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Abstract

Large language models (LLMs) have shown impressive capabilities in real-world
applications. The capability of in-context learning (ICL) allows us to adapt an LLM
to downstream tasks by including input-label exemplars in the prompt without
model fine-tuning. However, the quality of these exemplars in the prompt greatly
impacts performance, highlighting the need for an effective automated exemplar
selection method. Recent studies have explored retrieval-based approaches to
select exemplars tailored to individual test queries, which can be undesirable due
to extra test-time computation and an increased risk of data exposure. Moreover,
existing methods fail to adequately account for the impact of exemplar ordering
on the performance. On the other hand, the impact of the instruction, another
essential component in the prompt given to the LLM, is often overlooked in
existing exemplar selection methods. To address these challenges, we propose a
novel method named EASE, which leverages the hidden embedding from a pre-
trained language model to represent ordered sets of exemplars and uses a neural
bandit algorithm to optimize the sets of exemplars while accounting for exemplar
ordering. Our EASE can efficiently find an ordered set of exemplars that performs
well for all test queries from a given task, thereby eliminating test-time computation.
Importantly, EASE can be readily extended to jointly optimize both the exemplars
and the instruction. Through extensive empirical evaluations (including novel
tasks), we demonstrate the superiority of EASE over existing methods, and reveal
practical insights about the impact of exemplar selection on ICL performance,
which may be of independent interest. Our code is available at https://github.
com/ZhaoxuanWu/EASE-Prompt-Optimization.

1 Introduction

Large language models (LLMs) have recently drawn significant attention and have been widely
deployed in various real-world scenarios [26, 28, 51] due to their strong capabilities. Of note, a
particularly impressive capability of LLMs is in-context learning (ICL): LLMs can learn from a
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handful of input-label demonstrations (i.e., data exemplars) included in its prompt to perform a
downstream task [3, 23]. ICL allows us to adapt an LLM to a downstream task without fine-tuning
the model parameters [20, 29]. However, the ICL performance is heavily dependent on the data
exemplars in the prompt [1, 23, 38]. Therefore, to maximize the ICL performance, it is of paramount
importance to carefully select the set of exemplars [46]. Unfortunately, exemplar selection for ICL
is challenging because the mechanism of ICL is complicated and unknown, and this difficulty is
further aggravated for black-box LLMs to which we only have API access (e.g., GPT-4 [32], Gemini
Ultra [41]).

A large number of existing works on exemplar selection for ICL have considered retrieval-based
methods [1, 23, 38]. Specifically, they aim to develop a retriever model such that for every test
query, the retriever model retrieves the corresponding best set of exemplars tailored to this particular
query [1, 48]. Such approaches require test-time retrieval for every query which might hinder their
ease of adoption [25] while test-time computation is not needed for our method. Moreover, another
drawback of these retrieval-based methods is that they may lead to increased privacy risks. Compared
to using a fixed set of exemplars for all test queries submitted to the LLM provider (e.g., via an
API), using a different set of exemplars for every test query may lead to greater data exposure, i.e.,
more data exemplars being exposed to the LLM provider. Privacy issues have become increasingly
prominent in discussions surrounding LLMs [30], with evidence of user data being output by these
models [45]. Therefore, retrieval-based methods are undesirable in scenarios where such privacy
concerns are important considerations. Given these two important shortcomings of retrieval-based
methods, it is imperative to develop exemplar selection methods that generalize to test queries and
are capable of choosing a fixed set of exemplars that perform well for all test queries for a task.

Another major limitation of existing exemplar selection methods (including retrieval-based and
other methods) is their inability to account for the impact of the ordering of the exemplars within
a subset [24, 33, 52]. Specifically, to select a subset of k exemplars, previous works have either
relied on simple heuristics (e.g., selecting the top-k exemplars based on the score from a retriever
[25]) or used subset selection techniques which are able to account for the inter-relationships among
the exemplars within a subset [4, 14, 18, 19, 48]. Due to the computational complexity caused
by the combinatorial search space, these works based on subset selection have often employed
an iterative greedy strategy to sequentially select the subset of exemplars. It is also non-trivial to
extend these existing works to consider exemplar ordering. However, it has been repeatedly verified
that the ordering of the exemplars has a significant impact on the performance of ICL [24, 33, 52].
To the best of our knowledge, the impact of the exemplar ordering during the selection process
remains inadequately addressed by these previous works that relied on simple heuristics (e.g., random
ordering) and approximations (e.g., greedy strategy).

In addition, when optimizing the set of exemplars to improve the performance of the LLM, existing
methods have often ignored the impact of the instruction, which is another essential component in
the prompt given to the LLM [21]. Specifically, previous works on exemplar selection often use a
fixed pre-determined instruction or do not include any instruction at all in the prompt [4, 19, 23, 38].
Meanwhile, existing works on instruction optimization for LLMs typically include a fixed manually
selected set of exemplars in the prompt [10, 16, 21, 47] or simply adopt the zero-shot setting (i.e.,
without using any exemplar) [5, 13]. However, these two lines of work have separately demonstrated
that both the exemplars and the instruction have significant impacts on the performance of the LLM.
Therefore, the existing works that optimize these two components separately are unable to account
for their interactions, which may be crucial for further boosting the performance of LLMs. This
leaves considerable untapped potential in enhancing the performance of the LLM through ICL, which
can be achieved by jointly optimizing the instruction and the exemplars.

In this work, we propose a novel exemplar selection algorithm that addresses the above-mentioned
challenges faced by existing works (with detailed discussions of related work in App. 5). We
formulate exemplar selection as a black-box optimization problem, in which every input in the
domain corresponds to a sequence of k exemplars and its corresponding output represents the ICL
performance achieved by including this sequence in the prompt for the LLM. Given this formulation,
for every sequence of k exemplars in the domain, we adopt the embedding from a powerful pre-
trained language model as its continuous representation, and train a neural network (NN) to predict
its ICL performance. Based on the trained NN, we use a neural bandit algorithm to find the optimal
exemplar sequence in a query-efficient manner. Our Efficient ordering-aware Automated Selection of
Exemplars (EASE) algorithm offers several significant benefits:
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• Our EASE can find an efficacious sequence of k exemplars (which performs well for all test queries
from a task) in a query-efficient manner (i.e., it only needs to test a small number of exemplar
sequences). This can mainly be attributed to our algorithmic design, which allows us to use neural
bandits to balance the exploration of the space of exemplar sequences and the exploitation of the
predicted performance from the NN in a principled way. Importantly, in contrast to retrieval-based
methods, our EASE requires no test-time computation to select test query-specific exemplars.

• Our EASE naturally takes into account the ordering of the exemplars when maximizing the ICL
performance. This is because, for the same subset of exemplars, a different ordering leads to
a different pre-trained embedding, which allows the trained NN (that takes the embedding as
input) to predict the performances of different orderings of these exemplars. We have made our
EASE computationally feasible for large search spaces of exemplar sequences using a technique
based on optimal transport (OT), which reduces the computational cost of EASE while preserving
its strong performance by imposing an implicit preference towards exemplars that are more relevant
to the task (Sec. 3.2).

• Our EASE is readily extended to jointly optimize the exemplars and instruction in the prompt. This
is achieved by augmenting the domain of exemplar sequences with the instruction (Sec. 3.3).

These advantages of our EASE algorithm allow it to significantly boost the performance of ICL. To
empirically validate this, we compare our EASE algorithm with a comprehensive suite of baselines in a
variety of tasks. To begin with, we show that our EASE consistently outperforms previous baselines in
large number of benchmark tasks (Sec. 4.1). Next, by using our EASE algorithm in a novel experiment,
we unveil an interesting insight about ICL: The selection of exemplars is more important when the
LLM has less knowledge about the task (Sec. 4.2). Based on this insight, we design a set of novel
experiments in which the selection of exemplars has an important impact on the ICL performance,
and use these experiments to further demonstrate the superiority of our EASE (Sec. 4.3). Furthermore,
we showcase the ability of our EASE to jointly optimize the exemplars and the instruction to enhance
the performance of the LLM even further (Sec. 4.4). We also included a retrieval-based extension of
EASE to deal with large exemplar set sizes (Sec. 4.5). Of note, our novel experimental designs, as
well as the insights from them, may be of independent interest for future works on ICL and beyond.

2 Problem setting

We are given a set of data exemplars D = {ei = (xi, yi)}ni=1 of size n, where xi and yi correspond to
the input and output text, respectively. The data exemplars describe a downstream task, and we aim to
select k of them to form the optimal in-context exemplars sequence E for accurate output generation
when prompting a black-box LLM f(·). Due to the sequential nature of the natural language input,
the exemplar sequence is ordered such that E = (e1, e2, . . . , ek) where ei denotes the i-th exemplar
chosen. For every input x, we prepend it with a sequence of exemplars E to generate a response ŷ
from the black-box LLM (e.g., through calling the API), following

ŷ = f([e1, e2, . . . , ek︸ ︷︷ ︸
context

, x]) = f([E, x]) .

Here, the number of exemplar k in the context can be determined by the future budget of inference
in practice. A larger k corresponds to a longer sequence of context tokens to be prepended to the
test input x during inference, which leads to higher query costs (e.g., associated with the API calls).
Alternatively, it is common to decide k depending on the context window size of the target LLM f(·).
Since the model architecture and the internal working of the black-box LLM f(·) is unattainable, we
formulate the exemplar selection as a black-box optimization problem over the space of permutations
Ω ≜ {E : |E| = k} of size nk (i.e., having n choices for each of the k positions in the sequence),

max
E∈Ω

F (E) ≜ E(x,y)∈DV
[s(f(E, x), y)] (1)

where s(·, ·) is a score function for the output against the ground truth, DV is the held-out validation
set and |E| = k denotes that the number of exemplars in E is k. Therefore, the exemplar sequence
E found represents a fixed ordered set of exemplars that apply to every data point in the validation
set. Note that our formulation considers exemplars jointly as ordered text in the sequence E. This
space of permutation Ω is also a lot larger than the (unordered) combinatorial search space considered
in the subset selection formulation of exemplar selections in [4, 14, 19, 48]. We show the superior
performance of our method against subset selection methods in our experiments (Sec. 4).
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3 Automated selection of exemplars

3.1 NeuralUCB for query-efficient optimization of exemplar sequences

We propose to use neural bandits to iteratively maximize the black-box objective function (1). At
each iteration t, the neural bandits algorithm selects the next input query based on the belief of the
objective given all past t− 1 observations Ot−1 ≜ {(Ei, sV (Ei))}t−1

i=1 where Ei and sV (Ei) are the
exemplar sequence and corresponding validation score at iteration i, respectively. Here, the validation
score is a realization of the objective function (1), so sV (E) = 1/|DV |

∑
(x,y)∈DV

s(f(E, x), y).

Inspired by Lin et al. [21] who have shown impressive performances of the neural upper confidence
bound (NeuralUCB) acquisition function [53] on instruction optimization, we adopt the NeuralUCB
approach to our novel black-box exemplar selection formulation in (1). We propose to use a neural
network (NN) to directly learn the mapping from a general-purpose hidden embedding of input
exemplar sequences to the validation score. Specifically, we propose to use an embedding model h(·)
and train a network m(h(E); θt) at iteration t such that

θt = argminθE(E,sV (E))∈Ot−1
ℓ (m(h(E); θ), sV (E)) (2)

where ℓ is the mean squared error (MSE) loss function. The embedding model can be pre-trained
on a large corpus of text and hence provides a powerful latent representation of the input sentence.
For example, pre-trained sentence-transformer models like MPNet [40] and black-box APIs like
OpenAI text embedding are both commonly used for downstream clustering, semantic search and
classification. Importantly, even for the same subset of exemplars, a different ordering leads to
different embedding, hence h(E) captures both the content and the ordering of the exemplars in E.

Then, the trained NN can be used to iteratively select the next exemplar sequence Et to query:

Et = argmaxE∈ΩNeuralUCBt(E),

NeuralUCBt(E) ≜ m(h(E); θt) + νtσt−1(h(E); θt),
(3)

where m(h(E); θt) is the predicted score, σt−1(h(E); θt) is the NN’s uncertainty about the score of
h(E) and νt is a hyperparameter that balances the two terms. Using NeuralUCB, our EASE balances
the exploration of the space of exemplar sequences E and the exploitation of the predicted score from
the NN in a principled way.

This application of NeuralUCB in our work differs from that of Lin et al. [21] in three main
aspects. Firstly, the input to our NN is the embedding of exemplar sequences rather than the latent
representation of the instructions from [21]. Secondly, we relax the requirement of a separate
white-box LLM from [21] and only need black-box access to the embedding model h(·). Thirdly,
our application to exemplar selection dramatically increases the search space from finite candidate
instructions [21] to the space of exemplar sequences. Particularly, the explosion of the size of the
search space poses significant difficulties to optimization, which we will address in the next section.

3.2 Reducing computational cost through optimal transport (OT)

Directly applying NeuralUCB to exemplar selection is challenging due to the enormous search space
of all permutations of exemplars on which the acquisition values (3) have to be evaluated. For
example, selecting 5 exemplars out of 100 requires 1005 evaluations which is far from being practical.
It is natural to search over a domain space Qt = {E(j,t)}qj=1 with a smaller number q of exemplar
sequences in each iteration t. However, uniformly sampling such a reduced space Qt from Ω could
be sub-optimal, because a small q, which is required to make our algorithm computationally feasible,
is highly likely to discard important exemplar sequences (we verify this in ablation experiments in
Sec. 4.5 and App. C.3). To this end, we make a large q feasible by introducing a novel technique
based on optimal transport (OT) to further select from Qt a subset Q′

t of q′ < q relevant exemplar
sequences. This technique can simultaneously (a) reduce the computational cost (since q′ ≪ Ω) and
(b) preserve our performance (since we can now search over a large domain space Qt) by imposing
an implicit preference towards exemplars in Qt that are more relevant to the task.

Given probability measures µs and µv over space Z , the OT distance between µs and µv is defined as

OT (µs, µv) = min
π∈Π(µs,µv)

∫
Z2

c(z, z′)dπ(z, z′) (4)
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where Π(µs, µv) = {π ∈ P(Z × Z)|
∫
Z π(z, z′)dz = µs,

∫
Z π(z, z′)dz′ = µv} is a collection of

couplings between two the distributions µs and µv , and c : Z ×Z → R+ is some symmetric positive
cost function. In our problem, we propose to use the space of embedding from h(·) as Z because
the embedding captures the semantics of the exemplars with a fixed-dimensional vector. As cosine
similarity is usually used to train embedding models such as MPNet [40] and sentence-BERT [36],
we propose to use the following cost function c(h(e), h(e′)) = 1 − simcos(h(e), h(e

′)) where
simcos(h(e), h(e

′)) measures the cosine similarity between the embedding of two exemplars e and
e′. Given a sampled subset S = {ei}ki=1, we define a discrete measure µs =

1
k

∑k
i=1 δ(h(ei)) where

δ is the Dirac function. Likewise, we define µv for the validation set DV .

Intuitively, a smaller value of (4) indicates that the subset of exemplars is more similar to the
validation set and is hence more relevant to the task. This allows us to select the relevant exemplar
sequences from Qt to form the smaller subset Q′

t, on which the acquisition values (3) are evaluated.
Consequently, we can increase the size q of Qt by hundreds of folds while being computationally
feasible since the most expensive computation (i.e., computing embeddings for all exemplar sequences
in Qt) is not needed. Note that the extra computation incurred by OT is minimal since the embedding
of every data exemplar in D and DV can be pre-computed and reused. Therefore, OT helps us
examine a large number of permutations among the space of all permutations without significantly
increasing the computation, which helps mitigate the problem of the exploding search space.

3.3 Natural extension to jointly optimize instructions and exemplars

Our algorithm can further boost the performance of ICL for LLMs by jointly optimizing the exemplars
and the instruction. A natural extension of our formulation in Sec. 2 allows the instruction, being
another essential component of the LLM prompt, to be simultaneously optimized with exemplars. This
ensures the optimal matching between instructions and exemplars to achieve a fully automated pipeline
with superior performance. Specifically, our formulation naturally extends to E = (p, e1, e2, . . . , ek)
where p ∈ P is an instruction from a candidate space/set P , i.e., Q′

t ← P ×Q′
t. Subsequently, p can

be intuitively treated as another type of “exemplar” from a new space P and optimized in conjunction
with the exemplars. In practice, the fixed set P of candidate instructions can be generated by the
black-box model through techniques such as APE [54], PromptBreeder [10], etc. This extension is
not only simple in its implementation but also proven to be effective in our experiments in Sec. 4.4.

3.4 Our EASE algorithm

In iteration t of EASE, we first use the historical observations of the exemplar sequence and score
pairs {(Ei, sV (Ei))}t−1

i=1 to train the score prediction NN. Then, we perform sampling to obtain the
domain space Qt, which will be further refined to a set Q′

t of top-q′ candidates based on OT distances.
The space of exemplar sequence E can be optionally augmented with instructions p ∈ P from a set
P of instruction candidates. Subsequently, we find the optimal E that maximizes the NeuralUCB
acquisition function. The selected exemplar sequence E is then evaluated against the black-box LLM
f(·) using the validation dataset DV , obtaining a new observed pair of (E, sV (E)). This process is
repeated until the query budget T is exhausted. An overview of the algorithm is presented in Alg. 1.

Algorithm 1: EASE
Require :Data exemplars set D, validation set DV , length of exemplars k, total budget T ,

number of initial rounds Tinit, sampling size q′, black-box target model f(·),
embedding model h(·), neural network m(·; θ), (optional) instruction set P .

1 Initialize {(Ei, sV (Ei))}Tinit
i=1 with Tinit randomly sampled {Ei}Tinit

i=1 from D;
2 for t = Tinit to T do
3 Following (2), use observations {(Ei, sV (Ei))}t−1

i=1 to train the NN m(·; θt) parameter θt;
4 Sample sequences Qt and select top-q′ sequences Q′

t with smallest OT distances;
5 (Optional) Augment each E ∈ Q′

t with instructions p ∈ P , i.e., Q′
t ← P ×Q′

t;
6 Following (3), select the next query Et = argmaxE∈Q′

t
NeuralUCBt(E);

7 Evaluate Et on the black-box model to obtain the validation score sV (Et);
8 return E∗ = argmaxEt:t∈{1,...,T} sV (Et)
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Table 1: Average accuracy ± standard error achieved by the best exemplar sequence discovered by
different algorithms over 3 independent trials. For better distinguishability, we do not include easy
tasks here (i.e., with 100% accuracy across baselines) and show full results in Tab. 5 of App. C.1.

DPP MMD OT Cosine BM25 Active Inf Evo Best-of-N EASE

antonyms 70.0±0.0 80.0±0.0 81.7±1.7 85.0±0.0 85.0±0.0 80.0±0.0 86.7±1.7 88.3±1.7 90.0±0.0 90.0±0.0

auto_categorization 3.3±1.7 8.3±1.7 0.0±0.0 25.0±0.0 16.7±1.7 10.0±2.4 21.7±1.7 21.7±1.7 20.0±0.0 30.0±0.0

diff 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

larger_animal 70.0±0.0 91.7±1.7 100.0±0.0 100.0±0.0 100.0±0.0 66.7±1.4 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

negation 95.0±0.0 95.0±0.0 95.0±0.0 95.0±0.0 95.0±0.0 95.0±0.0 95.0±0.0 95.0±0.0 95.0±0.0 95.0±0.0

object_counting 55.0±2.9 56.7±1.7 48.3±1.7 61.7±1.7 66.7±1.7 51.7±1.4 63.3±4.4 70.0±0.0 70.0±0.0 73.3±1.7

orthography_starts_with 20.0±2.9 35.0±0.0 61.7±1.7 78.3±1.7 70.0±0.0 43.3±1.4 70.0±2.9 75.0±0.0 78.3±1.7 80.0±0.0

rhymes 60.0±0.0 51.7±1.7 0.0±0.0 100.0±0.0 80.0±0.0 65.0±8.2 70.0±13.2 100.0±0.0 100.0±0.0 100.0±0.0

second_word_letter 10.0±2.9 30.0±0.0 28.3±1.7 50.0±0.0 50.0±0.0 26.7±8.3 40.0±0.0 46.7±1.7 50.0±0.0 53.3±1.7

sentence_similarity 20.0±0.0 21.7±3.3 40.0±2.9 46.7±1.7 53.3±1.7 5.0±4.1 18.3±6.7 45.0±0.0 51.7±1.7 56.7±1.7

sentiment 85.0±0.0 90.0±0.0 85.0±0.0 96.7±1.7 100.0±0.0 85.0±4.1 91.7±1.7 100.0±0.0 100.0±0.0 100.0±0.0

sum 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

synonyms 10.0±0.0 25.0±0.0 20.0±0.0 35.0±0.0 30.0±0.0 3.3±1.4 26.7±1.7 30.0±0.0 30.0±0.0 30.0±0.0

taxonomy_animal 43.3±4.4 40.0±2.9 46.7±1.7 85.0±2.9 80.0±0.0 45.0±6.2 70.0±5.0 80.0±0.0 80.0±0.0 88.3±1.7

translation_en-de 90.0±0.0 80.0±0.0 80.0±0.0 90.0±0.0 85.0±0.0 56.7±13.0 90.0±0.0 90.0±0.0 90.0±0.0 90.0±0.0

translation_en-es 90.0±0.0 100.0±0.0 96.7±1.7 100.0±0.0 100.0±0.0 96.7±1.4 98.3±1.7 100.0±0.0 100.0±0.0 100.0±0.0

translation_en-fr 76.7±1.7 76.7±1.7 81.7±1.7 85.0±0.0 85.0±0.0 81.7±1.4 85.0±0.0 86.7±1.7 85.0±0.0 88.3±1.7

word_sorting 26.7±1.7 88.3±1.7 88.3±1.7 90.0±0.0 71.7±1.7 80.0±0.0 88.3±1.7 93.3±1.7 91.7±1.7 90.0±0.0

word_unscrambling 68.3±1.7 56.7±1.7 71.7±1.7 75.0±0.0 76.7±1.7 63.3±3.6 66.7±1.7 75.0±0.0 75.0±0.0 78.3±1.7

# best-performing tasks 2 2 2 6 4 1 5 9 9 17

4 Experiments

We compare EASE with the following comprehensive suite of baselines. They include subset selection
methods with (a) a determinantal point process (DPP) metric adapted from [48], and (b) maximum
mean discrepancy (MMD) [39], (c) optimal transport (OT) [42] metrics. We also adapt retrieval-
based methods to our setting using a new retrieve-then-sample strategy based on the validation
set (details in App. B.2 and Sec. 4.5), specifically with the classical (d) Cosine similarity and (e)
BM25 [37] retrievers. We also compare with existing exemplar selection baselines using (f) an active
selection policy learned using reinforcement learning (Active) [50], and (g) an exemplar influence
metric (Inf) [31]. Additionally, we propose two more new strong baselines: (h) Evo which mutates
exemplars through evolutionary strategies and (i) Best-of-N which explores the exemplar space
uniformly until the query budget is exhausted. Evo is similar to PhaseEvo proposed by Cui et al.
[8]. Best-of-N shares similarity with DSPy’s BootstrapFewShot with RandomSearch [17]. More
implementation details are found in App. B.2. The number of exemplars in the in-context prompt
is set to k = 5. The black-box query budget is 165 evaluations following Lin et al. [21]. Since the
effectiveness of the optimization is directly reflected by the value of the objective function in (1),
we report the validation accuracy in the following experiments unless otherwise specified. The test
accuracy tables are presented in App. C.15.

4.1 Empirical study of performance gains on various benchmark tasks

To study the effectiveness of EASE, we conduct empirical comparisons with baseline methods using
the Instruction Induction (II) benchmark tasks [5]. We test on tasks that contain more than 100
training examples for selection. The results are shown in Tab. 1. Our EASE achieves the best
performance in 17 out of 19 language tasks. We observe that the subset selection methods such
as DPP, MMD and OT are ineffective in practice, implying that choosing subsets alone without
considering the order information is inadequate. While the retrieval-based methods Cosine and BM25
have demonstrated success in retrieving test-sample-based exemplars [38], it is not as effective in
finding the best exemplars that generalize to the entire task. This is because the exemplars retrieved at
the instance level may not work well for the entire validation set. The Active baseline requires training
an active exemplar selection policy through the data-intensive reinforcement learning process, which
explains its ineffectiveness under our budget-constrained setting. The Inf baseline is not efficient in
subset sampling and disregards exemplar ordering, leading to worse results. Our proposed Evo and
Best-of-N are the most competitive baselines both with best performance in 9 tasks.

We discover that while EASE consistently outperforms or matches the baselines across tasks, for
some tasks, most baselines achieve good performances. We hypothesize that the effect of exemplar
selection diminishes as the model gains more knowledge about the task. This explains the instances
where the choice of in-context exemplars has minimal impact on the performance, as the black-box
model (i.e., GPT-3.5 Turbo) has been pre-trained on these publicly available language tasks. As
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suggested by Brown et al. [3], it is highly likely that GPT-3 has been trained on common benchmark
datasets potentially contained in Common Crawl due to data contamination. Hence, further providing
high-quality in-context exemplars could hardly improve the performance of the model on these well-
trained tasks. Another possibility could be that the exemplars mostly serve as the context for adapting
to the new formatting rules of the specific task, i.e., the LLM is not utilizing the semantic contents of
the exemplars to learn the underlying input-output relations. This aligns with the discoveries of Min
et al. [27] and provides a potential explanation for the surprising behavior of LLMs. Therefore, the II
dataset might not be the most suitable one to test EASE. Next, we verify the above hypothesis that the
effect of exemplar selection diminishes as the model gains more knowledge about the task in Sec. 4.2,
and propose more suitable families of datasets for exemplar selection in Sec. 4.3.

4.2 Empirical validation of the hypothesis through progressive finetuning

We hypothesize that the effect of exemplar selection diminishes as the model gains more knowledge
about the task. To gain insights on this hypothesis, we study an open-source white-box Vicuna
model instead of the black-box GPT-3.5 model that is only accessible through API. We progressively
finetune the while-box language model, and examine whether the extent of finetuning on a specific
task diminishes the importance of in-context exemplars when prompted.

Our results are in Fig. 1. Compared to the most competitive baseline, Best-of-N, the gain from
exemplar selection using our EASE diminishes as the model is finetuned on the dataset of the
respective tasks for more epochs. Across the three tasks shown in Fig. 1, using EASE originally has a
performance gain of about 3%-10% and this gain slowly diminishes to 0 as finetuning progresses.
This verifies our hypothesis and calls for further investigation of the exemplar selection performance
of our EASE on tasks that have not been seen by the model, which we conduct in Sec. 4.3.

Figure 1: From left to right, the tasks are taxonomy animal, sentence similarity and object counting.
The performance gaps between EASE and the Best-of-N baseline diminish as the LLM is finetuned.

4.3 New families of “out-of-distribution” tasks that emphasize in-context reasoning

We propose three new families of “out-of-distribution” tasks (i.e., loosely referred to as tasks on
which the LLM is not already well trained) that highlight the importance of high-quality exemplars,
which could also be of independent interest. The new tasks require the LLM to learn the underlying
function/relationship in the input prompt in order to perform reasoning during inference, and are
hence more sensitive to the quality of the exemplars.

Rule-based tasks. Given our insight on the impact of the model’s existing knowledge about the task
(Sec. 4.2), we propose rule-based tasks that contain novel rules that the LLM has not learned before.
A key characteristic of these tasks is that the model has to extract the underlying relationships among
the provided in-context exemplars and directly use the relationship for test-time inferences. For
example, we construct the linear regression (LR) task where the input takes the form demonstrated in
Example 2 (see App. B.1). The underlying relationship in this example is y = ax+ b, with a = −4
and b = 6 in this specific Example 2. Without further instructions, the model is supposed to rely on
the provided in-context exemplars to implicitly infer the regression task, recover the coefficients a, b
for linear regression, and then directly apply it to the test sample (e.g., for test input 117, compute
−4× 117 + 6 = −462 and output −462). The results are in Tab. 2. For the clean dataset (i.e., 0%
noise), EASE outperforms the most competitive baseline by 8.3% in absolute accuracy. Note that
EASE has greater advantages in settings with noisy data, which will be discussed later in this section.
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Another example of our proposed rule-based tasks is constructed by changing the rules for language
puzzles (LP). A prominent example is “pig Latin” which follows two simple rules: (a) For words
that begin with a vowel, one just adds “yay” to the end; (b) for words that begin with consonants, the
initial consonants are moved to the end of the word, then “ay” is added. For example, translating
“Hello, how are you today?” to pig Latin gives “Ellohay, owhay areyay ouyay odaytay?”. Note that
this task also requires the model to reason about the language translation rules (i.e., rules (a) and (b))
before predicting for the test sample. The rules can be freely modified (e.g., by changing the suffix
word “yay” to others) to create diverse tasks that require in-context reasoning from the LLM. Hence,
we create a new variant of the LP task, named LP-variant, by using the “ay” suffix for both rules (a)
and (b). An example of the task query is given in Example 3 (see App. B.1). As shown in Tab. 2, in
this task, our EASE also demonstrates competitive results and outperforms all baselines.

Remapped label tasks. By remapping the labels of existing classification tasks to new ones, we
construct novel tasks that are against the model’s existing knowledge. In the commonly used AG
News dataset, the news articles are classified into four categories: “World”, “Sports”, “Business”
and “Sci/Tech”. We construct a remapped dataset AG News Remap such that “World” news is now
labeled as “Sports” news, “Sports” is now labeled as “Business”, etc. This is against the LLM’s
knowledge since the output now does not correspond to the context descriptions of the input (i.e., news
articles). So, the LLM has to learn these remapping rules from the in-context exemplars. Similarly,
we construct another dataset SST5 Reversed by reversing the labels of the sentiment analysis dataset
SST5, such that “very negative” labels are swapped with “very positive” labels, and “negative” labels
are swapped with “positive” labels. The results for these novel remapped label tasks are also in Tab. 2,
which shows superior performances of EASE over baselines by 6.7%-10% in absolute accuracy.

Noisy tasks. Exemplar selection is even more important to achieve good ICL performances when the
dataset is potentially noisy, since using noisy or mislabeled data as exemplars could have detrimental
effects on performance. Noisy datasets also better resemble practical scenarios because clean data
is expensive and difficult to obtain. We construct noisy datasets by injecting various ratios of noisy
outputs into the task datasets, ranging from having 10% noisy data samples (i.e., the remaining 90%
are clean) to having 90% noisy data samples (i.e., the remaining 10% are clean). We show in Tab. 2
that EASE is the best-performing method across different noise ratios and generally exhibits a lower
decrease in accuracy as the tasks become more difficult with increasing noise ratios.

Note that the conclusions on test accuracy results (in App. C.15) are consistent with the main text.
These tasks above represent new families of tasks that contain novel knowledge for LLMs. We
show through comprehensive experiments that exemplar selection is important and useful in practice,
especially for novel downstream task adaptations. Also, the noisy datasets considered here align with
real-world scenarios, which typically contain noises from observation, labeling error, corruption, etc.

4.4 Jointly optimizing instruction and exemplars

To the best of our knowledge, no prior work can jointly optimize instruction and exemplars. For a fair
comparison, we do not include an instruction when comparing with other exemplar selection baselines
in earlier sections. As EASE is readily extended to find the optimal combination of instruction and
exemplars (Sec. 3.3), we show the benefits of joint optimization in this section. According to
Tab. 3, jointly optimizing these two essential components of a prompt significantly improves the
performance for most tasks (marked with red arrows ↑). This improvement is attributed to the ability
of the optimized instruction to significantly reinforce the information captured in the corresponding
exemplars. For example, an automatically optimized instruction “identify and list the animals from
the given words” complements the exemplars in the taxonomy animal task. Therefore, our joint
optimization of instruction and exemplars presents a fully automated pipeline for prompt optimization
and achieves impressive practical performances.

4.5 Ablation studies

Combination with retrieval-based methods to handle larger sets of exemplars. Applying EASE to
scenarios where the size n of the set of exemplars D is very large may lead to performance degradation.
This is because the space Ω of exemplar sequences becomes excessively large, which cannot be
sufficiently explored without significantly increasing the computation (i.e., with the size of Qt being
fixed). To resolve this issue, a natural idea is to first filter the large pool of data exemplars to eliminate
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Table 2: Average accuracy± standard error over 3 independent trials achieved by different algorithms
on the new families of out-of-distribution tasks.

Type Task Noise DPP MMD OT Cosine BM25 Active Inf Evo Best-of-N EASE

R
ul

e-
ba

se
d

ta
sk

s LR

0% 31.7±1.7 38.3±3.3 50.0±0.0 71.7±1.7 70.0±0.0 36.7±1.4 56.7±7.3 61.7±1.7 66.7±1.7 80.0±2.9

10% 8.3±1.7 36.7±1.7 48.3±1.7 61.7±1.7 61.7±1.7 0.0±0.0 58.3±4.4 60.0±0.0 65.0±2.9 73.3±1.7

30% 10.0±0.0 28.3±1.7 46.7±1.7 63.3±1.7 60.0±0.0 40.0±2.4 35.0±2.9 53.3±1.7 50.0±0.0 76.7±1.7

50% 0.0±0.0 38.3±1.7 45.0±0.0 65.0±0.0 53.3±1.7 0.0±0.0 53.3±1.7 46.7±1.7 45.0±0.0 78.3±4.4

70% 0.0±0.0 55.0±0.0 38.3±3.3 65.0±0.0 50.0±0.0 26.7±5.4 30.0±5.8 33.3±1.7 33.3±1.7 66.7±1.7

90% 0.0±0.0 21.7±1.7 26.7±1.7 46.7±1.7 3.3±1.7 0.0±0.0 6.7±3.3 8.3±1.7 15.0±0.0 53.3±1.7

LP-
variant

0% 48.3±3.3 40.0±2.9 41.7±1.7 65.0±0.0 58.3±1.7 30.0±0.0 61.7±1.7 75.0±2.9 71.7±1.7 75.0±0.0

10% 0.0±0.0 36.7±1.7 40.0±0.0 63.3±3.3 60.0±0.0 36.7±2.7 65.0±2.9 70.0±2.9 73.3±1.7 80.0±2.9

30% 0.0±0.0 48.3±3.3 40.0±2.9 60.0±0.0 55.0±0.0 40.0±7.1 53.3±6.0 65.0±2.9 65.0±0.0 75.0±0.0

50% 0.0±0.0 65.0±0.0 35.0±2.9 63.3±3.3 60.0±0.0 38.3±3.6 48.3±4.4 61.7±1.7 65.0±0.0 78.3±1.7

70% 0.0±0.0 46.7±3.3 35.0±0.0 70.0±0.0 60.0±0.0 25.0±8.2 60.0±5.0 56.7±1.7 56.7±1.7 71.7±1.7

90% 0.0±0.0 35.0±2.9 50.0±0.0 65.0±2.9 0.0±0.0 30.0±12.5 50.0±2.9 38.3±1.7 55.0±2.9 66.7±1.7

R
e-

m
ap

pe
d

la
be

lt
as

ks AG
News
Remap

0% 20.0±2.9 15.0±0.0 26.7±1.7 43.3±1.7 43.3±3.3 5.0±2.4 25.0±5.0 40.0±0.0 40.0±0.0 50.0±0.0

10% 5.0±0.0 15.0±0.0 15.0±0.0 41.7±1.7 38.3±1.7 3.3±1.4 26.7±3.3 36.7±1.7 40.0±0.0 51.7±1.7

30% 10.0±0.0 5.0±0.0 5.0±0.0 40.0±0.0 36.7±1.7 1.7±1.4 10.0±0.0 40.0±0.0 43.3±1.7 55.0±0.0

50% 5.0±0.0 10.0±0.0 5.0±0.0 43.3±1.7 35.0±0.0 3.3±1.4 20.0±5.0 35.0±0.0 35.0±0.0 55.0±2.9

70% 5.0±0.0 25.0±0.0 8.3±1.7 50.0±0.0 35.0±0.0 1.7±1.4 11.7±6.7 38.3±1.7 46.7±1.7 58.3±3.3

90% 5.0±0.0 18.3±1.7 5.0±0.0 40.0±0.0 10.0±0.0 15.0±6.2 35.0±0.0 35.0±0.0 41.7±1.7 53.3±1.7

SST5
Reverse

0% 20.0±0.0 10.0±0.0 13.3±1.7 40.0±0.0 40.0±0.0 15.0±2.4 33.3±6.7 35.0±2.9 40.0±0.0 50.0±2.9

10% 16.7±1.7 10.0±0.0 15.0±0.0 48.3±1.7 40.0±0.0 13.3±2.7 23.3±6.7 33.3±3.3 40.0±0.0 48.3±1.7

30% 23.3±1.7 6.7±1.7 25.0±2.9 40.0±0.0 40.0±0.0 21.7±3.6 26.7±1.7 30.0±0.0 31.7±1.7 46.7±3.3

50% 21.7±1.7 15.0±0.0 15.0±0.0 43.3±1.7 33.3±1.7 21.7±1.4 23.3±1.7 28.3±1.7 30.0±0.0 46.7±3.3

70% 25.0±0.0 23.3±1.7 23.3±1.7 40.0±0.0 30.0±0.0 20.0±2.4 25.0±2.9 36.7±1.7 36.7±1.7 45.0±5.0

90% 20.0±0.0 15.0±2.9 20.0±0.0 30.0±0.0 30.0±0.0 13.3±2.7 21.7±1.7 30.0±0.0 30.0±0.0 31.7±1.7

Table 3: Average accuracy ± s.e. for EASE with and with-
out jointly optimized instructions. We removed tasks with
100% accuracy. The full results are in App. C, Tab. 6.

EASE EASE Improve
with instructions -ment

antonyms 90.0±0.0 85.0±0.0 -5.0 ↓
auto_categorization 30.0±0.0 56.7±1.7 26.7 ↑
negation 95.0±0.0 100.0±0.0 5.0 ↑
object_counting 73.3±1.7 75.0±0.0 1.7 ↑
orthography_starts_with 80.0±0.0 81.7±1.7 1.7 ↑
second_word_letter 53.3±1.7 100.0±0.0 46.7 ↑
sentence_similarity 56.7±1.7 58.3±1.7 1.7 ↑
synonyms 30.0±0.0 31.7±1.7 1.7 ↑
taxonomy_animal 88.3±1.7 100.0±0.0 11.7 ↑
translation_en-de 90.0±0.0 90.0±0.0 0.0 ◦
translation_en-fr 88.3±1.7 85.0±0.0 -3.3 ↓
word_sorting 90.0±0.0 93.3±1.7 3.3 ↑
word_unscrambling 78.3±1.7 80.0±0.0 1.7 ↑
LR (10% noise) 73.3±1.7 45.0±15.0 -28.3 ↓
LP-variant (10% noise) 80.0±2.9 86.7±1.7 6.7 ↑
AG News Remap (10% noise) 51.7±1.7 65.0±0.0 13.3 ↑
SST5 Reverse (10% noise) 48.3±1.7 53.3±1.7 5.0 ↑

Table 4: Average accuracy ± s.e.
achieved by EASE and EASE with re-
trieval for larger exemplar set sizes.

AG News Remap (10% noise)

Size n EASE EASE
with retrieval

1000 50.0±2.9 60.0±0.0

10000 55.0±0.0 63.3±1.7

50000 48.3±1.7 63.3±1.7

100000 50.0±2.9 65.0±0.0

SST5 Reverse (10% noise)

Size n EASE EASE
with retrieval

1000 43.3±3.3 48.3±1.7

3000 48.3±4.4 48.3±1.7

5000 43.3±1.7 50.0±0.0

7000 45.0±0.0 48.3±1.7

those that are less relevant to the task. This independent step to pre-filter candidates serves as a
promising extension of our EASE to handle a large set of exemplars. To this end, we propose to
first use retrieval-based methods to select the exemplars that are more relevant to the task, and then
run our EASE using this refined smaller set of exemplars. Specifically, we use a cosine similarity
retriever on exemplar embedding and perform exemplar selection on D with a size n as large as
100000. The query involves validation data exemplars DV and we retrieve from the corpus of training
set exemplars D. For each validation data exemplar in DV , we retrieve the most similar/relevant
training set exemplars from D. Then, we combine them to form a smaller set of exemplars than D
and proceed with EASE using this reduced subset for efficiency. As shown in Tab. 4, when the size n
of the exemplar set is large, combining EASE with retrieval gives better performances than directly
running EASE.

Effectiveness of components of EASE. Here we show the necessity of both of the main components
to the success of EASE: OT and NeuralUCB. As shown in Tab. 7 of App. C.3, EASE significantly
outperforms methods employing OT or NeuralUCB alone. Overall, a pure subset selection algorithm
based on OT performs badly on its own, especially when the dataset’s noise ratio is high. However,
when used together with NeuralUCB, OT significantly improves the performance of our EASE.
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Further ablations. We defer further ablation studies to App. C, including those exploring (a)
speedups from OT, (b) a larger k or a range of k, (c) a larger query budget T , (d) benefits of using an
ordering-aware embedding, (e) different black-box LLMs, (f) other embedding models, (g) degree of
exploration ν, (h) asking GPT to directly select exemplars, and (i) additional experiments on more
datasets including reasoning chains.

5 Related work

Retrieval-based methods. This approach utilizes trainable exemplar retrievers to select exemplars
depending on the text sequence of each individual test sample [1, 48]. Liu et al. [23] first proposed
a similarity-based (e.g., negative Euclidean distance or cosine similarity) retrieval strategy on the
sentence embeddings of the exemplars for ICL. Gao et al. [11] further enhanced the above by
emphasizing on exemplars with top-2 labels that the LLM is most uncertain about. Adapting
retrievers to specific tasks, Rubin et al. [38] learned a retrieval model from evaluating individual
exemplars by their 1-shot ICL performance on validation data. Improving on the limitation of the
above methods that exemplars are considered in isolation (i.e., independently), Ye et al. [48] proposed
to retrieve a set of exemplars jointly by examining their joint probability to capture inter-relationships.
Likewise, Levy et al. [18] retrieved a set by selecting diverse exemplars that collectively cover all
of the output structures. Gupta et al. [14] instead generalized the individual metrics to a set-level
metric through a submodular function, which is well-suited for optimization via greedy algorithms.
However, retrieval-based methods are characterized by varying exemplars for each test sample, which
do not align with our practical setting of maintaining a fixed set of exemplars for the entire task.
Also, another common drawback is that heuristics are typically required to order the exemplars in the
retrieved set.

Selection of a fixed set of exemplars. Having a fixed set of exemplars offers practical and privacy-
related advantages, such as the ease of implementation and reduced data exposure [25, 30]. Wang
et al. [44] proposed to train a small LLM as a latent variable model using output token logits from
independent exemplars, then forming a fixed exemplar set to directly transfer to target models.
Similarly, Chang and Jia [4] developed a data model for each validation sample and introduced an
aggregate metric to select subsets. Li and Qiu [19] proposed to filter and search for best exemplars
using an informativeness metric derived from LLM output logits on classification tasks. However,
these works are restricted to classification tasks. The closest to our work is that of Zhang et al. [50],
which used reinforcement learning to actively select exemplars. In a similar setting to ours, Nguyen
and Wong [31] used influence to select the most influential exemplars and order them arbitrarily to
form the subset. However, both methods perform worse than our algorithm in our experiments.

Instruction optimization. Another related direction for enhancing the performance of LLMs is
instruction optimization. Focusing on instructions within the prompt, evolutionary algorithms and
zeroth-order optimization algorithms are gaining popularity in refining the prompts for black-box
LLMs [5, 10, 13, 16, 21, 47]. Specifically, some studies [10, 16, 21, 47] maintained a constant set of
exemplars throughout the process of prompt optimization, whereas others [5, 9, 13, 34] ignored the
consideration of exemplars altogether by adopting a zero-shot setting. It is therefore imperative to
develop an effective exemplar selection method for black-box LLMs.

6 Conclusion and limitation

We propose EASE, an algorithm that selects the optimal ordered set of exemplars for in-context
learning of black-box LLMs in an automated fashion. EASE is query-efficient due to the adoption of
the NeuralUCB algorithm and is further made computationally feasible for large spaces of exemplar
sequences through a technique based on optimal transport. Additionally, our EASE has been extended
to a fully automated prompt optimization pipeline that jointly optimizes exemplars and instruction
for the best in-context learning performance. Furthermore, we provide practical insights indicating
that exemplar selection in in-context learning is more crucial for downstream tasks that the LLM
has limited knowledge about. However, the on-the-fly computation of embedding for the ordered
exemplar sequences is the computational bottleneck of our method, which could be potentially
improved in future work for more efficient optimization. Also, a potential limitation of EASE is the
requirement for a suitable validation set, which may not be readily available in some scenarios.
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A Broader impacts

As LLMs continue to gain popularity and are increasingly used by a broad user base (e.g., evidenced
by OpenAI’s over 1 million active users), carefully handling the ethical considerations associated with
LLMs’ diverse applications becomes crucial. Such a work like ours which focuses on automatically
optimizing the performance of LLMs offers valuable applications and ease of usage. However, it is
both challenging and essential to address the potential for malicious usage. When applied to tasks
specially designed with malicious or adversarial intent, our method could be exploited to produce
harmful instructions and exemplars. In such cases, responsible usage of the tool is important. There
may be a need for a user-friendly platform (which integrates safety measures, instead of providing the
raw code) to add an extra layer of protection. Additionally, we urge the community to focus more on
potential ethical and safety issues related to the usage of LLMs and associated technologies, which
should also account for additional objectives and constraints (e.g., harmfulness).

B Implementation details

In this section, we provide details for the implementation of the data processing (see App. B.1) and
the baseline methods employed in this paper (see App. B.2). All experiments are conducted on
a server with Intel(R) Xeon(R) CPU and NVIDIA H100 GPUs. Unless otherwise stated, we use
“gpt-3.5-turbo-1106” as the target black-box model, and MPNet as the embedding model.

B.1 Details for data processing

We follow the query template proposed by APE [54] for querying LLM models. Example 1 below
shows the general query template for in-context learning (ICL) used in the paper, and the LLM will
generate outputs corresponding to the query. In the template, the placeholders (i.e., [INSTRUCTION],
[INPUT], [OUTPUT] and [TEST INPUT]) are replaced by raw text in the datasets. The placeholder
“<More exemplars...>” represents any additional exemplars written the same input-output format
depending on the number of in-context exemplars k in the prompt. The “instruction” is optional in
the query and we only include the instruction when jointly optimizing for both the exemplars and the
instruction (Sec. 3.3 and Sec. 4.4).

Example Query 1: A General Template

(optional) Instruction: [INSTRUCTION]

Input: [INPUT]
Output: [OUTPUT]

<More exemplars...>

Input: [INPUT]
Output: [OUTPUT]

Input: [TEST INPUT]
Output:

Next, we present the details for the new families of out-of-distribution tasks that we proposed in
Sec. 4.3.

Linear regression (LR). The LR task is generated with an underlying linear regression function
y = ax + b, where a, b are the coefficients to be defined. In our specific example of the LR task
presented in the paper, we arbitrarily choose a = −4 and b = 6. We let x be the input and y be
the output. Note that to make the task difficult, no information about the function structure (i.e.,
y = ax+ b) is passed to the LLM in the query. A concrete example is shown in Example 2.

Language puzzle variant (LP-variant). We change the rules for the classic language game “pig
Latin”. The original pig Latin follows 2 rules: (a) For words that begin with a vowel, one just adds
“yay” to the end; (b) For words that begin with consonants, the initial consonants are moved to the end
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of the word, then “ay” is added. We create a variant, LP-variant, using the “ay” suffix for both rules
(a) and (b). An example of the task query is given in Example 3. Note that one could freely modify
the rules, by changing the suffix word “yay” to something else for example, and create diverse tasks
that require in-context reasoning from the model.

Example Query 2: LR

Input: 172
Output: -682

<More exemplars...>

Input: 47
Output: -182

Input: 117
Output:

Example Query 3: LP-variant

Input: quick brown fox The jumps Over the Lazy dog
Output: uickqay ownbray oxfay Ethay umpsjay Overyay
ethay Azylay ogday

<More exemplars...>

Input: Tom never walks to school
Output: Omtay evernay alksway otay oolschay

Input: We never talk
Output:

AG News Remap. For the commonly-used AG News dataset, the news articles are classified into
four categories: “World”, “Sports”, “Business” and “Sci/Tech”. We constructed a re-mapped dataset
by “shifting” the label mapping, such that

• “World” news is now labeled as “Sports” news,

• “Sports” news is now labeled as “Business” news,

• “Business” news is now labeled as “Sci/Tech” news,

• “Sci/Tech” news is now labeled as “World” news.

Note that the remapping rule above is chosen arbitrarily. Therefore, one could create a variety of
tasks by changing the remapping rule, or even directly changing the labels completely. For the above
rule that we adopted, an example of the AG News Remap task query is given in Example 4.

Example Query 4: AG News Remap

Input: Yahoo, Adobe join hands Adobe Systems, the digital imaging, design and document
technology platform provider and Internet service provider Yahoo will announce this week
the launch of a co-branded Yahoo Toolbar.
Output: World

<More exemplars...>

Input: Schumacher Sets Mark Michael Schumacher won the Hungarian Grand Prix
Sunday in Budapest, setting yet another record by becoming the first Formula One driver
with 12 victories in a season.
Output: Business

Input: LeapFrog Warns on 3Q, Year Profit View LeapFrog Enterprises Inc., a devel-
oper of technology-based educational products, on Monday lowered third-quarter and
full-year profit expectations, citing difficult market conditions.
Output:

SST5 Reverse. SST5 is another commonly used 5-way sentiment classification dataset, with labels
being “very positive”, “positive”, “neutral”, “negative” and “very negative”. To make the task novel
and unseen by the LLM before, we reverse the labels to be against the sentiment expressed in the
input, such that

• “very positive” sentences are now labeled as “very negative”,

• “positive” sentences are now labeled as “negative”,
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Table 5: Average accuracy ± standard error achieved by the best exemplar sequence discovered by
different algorithms for different tasks over 3 independent trials.

DPP MMD OT Cosine BM25 Active Inf Evo Best-of-N EASE

active_to_passive 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

antonyms 70.0±0.0 80.0±0.0 81.7±1.7 85.0±0.0 85.0±0.0 80.0±0.0 86.7±1.7 88.3±1.7 90.0±0.0 90.0±0.0

auto_categorization 3.3±1.7 8.3±1.7 0.0±0.0 25.0±0.0 16.7±1.7 10.0±2.4 21.7±1.7 21.7±1.7 20.0±0.0 30.0±0.0

diff 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

first_word_letter 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

larger_animal 70.0±0.0 91.7±1.7 100.0±0.0 100.0±0.0 100.0±0.0 66.7±1.4 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

letters_list 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

negation 95.0±0.0 95.0±0.0 95.0±0.0 95.0±0.0 95.0±0.0 95.0±0.0 95.0±0.0 95.0±0.0 95.0±0.0 95.0±0.0

num_to_verbal 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

object_counting 55.0±2.9 56.7±1.7 48.3±1.7 61.7±1.7 66.7±1.7 51.7±1.4 63.3±4.4 70.0±0.0 70.0±0.0 73.3±1.7

orthography_starts_with 20.0±2.9 35.0±0.0 61.7±1.7 78.3±1.7 70.0±0.0 43.3±1.4 70.0±2.9 75.0±0.0 78.3±1.7 80.0±0.0

rhymes 60.0±0.0 51.7±1.7 0.0±0.0 100.0±0.0 80.0±0.0 65.0±8.2 70.0±13.2 100.0±0.0 100.0±0.0 100.0±0.0

second_word_letter 10.0±2.9 30.0±0.0 28.3±1.7 50.0±0.0 50.0±0.0 26.7±8.3 40.0±0.0 46.7±1.7 50.0±0.0 53.3±1.7

sentence_similarity 20.0±0.0 21.7±3.3 40.0±2.9 46.7±1.7 53.3±1.7 5.0±4.1 18.3±6.7 45.0±0.0 51.7±1.7 56.7±1.7

sentiment 85.0±0.0 90.0±0.0 85.0±0.0 96.7±1.7 100.0±0.0 85.0±4.1 91.7±1.7 100.0±0.0 100.0±0.0 100.0±0.0

singular_to_plural 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

sum 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

synonyms 10.0±0.0 25.0±0.0 20.0±0.0 35.0±0.0 30.0±0.0 3.3±1.4 26.7±1.7 30.0±0.0 30.0±0.0 30.0±0.0

taxonomy_animal 43.3±4.4 40.0±2.9 46.7±1.7 85.0±2.9 80.0±0.0 45.0±6.2 70.0±5.0 80.0±0.0 80.0±0.0 88.3±1.7

translation_en-de 90.0±0.0 80.0±0.0 80.0±0.0 90.0±0.0 85.0±0.0 56.7±13.0 90.0±0.0 90.0±0.0 90.0±0.0 90.0±0.0

translation_en-es 90.0±0.0 100.0±0.0 96.7±1.7 100.0±0.0 100.0±0.0 96.7±1.4 98.3±1.7 100.0±0.0 100.0±0.0 100.0±0.0

translation_en-fr 76.7±1.7 76.7±1.7 81.7±1.7 85.0±0.0 85.0±0.0 81.7±1.4 85.0±0.0 86.7±1.7 85.0±0.0 88.3±1.7

word_sorting 26.7±1.7 88.3±1.7 88.3±1.7 90.0±0.0 71.7±1.7 80.0±0.0 88.3±1.7 93.3±1.7 91.7±1.7 90.0±0.0

word_unscrambling 68.3±1.7 56.7±1.7 71.7±1.7 75.0±0.0 76.7±1.7 63.3±3.6 66.7±1.7 75.0±0.0 75.0±0.0 78.3±1.7

# best-performing tasks 7 7 7 11 9 6 10 14 14 22

• “neutral” sentences are still labeled as “neutral”,

• “negative” sentences are now labeled as “positive”,

• “very negative” sentences are now labeled as “very positive”.

This makes the task difficult as the LLM has to now output sentiments that are against the pre-trained
knowledge about sentiments, which is obtained from the large corpus of pre-training data that the
LLM has been trained on.

An example of the SST5 Reverse task query is given in Example 5.

Example Query 5: SST5 Reverse

Input: extremely bad .
Output: very positive

<More exemplars...>

Input: ... bright , intelligent , and humanly funny film .
Output: very negative

Input: really dumb but occasionally really funny .
Output:

Injecting noises into datasets. To construct noisy datasets with different noise ratios, we mainly
modify the labels of data points. Specifically, to construct a dataset with r% noisy data, we sample
r% data and replace their labels with the labels of other randomly sampled data points in the dataset.
We also design specific noise structures for LR and LP-variant to simulate noises due to a systematic
error. For LR, the noisy data instead follows y = 5x − 8. For LP-variant, the noisy data simply
repeats the input sentence in the label.

B.2 Details for implementation of the methods and baselines

For all methods, we use a consistent exemplar selection set D, validation set DV and test set for
evaluating one task. We also implement all exemplar selection without replacement for all methods.
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DDP. We follow Ye et al. [48] to use the DPP metric combined with relevance scores as the subset
selection criterion. We do not train the embedding model and directly use cosine similarity to measure
the relevance term. However, the original metric by Ye et al. [48] is dependent on the test input xtest,
so we adapted the method to average the metric over the validation dataset. The exemplar set with
the maximum values on the metric is chosen and evaluated on the black-box LLM.

MMD. We use the MMD metric in Sejdinovic et al. [39] to measure the distance between the
exemplars set and the validation set. The exemplar set with the maximum values on the MMD metric
is chosen and evaluated on the black-box LLM.

OT. We use the OT metric in (4) to measure the distance between the exemplars set and the validation
set. Similarly, the exemplar set with the maximum values on the OT metric is chosen and evaluated
on the black-box LLM.

Cosine. Retrieval-based methods are not suitable for finding a fixed set of exemplars for the entire test
set in its original form. Hence, we propose the following adaptation. We first retrieve top-R candidates
with the lowest distance to all validation samples on average. Then, we sample T permutations of
exemplars from the R candidates to test on the black-box LLM, where T is the black-box query
budget. In the above, the retriever calculates the cosine similarity between the embeddings of samples
obtained from an embedding model h(·). In this paper, we use R = 10 and use MPNet as h(·).
BM25. This retrieval-based baseline works similarly to Cosine. The only difference is that this
baseline uses the classic BM25 [37] as the retriever.

Active. We use the official implementation of Zhang et al. [50]. For a fair comparison using the same
query budget T for the black-box LLM, we limit the number of episodes that can be used according
to T , and then train the exemplar selection policy through reinforcement learning.

Inf. For Inf, we first sample random permutations of exemplar sequences to be evaluated on the
black-box LLM to obtain the scores. Then, we follow the influence metric proposed by Nguyen and
Wong [31] to select k individual exemplars to form the best exemplar sequence. The best exemplar
sequence is then finally evaluated on the black-box LLM.

Evo. We propose a new baseline using evolutionary strategies. For each iteration, the mutation
operator changes one exemplar in the current best exemplar sequence to another random exemplar.
Then, we evaluate the exemplars on the black-box LLM. In this way, we exploit the current knowledge
about the best exemplars and perform local mutations.

Best-of-N. This is a straightforward baseline that explores the whole space of all exemplar permuta-
tions uniformly by sampling random permutations until the T query budget is exhausted.

EASE. The details for our proposed method EASE are described thoroughly in Sec. 3. We use a
sampling size of q = 50000 exemplar permutations per iteration after OT is introduced.

C More experiment results

C.1 Full results table for the 24 tasks

Tab. 5 is the full table containing all 24 tasks (with more than 100 training data samples) from the
Instruction Induction dataset (compared to Tab. 1 which drops tasks with 100% accuracy across
baselines). Our EASE outperforms all baselines.

C.2 Full results table for EASE with instructions

We present the full table of results for EASE with joint optimization of exemplars and instructions in
Tab. 6 (compared to Tab. 3 which drops tasks with 100% accuracy both with and without instructions).
The conclusion is still consistent with the main text that incorporating instructions jointly optimized
to best match the chosen exemplars could improve the ICL performance, especially for difficult tasks
(e.g., auto categorization, taxonomy animal, etc.).

We also provide some details on the efficient implementation of the joint optimization in practice.
According to Line 5 of Algorithm 1, the instructions augment the search space by the size |P |.
This will gain us much benefit if additional computation is available. Otherwise, in practice, the
most straightforward implementation without increasing the computational complexity is to reduce
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Table 6: Average accuracy ± standard error comparison for EASE with and without jointly optimized
instructions.

EASE EASE with instructions improvement
antonyms 90.0±0.0 85.0±0.0 -5.0 ↓
auto_categorization 30.0±0.0 56.7±1.7 26.7 ↑
diff 100.0±0.0 100.0±0.0 0.0 ◦
larger_animal 100.0±0.0 100.0±0.0 0.0 ◦
negation 95.0±0.0 100.0±0.0 5.0 ↑
object_counting 73.3±1.7 75.0±0.0 1.7 ↑
orthography_starts_with 80.0±0.0 81.7±1.7 1.7 ↑
rhymes 100.0±0.0 100.0±0.0 0.0 ◦
second_word_letter 53.3±1.7 100.0±0.0 46.7 ↑
sentence_similarity 56.7±1.7 58.3±1.7 1.7 ↑
sentiment 100.0±0.0 100.0±0.0 0.0 ◦
sum 100.0±0.0 100.0±0.0 0.0 ◦
synonyms 30.0±0.0 31.7±1.7 1.7 ↑
taxonomy_animal 88.3±1.7 100.0±0.0 11.7 ↑
translation_en-de 90.0±0.0 90.0±0.0 0.0 ◦
translation_en-es 100.0±0.0 100.0±0.0 0.0 ◦
translation_en-fr 88.3±1.7 85.0±0.0 -3.3 ↓
word_sorting 90.0±0.0 93.3±1.7 3.3 ↑
word_unscrambling 78.3±1.7 80.0±0.0 1.7 ↑
LR (10% noise) 73.3±1.7 45.0±15.0 -28.3 ↓
LP-variant (10% noise) 80.0±2.9 86.7±1.7 6.7 ↑
AG News Remap (10% noise) 51.7±1.7 65.0±0.0 13.3 ↑
SST5 Reverse (10% noise) 48.3±1.7 53.3±1.7 5.0 ↑

|Q′
t| from q′ to q′/|P |. More generally, one can randomly sample r × |P | instructions to pair with

q′/(r × |P |) exemplar sequences. This implementation is simple yet effective, where r controls the
trade-off of focusing more on instructions versus exemplars.

C.3 Ablation studies for the NeuralUCB and OT components

The following Tab. 7 and Tab. 8 show the necessity of both of the main components, NeuralUCB
and OT, in the success of the proposed EASE algorithm. A pure subset selection algorithm based on
OT performs badly on its own, especially when the noise ratio is high in the datasets. However, it
greatly improves the performance of NeuralUCB when used together with NeuralUCB in our EASE.
This is attributed to the ability to examine more permutations of the exemplars without increasing
the computational cost, since only selected permutations through OT (which places an implicit bias
towards more relevant exemplars) will be evaluated for the acquisition values in NeuralUCB.

C.4 Ablation studies for the speedups from OT

Carrying on from the previous section about the necessity of both the NeuralUCB and OT components,
we can quantify through experiments the amount of speedups brought by OT. Specifically, we measure
the wall clock time speedups for different sizes of the domain space Qt that we sample. We experiment
on one of the tasks with the longest input, AG News Remap. As shown in Tab. 9, the larger the
domain space |Qt|, the greater the relative gain in the speedups. This mitigates the computational
issues of applying NeuralUCB to the problem of exemplar selection and contributes positively to the
success of EASE.

C.5 Ablation studies for other numbers of k

We validate that EASE is able to select a larger set of exemplars (i.e., larger k) and also from a larger
exemplar set of size n. We conduct comparisons of EASE to the two most competitive baselines, Evo
and Best-of-N, on the AG News Remap and SST5 Reverse datasets of size n = 1000 with 10% noise.
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Table 7: Average accuracy ± standard error for
ablation studies of the OT and NeuralUCB com-
ponents in EASE.

Task Noise OT NeuralUCB EASE

LR

0% 50.0±0.0 71.7±1.7 80.0±2.9

10% 48.3±1.7 66.7±3.3 73.3±1.7

30% 46.7±1.7 66.7±1.7 76.7±1.7

50% 45.0±0.0 61.7±1.7 78.3±4.4

70% 38.3±3.3 55.0±5.0 66.7±1.7

90% 26.7±1.7 28.3±3.3 53.3±1.7

LP-
variant

0% 41.7±1.7 78.3±1.7 75.0±0.0

10% 40.0±0.0 75.0±0.0 80.0±2.9

30% 40.0±2.9 70.0±0.0 75.0±0.0

50% 35.0±2.9 71.7±1.7 78.3±1.7

70% 35.0±0.0 70.0±2.9 71.7±1.7

90% 50.0±0.0 61.7±1.7 66.7±1.7

AG
News
Remap

0% 26.7±1.7 48.3±1.7 50.0±0.0

10% 15.0±0.0 51.7±3.3 51.7±1.7

30% 5.0±0.0 55.0±2.9 55.0±0.0

50% 5.0±0.0 41.7±3.3 55.0±2.9

70% 8.3±1.7 45.0±2.9 58.3±3.3

90% 5.0±0.0 45.0±5.8 53.3±1.7

SST5
Reverse

0% 13.3±1.7 41.7±3.3 50.0±2.9

10% 15.0±0.0 48.3±4.4 48.3±1.7

30% 25.0±2.9 36.7±4.4 46.7±3.3

50% 15.0±0.0 38.3±1.7 46.7±3.3

70% 23.3±1.7 53.3±3.3 45.0±5.0

90% 20.0±0.0 33.3±3.3 31.7±1.7

Table 8: Average test accuracy ± standard error
for ablation studies of the OT and NeuralUCB
components in EASE.

Task Noise OT NeuralUCB EASE

LR

0% 34.0±1.0 50.7±3.2 58.0±2.1

10% 29.3±0.3 41.0±2.9 42.3±0.9

30% 30.0±1.0 47.7±2.9 47.7±5.8

50% 23.0±0.6 49.3±1.7 50.7±2.2

70% 28.7±0.7 44.0±2.1 47.0±3.2

90% 32.0±0.6 14.7±2.2 39.0±7.8

LP-
variant

0% 34.7±0.7 56.3±4.1 53.0±2.3

10% 34.0±0.6 55.7±4.8 48.0±2.5

30% 36.0±1.1 48.7±2.6 50.7±1.4

50% 31.0±0.6 49.3±2.6 56.7±0.9

70% 30.3±0.9 50.3±3.0 52.0±1.0

90% 39.7±0.3 38.3±4.8 44.3±1.4

AG
News
Remap

0% 12.3±0.7 29.7±0.9 30.3±1.2

10% 13.0±1.1 32.0±4.5 30.3±4.4

30% 4.7±0.3 32.0±3.1 40.0±1.0

50% 3.7±0.3 30.7±3.7 40.0±3.1

70% 7.0±0.0 34.3±1.9 45.0±2.0

90% 2.0±0.0 26.3±8.4 36.7±3.2

SST5
Reverse

0% 9.7±0.9 31.3±5.2 34.0±3.0

10% 9.3±0.3 37.0±1.5 31.3±2.6

30% 11.7±0.7 21.3±7.0 24.3±1.8

50% 12.0±0.0 22.3±6.3 28.7±1.4

70% 14.3±0.3 33.7±2.2 33.3±3.8

90% 16.0±0.6 14.3±2.9 19.0±6.1

Table 9: Wall clock time speedups of using OT. The time in the table measures the wall clock time
for each iteration of the algorithms.

Domain size |Qt| Time without OT (Sec) Time with OT (Sec) Speedup

5000 21.48±0.12 5.62±0.05 3.8×
10000 44.16±0.67 6.92±0.02 6.4×
20000 91.39±1.06 8.82±0.12 10.4×
50000 216.61±1.25 15.32±0.04 14.1×

According to Tab. 10 and Tab. 11, EASE performs much better than the two baselines. Therefore,
EASE is able to work in other general setups with a larger k and n.

We could potentially choose more exemplars to maximize the context window, but this will incur a
very high future cost of inference (i.e., the cost of actually using the exemplars for inference during
production). For example, to maximize the GPT-3.5-Turbo’s context window of 16385 tokens (which
OpenAI charges US$0.5 per 1M tokens), each inference will cost US$0.0081925 and each run of the
algorithm costs US$27.04 (assuming 165 iterations of query budget and 20 validation data samples).
Similarly for GPT-4-Turbo with a context window of 128000 tokens (which OpenAI charges US$10
per 1M tokens), each inference of the algorithm now costs US$1.28 and each run of the algorithm
costs US$4224. Therefore, while it is theoretically possible to use even larger k which exhausts the
context window, it is not economically viable to conduct experiments or adopt such an approach in
practice.

Another alternative is to allow a range instead of a fixed value of k to be selected. That is, if k = 50,
we can allow the number of exemplars in the prompt to be any integer from 1 to 50. We present
the additional results in Tab. 12. Firstly, EASE continues to consistently outperform the strongest
baseline Best-of-N. Secondly, we also observe that the prompts with the best performance typically
have a large number of exemplars, i.e., close to the max k allowed. Thirdly, using k = 50 gives better
performance than k = 5. Therefore, including more exemplars in the prompt usually gives a higher
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Table 10: Average accuracy ± standard error for
k = 50 and n = 1000.

Evo Best-of-N EASE

AG News Remap 50.0±2.9 55.0±2.9 68.3±1.7

SST5 Reverse 58.3±1.7 56.7±1.7 63.3±1.7

Table 11: Average test accuracy± standard error
for k = 50 and n = 1000.

Evo Best-of-N EASE

AG News Remap 12.7±3.2 26.3±0.9 38.7±3.2

SST5 Reverse 39.0±0.6 38.7±1.2 40.0±3.5

Table 12: Results for the setting that allows different number exemplars to be selected (i.e., allowing
a range instead of a fixed k. EASE outperforms Best-of-N. We also observe high-performing prompts
usually consist of more exemplars (i.e., larger average k).

Tasks n Max k
Best-of-N EASE

Acc Avg. best k Acc Avg. best k

LR 100 5 60.0±2.9 5.0±0.0 76.7±1.7 4.7±0.3

LP-variant 100 5 60.0±0.0 2.7±0.7 71.7±1.7 4.3±0.3

AG News Remap 100 5 31.7±1.7 3.0±0.0 46.7±1.7 5.0±0.0

SST5 Reverse 100 5 31.7±1.7 4.3±0.7 48.3±1.7 4.7±0.3

AG News Remap 1000 50 45.0±2.9 25.0±0.0 50.0±2.9 45.0±1.7

SST5 Reverse 1000 50 60.0±0.0 38.3±8.8 61.7±1.7 36.0±6.7

performance. However, this comes at the expense of a higher query cost at test time because more
tokens are used in the prompt as well.

C.6 Ablation studies for the query budget

In the main text of the paper, we follow Lin et al. [21] and set the black-box query budget to
165 evaluations. Here, we increase the query budget to 500 iterations to study the effect of the
query budget on performance. We show in Tab. 13 that increasing the budget generally improves
performance.

Table 13: Average performance when the query budget is increased to 500 iterations. The performance
increased as compared to Tab. 2 of the original paper. The gaps between EASE and baselines are still
significant.

Tasks (10% noise) Evo Best-of-N EASE

LR 70.0±0.0 70.0±0.0 76.7±3.3

LP-variant 73.3±1.7 66.7±1.7 80.0±0.0

AG News Remap 40.0±0.0 50.0±0.0 56.7±1.7

SST5 Reverse 40.0±0.0 41.7±1.7 51.7±1.7

C.7 Ablation studies for the benefit of having an ordering-aware embedding in EASE

Note that even for the same subset of exemplars, a different ordering leads to different pre-trained
embedding from embedding model h(·). In this section, we investigate the impact of capturing
the ordering of the exemplars in the exemplar sequence E. To contrast the adopted approach, we
propose a new embedding that simply averages the embeddings of all individual exemplars in the
chosen subset. So, this embedding will be invariant with regard to the ordering of exemplars and we
call it AvgEmb. As demonstrated in Tab. 14 and Tab. 15, adopting an ordering-aware embedding
in EASE results in better overall performance as compared to AvgEmd which disregards exemplar
ordering.

Notably, AvgEmd presents a trade-off between efficiency and effectiveness. AvgEmd is advantageous
in terms of efficiency as it eliminates the on-the-fly embedding entirely. However, there is no
free lunch: Such computational simplification comes at the cost of performance due to the loss of
order information. Though not as good, note that AvgEmb still achieves a decent and competitive
performance. The practitioners can balance the trade-off and select the most suitable method.
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Table 14: Average accuracy ± standard error for
ablation studies of using an embedding without
considering order.

Task Noise AvgEmb EASE

LR

0% 76.7±1.7 80.0±2.9

10% 73.3±4.4 73.3±1.7

30% 70.0±0.0 76.7±1.7

50% 68.3±4.4 78.3±4.4

70% 66.7±1.7 66.7±1.7

90% 51.7±1.7 53.3±1.7

LP-
variant

0% 76.7±1.7 75.0±0.0

10% 75.0±0.0 80.0±2.9

30% 70.0±0.0 75.0±0.0

50% 78.3±1.7 78.3±1.7

70% 75.0±2.9 71.7±1.7

90% 61.7±1.7 66.7±1.7

AG
News
Remap

0% 53.3±1.7 50.0±0.0

10% 50.0±5.0 51.7±1.7

30% 51.7±1.7 55.0±0.0

50% 50.0±0.0 55.0±2.9

70% 58.3±1.7 58.3±3.3

90% 53.3±6.0 53.3±1.7

SST5
Reverse

0% 46.7±6.7 50.0±2.9

10% 50.0±2.9 48.3±1.7

30% 45.0±2.9 46.7±3.3

50% 48.3±1.7 46.7±3.3

70% 41.7±4.4 45.0±5.0

90% 31.7±1.7 31.7±1.7

# best-performing tasks 9 18

Table 15: Average test accuracy ± standard er-
ror for ablation studies of using an embedding
without considering order.

Task Noise AvgEmb EASE

LR

0% 48.7±1.2 58.0±2.1

10% 48.7±2.9 42.3±0.9

30% 53.0±4.9 47.7±5.8

50% 46.0±5.0 50.7±2.2

70% 44.3±6.4 47.0±3.2

90% 28.7±2.7 39.0±7.8

LP-
variant

0% 47.7±1.9 53.0±2.3

10% 48.0±1.7 48.0±2.5

30% 49.3±1.8 50.7±1.4

50% 48.0±1.5 56.7±0.9

70% 54.3±1.3 52.0±1.0

90% 38.3±0.9 44.3±1.4

AG
News
Remap

0% 33.3±2.3 30.3±1.2

10% 32.0±0.6 30.3±4.4

30% 29.7±1.2 40.0±1.0

50% 28.7±1.4 40.0±3.1

70% 40.0±5.0 45.0±2.0

90% 36.3±4.1 36.7±3.2

SST5
Reverse

0% 31.0±4.6 34.0±3.0

10% 31.3±3.0 31.3±2.6

30% 27.7±1.4 24.3±1.8

50% 33.7±1.4 28.7±1.4

70% 25.7±7.2 33.3±3.8

90% 13.7±0.3 19.0±6.1

# best-performing tasks 8 16

Table 16: Average accuracy ± standard error
when using our EASE to select exemplars for
different target black-box models.

Task (with 10% noise) GPT-4-V GPT-4- Gemini
Turbo Pro

LR 1.7±1.7 3.3±1.7 83.3±4.4

LP-variant 90.0±0.0 90.0±0.0 31.7±1.7

AG News Remap 50.0±0.0 35.0±2.9 53.3±4.4

SST5 Reverse 21.7±1.7 41.7±1.7 36.7±1.7

Table 17: Average test accuracy± standard error
when using our EASE to select exemplars for
different target black-box models.

Task (with 10% noise) GPT-4-V GPT-4- Gemini
Turbo Pro

LR 0.0±0.0 0.0±0.0 51.3±3.5

LP-variant 83.7±1.3 77.7±1.9 14.3±1.4

AG News Remap 25.7±1.9 25.7±3.0 32.7±9.4

SST5 Reverse 13.3±1.4 28.3±3.8 24.0±3.0

C.8 Ablation studies for optimizing exemplars for different black-box LLMs in EASE

We perform exemplar selection for other target black-box models that are not GPT-3.5 which we used
for all other experiments previously. We use GPT-4-V (i.e., “gpt-4-turbo-2024-04-09” with vision
capability), GPT-4-Turbo (i.e., ’gpt-4-1106-preview’ without vision capability) and Gemini Pro [41]
(i.e., “gemini-1.0-pro”) for our experiments. Tab. 16 and Tab. 17 show that our EASE is able to select
effective exemplars for different black-box models. Note that the performance of GPT-4-V and
GPT-4-Turbo is comparable to or worse than that of GPT-3.5 in some tasks. This may be attributed to
significant variations in performance across different versions (i.e., checkpoints) of the GPT models.
For example, existing work by Chen et al. [6] has shown that GPT-4’s mathematical ability varies a
lot across different checkpoints, with some exhibiting poor performance on mathematical problems.
This variability partially explains the suboptimal performance of GPT-4-V and GPT-4-Turbo on
the task of LR. Additionally, it is worth investigating, in future work, the significance of exemplar
selection as the LLMs continue to become increasingly powerful.

C.9 Ablation studies for using different embedding models in EASE

For our main experiments, we use MPNet as the embedding model for our EASE. Here, we use
MiniLM [43] and CLIP [35] to obtain the embedding for our EASE, respectively. Tab. 18 and Tab. 19
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Table 18: Average accuracy ± standard error
when using different embedding models for our
EASE.

Task (with 10% noise) MiniLM CLIP
LR 73.3±1.7 68.3±1.7

LP-variant 76.7±1.7 70.0±2.9

AG News Remap 43.3±1.7 46.7±3.3

SST5 Reverse 43.3±1.7 45.0±0.0

Table 19: Average test accuracy± standard error
when using different embedding models for our
EASE.

Task (with 10% noise) MiniLM CLIP
LR 51.3±1.3 50.3±5.5

LP-variant 56.3±0.9 49.7±1.4

AG News Remap 29.3±2.7 29.3±0.3

SST5 Reverse 29.7±6.4 33.3±4.8

Table 20: Average accuracy ± standard error for
ablation studies of the exploration parameter ν.

Task Noise ν = 0 ν = 0.01 ν = 0.1 ν = 1

LP-
variant

0% 75.0±0.0 75.0±0.0 71.7±1.7 70.0±0.0

10% 75.0±2.9 80.0±2.9 71.7±1.7 73.3±1.7

30% 73.3±1.7 75.0±0.0 68.3±1.7 71.7±1.7

50% 76.7±3.3 78.3±1.7 75.0±2.9 71.7±1.7

70% 75.0±0.0 71.7±1.7 73.3±1.7 70.0±0.0

90% 63.3±1.7 66.7±1.7 63.3±1.7 63.3±1.7

Table 21: Average test accuracy ± standard error
for ablation studies of the exploration parameter ν.

Task Noise ν = 0 ν = 0.01 ν = 0.1 ν = 1

LP-
variant

0% 49.3±2.4 53.0±2.3 52.0±1.1 50.0±3.5

10% 46.0±1.0 48.0±2.5 51.3±2.2 49.3±1.9

30% 49.3±1.3 50.7±1.4 43.7±3.8 52.3±2.4

50% 54.3±2.6 56.7±0.9 50.3±2.7 47.0±1.1

70% 49.0±4.0 52.0±1.0 46.0±2.5 47.0±1.1

90% 41.3±2.3 44.3±1.4 36.7±2.6 40.3±1.4

show that our EASE achieves competitive performance using different embedding models. Therefore,
our EASE is general in the sense that different embedding models can be used. It might be worth
investigating as a future direction to develop or finetune embedding models specifically for the
purpose of prompt optimization, such that it captures important aspects of the prompt in the latent
space.

C.10 Ablation studies for the degree of exploration

One important hyperparameter of the NeuralUCB algorithm utilized in the paper is ν (see (3)), which
controls the degree of exploration performed during the optimization process. Our finding indicates
that a small ν in EASE results in better exemplar selection performance. As demonstrated in Tab. 20
and Tab. 21, having a near-zero (i.e., ν = 0.01) exploration is the best. This may be attributed to
our sub-sampling of the domain space Ω, which is motivated by practically reducing computational
complexities, and at the same time inherently serves as a form of exploration. Given the enormous
size of the Ω, sub-sampling to Qt likely generates a different exemplar sequences space within each
iteration of the algorithm. This observation is further supported by Bastani et al. [2], who found that
a greedy algorithm can be rate optimal given sufficient randomness in the observed contexts of the
bandits algorithm. Therefore, only a small extent of exploration is required for EASE.

To further support the above observation empirically, we conduct additional experiments with the
domain space Qt fixed throughout. When |Qt| = 1000 and fixed, we observe results in Tab. 22
and Tab. 23 that a larger value of ν performs better. Thus, exploration is essential when there is no
randomness in the context (i.e., the domain space Qt). However, given sufficient randomness in our
EASE algorithm from sub-sampling, we adopt a small ν = 0.01 for optimal performance.

Table 22: Average accuracy ± standard error for
ablation studies of exploration in a fixed domain.

Task Noise ν = 0 ν = 0.01 ν = 0.1 ν = 1

LP-
variant

0% 60.0±0.0 66.7±1.7 68.3±1.7 66.7±1.7

10% 60.0±0.0 61.7±1.7 66.7±1.7 65.0±2.9

30% 58.3±1.7 58.3±1.7 65.0±2.9 65.0±2.9

50% 60.0±2.9 65.0±0.0 61.7±1.7 66.7±1.7

70% 50.0±0.0 51.7±1.7 58.3±1.7 61.7±3.3

90% 36.7±1.7 36.7±1.7 45.0±0.0 48.3±1.7

Table 23: Average test accuracy± standard error
for ablation studies of the exploration in a fixed
domain.

Task Noise ν = 0 ν = 0.01 ν = 0.1 ν = 1

LP-
variant

0% 38.3±0.9 51.0±3.2 53.7±3.3 45.0±1.1

10% 41.7±2.7 42.7±1.9 47.0±1.5 49.0±2.1

30% 39.3±2.3 40.3±3.3 43.3±1.8 43.0±1.1

50% 43.3±2.3 47.7±0.9 41.7±2.3 48.7±2.4

70% 39.7±1.4 42.0±3.1 39.7±1.9 48.7±0.3

90% 20.7±0.3 22.3±0.9 29.0±3.6 29.0±1.1
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Table 24: Average accuracy ± standard error
when asking GPT to directly output the best ex-
emplars.

Task (with 10% noise) GPT EASESelect
LR 35.0±7.6 73.3±1.7

LP-variant 58.3±3.3 80.0±2.9

AG News Remap 10.0±0.0 51.7±1.7

SST5 Reverse 10.0±0.0 48.3±1.7

Table 25: Average test accuracy ± standard er-
ror when asking GPT to directly output the best
exemplars.

Task (with 10% noise) GPT EASESelect
LR 29.0±9.0 42.3±0.9

LP-variant 44.0±1.0 48.0±2.5

AG News Remap 12.7±0.3 30.3±4.4

SST5 Reverse 10.0±0.0 31.3±2.6

Table 26: Average performance for tasks involving reasoning chains.

Tasks Evo Best-of-N EASE

MATH [15] 61.7±1.7 60.0±0.0 65.0±0.0

GSM8K [7] 70.0±2.9 68.3±1.7 75.0±0.0

AQuA-RAT [22] 46.7±1.7 43.3±1.7 48.3±1.7

C.11 Ablation studies: Asking GPT to directly select exemplars

One may wonder whether ChatGPT can directly help us select the exemplars for in-context learning.
To test the possibility of directly utilizing ChatGPT, we use the following prompt to query the GPT:

“You are asked to perform a task that is described by the examples below, the goal is to correctly
give output based on the input. Given the numbered list of examples below, pick 5 of them
that will best serve as examples for in-context learning for this task. Only output the list of
numbers.”

We provide all the exemplars in D in the form of a numbered list to GPT together with the prompt
above, and obtain the GPT-selected exemplars. We call this method GPT Select. As shown in Tab. 24
and Tab. 25, the exemplars directly selected by GPT perform worse than EASE for ICL.

C.12 Additional experiments on tasks with reasoning chains or open-ended generation

Note that the tasks included in the main experiments of the paper already include open-ended
generation tasks. Tasks like Auto Categorization, Word Sorting, LR, and LP-variant are beyond
simple direct classification-type labels. For example, Auto Categorization requires outputting an
open-ended sentence that categorizes the inputs well; LP-variant does open-ended sentence translation
following a set of nontrivial rules. Therefore, our EASE demonstrates effectiveness in challenging
open-ended generation tasks.

We conduct additional experiments for tasks with reasoning chains, including MATH [15],
GSM8K [7], and AQuA-RAT [22]. These tasks are typically harder and involve longer responses.
From Tab. 26, EASE works well for these tasks and the advantages are significant.

C.13 Additional experiments on more datasets

We conduct experiments on a number of additional real benchmarks. We present results on the
benchmarks used in the TEMPERA [49] paper in Tab. 27, including MR, Yelp P., CR, MNLI &
MRPC. Note that these tasks are overly simple to distinguish the effectiveness of EASE because all of
them achieve above 80% accuracy and are hard to improve further using mere in-context examples.

Therefore, we refer the reviewer to more complicated benchmarks in the main paper. Additionally, real
tasks in Sec. C.12 also demonstrated good performance of EASE on MATH, GSM8K & AQuA-RAT
with Chain-of-Thought reasoning, making the baseline comparisons in our paper more convincing.
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Table 27: Average performance on benchmarks used in TEMPERA [49].

Tasks Evo Best-of-N EASE

MR 95.0±0.0 95.0±0.0 95.0±0.0

Yelp P. 95.0±0.0 95.0±0.0 95.0±0.0

CR 100.0±0.0 100.0±0.0 100.0±0.0

MNLI 81.7±1.7 80.0±0.0 81.7±1.7

MRPC 81.7±1.7 81.7±1.7 81.7±1.7

Table 28: Average performance on Meta’s newest open-weight model Llama-3.1-8B-Instruct.

Tasks (with 50% noise) Evo Best-of-N EASE

LR 11.7±1.7 15.0±2.9 35.0±2.9

LP-variant 11.7±1.7 15.0±0.0 25.0±0.0

AG News Remap 31.7±1.7 31.7±1.7 33.3±1.7

SST5 Reverse 31.7±3.3 30.0±0.0 28.3±3.3

C.14 Open-weight models for reproducibility

For reproducibility’s sake, we conduct additional experiments with open-weight models. We use
a representative (Meta’s newest) model Llama-3.1-8B-Instruct as the target model. We present the
results in Tab. 28. Importantly, the results are consistent with the original conclusions we drew for
the black-box models in the paper. The model is also much smaller than GPT-3.5, hence making it
easier for others to deploy and reproduce the results.

C.15 Test accuracies for all tables

In Tab. 29, Tab. 30, Tab. 31 and Tab. 32, we present the test accuracies for all tables presented in the
main paper. Note that we report validation accuracies in the main tables because the effectiveness of
the optimization strategy is directly reflected by the maximized value of the objective function in (1) at
the end of all iterations. Nevertheless, we show all test accuracies here for reference and completeness.
The test accuracy can be affected by the difference in the distribution of the validation and test data,
which is out of our control. This difference in distribution is significant in our case because the
validation set only contains 20 data points (limited by the fact that querying the GPT-3.5 API is
expensive). This setup is disadvantageous for EASE because the optimized exemplar is “overfitted” to
the validation set. This test performance is expected to improve much if we use a larger validation set
(e.g., with 100 validation samples).

D Other discussions

D.1 Further validations of “out-of-distribution” tasks benchmarks

In Sec. 4.3, we propose new families of “out-of-distribution” tasks that highlight the importance of
high-quality exemplars. We note that “out-of-distribution” tasks are defined loosely here as tasks
which the LLM are not already well trained.

However, we cannot confirm whether a task is already well-trained without access to the training data.
We instead perform an empirical validation to show that “out-of-distribution” tasks are less likely to
be well-trained, and hence suitable dataset benchmarks to access the performance of algorithms. As
shown in Tab. 33 and Tab. 34, we performed random exemplar in-context prompting and discovered
that it achieved an average performance of 17.6% for “out-of-distribution” tasks, which contrasts with
the average performance of 64.7% for Instruction Induction benchmark tasks. This demonstrates that
the model is likely to have less knowledge about our defined “out-of-distribution” tasks. Additionally,
we can also see that the performance gain of EASE is higher for “out-of-distribution” tasks.
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Table 29: Test accuracies counterpart of Tab. 1 over 3 independent trials.

DPP MMD OT Cosine BM25 Active Inf Evo Best-of-N EASE

active_to_passive 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

antonyms 75.7±0.3 86.0±0.0 85.3±0.7 77.7±0.3 80.7±0.3 80.0±2.5 82.3±0.3 82.0±0.0 84.3±0.3 84.7±0.3

auto_categorization 28.7±0.3 25.7±0.7 24.0±0.6 39.3±0.9 27.0±1.0 32.7±1.0 35.0±1.5 17.3±0.3 30.7±0.7 34.0±2.1

diff 2.0±0.0 2.0±0.0 2.0±0.0 2.0±0.0 2.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

first_word_letter 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

larger_animal 69.0±0.6 78.7±1.2 83.7±0.7 77.7±0.7 84.0±1.0 61.0±1.7 84.7±0.3 90.0±0.6 87.7±2.9 88.0±0.0

letters_list 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

negation 85.7±0.7 87.3±0.7 86.3±0.3 87.7±0.3 83.3±0.3 85.7±1.1 83.7±0.3 86.3±0.3 85.0±0.6 89.0±0.6

num_to_verbal 97.3±0.3 98.7±0.3 99.0±0.0 99.0±0.0 96.0±0.0 97.7±0.7 98.0±0.0 96.7±0.3 96.7±0.3 96.3±0.3

object_counting 45.3±0.9 48.3±0.9 40.7±0.3 27.0±2.5 31.3±3.8 48.0±2.0 58.0±0.6 42.3±0.3 52.3±3.3 52.0±2.1

orthography_starts_with 30.3±0.9 42.0±0.6 65.7±0.3 65.7±0.9 71.0±0.6 40.3±7.8 69.3±0.9 47.0±1.0 63.3±2.4 69.3±0.7

rhymes 58.0±1.0 42.0±0.6 11.3±0.9 99.0±0.0 64.3±1.9 47.3±6.9 59.3±15.4 98.3±0.3 96.0±0.0 97.7±1.3

second_word_letter 17.3±0.9 31.0±0.0 32.3±0.7 42.0±3.1 42.3±0.9 27.0±8.2 45.7±1.2 40.3±0.3 38.7±0.3 48.3±1.4

sentence_similarity 19.0±0.6 13.7±0.3 38.3±1.4 41.0±0.6 33.7±2.3 19.0±1.7 20.0±5.0 18.0±0.0 31.3±2.7 32.7±1.2

sentiment 91.3±0.3 89.0±0.0 87.0±0.0 90.3±0.3 90.7±0.7 91.7±0.7 89.0±0.0 89.7±0.3 89.3±0.3 89.0±0.0

singular_to_plural 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

sum 2.0±0.0 2.0±0.0 2.0±0.0 2.0±0.0 2.0±0.0 34.7±26.7 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

synonyms 14.0±0.6 14.3±0.7 11.0±0.0 14.0±0.0 13.7±0.3 13.0±0.5 14.7±0.9 13.3±0.9 18.3±0.3 13.7±0.3

taxonomy_animal 47.7±0.3 44.7±1.2 77.3±1.9 73.3±0.3 67.3±5.9 46.3±7.1 62.3±8.9 32.7±0.7 73.7±4.2 78.7±1.9

translation_en-de 83.7±0.3 84.3±0.3 83.3±0.3 83.0±0.6 83.3±1.3 80.3±1.9 85.0±1.1 83.3±0.3 82.3±0.3 83.3±0.3

translation_en-es 83.7±0.3 89.7±0.3 88.3±0.3 87.3±1.2 87.3±1.2 88.0±0.8 86.7±1.4 84.3±0.3 84.3±0.3 84.7±0.9

translation_en-fr 83.0±0.0 87.7±0.3 87.3±0.3 87.0±0.0 87.0±0.0 83.3±1.7 87.7±0.7 86.7±0.3 88.3±0.3 85.0±1.0

word_sorting 8.7±0.7 65.0±0.6 66.7±1.2 66.0±1.1 43.7±2.3 71.0±1.4 69.3±1.7 61.3±1.2 63.3±0.7 69.7±0.3

word_unscrambling 61.3±0.3 58.7±0.7 63.3±0.3 57.0±1.1 61.3±0.7 60.7±1.7 58.3±1.4 53.7±0.3 60.3±0.3 62.0±2.1

# best-performing tasks 4 6 6 8 5 7 8 7 8 9

Table 30: Test accuracies counterpart of Tab. 2 over 3 independent trials.

Type Task Noise DPP MMD OT Cosine BM25 Active Inf Evo Best-of-N EASE

R
ul

e-
ba

se
d

ta
sk

s LR

0% 36.7±0.7 38.0±1.0 34.0±1.0 48.0±1.1 40.7±2.3 32.0±6.6 43.3±5.8 38.0±0.6 47.7±0.3 58.0±2.1

10% 7.3±0.9 33.3±0.7 29.3±0.3 40.3±3.8 41.0±2.9 0.0±0.0 46.3±1.2 38.3±0.3 47.7±0.7 42.3±0.9

30% 12.0±0.6 23.3±0.3 30.0±1.0 45.7±4.8 29.7±2.9 9.0±5.8 35.0±4.7 38.3±1.2 43.0±0.6 47.7±5.8

50% 3.0±1.0 33.7±0.3 23.0±0.6 43.7±2.3 33.3±0.7 0.0±0.0 47.0±2.1 32.7±0.9 30.3±1.8 50.7±2.2

70% 0.0±0.0 38.7±0.3 28.7±0.7 44.0±3.5 34.0±1.1 1.7±1.4 31.7±3.8 30.3±0.7 26.3±5.3 47.0±3.2

90% 0.0±0.0 32.7±1.3 32.0±0.6 37.3±4.8 2.3±0.9 0.0±0.0 7.7±1.9 5.0±0.6 14.0±0.6 39.0±7.8

LP-
variant

0% 39.3±0.7 35.0±0.6 34.7±0.7 47.3±0.3 36.3±1.4 34.0±3.7 53.3±1.3 38.3±0.9 51.7±3.3 53.0±2.3

10% 0.0±0.0 37.0±0.6 34.0±0.6 49.0±1.1 39.3±2.2 39.0±0.8 52.3±2.6 37.7±0.7 48.0±1.1 48.0±2.5

30% 0.0±0.0 44.3±0.7 36.0±1.1 38.7±4.3 34.3±1.9 36.7±2.4 48.0±3.1 35.7±0.3 49.3±0.7 50.7±1.4

50% 0.0±0.0 53.3±1.2 31.0±0.6 47.0±0.6 34.3±1.3 12.7±5.2 42.7±2.0 34.0±0.6 49.3±0.3 56.7±0.9

70% 0.0±0.0 39.0±1.5 30.3±0.9 46.7±1.3 36.3±0.7 4.3±3.5 51.0±1.7 33.3±0.7 31.3±0.9 52.0±1.0

90% 0.0±0.0 35.0±0.6 39.7±0.3 35.3±1.9 0.0±0.0 0.0±0.0 41.0±1.7 16.7±0.9 28.0±0.6 44.3±1.4

R
e-

m
ap

pe
d

la
be

lt
as

ks AG
News
Remap

0% 7.0±0.6 7.0±0.0 12.3±0.7 30.3±1.4 28.3±1.3 4.3±1.1 9.0±2.5 11.3±0.3 19.3±0.7 30.3±1.2

10% 2.0±0.0 7.0±0.0 13.0±1.1 17.0±4.0 19.0±4.5 6.0±0.8 13.0±3.2 12.0±0.6 30.0±0.6 30.3±4.4

30% 3.7±0.3 1.0±0.0 4.7±0.3 28.0±2.0 22.3±0.7 7.7±2.2 5.0±0.6 12.3±0.3 28.0±5.0 40.0±1.0

50% 4.7±0.3 3.0±0.0 3.7±0.3 27.3±2.3 21.3±2.7 8.7±3.1 13.0±3.5 6.7±0.3 21.7±2.3 40.0±3.1

70% 2.0±0.0 23.3±0.3 7.0±0.0 20.0±1.0 16.0±0.6 15.7±7.1 5.0±1.1 4.7±0.3 36.0±0.6 45.0±2.0

90% 8.0±0.6 21.0±1.1 2.0±0.0 22.7±7.0 2.0±0.0 11.7±1.9 23.0±1.5 6.3±0.3 27.3±1.9 36.7±3.2

SST5
Reverse

0% 13.3±0.7 11.7±0.7 9.7±0.9 22.0±3.6 18.3±0.7 10.3±0.3 21.7±5.5 11.3±0.3 23.7±0.7 34.0±3.0

10% 13.3±0.9 11.3±0.3 9.3±0.3 20.0±2.6 18.0±1.0 11.7±1.5 27.0±1.1 12.0±0.6 23.0±0.6 31.3±2.6

30% 15.7±0.3 13.3±0.3 11.7±0.7 19.3±2.3 23.7±0.7 9.7±0.3 21.3±2.7 11.0±0.6 13.0±1.5 24.3±1.8

50% 13.0±0.6 12.3±0.3 12.0±0.0 28.3±2.9 14.0±0.6 12.7±0.7 14.3±0.9 9.3±0.3 14.0±2.0 28.7±1.4

70% 12.0±0.0 12.0±0.6 14.3±0.3 24.7±0.7 12.0±1.1 11.7±0.5 18.7±2.9 15.7±0.3 33.0±1.0 33.3±3.8

90% 16.0±0.6 9.3±0.7 16.0±0.6 12.7±0.3 13.3±0.9 12.7±0.3 14.0±0.6 11.7±0.7 10.7±0.3 19.0±6.1

# best-performing tasks 0 0 0 0 0 0 2 0 1 21

D.2 Further validations of the practical insight using OLMo

We hypothesize that the effect of exemplar selection diminishes as the model gains more knowledge
about the task and is validated with progressive fine-tuning of Vicuna models in the main paper. In
this section, we further supplement the experiments above with empirical evidence using the OLMo
models checkpoints [12].

Upon checking the published data sources, named Dolma, of OLMo, it is likely that Instruction
Induction (II) data has been included in the training source (via Common Crawl, or The Stack).
Therefore, we perform additional experiments across different checkpoints (at 41k, 130k and 410k
training steps) of the recent OLMo-7B-0424-hf model, which released checkpoints over more than
400k steps of training. The results are presented below in Tab. 35.
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Table 31: Test accuracies counterpart of Tab. 3 over 3 independent trials.

EASE EASE with instructions improvement
antonyms 84.7±0.3 82.0±0.6 -2.7 ↓
auto_categorization 34.0±2.1 48.0±7.2 14.0 ↑
diff 100.0±0.0 100.0±0.0 0.0 ◦
larger_animal 88.0±0.0 59.3±0.9 -28.7 ↓
negation 89.0±0.6 88.0±0.6 -1.0 ↓
object_counting 52.0±2.1 57.3±3.5 5.3 ↑
orthography_starts_with 69.3±0.7 72.7±1.2 3.3 ↑
rhymes 97.7±1.3 68.0±8.5 -29.7 ↓
second_word_letter 48.3±1.4 100.0±0.0 51.7 ↑
sentence_similarity 32.7±1.2 32.7±2.7 0.0 ◦
sentiment 89.0±0.0 93.7±0.3 4.7 ↑
sum 100.0±0.0 100.0±0.0 0.0 ◦
synonyms 13.7±0.3 14.0±1.5 0.3 ↑
taxonomy_animal 78.7±1.9 78.3±6.8 -0.3 ↓
translation_en-de 83.3±0.3 84.7±0.3 1.3 ↑
translation_en-es 84.7±0.9 89.3±0.3 4.7 ↑
translation_en-fr 85.0±1.0 88.0±0.6 3.0 ↑
word_sorting 69.7±0.3 73.3±0.7 3.7 ↑
word_unscrambling 62.0±2.1 62.0±1.5 0.0 ◦
LR (10% noise) 42.3±0.9 24.0±14.1 -18.3 ↓
LP-variant (10% noise) 48.0±2.5 55.0±1.0 7.0 ↑
AG News Remap (10% noise) 30.3±4.4 51.3±1.2 21.0 ↑
SST5 Reverse (10% noise) 31.3±2.6 34.0±1.0 2.7 ↑

Table 32: Test accuracies counterpart of Tab. 4 over 3 independent trials.

AG News Remap (10% noise) SST5 Reverse (10% noise)

Size n EASE EASE
with retrieval

1000 35.3±5.8 40.7±0.9

10000 39.3±3.4 31.3±5.5

50000 32.0±1.0 36.0±1.0

100000 29.0±2.5 37.3±2.4

Size n EASE EASE
with retrieval

1000 33.0±2.9 35.3±2.6

3000 39.0±1.1 31.7±2.6

5000 36.7±0.9 37.0±0.6

7000 23.0±2.1 37.3±0.9

The conclusions are consistent with Fig. 1 of the main paper.

• When the training just started (i.e., at 41k steps), the model might not be capable enough to
carry out effective in-context learning.

• As the training progresses (i.e., at 130k steps), we observe the best exemplar selection
effectiveness. At this point, the model is capable of learning underlying relationships among
the in-context exemplars, and yet to be well-trained on the specific task.

• As the model converges (i.e., at 410k steps), the gain from exemplar selection using our
EASE diminishes as the model becomes well-trained on the dataset of the respective tasks.

We also tried the rule-based tasks and remapped label tasks on OLMo-7B-0424-hf. However, the
in-context learning performances are always at 0% for these more difficult tasks, so comparisons are
not meaningful. We also look forward to similar efforts as OLMo in the community to open-source
larger and more capable models with checkpoints in the future.

D.3 Potential limitations of the extension

In Sec. 4.5, we described an extension of EASE using retrieval-based methods to tackle large exemplar
sets. Despite the practical effectiveness and efficiency, we elaborate on some limitations here. (1) The
filtering through retrieval-based methods completely eliminates the consideration of a large subset of
exemplars in the later optimization stage. This may result in important exemplars being left out and
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Table 33: The average performance of ran-
dom exemplar in-context prompting in “out-of-
distribution” tasks. It only achieves 17.6% accu-
racy on average, indicating that the model has
little knowledge about the task. The performance
gain from EASE is relatively large.

Task Noise Random EASE Gap

LR

0% 34.4±0.0 81.7±3.6 47.3
10% 28.0±0.1 73.3±3.6 45.3
30% 18.2±0.1 78.3±1.4 60.1
50% 10.8±0.1 71.7±2.7 60.9
70% 4.2±0.1 66.7±3.6 62.5
90% 0.5±0.0 53.3±2.7 52.8

LP-
variant

0% 46.3±0.1 75.0±0.0 28.7
10% 44.1±0.2 75.0±2.4 30.9
30% 36.0±0.2 73.3±1.4 37.3
50% 27.5±0.1 76.7±2.7 49.2
70% 16.8±0.1 75.0±0.0 58.2
90% 3.6±0.1 63.3±1.4 59.7

AG
News
Remap

0% 9.2±0.1 53.3±3.6 44.1
10% 8.6±0.1 56.7±2.7 48.1
30% 8.1±0.1 51.7±1.4 43.6
50% 7.5±0.0 56.7±1.4 49.2
70% 7.0±0.1 51.7±1.4 44.7
90% 6.8±0.1 55.0±2.4 48.2

SST5
Reverse

0% 18.8±0.0 50.0±0.0 31.2
10% 18.2±0.1 50.0±0.0 31.8
30% 17.5±0.1 41.7±3.6 24.2
50% 16.9±0.1 43.3±1.4 26.4
70% 16.8±0.1 45.0±2.4 28.2
90% 17.3±0.0 31.7±1.4 14.4

Mean 17.6 60.4 42.8

Table 34: The average performance of random
exemplar in-context prompting in Instruction In-
duction (II) tasks. It achieves 64.7% accuracy
on average, indicating that the model has much
knowledge about the task. The performance gain
from EASE is relatively small.

Task Random EASE Gap

active_to_passive 100.0±0.0 100.0±0.0 0.0
antonyms 79.3±0.0 90.0±0.0 10.7
auto_categorization 5.4±0.1 30.0±0.0 24.6
diff 6.5±0.0 100.0±0.0 93.5
first_word_letter 100.0±0.0 100.0±0.0 0.0
larger_animal 83.3±0.1 100.0±0.0 16.7
letters_list 100.0±0.0 100.0±0.0 0.0
negation 94.7±0.0 95.0±0.0 0.3
num_to_verbal 100.0±0.0 100.0±0.0 0.0
object_counting 52.9±0.1 73.3±1.4 20.4
orthography_starts_with 50.7±0.1 78.3±1.4 27.6
rhymes 56.7±0.2 100.0±0.0 43.3
second_word_letter 23.8±0.1 50.0±0.0 26.2
sentence_similarity 20.5±0.2 56.7±1.4 36.2
sentiment 89.8±0.2 100.0±0.0 10.2
singular_to_plural 100.0±0.0 100.0±0.0 0.0
sum 12.5±0.0 100.0±0.0 87.5
synonyms 21.3±0.1 30.0±0.0 8.7
taxonomy_animal 51.5±0.2 88.3±2.7 36.8
translation_en-de 84.4±0.0 90.0±0.0 5.6
translation_en-es 94.1±0.1 100.0±0.0 5.9
translation_en-fr 78.7±0.0 88.3±1.4 9.6
word_sorting 84.5±0.1 91.7±1.4 7.2
word_unscrambling 61.5±0.1 78.3±2.7 16.8

Mean 64.7 85.0 20.3

Table 35: Average performance gap between Best-of-N and EASE on different training-step check-
points of OLMo.

OLMo_41k OLMo_130k OLMo_410k
Best-of-N EASE Gap Best-of-N EASE Gap Best-of-N EASE Gap

object_counting 20.0±2.9 31.7±1.7 11.7 25.0±2.9 35.0±2.9 10.0 45.0±2.9 46.7±1.7 1.7
sentence_similarity 25.0±0.0 25.0±0.0 0.0 30.0±2.9 35.0±2.9 5.0 41.7±1.7 45.0±0.0 3.3
orthography_starts_with 21.7±1.7 26.7±1.7 5.0 21.7±1.7 26.7±1.7 5.0 26.7±1.7 31.7±1.7 5.0
translation_en-fr 21.7±1.7 21.7±1.7 0.0 38.3±1.7 43.3±1.7 5.0 35.0±0.0 40.0±0.0 5.0

never explored again in our automatic optimization. (2) The cosine similarity retrieval places a strong
bias on preferring exemplars that are similar (in the embedding space) to the validation set, which
may not yield the best performance in practice. This bias is dependent on the retrieval model and the
retrieval metric used which therefore need to be carefully selected. Nevertheless, these limitations
come with the simplification of the search space for practical efficiency reasons.
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paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contribution and
scope, with bulleted points of contributions nearing the end of the introduction (Sec. 1).
Guidelines:
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made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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• The claims made should match theoretical and experimental results, and reflect how
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work have been discussed in the conclusion and lim-
itations (Sec. 6). The computational efficiency of the proposed algorithm is discussed in
Sec. 3.2 and App. C.4.
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• The answer NA means that the paper has no limitation while the answer No means that
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• The authors should reflect on the factors that influence the performance of the approach.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code is included in the supplementary materials. In the paper, the main
experiment section (Sec. 4) and the section about implementation details (App. B) provide
all information needed to reproduce the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code is available at https://github.com/ZhaoxuanWu/
EASE-Prompt-Optimization.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All details necessary to understand the results are provided in the main
experiment section (Sec. 4) and the section about implementation details (App. B).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars (that indicates the standard error of the mean) are reported for all
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computer resources utilized to produce the results in the paper are stated
in App. B. The amount of compute is compared in App. C.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader societal impacts are discussed in App. A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No model will be released for this work and all datasets involve no risk for
misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The sources of the datasets are cited in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new datasets are well documented in Sec. 4 and App. B. The code is well
documented as well.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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