ground truth conformers. With a more scalable and
expressive architecture, AvgFlowDiT achieves performance
on par with both MCF and ET-Flow-SS in full simulation
conformer generation. Specifically, it outperforms MCF in
precision metrics and surpasses ET-Flow-SS in recall met-
rics. Moreover, when scaled up to the sames number of pa-
rameters as MCF-B (64M), AvgFlowDiT-L outperforms all
MCF variants in precision metrics and MCF-B in AMR-R.
AvgFlowDiT-L also outperforms ET-Flow-SS in all metrics
except only for AMR-P.

In the lower two sections of Table 2, we demonstrate the
two-step and one-step generation benchmarks of our mod-
els, MCF, and ET-Flow. AvgFlowNequIP-R (two-step) can
outperform cheminformatics tools and GeoMol on all met-
rics, with a large margin specifically on the recall metrics.
AvgFlowDiT-R outperforms all baselines in coverage metrics
of two-step generation. Most notably, our AvgFlowDiT-D
significantly outperforms all baselines by a wide margin
in one-step generation, thanks to the straightened trajec-
tory (Fig. 8). We want to emphasize that it surpasses 20
steps of Tor. Diff. with one-shot generation, despite Tor.
Diff. starting generation with RDKit-generated conformers.
Furthermore, AvgFlowDiT-D (one-step) outperforms MCF-S
(1000 steps full SDE simulation) across all precision metrics
and exceeds the performance of all MCF and ET-Flow (two-
step) models in the coverage metrics. Overall, the training
strategy combining Averaged Flow with reflow and distilla-
tion enables a scalable transformer-based architecture like
DiT to achieve exceptional one-shot conformer generation
quality and diversity. More visualizations of generated con-
formers and ODE trajectories before and after reflow and
distillation are included in Fig. 8. The exceptional one-step
generation quality of AvgFlowDiT-D pushes the limit of the
quality-speed trade-off in molecular conformer generation,
giving it the potential to be adopted for large-scale virtual
screen use cases.

7

Efficient Molecular Conformer Generation with SO(3)-Averaged Flow Matching and Reflow

Table 2. GEOM-Drugs Benchmark. Quality of generated conformer ensembles for GEOM-DRUGS (δ = 0.75Å) test set in terms of
Coverage (COV) and Average Minimum RMSD (AMR). Best scores are bold and second best underlined. Baseline values are taken from
the corresponding papers. *Due to the use of adaptive step size, the number of steps of AvgFlowNequIP is an average value over all test set
molecules.

COV-R (%) ↑ AMR-R (Å) ↓ COV-P (%) ↑ AMR-P (Å) ↓
Method Step Mean Med Mean Med Mean Med Mean Med

Full Simulation and Non-diffusion/flow Baselines
RDKit - 38.4 28.6 1.058 1.002 40.9 30.8 0.995 0.895
OMEGA - 53.4 54.6 0.841 0.762 40.5 33.3 0.946 0.854
GeoMol - 44.6 41.4 0.875 0.834 43.0 36.4 0.928 0.841
Tor. Diff. 20 72.7 80.0 0.582 0.565 55.2 56.9 0.778 0.729
ET-Flow-SS (8.3M) 50 79.6 84.6 0.439 0.406 75.2 81.7 0.517 0.442
MCF-S (13M) 1000 79.4 87.5 0.512 0.492 57.4 57.6 0.761 0.715
MCF-B (64M) 1000 84.0 91.5 0.427 0.402 64.0 66.2 0.667 0.605
MCF-L (242M) 1000 84.7 92.2 0.390 0.247 66.8 71.3 0.618 0.530
AvgFlowNequIP (4.7M) 102* 76.8 83.6 0.523 0.511 60.6 63.5 0.706 0.670
AvgFlowDiT (52M) 100 82.0 86.7 0.428 0.401 72.9 78.4 0.566 0.506
AvgFlowDiT-L (64M) 100 82.0 87.3 0.409 0.381 75.7 81.9 0.516 0.456

Two-step Generation
MCF-B (64M) 2 46.7 42.4 0.790 0.791 21.5 13.2 1.155 1.160
MCF-L (242M) 2 54.2 54.4 0.752 0.746 25.7 18.8 1.119 1.115
ET-Flow (8.3M) 2 73.2 76.6 0.577 0.563 63.8 67.9 0.681 0.643
AvgFlowNequIP-R (4.7M) 2 64.2 67.7 0.663 0.661 43.1 38.9 0.871 0.853
AvgFlowDiT-R (52M) 2 75.7 81.8 0.545 0.533 57.2 59.0 0.748 0.705

One-step Generation
MCF-B (64M) 1 22.1 6.9 0.962 0.967 7.6 1.5 1.535 1.541
MCF-L (242M) 1 27.2 13.6 0.932 0.928 8.9 2.9 1.511 1.514
ET-Flow (8.3M) 1 27.6 8.8 0.996 1.006 25.7 5.8 0.939 0.929
AvgFlowNequIP-D (4.7M) 1 55.6 56.8 0.739 0.734 36.4 30.5 0.912 0.888
AvgFlowDiT-D (52M) 1 76.8 82.8 0.548 0.541 61.0 64.0 0.720 0.675

4.4. When is Reflow Really Necessary?
From the benchmark results on GEOM-Drugs and GEOM-
QM9, we understand that our models after reflow/distilla-
tion can achieve better performance than cheminformatics
methods on all metrics. However, it is evident that the
models’ performance drops after reflow especially for the
precision metrics. Flow-matching models generally have
high generation quality with fewer steps compared to de-
noising diffusion models (Lipman et al., 2023), thanks to
the ODE sampling process. In this section, we are trying
to answer the question: when is reflow really necessary to
generate high-quality molecular conformers? We address
this question with a case study of the NequIP model.

Fig. 3 shows the the performance of our NequIP model
using Euler solver with number of steps Nstep ∈
{1, 2, 3, 5, 10, 20, 50, 100}. The performance of the mod-
els is evaluated with the same four metrics on a subset of
the GEOM-Drugs test set containing 300 molecules. Over-
all, AvgFlowNequIP performs better when Nstep ≥ 10 than
AvgFlowNequIP-R. When Nstep < 10, the performance of
AvgFlowNequIP starts to collapse and eventually reaches 0%
coverage for both recall and precision when Nstep = 1.

Figure 3. Effect of the number of ODE steps on model’s perfor-
mance. Comparison between the performance of AvgFlowNequIP

before and after reflow with different number of ODE steps.

The performance gap becomes significant for all metrics
when Nstep < 5. AvgFlowNequIP-R, on the other hand, has

8

Efficient Molecular Conformer Generation with SO(3)-Averaged Flow Matching and Reflow

minimal loss in performance until Nstep = 2 due to the
straightened flow trajectory. However, the one-step genera-
tion quality of the model still suffers even after reflow. Dis-
tillation can effectively reduce the RMSD of one-step gen-
erated conformers and improve both the COV-R and COV-P.
In summary, reflow is critical when generating molecular
conformers with very few ODE steps (Nstep < 5).

4.5. Sampling Time
To demonstrate the sampling efficiency of our model, we
first compare the single function call wall-clock time of
our model with several strong baselines. Fig. 4 shows
that both AvgFlowNequIP and AvgFlowDiT are significantly
faster than other baselines models in terms of function call
time. AvgFlowDiT-L with 64M parameters is comparable
to MCF-S and slightly faster than ET-Flow. The major
speed-up of the our model is due to the JAX implementa-
tion and a smaller number of parameters (NequIP). Table 6
show that the average sampling time of AvgFlowNequIP-R
(2 steps) for each conformer in the GEOM-Drugs test set
is 2.68 microseconds, which is 21 to 50× faster than dif-
ferent variants of MCF sampled with DDIM for 3 steps. It
is also 48× faster than torsional diffusion sampled with 5
steps. Meanwhile, AvgFlowNequIP-R (2 steps) outperforms
torsional diffusion and MCF-S (3 steps) by a large mar-
gin with only a fraction of the sampling time. Moreover,
AvgFlowDiT-D is faster than the MCF variants (3 steps) with
better generation performance in all metrics. AvgFlowDiT-D
also has better recall metrics performance than ET-Flow (2
steps) with ∼3× faster sampling. With reflow/distillation
finetuning that ensures high-quality generation with only
2 or even 1 ODE step, our models achieve extraordinary
sampling efficiency.

Figure 4. Single function call wall-clock time comparison.

5. Conclusion
We have presented SO(3)-Averaged Flow as a new objective
to accelerate the training of flow-matching models for molec-
ular conformer generation. Averaged Flow leads to faster
convergence and better performance compared with condi-
tional OT and Kabsch alignment. The Averaged Flow objec-
tive can also be extended to other applications when the “cor-

rectness” of generated samples is invariant to rotation (e.g.
protein structure generation). The effectiveness of Averaged
Flow objective is architecture-agnostic, meaning that it can
be applied to both equivariant and non-equivariant architec-
tures, as demonstrated through experiments. We have also
applied the reflow and distillation techniques to straighten
the flow trajectory and enable few-step or even one-step
molecular conformer generation. Our models reach state-
of-the-art performance on the GEOM-QM9 dataset. Our
AvgFlowDiT model matches the performance of other strong
baselines and our AvgFlowDiT-L model achieves state-of-
the-art precision metrics performance on the GEOM-Drugs
dataset. By analyzing the effect of number of ODE steps
on model generation quality, we find that reflow and distil-
lation are necessary when few-step (Nstep < 5) conformer
generation is desired. Most importantly, our AvgFlowDiT-D
model significantly outperforms both diffusion/flow-based
and cheminformatic baselines in one-step conformer gen-
eration. Combining efficient implementation and one-step
generation capability, our method sheds light on the path
toward highly efficient yet accurate conformer generation
using flow-based generative models. Overall, our method
bridges the gap between diffusion/flow-based models and
practical molecular conformer generation application by
pushing the boundary of quality-speed trade-off.

Impact Statement
The method proposed in this work improves the training
and sampling efficiency of flow-based molecular conformer
generation models, advancing the application of deep gen-
erative model in the field of computational chemistry and
drug discovery. The Averaged Flow objective bears broader
impact of improving flow-based models for other similar
applications such as protein design. Direct consequences of
our work include more accurate molecular property predic-
tion and faster compound virtual screening, which lead to
societal impacts like accelerated drug discovery and molec-
ular design for environmental purpose.

9

Efficient Molecular Conformer Generation with SO(3)-Averaged Flow Matching and Reflow

References
Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T.,

Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J.,
Bambrick, J., et al. Accurate structure prediction of
biomolecular interactions with alphafold 3. Nature, 630
(8016):493–500, 2024.

Albergo, M. S. and Vanden-Eijnden, E. Building normaliz-
ing flows with stochastic interpolants. In The Eleventh
International Conference on Learning Representations
(ICLR), 2023.

Axelrod, S. and Gomez-Bombarelli, R. Geom, energy-
annotated molecular conformations for property predic-
tion and molecular generation. Scientific Data, 9(1):185,
2022.

Bannwarth, C., Ehlert, S., and Grimme, S. Gfn2-xtb—an
accurate and broadly parametrized self-consistent tight-
binding quantum chemical method with multipole elec-
trostatics and density-dependent dispersion contributions.
Journal of chemical theory and computation, 15(3):1652–
1671, 2019.

Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa,
J. P., Kornbluth, M., Molinari, N., Smidt, T. E., and
Kozinsky, B. E (3)-equivariant graph neural networks for
data-efficient and accurate interatomic potentials. Nature
communications, 13(1):2453, 2022.

Bellmann, L., Penner, P., Gastreich, M., and Rarey, M. Com-
parison of combinatorial fragment spaces and its applica-
tion to ultralarge make-on-demand compound catalogs.
Journal of Chemical Information and Modeling, 62(3):
553–566, 2022.

Chirikjian, G. S. and Kyatkin, A. B. Engineering applica-
tions of noncommutative harmonic analysis: with empha-
sis on rotation and motion groups. CRC press, 2000.

Darcet, T., Oquab, M., Mairal, J., and Bojanowski, P.
Vision transformers need registers. arXiv preprint
arXiv:2309.16588, 2023.

Dehghani, M., Djolonga, J., Mustafa, B., Padlewski, P.,
Heek, J., Gilmer, J., Steiner, A. P., Caron, M., Geirhos,
R., Alabdulmohsin, I., et al. Scaling vision transformers
to 22 billion parameters. In International Conference on
Machine Learning, pp. 7480–7512. PMLR, 2023.

Dwivedi, V. P., Joshi, C. K., Luu, A. T., Laurent, T., Ben-
gio, Y., and Bresson, X. Benchmarking graph neural
networks. Journal of Machine Learning Research, 24
(43):1–48, 2023.

Esser, P., Kulal, S., Blattmann, A., Entezari, R., Müller, J.,
Saini, H., Levi, Y., Lorenz, D., Sauer, A., Boesel, F., et al.

Scaling rectified flow transformers for high-resolution
image synthesis. In Forty-first International Conference
on Machine Learning, 2024.

Ganea, O., Pattanaik, L., Coley, C., Barzilay, R., Jensen,
K., Green, W., and Jaakkola, T. Geomol: Torsional geo-
metric generation of molecular 3d conformer ensembles.
Advances in Neural Information Processing Systems, 34:
13757–13769, 2021.

Geffner, T., Didi, K., Zhang, Z., Reidenbach, D., Cao, Z.,
Yim, J., Geiger, M., Dallago, C., Kucukbenli, E., Vahdat,
A., et al. Proteina: Scaling flow-based protein structure
generative models. arXiv preprint arXiv:2503.00710,
2025.

Geiger, M. and Smidt, T. e3nn: Euclidean neural net-
works, 2022. URL https://arxiv.org/abs/
2207.09453.

Geiger, M., Smidt, T., M., A., Miller, B. K., Boomsma,
W., Dice, B., Lapchevskyi, K., Weiler, M., Tyszkiewicz,
M., Batzner, S., Madisetti, D., Uhrin, M., Frellsen,
J., Jung, N., Sanborn, S., Wen, M., Rackers, J., Rød,
M., and Bailey, M. Euclidean neural networks: e3nn,
April 2022. URL https://doi.org/10.5281/
zenodo.6459381.

Grimme, S. Exploration of chemical compound, conformer,
and reaction space with meta-dynamics simulations based
on tight-binding quantum chemical calculations. Journal
of chemical theory and computation, 15(5):2847–2862,
2019.

Guan, J., Qian, W. W., Ma, W.-Y., Ma, J., and Peng, J.
Energy-inspired molecular conformation optimization.
In international conference on learning representations,
2021.

Guimarães, C. R., Mathiowetz, A. M., Shalaeva, M., Goetz,
G., and Liras, S. Use of 3d properties to characterize
beyond rule-of-5 property space for passive permeation.
Journal of chemical information and modeling, 52(4):
882–890, 2012.

Hassan, M., Shenoy, N., Lee, J., Stärk, H., Thaler, S., and
Beaini, D. Et-flow: Equivariant flow-matching for molec-
ular conformer generation. Advances in Neural Informa-
tion Processing Systems, 37:128798–128824, 2024.

Hawkins, P. C. Conformation generation: the state of the
art. Journal of chemical information and modeling, 57
(8):1747–1756, 2017.

Hawkins, P. C., Skillman, A. G., Warren, G. L., Elling-
son, B. A., and Stahl, M. T. Conformer generation with
omega: algorithm and validation using high quality struc-
tures from the protein databank and cambridge structural

10

https://arxiv.org/abs/2207.09453
https://arxiv.org/abs/2207.09453
https://doi.org/10.5281/zenodo.6459381
https://doi.org/10.5281/zenodo.6459381

Efficient Molecular Conformer Generation with SO(3)-Averaged Flow Matching and Reflow

database. Journal of chemical information and modeling,
50(4):572–584, 2010.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840–6851, 2020.

Jaegle, A., Borgeaud, S., Alayrac, J.-B., Doersch, C.,
Ionescu, C., Ding, D., Koppula, S., Zoran, D., Brock,
A., Shelhamer, E., et al. Perceiver io: A general archi-
tecture for structured inputs & outputs. arXiv preprint
arXiv:2107.14795, 2021.

Jing, B., Corso, G., Chang, J., Barzilay, R., and Jaakkola, T.
Torsional diffusion for molecular conformer generation.
Advances in Neural Information Processing Systems, 35:
24240–24253, 2022.

Jing, B., Erives, E., Pao-Huang, P., Corso, G., Berger, B.,
and Jaakkola, T. Eigenfold: Generative protein struc-
ture prediction with diffusion models. arXiv preprint
arXiv:2304.02198, 2023.

Landrum, G. Rdkit: open-source cheminformatics
http://www. rdkit. org. Google Scholar There is no corre-
sponding record for this reference, 3(8), 2016.

Lee, D., Lee, D., Bang, D., and Kim, S. Disco: Diffusion
schrödinger bridge for molecular conformer optimiza-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 13365–13373, 2024a.

Lee, S., Lin, Z., and Fanti, G. Improving the training of rec-
tified flows. Advances in neural information processing
systems, 37:63082–63109, 2024b.

Liao, Y.-L., Wood, B., Das, A., and Smidt, T. Equiformerv2:
Improved equivariant transformer for scaling to higher-
degree representations. arXiv preprint arXiv:2306.12059,
2023.

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and
Le, M. Flow matching for generative modeling. In The
Eleventh International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/
forum?id=PqvMRDCJT9t.

Liu, Q. Rectified flow: A marginal preserving approach
to optimal transport. arXiv preprint arXiv:2209.14577,
2022.

Liu, X., Gong, C., and Liu, Q. Flow straight and fast:
Learning to generate and transfer data with rectified flow.
arXiv preprint arXiv:2209.03003, 2022.

Liu, X., Gong, C., and qiang liu. Flow straight and fast:
Learning to generate and transfer data with rectified flow.
In The Eleventh International Conference on Learning
Representations (ICLR), 2023a.

Liu, X., Zhang, X., Ma, J., Peng, J., et al. Instaflow: One
step is enough for high-quality diffusion-based text-to-
image generation. In The Twelfth International Confer-
ence on Learning Representations, 2023b.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Luo, S., Shi, C., Xu, M., and Tang, J. Predicting molecular
conformation via dynamic graph score matching. Ad-
vances in Neural Information Processing Systems, 34:
19784–19795, 2021.

Meng, C., Rombach, R., Gao, R., Kingma, D., Ermon,
S., Ho, J., and Salimans, T. On distillation of guided
diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
14297–14306, 2023.

Mohlin, D., Sullivan, J., and Bianchi, G. Proba-
bilistic orientation estimation with matrix fisher
distributions. In Larochelle, H., Ranzato, M., Had-
sell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems, vol-
ume 33, pp. 4884–4893. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
33cc2b872dfe481abef0f61af181dfcf-Paper.
pdf.

Nachbin, L. and Bechtolsheim, L. The haar integral. (No
Title), 1965.

Peebles, W. and Xie, S. Scalable diffusion models with
transformers. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pp. 4195–4205,
2023.

Pracht, P., Bohle, F., and Grimme, S. Automated explo-
ration of the low-energy chemical space with fast quan-
tum chemical methods. Physical Chemistry Chemical
Physics, 22(14):7169–7192, 2020.

Rush, T. S., Grant, J. A., Mosyak, L., and Nicholls, A. A
shape-based 3-d scaffold hopping method and its applica-
tion to a bacterial protein- protein interaction. Journal of
medicinal chemistry, 48(5):1489–1495, 2005.

Salimans, T. and Ho, J. Progressive distillation for
fast sampling of diffusion models. arXiv preprint
arXiv:2202.00512, 2022.

Schwab, C. H. Conformations and 3d pharmacophore
searching. Drug Discovery Today: Technologies, 7(4):
e245–e253, 2010.

11

https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=PqvMRDCJT9t
https://proceedings.neurips.cc/paper_files/paper/2020/file/33cc2b872dfe481abef0f61af181dfcf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/33cc2b872dfe481abef0f61af181dfcf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/33cc2b872dfe481abef0f61af181dfcf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/33cc2b872dfe481abef0f61af181dfcf-Paper.pdf

Efficient Molecular Conformer Generation with SO(3)-Averaged Flow Matching and Reflow

Shi, C., Luo, S., Xu, M., and Tang, J. Learning gradient
fields for molecular conformation generation. In Interna-
tional conference on machine learning, pp. 9558–9568.
PMLR, 2021.

Shim, J. and MacKerell Jr, A. D. Computational ligand-
based rational design: role of conformational sampling
and force fields in model development. MedChemComm,
2(5):356–370, 2011.

Simm, G. N. and Hernández-Lobato, J. M. A generative
model for molecular distance geometry. arXiv preprint
arXiv:1909.11459, 2019.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. arXiv preprint arXiv:2010.02502, 2020.

Song, Y. and Dhariwal, P. Improved techniques for training
consistency models. arXiv preprint arXiv:2310.14189,
2023.

Song, Y., Dhariwal, P., Chen, M., and Sutskever, I. Consis-
tency models. arXiv preprint arXiv:2303.01469, 2023.

Trott, O. and Olson, A. J. Autodock vina: improving the
speed and accuracy of docking with a new scoring func-
tion, efficient optimization, and multithreading. Journal
of computational chemistry, 31(2):455–461, 2010.

Tsitouras, C. Runge–kutta pairs of order 5 (4) satisfying
only the first column simplifying assumption. Computers
& Mathematics with Applications, 62(2):770–775, 2011.

Wang, Y., Elhag, A. A., Jaitly, N., Susskind, J. M., and
Bautista, M. Á. Swallowing the bitter pill: Simplified
scalable conformer generation. In Forty-first Interna-
tional Conference on Machine Learning, 2024.

Weininger, D. Smiles, a chemical language and information
system. 1. introduction to methodology and encoding
rules. Journal of chemical information and computer
sciences, 28(1):31–36, 1988.

Wu, L., Wang, D., Gong, C., Liu, X., Xiong, Y., Ranjan, R.,
Krishnamoorthi, R., Chandra, V., and Liu, Q. Fast point
cloud generation with straight flows. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pp. 9445–9454, 2023.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Ef-
ficient streaming language models with attention sinks.
arXiv preprint arXiv:2309.17453, 2023.

Xu, M., Wang, W., Luo, S., Shi, C., Bengio, Y., Gomez-
Bombarelli, R., and Tang, J. An end-to-end framework for
molecular conformation generation via bilevel program-
ming. In International conference on machine learning,
pp. 11537–11547. PMLR, 2021.

Xu, M., Yu, L., Song, Y., Shi, C., Ermon, S., and Tang, J.
Geodiff: A geometric diffusion model for molecular con-
formation generation. arXiv preprint arXiv:2203.02923,
2022.

Zee, A. Group theory in a nutshell for physicists, volume 17.
Princeton University Press, 2016.

Zhu, J., Xia, Y., Liu, C., Wu, L., Xie, S., Wang, Y., Wang,
T., Qin, T., Zhou, W., Li, H., et al. Direct molecular con-
formation generation. arXiv preprint arXiv:2202.01356,
2022.

12

Efficient Molecular Conformer Generation with SO(3)-Averaged Flow Matching and Reflow

Appendix
A. Details of Model Architectures
A.1. Modified NequIP Architecture

The equivariant model used in this work is a modified variant (Fig. 5) of the NequIP model (Batzner et al., 2022). The model
takes 5 inputs including the atomic features Z, coordinate of atoms xt, relative distance vector between atoms r⃗, edge (bond)
features E, and the flow-matching timestep t. The output model is a vector field corresponding to the probability flow at
t. Compared to the original NequIP model, our variant has residue connection and equivariant layer normalization (Liao
et al., 2023) after each interaction block, which we found to be highly effective in stabilizing the training of model with
more than 4 layers. Bond information in the 2D molecular graph is critical inductive bias for the molecular conformer
generation task. To add bond information into the model, we featurize the edges in the molecular graph and concatenate the
edge features E with the radial basis embedding of relative distance vector r⃗. The concatenated message is then fed into the
rotationally invariant radial function implemented as an multi-layer perceptron. To keep long-range information in the graph
convolution during intermediate time-step t, we remove the envelop function from the radial basis and keep only the radial
Bessel function.

For both the GEOM-Drugs and GEOM-QM9 dataset, we train a model with 6 interaction blocks. The multiplicity is set to
96 and maximum order of irreps l is 2. The radial function MLP has 2 layers and hidden dimension of 256. Molecular graph
are fully-connected with non-bond as an specified bond type. The relative distance vectors are scaled down by a soft cutoff
distance of 10Å and 20Å for QM9 and Drugs dataset, respectively. we used 12 Bessel radial basis functions in the model.
The model is implemented using e3nn-jax (Geiger & Smidt, 2022; Geiger et al., 2022).

(a) (b) (c)

 ×

(Z, x𝑡), 𝑡 (r𝑡 , E)

𝑣 𝑡

𝑙 = 0, 1, 2 (r𝑡 , E)

(Z, x𝑡), 𝑡

×

𝑙 = 0, 1, 2 r𝑡

𝑌
(𝑙)

E

Figure 5. Modified NequIP model architecture (a) Overview of the modified NequIP architecture for the flow vector field prediction. (b)
Details of the interaction block, where atomic features are mixed and refined with relative distance vectors r⃗ and edge features E. (c) In
the convolution block, a learnable radial function MLP incorporate basis embedding of r⃗ and edge features E. Tensor product is used to
combine the output of the MLP and the spherical harmonics Y (l)

m projection of r⃗.

A.2. DiT Architecture

The diffusion transformer (Peebles & Xie, 2023) is a powerful yet scalable architecture for generative modeling. Inspired by
recent successes of such architecture in protein structure prediction (Abramson et al., 2024) and generation(Geffner et al.,
2025), we implemented the diffusion with pairwise attention bias (DiT) model and modified it specifically for molecular
conformer generation task. Fig. 6 shows a schematic of the model and the details of the main trunk of the architecture.
Besides the adaptive bias and scaling used in standard diffusion transformer, we also added: (i) auxiliary register tokens (Xiao
et al., 2023; Darcet et al., 2023) and (ii) QK normalization (Dehghani et al., 2023) for the training stability. The inputs to
the model are the same input features to the NequIP model. The atomic features Z are concatenated with the coordinate
of atoms xt and project to atomic representation of each atom. A sinusoidal embedding of the timestep t is used as the
condition embedding. The pairwise distance ∥⃗r∥ between atoms and the bond features E, which is embedded from 5 bond

13

Efficient Molecular Conformer Generation with SO(3)-Averaged Flow Matching and Reflow

types Sec.B.2, are used to construct a pairwise representation, which is then injected as bias into the attention. Gating
mechanism applied over the output of attention block to control the update of the atomic representation. In this work, we
trained two variants of the DiT model: DiT (52M params.) and DiT-L (64M params.). The hyperparameters of the two
variants are tabulated in Table. 3.

(a) (b)

×

×

 𝑣 𝑡

(Z, x𝑡) 𝑡
(r𝑡 , E)

 ×

Figure 6. DiT model architecture. (a) The overview of DiT. (b) The details of the adaptive multi-head attention with pairwise bias and
adaptive transition block.

Table 3. Hyperparameters for the architecture of the DiT models.
Model DiT DiT-L

Architecture Component
initialization random random
atomic repr. dim 512 576
register tokens 10 10
cond. dim 512 196
t sinusoidal enc dim 512 196
pair repr. dim 128 128
attention heads 8 12
transformer layers 8 10
trainable parameters 52M 64M

14

Efficient Molecular Conformer Generation with SO(3)-Averaged Flow Matching and Reflow

B. Experiments Details
B.1. Datasets

The dataset we train and benchmark our model on are GEOM-Drugs and GEOM-QM9(Axelrod & Gomez-Bombarelli,
2022). We follow the exact splitting defined and used in previous works (Ganea et al., 2021; Jing et al., 2022; Wang et al.,
2024). The train/val/test set of GEOM-Drugs contains 243473/30433/1000 molecules, respectively. The train/val/test set of
GEOM-QM9 contains 106586/13323/1000 molecules, respectively.

B.2. Molecular Graph Featurization

We followed the atomic featurization from GeoMol (Ganea et al., 2021). Details of the atomic featurization are included
in Table. 4. Graph Laplacian positional encoding vector (Dwivedi et al., 2023) with size of 32 is concatenated with the
atomic features for each atom in molecular graph to form the final atomic feature vector Z. The edge features is the one-hot
encoding of the bond types: {No Bond, Single Bond, Double Bond, Triple Bond, Aromatic Bond}.

Table 4. Atomic features as input to the model

Name Description Range

atom type Atom type One-hot encoding of the atom type
degree Number of bonded neighbors {x : 0 ≤ x ≤ 6, x ∈ Z}
charge Formal charge of atom {x : −1 ≤ x ≤ 1, x ∈ Z}
valence Implicit valence of atom {x : 0 ≤ x ≤ 6, x ∈ Z}
hybridization Hybridization type {sp, sp2, sp3, sp3d, sp3d2, other}
chirality Chirality Tag {unspecified, tetrahedral CW, tetrahedral CCW, other}
num H Total number of hydrogens {x : 0 ≤ x ≤ 8, x ∈ Z}
aromatic Whether on aromatic ring {True, False}
num rings Number of rings the atom on {x : 0 ≤ x ≤ 3, x ∈ Z}
ring size 3-8 Whether on ring size of 3-8 {True, False}

B.3. Training and Sampling Details

B.3.1. NEQUIP TRAINING AND SAMPLING

The NequIP model is trained with the Averaged Flow for 990 epochs on the GEOM-Drugs dataset and 1500 epochs on the
GEOM-QM9 dataset using 2 NVIDIA A5880 GPUs. We used dynamic graph batching to maixmize the utilization of GPU
memory and reduce JAX compilation time. The effective average batch size is 208 and 416 for Drugs and QM9 dataset,
respectively. We used Adam optimizer with learning rate of 1e−2, which decays to 5e−3 after 600 epochs and to 1e−3
after 850 epochs. We selected the top-30 conformers for model training.

To sample coupled (x′0, x
′
1) for reflow and distillation, we generate 32 noise-sample pairs for each molecule in the Drugs and

64 for each molecule in the QM9 dataset. The reflow and distillation are done using 4 NVIDIA A100 GPUs and doubling
the effective batch size of each dataset. During the reflow stage, the model is finetuned for 870 epochs on Drugs and 1530
epochs on QM9. We used Adam optimizer with learning rate of 5e−3, which decays to 2.5e−3 after 450 epochs for Drugs
(500 epochs for QM9), and to 5e−4 after 650 epochs for Drugs (900 epochs for QM9). During the distillation stage, the
model is finetuned for 450 epochs on Drugs and 1200 epochs on QM9. We used Adam optimizer with learning rate of 2e−3,
which decays to 1e−3 after 300 epochs for Drugs (500 epochs for QM9), and to 2e−4 after 450 epochs for Drugs (900
epochs for QM9). We used exponential moving average (EMA) with a decay of 0.999 for all Averaged Flow, reflow, and
distillation training.

To generate the benchmark results of AvgFlowNequIP (Table. 1 and Table. 2), we use the Tsitouras’ 5/4 solver (Tsitouras,
2011) implemented in the diffrax package with adaptive stepping. The relative tolerance and absolute tolerance are set
to 1e−5 and 1e−6 when sampling for GEOM-Drugs, respectively. The relative tolerance and absolute tolerance are both set
to 1e−5 when sampling for GEOM-QM9. Euler solver is always used for AvgFlowNequIP-R and AvgFlowNequIP-D. When
comparing the effect of ODE steps to models, Euler solver is used.

15

Efficient Molecular Conformer Generation with SO(3)-Averaged Flow Matching and Reflow

B.3.2. DIT TRAINING AND SAMPLING

We trained 2 variants of the DiT model, DiT (52M) and DiT-L (64M), using Averaged Flow. We used the cosine learning
rate decay with warm-up steps for learning adjustment and AdamW optimizer (Loshchilov & Hutter, 2017). The details
of hyperparameters in training are tabulated in Table. 5. Due to computational cost, we only did reflow and distillation
finetuning of the 52M DiT model on the GEOM-Drugs dataset. 32 noise-sample pairs were generated for each molecule in
the Drugs using 100 Euler steps to construct the reflow/distillation dataset. We used EMA with a decay of 0.999 for all
Averaged Flow, reflow, and distillation training. We used 100 Euler steps to generate conformers for all benchmarks of
AvgFlowDiT.

Table 5. Hyperparameters for DiT models training.
Model DiT (GEOM-Drugs) DiT-L (GEOM-Drugs) DiT (GEOM-QM9)

Training Details
train epochs 760 900 900
batch size per GPU 64 64 256
GPUs 8 8 2
GPU name NVIDIA A100 NVIDIA A100 NVIDIA A5880
optimizer AdamW AdamW AdamW
init learning rate 1e−6 1e−6 1e−6
peak learning rate 2e−4 2e−4 2e−4
warm-up steps 10k 10k 10k
cosine lr decay steps 1M 1M 1M
ending learning rate 1e−6 1e−6 1e−6
reflow epochs 260 - -
reflow peak learning rate 1e−4 - -
distill epochs 130 - -
distill peak learning rate 5e−5 - -

B.4. Chirality Correction

A simple post-hoc chirality correction step is used during sampling. When the conformer of a molecule that contains at
least 1 chiral center atom is generated, we use RDKit (Landrum, 2016) to perform the chirality correction withe following
steps: (i) Given a Mol object with generated conformer, re-assign chiral tag to atoms. (ii) Obtain the the canonical
SMILES (Weininger, 1988) of the Mol object and compare it to the original canonical SMILES. (iii) If there is a mismatch
of the two canonical SMILES strings, we mirror the generated conformer. The post-hoc chirality correct is a simple, fast,
and end-to-end solution to the rare chirality mismatch during generation.

B.5. Distribution of t during Reflow

Figure 7. The distribution of t during reflow

The distribution of t during reflow is sampled from p(t) ∝ Exp(λt), where λ = −1.2. The distribution is visualized in
Fig. 7.

16

Efficient Molecular Conformer Generation with SO(3)-Averaged Flow Matching and Reflow

B.6. Evaluation Metrics

We report the average minimum RMSD (AMR) between ground truth and generated structures, and Coverage for Recall and
Precision. Coverage is defined as the percentage of conformers with a minimum error under a specified AMR threshold.
Recall matches each ground truth structure to its closest generated structure, and Precision measures the overall spatial
accuracy of the each generated structure. Following Ganea et al. (2021); Jing et al. (2022), we generate two times the number
of ground truth structures for each molecule. More formally, for K = 2L, let {C∗

l }l∈[1,L] and {Ck}k∈[1,K] respectively be
the sets of ground truth and generated structures:

COV-Precision :=
1

K

∣∣∣∣{k ∈ [1..K] : minl∈[1..L] RMSD(Ck, C
∗
l) < δ}

∣∣∣∣,
AMR-Precision :=

1

K

∑
k∈[1..K]

minl∈[1..L] RMSD(Ck, C
∗
l),

(13)

where δ is the coverage threshold. δ is set to 0.75Å for the Drugs and 0.5Å for the QM9 dataset. The recall metrics are
obtained by swapping ground truth (K) and generated conformers (L) in the above equations.

B.7. ODE Trajectory Visualization

In this section, we visualize the ODE trajectory of a few selected test set molecules. For each molecule, the 100-steps ODE
trajectory of the AvgFlowDiT model before reflow is shown as orange curves, and the 1-step trajectory of the AvgFlowDiT-D
model after reflow+distillation is shown as green curves.

B.8. More Comparison of Few-step Generation Performance

Here we provide compare the inference time of models on few-step generation while maintaining reasonable generation
quality.

Table 6. Sampling time and performance comparison between models for few-step sampling. In this table, we record the sampling
time of baselines and our models with the minimum number of steps to generate reasonably good conformers. Mean are reported for all
metrics. Bold results are the best.

Method Step Time (ms) ↓ COV-R (%) ↑ AMR-R (Å) ↓ COV-P (%) ↑ AMR-P (Å) ↓
Tor. Diff. 5 128 58.4 0.691 36.4 0.973
ET-Flow 5 106 77.8 0.476 74.0 0.550
ET-Flow 2 42.8 73.2 0.577 63.8 0.681
MCF-S 3 57.3 56.9 0.725 30.8 1.014
MCF-B 3 102 66.5 0.665 39.9 0.951
MCF-L 3 134 71.6 0.636 45.3 0.686

AvgFlowNequIP-R 2 2.68 64.2 0.663 43.1 0.871
AvgFlowDiT-D 1 14.6 76.8 0.548 61.0 0.720

17

Efficient Molecular Conformer Generation with SO(3)-Averaged Flow Matching and Reflow

100-steps AvgFlow 1-step after distillation

100-steps AvgFlow 1-step after distillation

Brc1cc2c(cc1-c1nc3ccccc3s1)OCO2

Brc1cc2c(cc1CN1CCN(c3ccccc3)CC1)OCCO2

100-steps AvgFlow 1-step after distillation

C#CCN1c2ccccc2Sc2cccnc21

100-steps AvgFlow 1-step after distillation

C#CCOC(=O)Nc1ccc(=O)n(Cc2c(Cl)cccc2Cl)c1(d)

(c)

(b)

(a)

Figure 8. Comparison between ODE trajectories. Visualization of selected generated conformers (SMILES attached) and the ODE
trajectories. Orange trajectories are from AvgFlowDiT before reflow, and green trajectories are from AvgFlowDiT-D after reflow+distillation.
Carbon atoms are colored as black, hydrogen as gray, oxygen as red, nitrogen as blue, sulfur as yellow, clorine as green, and boron as
pink.

18

Efficient Molecular Conformer Generation with SO(3)-Averaged Flow Matching and Reflow

C. Averaged Flow Details
C.1. Python Implementation

In this section, we provide the Python implementation of the Averaged Flow training objective as supplmentary information
to Sec.3.1.

Listing 1. Averaged Flow
def avg_harmonic_flow(

t: jax.Array, # []
x: jax.Array, # [num_nodes, 3]
x1: jax.Array, # [num_conformers, num_nodes, 3]
edges: jax.Array, # [2, num_edges]
weights: jax.Array | None = None, # [num_conformers]
sigma0: jax.Array = 1.0,
sigma1: jax.Array = 0.0,

) -> jax.Array:
degree = jnp.bincount(edges[0], length=x.shape[0])

def metric(x, y):
x and y have shape [num_nodes]
sigma_t = (1 - t) * sigma0 + t * sigma1
laplacian = (

jnp.sum(degree * x * y)
- jnp.sum(x[edges[0]] * y[edges[1]])
- jnp.sum(x[edges[1]] * y[edges[0]])

)
return laplacian / sigma_t**2

avg_x1 = avg_target(x, x1, t, metric, weights)

return (avg_x1 - x) / (1 - t)

def avg_flow(
t: jax.Array, # []
x: jax.Array, # [num_nodes, 3]
x1: jax.Array, # [num_conformers, num_nodes, 3]
weights: jax.Array | None = None, # [num_conformers]
sigma0: jax.Array = 1.0,
sigma1: jax.Array = 0.0,

) -> jax.Array:
def metric(x, y):

x and y have shape [num_nodes]
sigma_t = (1 - t) * sigma0 + t * sigma1
return jnp.dot(x, y) / sigma_t**2

avg_x1 = avg_target(x, x1, t, metric, weights)

return (avg_x1 - x) / (1 - t)

def avg_target(
x: jax.Array, # [n, 3]
targets: jax.Array, # [num_targets, n, 3]
t: jax.Array, # []
metric: Callable[[jax.Array, jax.Array], jax.Array],
weights: jax.Array | None = None, # [num_targets]

) -> jax.Array:
num_targets, n, _ = targets.shape
assert x.shape == (n, 3)
assert targets.shape == (num_targets, n, 3)
assert t.shape == ()

def outer(u, v): # [n, 3] x [n, 3] -> [3, 3]
return jax.vmap(jax.vmap(metric, (None, -1)), (-1, None))(u, v)

def inner(u, v): # [n, 3] x [n, 3] -> []
return jnp.sum(jax.vmap(metric, (-1, -1))(u, v))

def logZ(alpha): # [n, 3] -> []
def f(target): # [n, 3] -> []

return (
logcF(t * outer(target, x) + target.T @ alpha)
- (inner(x, x) + t**2 * inner(target, target)) / 2

)

return logsumexp(jax.vmap(f)(targets), weights)

return jax.grad(logZ)(jnp.zeros_like(x))

def logsumexp(a: jax.Array, weights: jax.Array | None = None) -> jax.Array:
assert a.ndim == 1
assert weights is None or weights.shape == a.shape
where = (weights > 0) if weights is not None else None

amax = jnp.max(a, where=where, initial=-jnp.inf)

19

Efficient Molecular Conformer Generation with SO(3)-Averaged Flow Matching and Reflow

amax = jax.lax.stop_gradient(
jax.lax.select(jnp.isfinite(amax), amax, jax.lax.full_like(amax, 0))

)
if where is not None:

a = jnp.where(where, a, amax)
exp_a = jax.lax.exp(jax.lax.sub(a, amax))
if weights is not None:

exp_a = exp_a * weights
sumexp = exp_a.sum(where=where)
return jax.lax.add(jax.lax.log(sumexp), amax)

All the code below is adapted from a PyTorch code from David Mohlin, Gerald Bianchi and Josephine Sullivan

def logcF(F: jax.Array) -> jax.Array:
\log \int_{SO(3)} \exp(\text{tr}(FˆT R)) dR
assert F.shape == (3, 3)
return logcf(*signed_svdvals(F))

def signed_svdvals(F: jax.Array) -> jax.Array:
u, s, vh = jnp.linalg.svd(F, full_matrices=False)
u, vh = jax.lax.stop_gradient((u, vh))
sign = jnp.sign(jnp.linalg.det(u @ vh))
return s.at[-1].mul(sign)

@jax.custom_vjp
def logcf(s1: jax.Array, s2: jax.Array, s3: jax.Array) -> jax.Array:

assume s1 >= s2 >= s3
s1, s2, s3 = jnp.asarray(s1), jnp.asarray(s2), jnp.asarray(s3)
return s1 + s2 + s3 + jnp.log(factor(False, s1, s2, s3))

def _logcf_fwd(
s1: jax.Array, s2: jax.Array, s3: jax.Array

) -> tuple[jax.Array, tuple[jax.Array, jax.Array]]:
s1 >= s2 >= s3
f = factor(False, s1, s2, s3)
return s1 + s2 + s3 + jnp.log(f), (s1, s2, s3, f)

def _logcf_bwd(res: tuple[jax.Array, ...], grad: jax.Array) -> tuple[jax.Array]:
s1, s2, s3, f = res
s1 >= s2 >= s3
assert s1.shape == ()
assert f.shape == ()
assert grad.shape == ()
g1 = grad * factor(True, s1, s2, s3) / f
g2 = grad * factor(True, s2, s1, s3) / f
g3 = grad * factor(True, s3, s1, s2) / f
return g1, g2, g3

logcf.defvjp(_logcf_fwd, _logcf_bwd)

def factor(add_x: bool, s1: jax.Array, s2: jax.Array, s3: jax.Array) -> jax.Array:
def f(x):

i0 = (1.0 - 2 * x) if add_x else 1.0
i1 = bessel0((s2 - s3) * x)
i2 = bessel0((s2 + s3) * (1 - x))
return i0 * i1 * i2

tiny = jnp.finfo(s1.dtype).tiny
a = 2 * (s3 + s1)

a non zero:
a_ = jnp.maximum(a, 0.5)
y = jnp.linspace(tiny + jnp.exp(-a_), 1.0, 512)
r1 = jnp.trapezoid(jax.vmap(f)(-jnp.log(y) / a_), y) / a_

a (close to) zero:
x = jnp.linspace(0.0, 1.0, 512, dtype=s1.dtype)
r2 = jnp.trapezoid(jax.vmap(f)(x) * jnp.exp(-a * x), x)

return jnp.where(a > 1.0, r1, r2)

def bessel0(x: jax.Array) -> jax.Array:
p = [1.0, 3.5156229, 3.0899424, 1.2067492, 0.2659732, 0.360768e-1, 0.45813e-2]
bessel0_a = jnp.array(p[::-1], dtype=x.dtype)

p = [0.39894228, 0.1328592e-1, 0.225319e-2, -0.157565e-2, 0.916281e-2]
p += [-0.2057706e-1, 0.2635537e-1, -0.1647633e-1, 0.392377e-2]
bessel0_b = jnp.array(p[::-1], dtype=x.dtype)

abs_x = jnp.abs(x)
x_lim = 3.75

def w(x, y):
return jnp.where(abs_x <= x_lim, x, y)

20

Efficient Molecular Conformer Generation with SO(3)-Averaged Flow Matching and Reflow

abs_x_ = w(x_lim, abs_x)

return w(
jnp.polyval(bessel0_a, w(abs_x / x_lim, 1.0) ** 2) * jnp.exp(-abs_x),
jnp.polyval(bessel0_b, w(1.0, x_lim / abs_x_)) / jnp.sqrt(abs_x_),

)

C.2. Speed Benchmark

We benchmarked the time used by our Python implementation to solve the Averaged Flow objective for batched graphs.
Each graph is set to have 50 nodes (the average number of atoms in GEOM-Drugs molecules is 44). The benchmark is done
on a single NVIDIA A5880 GPU.

Table 7. Computation time of Averaged Flow on batched graphs (50 nodes per graph). Unit is in ms. Nbatch is the number of graphs in a
batch and Nconformer is number of conformers used in Averaged Flow solving.

Nbatch

Nconformer

1 10 100 1000
1 0.6 0.5 0.5 0.6
10 0.5 0.5 0.6 1.0
100 0.5 0.6 1.1 7.6
1000 0.5 0.9 7.5 73.5

21

