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ABSTRACT

Previous electroencephalogram (EEG) models typically exhibit limited perfor-
mance and generalization by collecting data specifically for targeted EEG tasks.
Recognizing this limitation, we propose UniEEG, the first electrode-wise time-
frequency pretraining model, designed to overcome barriers across diverse tasks
and data in EEG modeling. We collect data from nearly 20 publicly available
EEG datasets, including 6 EEG tasks, significantly extending the data volume.
The collected EEG data are standardized and split to individual electrodes as the
input of UniEEG, enabling full compatibility with diverse EEG data from dif-
ferent acquisition devices and task paradigms. Meanwhile, leveraging a time-
frequency transform method, UniEEG adeptly processes EEG signals charac-
terized by signal noises and time delays. In the training phase, we employ
an encoder-decoder architecture and a mask signal modeling strategy on time-
frequency dimension, learning the electrode-wise universal EEG representation.
In the fine-tuning phase, multi-electrode EEG signals from various tasks are con-
solidated into individual electrodes. The predictions for downstream tasks are then
obtained through the pre-trained encoder and an additional prediction module.
Furthermore, the proposed UniEEG achieves state-of-the-art performance across
different EEG tasks, demonstrating an amazing ability to universal EEG feature
representation. Code, data and models would be available upon acceptance.

1 INTRODUCTION

2 INTRODUCTION

Electroencephalogram (EEG) signals are recorded by placing multiple electrodes at different loca-
tions on the scalp, capturing temporal fluctuations in voltage that reflect underlying brain activity.
EEG has the advantages of non-invasive, multi-channel recording and high temporal resolution,
and has been applied in many fields such as brain computer interface Wang et al. (2006); Li et al.
(2012); Zhang et al. (2015), cognition Li et al. (2016), sentiment analysis Koelstra et al. (2012);
Zheng & Lu (2015), motor imagery Cho et al. (2017); Schalk et al. (2004) and so on. With the
development of deep learning, EEG processing methodology is evolved to CNN Cecotti & Graeser
(2008), RNN Tsiouris et al. (2018), Transformer Sun et al. (2021b); Xie et al. (2022a) methods, etc.
Meanwhile, the recent success of pre-training models on natural language processing Devlin et al.
(2018); Radford et al. (2018); Touvron et al. (2023) and computer visionRadford et al. (2021); He
et al. (2022); Oquab et al. (2023); Kirillov et al. (2023); Li et al. (2023b); Liu et al. (2023); Zhang
et al. (2023) , which capture a universal representation with large-scale unlabeled data and the rep-
resentation can be adapted to various downstream tasks, inspires the emergence of EEG pretraining
models, which would hopefully revolutionize the brain-interface field and community.

However, the construction of EEG pretraining models continues to face challenges. The challenges
can be summarized as following:

1) Limited Data Availability. EEG data collection is challenging, requiring specialized equip-
ment and expertise. Annotating and segmenting data is time-consuming, resulting in small labeled
datasets for specific tasks. The scarcity of labeled data hinders the training of effective pretraining
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Figure 1: Comparison between previous training paradigm and UniEEG. Compared to previous
task-specific EEG paradigms focus on single dataset or task, UniEEG adopts cross-dataset electrode-
wise pretraining to extend data volume and enhance universal representation. For specific tasks,
UniEEG finetunes its pretrained encoder to the particular dataset, offering a more versatile and
efficient approach to EEG data analysis.

models, limiting their generalization. Therefore, it is necessary to explore strategies for utilizing
large-scale unlabeled EEG data, potentially incorporating semi-supervised or unsupervised learning
methods.

2) Diverse EEG Data Configurations. Different EEG acquisition setups, electrode configurations,
and experimental paradigms lead to diverse data formats. Handling varied EEG data formats is
crucial for compatibility with the pretraining models. Therefore, it is important to standardize or
preprocess diverse EEG data formats or unify EEG experimental paradigms, ensuring consistency
in input units for effective pretraining.

3) Ineffective Representation Learning Paradigms. EEG signals often exhibit a low signal-to-
noise ratio (SNR), and various noise types pose challenges in representation learning. Current rep-
resentation learning paradigms(CNN, RNN, and Transformer) may face challenges in addressing
diverse EEG characteristics effectively. How to adjust these learning paradigms for EEG data, cap-
turing effectively information and reducing the influence of low SNR and diverse noise types, needs
further consideration.

Therefore, the key to establishing an effective EEG pre-training model lies in designing a sensible
data format and learning paradigm that is “Universal” on data, tasks and paradigms.

To address these challenges, we propose UniEEG, the first electrode-wise time-frequency pre-
training model, aiming to fully leverage the existing EEG data and generate a universal EEG rep-
resentation from time-frequency EEG signals. We introduce the following strategies: 1) Extend
the data volume. The acquisition of EEG data is both costly and intricate, making it impractical
for researchers to amass extensive pretraining datasets. Despite the relatively modest scale of indi-
vidual tasks within the disclosed EEG data, the cumulative dataset size is substantial, aligning well
with the requirements for pretraining at scale. Therefore, we gathered an extensive array of publicly
available EEG datasets (18 EEG datasets on 6 tasks), effectively augmenting the overall data vol-
ume (about 2M samples). 2) Standardize diverse EEG data formats. Although the experimental
paradigms show significant differences, the basic unit of the EEG signal is the electrode. Therefore,
we explore the feasibility of employing a single electrode as the input for our model to overcome the
challenge of non-generic data across different experimental paradigms. This approach dismantles
the non-generic barrier between EEG signals of different paradigms. 3) Construct effective rep-
resentation learning paradigms. Since EEG has the characteristics of low signal-to-noise ratio,
large randomness and time delay, we believe that simple temporal EEG signals are not enough for
feature extraction and semantic analysis. In this paper, we exploit time-frequency analysis methods
like continuous wavelet transform (CWT) to obtain time-frequency features of EEG, as the input
of the model. We introduce an encoder-decoder architecture to extract semantic information and
reconstruct the time-frequency EEG, learning the universal EEG representation with self-supervised
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paradigm. Following MAE He et al. (2022), we pretrain the UniEEG with masked signal modeling
strategy for learning effective feature representation.

To summarize, our contributions are as follows:

• We introduce UniEEG, the pioneering electrode-wise time-frequency pre-training model
for EEG signals, which focuses on capturing the universal representational of EEG signals
and serves as a valuable pretraining model for a spectrum of downstream EEG tasks.

• We present an expanded EEG dataset that gathers data from nearly 20 publicly available
EEG datasets. The dataset standardizes EEG into an electrode-wise time-frequency repre-
sentation, addressing compatibility challenges across EEG data and tasks during pretrain-
ing.

• We design an encoder-decoder architecture and a mask signal modeling strategy on time-
frequency dimension, learning the electrode-wise universal EEG representation.

• We conducted a thorough and systematic study of EEG pre-training and downstream tasks.
The proposed UniEEG significantly improves the performance on various EEG tasks and
shows a strong ability on universal EEG feature representation.

3 RELATED WORK

3.1 EEG CLASSIFICATION

The end-to-end EEG classification Li et al. (2019); Song et al. (2018); Ding et al. (2022); Li et al.
(2022); Altaheri et al. (2022); Du et al. (2023); Zhang et al. (2022); Li et al. (2023a); Yang et al.
(2023); Tabar & Halici (2016); Yao et al. (2018); Bashivan et al. (2015) aims to directly processes
raw EEG data to perform a specific classification task, where the labels are usually defined as the
category of the stimula, like motor imagery or image-based EEG classification.

Schirrmeister et al. Schirrmeister et al. (2017a) attempt to exploit CNN and propose Shallow Con-
vNet, Deep ConvNet, and Hybrid ConvNet to encode the EEG signal for classification. To fully
leverage the spatial domain correlations within EEG signal channels, Sun et al. Sun et al. (2021a)
establish a trainable adaptive matrix and introduce adaptive spatio-temporal graph convolutional net-
works (ASTGCN). Ingolfsson et al. Ingolfsson et al. (2020) propose EEG-TCNet to further utilizes
depthwise convolution and separable convolution techniques to embed the signal, gaining promis-
ing results. Li et al. Li et al. (2020) employ the methodology of attention mechanism and propose
a multi-scale fusion convolutional neural network (MS-AMF). Furthermore, Fan et al. Fan et al.
(2021) introduce a newly designed attention module (3D-AM) to automatically learn the impor-
tance of different electrodes, time points, and feature maps. Most recently, Luo et al. Luo et al.
(2023) propose a dual-branch spatio-Temporal-Spectral transformer, which concurrently extracts
distinctive features from EEG signals in both the spatial-temporal and spectral-temporal domains.
The works Yao et al. (2018); Bashivan et al. (2015) further introduce antoencoders to model the
EEG representation.

The previous arts are well-designed architecture and achieve promising results for specific tasks.
However, the specific architecture makes it difficult to generalize in other paradigms. A unified
architecture is required to create a universal representation for EEG signals, which is the main focus
of our work.

3.2 MASKED SIGNAL MODELING

Masked Signal Modeling (MSM) has recently achieved great success in natural language processing
Devlin et al. (2018) and computer vision He et al. (2022); Xie et al. (2022b); Wei et al. (2022).
It functions as a generalized denoising autoencoder, which reconstructs the original data from a
portion of the input sentence. For example, Bert Devlin et al. (2018) proposes to mask and predict
the language words and MAE He et al. (2022) proposes to mask and reconstruct the image patches.
Most close to our work is SC-MBM Chen et al. (2023), which introduces sparse-coded masked
brain modeling to mask and construct the fMRI data. However, there are no evidence to validate the
effectiveness of MSM in EEG signal, which is the main focus of our work.
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Figure 2: The overall architecture of UniEEG. (1) Pretraining. UniEEG consists of two compo-
nents: a UniEEG Encoder that maps the observed time-frequency signal to a latent representation
and a UniEEG Decoder that reconstructs the original signal from the latent representation. In the
UniEEG Encoder, mask signal modeling strategy is employed on time-frequency dimension. A
subset of observed single-channel signals without mask tokens pass the encoder while the UniEEG
Decoder reconstructs the original signal from the latent representations and additional mask tokens.
(2) Finetuning. We first extract signal features for each channel and then perform aggregation (1D
convolution) along the EEG channel dimension to fuse the different channels. A classification head
is then employed to get the predictions, which takes the flattened convolutional features as input.
Note that the pretraining process is executed with a single EEG channel, while during finetuning
period all of the channels should be utilized.

3.3 PRETRAINING MODELS

Benefiting from the great performance and generalization of large pretraining models, the natural
language processing tasks Devlin et al. (2018); Radford et al. (2018); Touvron et al. (2023) and
computer vision tasks Oquab et al. (2023); Kirillov et al. (2023); Radford et al. (2021); Li et al.
(2023b); Liu et al. (2023); Zhang et al. (2023) have achieved a great boost in recent years. These
pretraining methods, which are usually based on transformer Vaswani et al. (2017), enhance the
reasoning ability of models to a large extent with the utilization large-scale data and model capacity.
Inspired by them, the proposed UniEEG pretrains the EEG model with large-scale data to generate
a universal representation. We hope that such cross-time, cross-space and cross-disciplinary EEG
pretraining model could have an important research value and significance for the study and analysis
of EEG signals.

4 METHOD

In this paper, we propose UniEEG, the first electrode-wise EEG pretraining model for universal
time-frequence representation. To implement the proposed method, we collect and preprocess over
20 EEG datasets to construct a large-scale universal single electrode time-frequency EEG dataset.

4.1 PRETRAINING DATA COLLECTION AND PREPROCESS

4.1.1 EEG DATA COLLECTION

To prepare our model for EEG data analysis, we have gathered numerous publicly accessible EEG
datasets and transformed them into a time-frequency format. Our universal EEG dataset comprises
18 EEG datasets that cover 6 tasks, which include: 1) Sentiment Analysis Koelstra et al. (2012);
Zheng & Lu (2015): using EEG data to identify and evaluate the emotional state of an individual; 2)
Music Imagery Daly et al. (2019): studying and analyzing the electrical activity of the brain while
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a person imagines or mentally processes music; 3) Event-Related Potential (ERP) Chavarriaga &
Millán (2010): analyzing the brain’s electrical activity in response to specific events or stimuli, such
as visual, auditory, or sensory stimuli. 4) Motor ImageryBrunner et al. (2008); Steyrl et al. (2014);
Leeb et al. (2008); Cho et al. (2017); Schalk et al. (2004); Luciw et al. (2014); Kaya et al. (2018);
Schirrmeister et al. (2017b); Bhatt (2012); Dornhege et al. (2004): referring to the mental simulation
or visualization of specific motor movements or actions without physically performing them. 5)
Image-based EEG Classification Gifford et al. (2022); Grootswagers et al. (2022); Spampinato et al.
(2017): using EEG data to classify images or other visual stimuli. 6) Speech Imagery Classification
Nguyen et al. (2017): using EEG data to categorize or classify different aspects of speech without
physically hearing them. More information on these tasks can be found in the Appendix.

4.1.2 DATA PREPROCESS

The primary challenge in preprocessing large-scale EEG signals is the variation in collection param-
eters (sampling frequency and numbers of electrodes) on different datasets with different collection
paradigms.

First, the time-domain EEG signals are transformed into the time-frequency domain using Continu-
ous Wavelet Transform (CWT). Then we apply simple filtering to the signal by removing frequencies
below 2Hz or above 50Hz.

During pre-training, we should consider the differences in channel numbers (the number of elec-
trodes) and data length (collection time) for different collection paradigms. Previous works Alotaiby
et al. (2015); Jiao et al. (2020) have found that there are commonalities between the EEG represen-
tations of multiple channels caused by the signal acquisition principle. These representations could
be modelled in a similar way even if the channels are different. Thus we split each channel of EEG
data and treat them as independent samples. For data length, following Jiao et al. (2020), we have
a crop step before resizing. We first randomly crop the input signal to a random duration along the
time dimension and then resize it. In this way, the model could see input signals with flexible length,
which could achieve better results on data of most lengths It should be mentioned that when per-
forming downstream tasks, the data in different channels are not divided but aggregated by a fusion
operation, and the data length is only resized to the preset dimension in the pretraining period.

Further, considering the variation of sampling rate in different datasets, we re-sample the raw EEG
data to 100Hz, where we employ linear interpolation for upsampling and uniform sampling for
downsampling. Considering the information redundancy in time-series signal, the data loss caused
by the sampling is acceptable on semantic analysis. Moreover, we exploit time-frequency signal as
input, which introduces additional frequency information and compensates for this loss.

4.2 ARCHITECTURE AND PRETRAINING OF UNIEEG

To capture the universal representation for EEG signals, we propose UniEEG, an electrode-wise
time-frequency pretraining model, which aims to capture the universal EEG representations in spite
of various stimuli.

The general architecture of our proposed UniEEG is shown in Fig.2, which consists of two compo-
nents: a UniEEG Encoder that maps the observed time-frequency signal to a latent representation
and a UniEEG Decoder that reconstructs the original signal from the latent representation. Following
He et al. (2022), the UniEEG Encoder is designed to operate only on a subset of observed single-
channel signals without mask tokens while the UniEEG Decoder constructs the original signal from
the latent representations and additional mask tokens.

After preprocessing, a time-frequency signal E has size of F × S × 1, where F represents the fre-
quency range and S represents the number of sampling points. As a placeholder, the last dimension
1 is set to match visual images. In this section, the signal is treated as an image, where the pixel
value in (h,w) represents the energy value of the signal in frequency h ∈ F and sampling point
w ∈ S.
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Table 1: Comparisons with SOTA. We show the performance on different datasets for different
tasks. From left to right, the tasks are: sentiment analysis (SA), motor imagery (MI), image-based
EEG classification (IEC) and speech-based EEG classification (SEC). Note that we only report the
results with only EEG as the input and only report the holdout validation results (compared with
leave-one-subject-out validation) for fairness.

Method
SA MI IEC SEC

SEED
Neuro-

Marketing
DEAP MIBCI

Grasp
and Lift

Motor
Imagery

BCI
III 4A

BCI
IV 2A

BCI
IV 2B

Ger+
Aus

EEG-Based
Visual

Speech
Imagery

Zheng & Lu (2015) Yadava et al. (2017) Koelstra et al. (2012) Cho et al. (2017) Kaggle (2021) Kaya et al. (2018) Dornhege et al. (2004) Brunner et al. (2008) Leeb et al. (2008) Gifford et al. (2022) Grootswagers et al. (2022) Spampinato et al. (2017) Nguyen et al. (2017)

SOTA 93.46Gupta et al. (2019) 70.0Yadava et al. (2017) 90.7Bazgir et al. (2018) - 98.1Kaggle (2021) - 74.28Dornhege et al. (2004) 78.82Temiyasathit et al. (2014) 78.93Lee & Choi (2018) - 82.9Spampinato et al. (2017) -
Image-wise AEYao et al. (2018) 84.21 70.59 81.34 76.45 89.29 49.89 63.19 75.17 77.34 17.69 84.38 49.70
ConvNetBashivan et al. (2015) 86.30 76.82 80.4 69.2 90.03 49.84 64.32 69.74 82.10 20.43 85.23 55.20

Ours w/o pretraining 91.76 81.95 79.34 68.94 98.21 46.8 75.01 80.74 81.69 18.48 83.16 56.47
Ours 93.85 83.71 92.88 79.63 98.5 59.20 78.64 82.35 82.26 22.59 84.53 59.78

4.2.1 UNIEEG ENCODER

We first divide E into regular non-overlapping patches. Then we randomly sample the patches in
a percentage of R and mask the remaining ones, which are subsequently embedded by a linear
projection layer with added positional embeddings. Just as in a standard MAE, the masked patches
are removed and no mask tokens are used, which enable the expansion of encoder with limited cost
of compute and memory. The embedded signal patches are then passed as input to self-attention
layers, resulting in the latent representations of EEG signals.

4.2.2 UNIEEG DECODER

We then exploit a UniEEG Decoder to reconstruct the original signal from the encoded unmasked
signal patches and added mask tokens. Inspired from Devlin et al. (2018), the mask token is a
learnable embedding with the same size as the encoded signal patch, which indicates the place
where the original patch has been masked and removed. The encoded unmasked patches are placed
in their original location in the whole signal. These masked and unmasked patches, added with
positional embeddings, are passed as input to another attention layers to generate the original signal.
The reconstruction targets of UniEEG Decoder are the pixel values of each masked patch.

The overall loss of the pretraining process is the mean squared error of pixel values between the
reconstructed signal image and original signal image on masked patches.

4.3 FINETUNING UNIEEG ON DOWNSTREAM TASKS

UniEEG is conducted in a self-supervised way on the universal EEG datasets. To evaluate the
capability of proposed representation, we perform extensive experiments on diverse down-streaming
tasks by finetuning the pretrained UniEEG Encoder. As illustrated in Fig 2, the pretraining process
is executed for every individual EEG channel, while during finetuning period all of the channels
should be used.

Specifically, for an EEG signal E{1,...,C} with C channels, we first extract signal features for each
channel, resulting features with size of C × PH × PW × D, where PW , PH represent the patch
size in height and width and D is the hidden dimension. We perform 1D convolution along the EEG
channel dimension to fuse the different channels. We then apply a classification head to the flattened
convolutional features to get the predictions.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

5.1.1 PRETRAINING AND EVALUATION DATASETS

To ensure the diversity of the pretraining data in UniEEG, we gather a comprehensive collection of
18 publicly available EEG datasets. During pretraining phase, UniEEG leverages a mixed dataset
compiled from 16 of these datasets, ensuring a wide range of EEG patterns are encompassed. For
the finetuning phase, we select 12 datasets to evaluate the performance of UniEEG, all of which are
oriented towards classification tasks. It’s important to note that during pretraining, only the training
sets are utilized. And during finetuning we report the results on the test sets of the selected 12
classification datasets.
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Table 2: Comparison on decoder depth.

Depth Finetuning Frozen

Ger+Aus Deap Ger+Aus Deap

1 20.81% 77.90% 12.16% 71.22%
2 20.76% 80.79% 16.69% 76.30%
4 21.03% 84.65% 17.57% 75.69%
8 22.59% 85.61% 19.78% 79.79%

12 21.14% 83.06% 19.13% 75.10%

Table 3: Comparison on decoder width.

Width Finetuning Frozen

Ger+Aus DEAP Ger+Aus DEAP

128 21.26% 82.46% 17.34% 75.45%
256 20.32% 85.26% 18.90% 74.08%
512 21.48% 84.37% 19.56% 76.64%
768 22.59% 85.61% 19.78% 76.79%
1024 21.35% 83.18% 19.85% 75.31%

5.1.2 TRAINING DETAILS

UniEEG is trained using the PyTorch framework on 8 NVIDIA A100. The UniEEG encoder are
initialized from MAE He et al. (2022). The initial learning rate is 0.0001 during pretraining and
0.0007 during finetuning. We utilize AdamW optimizer and adopt a warm-up learning rate during
the training process. The whole pretraining for 10 epoches takes about 20 hours.

5.2 MAIN RESULTS

We evaluate the performance of the proposed UniEEG on four downstream tasks: sentiment analysis
(SA), motor imagery (MI), image-based EEG classification (IEC) and speech-based EEG classifi-
cation (SEC) (see Sec. B in detail), which are basic EEG tasks to learn the brain activities. Tab. 1
shows detailed comparisons on the 12 datasets, including several datasets that contain only data, but
no profile results. Despite the diversity of the above tasks and datasets, our proposed UniEEG can
obtain a universal EEG representation and has strong cross-task semantic analysis ability, achieving
state-of-the-art performance across datasets.

Generally, UniEEG outperforms most previous state-of-the-art methods in terms of accuracy met-
ric. By finetuning the corresponding classification heads with a small amount of data on the pre-
trained UniEEG Encoder, models adapted to different tasks and datasets can be realized. With
the electrode-wise time-frequency pretraining, the UniEEG obtains universal EEG representation,
and significantly improves the capability and generalization of the model. For example, on Neuro-
Marketing Dataset Yadava et al. (2017) (the third column) for image-based classification task, the
outperforms prior art Spampinato et al. (2017) by 13.71%.

We also conduct experiments of UniEEG in task-specific paradigm, where we train and evaluate the
model in each dataset independently. Experimental results are shown in the “Ours w/o pretraining”
(third row) of Tab. 1. We observe that the removal of pretraining in UniEEG decreases the perfor-
mance by a large margin (i.e., 6.27% in DEAP). This further demonstrates that the electrode-wise
pretraining-finetuning paradigm of EEG tasks outperform previous task-specific paradigm, indicat-
ing the superiority of UniEEG.

It should be noted that previous state-of-the-art methods (i.e., Bazgir et al. (2018)) would take other
modalities (i.e., electro-oculogram, facial videos) as input and thus get a good performance, while
we only report the results that takes only EEG signals as input for fairness. Moreover, there are
different evaluation strategies of EEG tasks, including holdout validation, K-fold Cross-Validation,
leave-one-subject-out validation and so on. In Tab. 1, the results that evaluated with holdout valida-
tion are reported.
5.3 ABLATION STUDIES

In this section, we conduct a comprehensive ablation study to analyse various aspects of design.
5.3.1 IMPACT OF SIGNAL DOMAIN

In our implementation, we leverage the time-frequency data of EEG, which contains both the tempo-
ral and spectral information. To investigate the effect of data domain on . we conduct experiments
on the model based solely on time domain or frequency domain. In fairness, each single domain
data is also transformed to an image by repeating the other axis. For example, for time domain
data with size of T × 1, we repeat the whole data for F times, resulting an image with size of
F × T × 1 The results are shown in Tab. 4. We observe the absence of each domain leads to the
decrease of performance. For example, compared with training with time-frequency domain data,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Different masking strategies. Left: masking on the time-frequency dimension. Middle:
masking on the time dimension. Right: masking on the frequency dimension.

Table 4: Comparison on different signal do-
mains.

Method Ger+Aus DEAP

Time Only 20.17% 81.18%
Frequency Only 17.41% 63.50%
Time-Frequency 22.59% 85.61%

Table 5: Comparison with different reconstruc-
tion targets.

Target Ger+Aus DEAP

PCA 20.15% 80.54%
dVAE token 22.15% 78.76%
Energy 22.59% 85.61%

the accuracy of Deap decreases by 4.43% when using time-only domain data. This suggests the cues
of the cross-domain data help regularize the signal representation and improve the final performance
of subsequent task.
5.3.2 DECODER DESIGN

In our , the decoder is designed to reconstruct the original signal from the encoded unmasked signal
patches and added mask tokens. Here we conduct ablation study for the decoder design on different
settings. Intuitively, such a decoder has a limited impact on downstream tasks, where the decoder
is replaced by a classifier. Tab. 2 shows the comparisons between different depths of the decoder
(number of transformer blocks). Tab. 3 shows the comparisons between different decoder widths (the
hidden dimension of the transformer layers). We can see that the change in decoder settings have
limited influence on the classification performance, which we reason with the unfrozen parameters
of UniEEG-encoder in the finetuning process.

To investigate the representational ability of , we also conduct experiments with a frozen encoder,
results shown in the last two column of Tab. 2 and Tab. 3. We observe that the difference of decoder
depths or widths will greatly influence the performance of downstream task. For instance, the 8
transformer layers can improve the final accuracy in Ger+Aus task by 7.62%, compared with 1
transformer layer. This indicates that the different design of the UniEEG-decoder would change
the representational space of the UniEEG-encoder, which yields different performances when such
representation is frozen. However, compared with the unfrozen encoder, the frozen setting is sub-
optimal, which has a decrease of around 2.81% performance. Thus in other experiments we do not
freeze the encoder parameters to get an optimal performance.

5.3.3 RECONSTRUCTION TARGET

Tab. 5 shows the comparisons between different reconstruction targets. In previous experiments, the
reconstruction period are mainly based on pixels, similar to visual images. In this study, following
He et al. (2022), we replace the reconstruction target from Time-Frequency Signal to PCA in the
patch space and dVAE, results shown in Tab. 5. We observe that both of the replacements decrease
the performance. The potential reason is that the naive setting that reconstructs the signal directly
allows the model to capture more general features, which benefits the downstream classification
tasks.

5.3.4 MASKING STRATEGY

In our , we mask the time-frequency EEG signals in the time-frequency domain along both time
and frequency dimensions, the same as the traditional spatial mask of an image. Here we conduct
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Figure 4: Visualization of reconstruction results. Left: raw EEG signal. Middle: masked EEG
signal. Right: reconstruction results.

Table 6: Impact of keeping or removing the
mask tokens from the encoder input.

Mask Token Ger+Aus DEAP

encoder w/ [M] 20.49% 84.56%
encoder w/o [M] 22.59% 85.61%

Table 7: Comparison with different masking
strategies.

Masking Strategy Ger+Aus DEAP

Time-Frequency 22.59% 85.61%
Time 20.79% 81.18%
Frequency 14.02% 66.17%

experiments to compare different mask strategies. As illustrated in Fig. 3, we perform experiments
on three types of masking strategies, including masking along the time dimension, along the fre-
quency dimension, and along both the time and frequency dimensions. Tab. 7 shows the results.
We can see that the best performance is achieved when we mask on the time-frequency dimensions,
which yields 1.80% improvement than masking on the time dimension and 8.57% improvement than
masking on the frequency dimension in Ger+Aus.

5.3.5 MASK TOKENS

In our , we remove masked signal patches during the encoding process, while during the decoding
process, mask tokens are added at the masking place to indicate the presence of a missing patch to
be predicted. Here we conduct experiments on mask token design. As shown in Tab. 6, the encoder
with mask tokens decreases the overall performance by 2.10% in Ger+Aus and 1.05% in DEAP.
The probable reason is that the added masks in the encoder is shared and do not exist in the original
signal, which degrades the performance.

5.3.6 PATCH SIZE

In previous experiments, the patch size of the signal token is 25. In this study, we investigate
the impact of different patch sizes. As shown in Tab. 8, increasing the patch size of the time-
frequency ”image” would improve the final results, but too big patch would cause a collapse of the
performance.
5.3.7 FREQUENCY RANGE

In previous experiments, the frequency range of EEG signal is limited to between 1Hz and 49Hz.
In this study, we conduct experiments on the different frequency range of EEG signal. We follow
Luo et al. (2023) and split the with five basic brain waves: δ wave, θ wave, α wave, β wave and γ
wave, where the frequency ranges are 1-4 Hz, 4-8 Hz, 8-12 Hz, 12-27 Hz and 27-49 Hz respectively,
results shown in Fig. 9. We can see that α wave is good at recognizing image (Ger+Aus) and θ wave
is good at emotion analysis (DEAP), but they all underperform that using all frequencies.

5.3.8 SIGNAL CROPPED SIZE

During pretraining period, the signal cropped size varies in different datasets. To align this, we
randomly crop and resize them to a fixed length t = 100. Here we conduct experiments on the
impact of cropped size, results shown in Tab. 5. We can see that the computation cost increases
steadily as the signal cropped size increases, while the performance begins to decrease after reaching
its peak at t = 100. The reason is the effective duration of EEG activity is relative stable. Too short
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Figure 5: Impact of signal cropped size on performance and computation cost. The computation
cost increases steadily as the signal cropped size increases, while the performance begins to decrease
after reaching its peak at t = 100.

Table 8: Comparison with different signal patch
sizes.

Patch Size Ger+Aus DEAP

5 20.70% 80.79%
10 23.04% 83.18%
25 22.59% 85.61%
50 19.41% 76.41%

Table 9: Comparison with different frequency
ranges.

Frequency Range Ger+Aus DEAP

δ (1-4) 18.40% 73.74%
θ (4-8) 17.59% 85.43%
α (8-12) 20.38% 83.74%
β (12-30) 17.56% 74.19%
γ (30-49) 19.49% 77.62%

ALL (1-49) 22.59% 85.61%

cropped length leads to missing valid information, while too long cropped length leads to redundant
information.

5.3.9 CHANNEL AGGREGATION FUNCTION

Table 10: Comparison with different
channel aggregation functions.

Method Ger+Aus DEAP

1D Convolution 22.59% 95.61%
Fully Connected 23.04% 95.16%
Mean Pooling 22.18% 94.87%

We utilize the 1D convolution as a learnable aggrega-
tion function to fuse the features from different channels.
When finetuning, we flatten all of the EEG features and
input them to the 1D convolution. In this study, we in-
vestigate the effects of other aggregation functions, all
of which achieve good performance, shown in Tab. 10.
This shows that simply aggregating the features of these
single channels with the pretrained UniEEG encoder can
achieve good results, indicating the flexibility of the pro-
posed UniEEG.

6 CONCLUSION

In conclusion, we presents UniEEG, the first electrode-wise time-frequency pretraining model for
EEG. During pretraining stage, we divide the electrode channels into individual channel and employ
an encoder-decoder structure to model and reconstruct the time-frequency signals. In finetuning
phase, we exploit an aggregation module to fuse the multi-channel information, enabling the model
to perform diverse downstream tasks. Extensive experiments on different tasks demonstrate the
effectiveness and generalizability of our proposed architecture, highlighting the potential of our
approach. Overall, our findings establish the value and versatility of UniEEG as a pretraining model
for EEG analysis, offering promising prospects for advancing our understanding and utilization of
EEG signals in diverse domains.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Turky Alotaiby, Fathi E Abd El-Samie, Saleh A Alshebeili, and Ishtiaq Ahmad. A review of channel
selection algorithms for eeg signal processing. EURASIP Journal on Advances in Signal Process-
ing, 2015:1–21, 2015.

Hamdi Altaheri, Ghulam Muhammad, and Mansour Alsulaiman. Physics-informed attention tem-
poral convolutional network for eeg-based motor imagery classification. IEEE Transactions on
Industrial Informatics, 19(2):2249–2258, 2022.

Pouya Bashivan, Irina Rish, Mohammed Yeasin, and Noel Codella. Learning representations from
eeg with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448, 2015.

Omid Bazgir, Zeynab Mohammadi, and Seyed Amir Hassan Habibi. Emotion recognition with ma-
chine learning using eeg signals. In 2018 25th national and 3rd international iranian conference
on biomedical engineering (ICBME), pp. 1–5. IEEE, 2018.

Rajen Bhatt. Planning Relax. UCI Machine Learning Repository, 2012. DOI:
https://doi.org/10.24432/C5T023.

Clemens Brunner, Robert Leeb, Gernot Müller-Putz, Alois Schlögl, and Gert Pfurtscheller. Bci com-
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A APPENDIX

B EEG DATA COLLECTION

The classic EEG datasets Koelstra et al. (2012); Zheng & Lu (2015); Daly et al. (2019); Chavarriaga
& Millán (2010); Brunner et al. (2008); Steyrl et al. (2014); Leeb et al. (2008); Cho et al. (2017);
Schalk et al. (2004); Luciw et al. (2014); Kaya et al. (2018); Schirrmeister et al. (2017b); Bhatt
(2012); Dornhege et al. (2004); Gifford et al. (2022); Grootswagers et al. (2022); Spampinato et al.
(2017); Nguyen et al. (2017) we collect cover 6 tasks, which include: 1) Sentiment Analysis: using
EEG data to identify and evaluate the emotional state of an individual; 2) Music Imagery: studying
and analyzing the electrical activity of the brain while a person imagines or mentally processes
music; 3) Event-Related Potential (ERP): analyzing the brain’s electrical activity in response to
specific events or stimuli, such as visual, auditory, or sensory stimuli. 4) Motor Imagery: referring
to the mental simulation or visualization of specific motor movements or actions without physically
performing them. 5) Image-based EEG Classification: using EEG data to classify images or other
visual stimuli. 6) Speech Imagery Classification: using EEG data to categorize or classify different
aspects of speech without physically hearing them.

Below we introduce each data set in detail. SEEDZheng & Lu (2015): The SJTU Emotion EEG
Dataset (SEED), a comprehensive compilation of EEG datasets, is a significant contribution from
the BCMI laboratory, under the expert guidance of Prof. Bao-Liang Lu. This dataset derives its
name from its initial version, which primarily focused on emotion-related EEG data. However, in
its current form, SEED has expanded its scope beyond just emotional data to include a vigilance
dataset as well, thereby enhancing its utility for a broader range of neurological and psychological
research.

NeuromarketingYadava et al. (2017): The Neuromarketing dataset, designed to decipher consumer
preferences and predict behavior for optimal product utilization, encompasses a detailed collection
of EEG signals. These signals are meticulously recorded from 25 participants, aged between 18 to
38 years. Participants engage in viewing a curated selection of consumer products on a computer
screen, with the EEG data captured using all 14 channels. The dataset focuses on a set of 14 dis-
tinct products, each presented in three variants, culminating in a total of 42 (14 × 3) unique product
images. This leads to an extensive dataset of 1050 (42 images × 25 participants) EEG recordings.
Accompanying each image viewing, participants’ feedback is solicited in the form of like/dislike re-
sponses. Each product image is displayed for a duration of 4 seconds, during which EEG signals are
simultaneously recorded. Following the display of each image, participants’ choice preferences are
meticulously documented. To ensure authenticity and accuracy, participants are instructed to provide
genuine responses regarding their product preferences throughout the data collection process.

DEAP Koelstra et al. (2012): The DEAP dataset is a comprehensive multimodal resource designed
for studying human affective states. This unique dataset includes electroencephalogram (EEG) and
peripheral physiological signal recordings from 32 participants, who are engaged in watching 40
one-minute long excerpts of various music videos. These participants provide subjective ratings for
each video, assessing them on a scale of arousal, valence, like/dislike, dominance, and familiarity.
Enhancing the depth of this dataset, frontal face videos are also captured for 22 out of the 32 partic-
ipants, offering an additional dimension of emotional response analysis. The selection of stimuli for
this dataset is conducted using a novel approach.

MIBCI Cho et al. (2017): The dataset described in this survey is a comprehensive resource for
studying motor imagery brain-computer interface (MI BCI) research. It not only includes EEG
datasets from 52 subjects but also incorporates various additional data types and metadata. The
EEG datasets provide essential information for determining statistical significance and are further
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categorized into well-discriminated datasets (38 subjects) and less-discriminative datasets. This cat-
egorization offers researchers the opportunity to explore human factors that contribute to variations
in MI BCI performance. The inclusion of additional data such as results from psychological and
physiological questionnaires, EMG datasets, 3D EEG electrode locations, and EEG recordings dur-
ing non-task related states enhances the dataset’s richness. The availability of metadata, including
the questionnaire responses, EEG coordinates, and EEGs for non-task related states, opens avenues
for subject-to-subject transfer and facilitates investigations into various aspects related to MI BCI
performance. Researchers can leverage these resources to explore human factors and their impact
on MI BCI, ultimately advancing the field and potentially improving the transferability of MI BCI
systems.

Grasp and Lift Kaggle (2021): The Grasp and Lift dataset is a rich and multifaceted resource
primarily focused on electroencephalogram (EEG) data for motor imagery (MI) brain-computer
interface (BCI) research, encompassing a diverse array of data from 52 subjects. This dataset not
only includes EEG recordings during MI tasks but also offers valuable supplementary information,
such as results from psychological and physiological questionnaires, electromyogram (EMG) data,
and precise locations of 3D EEG electrodes. Additionally, EEG recordings during non-task related
states are provided, offering a comprehensive view of the subjects’ brain activity. A distinctive
feature of this dataset is its meticulous validation process. It employs methods like the analysis
of the percentage of bad trials, event-related desynchronization/synchronization (ERD/ERS), and
classification analysis to ensure data quality. The dataset demonstrates typical MI patterns, such as
contralateral ERD and ipsilateral ERS in the somatosensory area. Notably, a significant portion of
the dataset (73.08The dataset is categorized into well-discriminated and less-discriminative datasets
based on the clarity and distinctiveness of the EEG signals. This classification provides a unique
opportunity for researchers to investigate various human factors influencing MI BCI performance
and explore subject-to-subject transfer methodologies. The inclusion of comprehensive metadata,
such as questionnaire responses, EEG coordinates, and EEGs for non-task states, further enhances
the dataset’s utility for diverse research applications in the field of BCI.

EEG Motor Imagery Kaya et al. (2018): This dataset features over 1500 one- and two-minute
EEG recordings from 109 volunteers, using the BCI2000 system. It focuses on motor/imagery
tasks across 14 experimental runs per subject, including two baseline runs (one with eyes open, one
closed) and three runs for each of four tasks: (1) Physical fist movement when a target appears on
the screen, (2) Imagined fist movement for a similar target, (3) Physical movement of fists or feet
depending on the target’s position, and (4) Imagined movement of fists or feet for corresponding
targets. This dataset is ideal for brain-computer interface research, exploring physical and imagined
motor activities.

BCI Competition III/IV Dornhege et al. (2004); Brunner et al. (2008); Leeb et al. (2008): The
’BCI Competition III/IV’ is designed to evaluate signal processing and classification methods in
Brain-Computer Interface (BCI) research. Focused on motor imagery, especially in the context of
sports, it offers a comprehensive challenge with multiple motor imagery paradigms. This dataset
serves as a crucial benchmark for advancing BCI technology.

Aus Gifford et al. (2022): The Aus dataset is a significant contribution to the study of the neural
basis of object recognition and semantic knowledge. This dataset includes electroencephalography
(EEG) responses from 50 subjects to 1,854 object concepts, represented through 22,248 images
from the THINGS stimulus set, a specially designed high-quality image database for human vi-
sion research. THINGS-EEG offers neuroimaging data correlated with a vast array of objects and
concepts, facilitating extensive research in visual object processing in the human brain.

Ger Grootswagers et al. (2022): The Ger dataset provides a comprehensive collection of high tem-
poral resolution EEG responses to object images on natural backgrounds, crucial for understanding
the rapid transformations in visual object recognition by the human brain. It comprises data from 10
participants across 82,160 trials, covering 16,740 image conditions.

EEG-Based Visual Spampinato et al. (2017): The EEG-Based Visual dataset contains EEG data
recorded from six subjects (five male, one female) while they were shown visual stimuli of objects.
These subjects were selected for their homogeneity in age, education, and cultural background and
screened by a professional physicist to ensure no interfering conditions. The visual stimuli com-
prised 2,000 images from 40 classes in a subset of ImageNet, each shown for 0.5 seconds in 25-
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second bursts, followed by a 10-second pause. The experiment, lasting 23 minutes and 20 seconds,
used a 128-channel EEG cap with active electrodes and high-resolution data acquisition at 1000 Hz.
The EEG data focuses on the Beta and Gamma frequency bands, relevant to cognitive processes
in visual perception. The first 40 ms of each EEG sequence were discarded to avoid interference
from previous images, with the subsequent 440 ms used for analysis. This resulted in 12,000 EEG
sequences, offering a detailed exploration of cognitive processing in visual object recognition.

Speech Imagery Nguyen et al. (2017): This S is part of a study investigating the use of imagined
speech for brain-computer interface (BCI) applications. It includes EEG signals collected from 15
subjects, focusing on the imagined pronunciation of vowels, short words, and long words. It is an
important benchmark of speech imagery.

C DATA PREPROCESS

The primary challenge in preprocessing large-scale EEG signals lies in the variations of collection
parameters such as sampling frequency and the number of electrodes across different datasets, each
adhering to its unique collection paradigm. To address this, we employ two primary strategies:
aligning the sampling frequency and standardizing the number of channels.

Firstly, to standardize the sampling frequency, we adjust all EEG data to a uniform rate of 100Hz.
This involves either upsampling or downsampling the signals. Upsampling is achieved through
linear interpolation, which estimates intermediate values, while downsampling utilizes a uniform
sampling method that selects consistent intervals. Following this frequency alignment, we trans-
form the time-domain EEG signals into the time-frequency domain using the Continuous Wavelet
Transform (CWT). This transformation facilitates a more nuanced analysis of the signals. We fur-
ther refine the data by applying a simple filter, eliminating frequencies below 2Hz and above 50Hz
to focus on the most relevant signal range.

Secondly, to manage the variation in the number of electrodes (channels), we introduce an electrode-
wise pretraining and fine-tuning approach. Acknowledging that EEG signals can be represented
uniformly despite channel differences, we treat each channel as an independent sample. This strat-
egy allows us to handle datasets with varying channel numbers effectively. Additionally, we align
the data collection time across different paradigms by employing techniques similar to image data
augmentation. Specifically, we randomly crop and resize the EEG signal along the time dimension,
ensuring consistency in signal length.

It’s important to note that during downstream tasks, the data from different channels are not treated
separately but are instead integrated through a fusion operation. Furthermore, the data collection
time is resized to a pre-set dimension only during the pretraining period.

In our methodology, we consciously avoid employing other complex preprocessing methods to mini-
mize information loss and maintain the integrity of the EEG data, ensuring that the processed signals
remain as representative and accurate as possible of the original recordings.
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