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Abstract
Although vision-based self-supervised learning
is revolutionizing digital pathology, its domain-
agnostic architectures may fail to adequately fo-
cus on the primary biological components in tis-
sues, namely the cells and their complex interac-
tions. We therefore propose to transform tissues
into biologically informed cell graphs and investi-
gate the effectiveness of graph SSL in encoding
them. We demonstrate that pre-training on a large
collection of patches using GraphMAE, with het-
erophilic graph neural networks, yields on par
performances against popular vision-based SSL
models, while using significantly fewer parame-
ters. Finally, we show that the learned graph em-
beddings can effectively complement their vision-
based counterparts by using a late multi-modal
fusion strategy.

1. Introduction
Recent advances in large-scale self-supervised learning have
enabled the design of domain-specific vision models that
are transformative for digital pathology (Wang et al., 2022;
Filiot et al., 2023; Chen et al., 2024). These models analyze
high-resolution pan-cancer whole-slide images (WSIs), with
significant heterogeneity across different biological scales,
to address clinically relevant tasks, such as cancer typing
and grading, treatment response assessment, and survival
prediction. Traditionally, they operate on small patches ex-
tracted from WSIs. These patches are encoded using vision
transformers that model each patch as a set of smaller, non-
overlapping patches called tokens (Dosovitskiy et al., 2020).
While these tokens constitute the primary information units
to be processed and aggregated by the architecture, they are
misaligned with the core biological entities present in these
patches, namely the cells (Shafi & Parwani, 2023; Chen
et al., 2022).
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In our work, we postulate that explicitly modeling the cells
and their spatial arrangement could lead to an informative
tissue encoding that improves upon or complements the
implicit representations learned by vision models. To this
end, we propose to model each patch as a cell graph (Pati
et al., 2022), in which nodes represent cells described by
biological features and edges reflect the spatial organiza-
tion of the cells. We construct a pre-training dataset by
representing 1126 H&E-stained breast cancer WSIs from
the TCGA database (Weinstein et al., 2013) as cell graphs,
resulting in 11 million patch-level graphs. We then learn
a self-supervised representation of these graphs using the
GraphMAE framework (Hou et al., 2022), a state-of-the-art
masked autoencoder for graph data. Importantly, we pro-
pose to use heterophilic Graph Neural Networks (GNNs)
for the encoding and decoding stages of GraphMAE as they
are well adapted to the heterogeneity of tumor environments
(Luan et al., 2022).

To ensure a fair comparison of the representational capa-
bilities of our graph-based model, we perform an analo-
gous pre-training scheme in the vision domain using the
well-known DINOv2 (Oquab et al., 2023) and MAE (He
et al., 2022; Hou et al., 2022) frameworks. Additionally,
we assess the effect of combining graph- and vision-based
representations through a late multi-modal fusion scheme
(Jiao et al., 2024). The resultant embeddings of each model
are finally evaluated on cancer typing and grading tasks,
using the pre-training dataset and three additional down-
stream datasets, respectively. Our results demonstrate that
graph-based representations are at least as discriminative as
vision-based ones and that the two representations comple-
ment each other well, motivating future investigations into
multi-modal pre-training strategies.

2. Proposed Approach
2.1. Cell-graph construction

We follow the preprocessing workflow outlined in Figure 1
on publicly available breast cancer datasets. First, we apply
the method described in Campanella et al. (2019) to detect
tissue regions from the H&E-stained WSIs at 20x magnifica-
tion (i.e., 0.5 µm/pixel) and subsequently patch each image
into non-overlapping 224×224 pixel tiles. Notice that this
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Figure 1. Pipeline showing cell-graph construction, vision- and graph-based self-supervised learning, and multi-modal late fusion with an
example whole slide image from the TCGA BRCA dataset. The symbol

⊕
represents a concatenation operation.

choice of tile size is essentially made to align vision and
graph models as detailed in the following sections. Next, we
utilize a pre-trained cell segmentation model, StarDist 2D
(Schmidt et al., 2018), to segment individual cells within
these tiles. The cells are then considered as graph nodes.
Inspired by Zhao et al. (2023) and Fournier et al. (2025), we
assign 44 handcrafted features describing the cell morphol-
ogy and color intensities to each node, which are known to
be discriminant across cell types. These features are detailed
in Table 4 of the Appendix. Lastly, we model the relative
spatial arrangement of cells using Delaunay triangulation,
mimicking an adaptive nearest neighbor graph. This results
in a sparse set of edges weighted by the distance in µm
between connected cells.

Following the scheme described above, we construct a
pre-training graph dataset derived from 1126 H&E-stained
breast cancer WSIs from the TCGA database (Weinstein
et al., 2013), resulting in 11 million cell graphs.

2.2. Graph self-supervised learning

For learning graph representations, we adopt the genera-
tive self-supervised learning (SSL) framework GraphMAE
(Hou et al., 2022), which has been shown to outperform
most contrastive SSL methods predominant in the field.
While more recent variants exist (Hou et al., 2023; Tan et al.,
2023; Wang et al., 2024; Bai et al., 2024), we emphasize
that GraphMAE still provides one of the best balances of
computational efficiency and performance. It adapts the

masked-autoencoding paradigm to graph-structured data by
randomly dropping a fraction of nodes’ features from the
input graph while preserving the graph topology and using a
GNN as the encoder. The previously masked nodes are then
re-masked in the decoding stage, and their initial features
are reconstructed using another 1-layer GNN.

In contrast to the homophilic GNNs used in GraphMAE
for encoding and decoding, we propose to use heterophilic
GNNs, which are better suited to the inherent heterogeneity
of tumor microenvironments. Specifically, we adopt the
Adaptive Channel Mixing architecture, with filters derived
from the renormalized random walk matrices (Luan et al.,
2022; Xu et al., 2018a). Additionally, we incorporate a
Jumping Knowledge strategy, acting as residual connections,
by concatenating outputs of each layer before projecting
them onto a desired dimension with a projection head (Xu
et al., 2018b). Our compact architecture is designed to
effectively encode the cell graphs while maintaining a linear
complexity in the number of cells.

2.3. Multi-modal fusion of images and graphs

While our graph framework provides a flexible means of
incorporating prior biological knowledge, the remarkable
performance of recent vision-based approaches strongly sup-
ports their ability to capture discriminant tissue properties
(Chen et al., 2024). We hypothesize that graph models could
provide complementary information to vision models to fur-
ther improve their performance. Therefore we investigate
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the benefits of graph and vision multi-modal fusion consider-
ing two types of vision-based models independently, namely
DINOv2 (Oquab et al., 2023) and MAE (He et al., 2022).
In practice, DINOv2, which builds on self-distillation using
a student-teacher pair of vision transformers, is nowadays
the most studied and utilized approach (Campanella et al.,
2024). However, previously introduced approaches, includ-
ing masked autoencoding frameworks like MAE, remain
competitive and are preferred for generative tasks (Kraus
et al., 2024).

For patch-level or WSI-level downstream tasks, we propose
to follow a late fusion scheme for each patch (Jiao et al.,
2024), which consists of concatenating image and graph em-
beddings after mapping each of them to a lower-dimensional
space separately. These embeddings are respectively given
by the CLS token of the vision transformer encoder and the
mean of node embeddings from the GNN encoder, as mean
pooling provides a simple yet effective method for obtaining
a graph-level representation.

3. Experimental Design
3.1. Datasets

In the following, we evaluate the model embeddings on
four slide-level tasks. The first task corresponds to our pre-
training dataset, referred to as the in-domain dataset. The
remaining three tasks use out-of-domain (OOD) region-
of-interest (RoI) datasets, namely BACH, BRACS, and
BreakHis, to assess the transferability of the learned repre-
sentations across diverse image acquisition protocols, data
sources, and tissue types.

3.2. Benchmark settings

All SSL models discussed in Section 2 were pre-trained
for 100 epochs using the optimization strategies described
in their original papers, fixing the batch size to 2048. For
each method, we select the epoch that minimizes the val-
idation loss. For vision models, we use the standard hy-
perparameters provided by the authors, while using ViT-
B/16 as the backbone. For GraphMAE, we test different
embedding dimensions in {512, 768, 1024}, masking ra-
tios in {0.50, 0.75}, and replacement ratios in {0.00, 0.10},
following the guidelines from Hou et al. (2022). We set
the number of GNN layers to five in the graph encoder,
which corresponds to the averaged graph diameter in the
pre-training dataset. Patch-level embeddings are then ex-
tracted from each model and for each evaluation dataset,
following the methodology described in Section 2.3.

Since the final tasks are either at the WSI or the RoI level,
we leverage multiple instance learning (MIL) methods to ag-
gregate the patch-level embeddings into a single slide-level
embedding. We benchmark three state-of-the-art attention-

Table 1. Mean ± standard deviation (%) of test macro F1 scores
for benchmarked unimodal SSL methods. In-domain setting refers
to the result from TCGA BRCA and out-of-domain setting refers
to the averaged results from BACH, BRACS, and BreakHis. Best
results are bolded and second-best results are underlined for each
MIL method.

DINOv2 MAE GraphMAE

In-Domain
ABMIL 60.14 ± 3.09 78.07 ± 1.44 68.60 ± 0.84

add-ABMIL 53.33 ± 9.00 56.30 ± 10.32 64.23 ± 2.06

conj-ABMIL 62.30 ± 1.03 77.86 ± 1.83 70.96 ± 3.09

Out-of-Domain
ABMIL 60.01 ± 0.82 75.66 ± 1.17 74.09 ± 1.74

add-ABMIL 60.79 ± 2.28 73.03 ± 2.55 75.22 ± 2.22

conj-ABMIL 58.05 ± 2.11 76.17 ± 1.02 74.37 ± 1.66

based MIL approaches, namely ABMIL (Ilse et al., 2018),
add-ABMIL (Javed et al., 2022), and conj-ABMIL (Early
et al., 2024). They mainly differ in how they couple the
attention mechanism with the final two-layer MLP classifier.
Finally, for each of the SSL and MIL methods, we perform
a 5-fold CV to validate their hyperparameters, relying on
macro F1 scores on validation sets.

4. Results
4.1. Comparison of vision and graph SSL

We first compare the global embedding quality of each uni-
modal SSL method by reporting their aggregated down-
stream performances across MIL frameworks on both in-
and out-of-domain datasets in Table 1. Results per dataset
can be found in Table 6 in the Appendix. Note that we
selected the GraphMAE model leading to the best averaged
performances across MIL methods for this analysis. We
observe that GraphMAE embeddings perform comparably
with those of MAE on our OOD benchmark, despite having
about 12 times fewer parameters (see details in Appendix,
Table 5). This highlights the value of explicitly encoding
biological priors through our graph-based modeling.

However, we can see that GraphMAE lags behind MAE on
in-domain performance across most MIL methods. To ex-
plain this phenomenon, we investigated via Principal Com-
ponent Analysis whether each method was fully exploiting
its available dimensions in the embedding space to represent
each dataset. Results reported in Figure 3 in the Appendix
show that our graph models suffer from a drastic dimension
collapse issue on the pre-training dataset. Moreover, a simi-
lar problem is observed for the OOD dataset BRACS, but not
for the other two, BACH and BreakHis, where GraphMAE
is most competitive against vision models. However, no
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Table 2. Absolute gains over unimodal vision models of our multi-
modal strategy. In-domain setting refers to the result from TCGA
BRCA and out-of-domain setting refers to the averaged results
over BACH, BRACS, and BreakHis.

GraphMAE+DINOv2 GraphMAE+MAE

In-Domain
ABMIL +4.49 +0.54
add-ABMIL -8.2 +20.43
conj-ABMIL +1.74 -0.68

Out-of-Domain
ABMIL +10.60 +4.54
add-ABMIL +11.65 +7.33
conj-ABMIL +13.32 +3.65

significant dimension collapse is observed for vision mod-
els, which rely on transformers and thus on self-attention.
These differences between domains may indicate a lack of
relational encoding capabilities in the GNN architectures
we have chosen, the improvement of which could be an
interesting avenue for future work.

Finally, we note that GraphMAE and MAE embeddings
perform significantly better than DINOv2 in both in- and
out-of-domain contexts. This may be due to our relatively
smaller scale of data compared to the scales where DINOv2
performed remarkably well (Oquab et al., 2023).

4.2. Multi-modal embeddings

Next, we investigate whether the graph embeddings intro-
duced above can effectively complement the vision em-
beddings within the multi-modal framework described in
Section 2.3. To this end, we report the absolute gains of
our multi-modal strategy over unimodal vision models in
Table 2. In the OOD setting, fusing DINOv2 or MAE
with GraphMAE consistently yields significant performance
improvements. While gains are also observed in the in-
domain evaluation, they are more marginal, likely due to
the dimension collapse issue noted earlier. An exception is
add-ABMIL, which exhibits substantial instability on the
pre-training dataset. Overall, these results underscore how
image- and graph-based self-supervised embeddings can
capture complementary information.

4.3. Sensitivity analysis on graph models

To further assess the robustness of our graph-based method-
ology, we conduct a sensitivity analysis on its validated
hyperparameters, detailed in Section 3.2. We report the
averaged test macro F1 scores over the OOD datasets and
MIL frameworks in Figure 2. Interestingly, we observe
that GraphMAE manages to produce similar discriminant
representations for all embedding dimensions. Naturally, if
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Figure 2. Averaged test macro F1 scores across datasets of various
hyperparameter configurations of the GraphMAE model.

the dimension is higher, this performance is obtained for
higher masking and replacement rates, which respectively
induce implicit regularization. Besides, we observe that
performances are relatively stable across all tested hyper-
parameters, with only a 2.49% difference between the best
and the worst configuration, which confirms the robustness
of our approach.

5. Conclusion
In this work, we show that modeling digital pathology
patches as cell graphs, before encoding them via an adapted
SSL approach, leads to comparable performance with well-
known vision models while using far fewer parameters. In
addition, we demonstrate that a simple late fusion strategy
can effectively exploit graph embeddings to complement
vision-based ones.

Nevertheless, our graph-based approach is significantly
prone to dimension collapse in some scenarios, which likely
limits its performance. To remedy this problem, we envisage
three main avenues that need to be explored further. First,
we plan to improve the relational encoding capabilities of
our sparse GNNs, for instance via graph transformers (Yuan
et al., 2025), while keeping in mind that such architectures
may lead to additional challenges in terms of scalability.
Second, we consider adding explicit regularizations to the
GraphMAE model. Third, we plan to further exploit the
flexibility of our graph framework by augmenting the set of
chosen node features, e.g., including texture features or even
more advanced single-cell data, as well as potentially adding
additional edge feature information relating to the extracel-
lular matrix. We believe addressing these challenges and
further investigating multi-modal fusion strategies between
vision and graph models, will soon guide the development
of better foundation models for digital pathology.
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Impact Statement
This work advances computational pathology by proposing
a novel graph-based self-supervised learning approach that
explicitly models cellular arrangements, complementing tra-
ditional vision-based models. By better aligning learned
representations with biological structures, this research con-
tributes to improved interpretability and robustness in breast
cancer characterization tasks. Although the immediate clini-
cal impact is limited due to the scale of generated graphs,
the proposed methodology lays the foundation for future
large-scale clinical applications. Ethical considerations re-
lated to patient privacy from WSIs are addressed through
rigorous anonymization and secure data management pro-
tocols, effectively mitigating risks associated with patient
data re-identification.
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Appendix
5.1. Dataset details

TCGA BRCA. We leverage this breast invasive carcinoma
dataset, which comprises 1126 H&E-stained WSIs, sized up
to 100K×100K pixels. We obtain approximately 11 million
patches from this dataset that serve two purposes in our
study: (1) self-supervised pre-training to learn vision and
graph representations, and (2) in-domain downstream evalu-
ation corresponding to the classification of infiltrating ductal
carcinoma (794) and lobular carcinoma (204) of different
grades. Note that multiple other subtypes were excluded in
this study due to their small sample size.

BACH. We use this breast cancer histology dataset (Aresta
et al., 2019) of 400 region-of-interest (RoI) images for out-
of-domain downstream evaluation. The pre-trained model
embeddings are fine-tuned for a 4-class classification task of
cancer subtyping distributed as normal (100), benign (100),
in situ carcinoma (100), and invasive carcinoma (100).

BRACS. Similarly, we use this breast cancer dataset put
forth by Brancati et al. (2022) of 4539 labeled RoIs for fine-
tuning the pre-trained model embeddings and downstream
evaluation. The end task consists of a 7-class classification
of tumor subtypes, distributed as normal (484), pathological
benign (836), usual ductal hyperplasia (517), flat epithe-
lial atypia (756), atypical ductal hyperplasia (507), ductal
carcinoma in situ (790), and invasive carcinoma (649).

BreakHis. The final out-of-domain setting contains a
dataset of 1995 labeled microscopic images of breast tu-
mor tissue collected from 82 patients (Spanhol et al., 2015).
The downstream task is again an 8-class classification of
tumor subtype, with the labels of adenosisc (114), fibroade-
noma (253), phyllodes tumor (109), tubular adenoma (149),
ductal carcinoma (864), lobular carcinoma (156), mucinous
carcinoma (205), and papillary carcinoma (145).

Table 3. Summary statistics for the in- and out-of-domain datasets.

Dataset # Slides Avg # Nodes Avg # Edges

TCGA-BRCA 1126 43.94 119.16
BACH 400 35.05 92.93
BRACS 4539 46.96 128.09
BreakHis 1995 17.26 41.43

5.2. Hand-crafted features

We use the features shown in Table 4 as node attributes
for our cell graphs. Please refer to (Zhang et al., 2001)
for a detailed explanation of Fourier features with centroid
signature and to (Vadori et al., 2025) for their use as cell
shape descriptors.

Table 4. The set of cell-level shape and intensity descriptors used
as input node features in our graph construction pipeline. R, G,
and B stand for red, green, and blue, respectively.

Feature Names

min intensity R mean intensity R
min intensity G mean intensity G
min intensity B mean intensity B
max intensity R var intensity R
max intensity G var intensity G
max intensity B var intensity B
probability eccentricity
orientation area
axis major length perimeter
axis minor length Fourier features

5.3. Implementation details

All experiments were run on NVIDIA A100 (80GB) and
H200 (140GB) GPUs and the number of parameters that
require gradients in DINOv2, MAE, and GraphMAE models
can be found in the Table 5.

Table 5. Model size comparison across SSL methods. We denote
by d the validated embedding dimension for GraphMAE models.

Model Number of Parameters (106)
DINOv2 171.63
MAE 111.91
GraphMAE (d = 512) 9.34
GraphMAE (d = 768) 20.88
GraphMAE (d = 1024) 37.02

5.4. Additional results

Table 6 contains per-dataset results for all unimodal and
multi-modal architectures and Figure 3 downstrates the ex-
plained variance ratios of the principal components in all
four datasets.
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Table 6. Mean ± standard deviation (%) of test macro F1 scores over 5 runs for TCGA-BRCA, BACH, BRACS, and BreakHis for the
models of DINOv2, MAE, GraphMAE, and the multi-modal late fusion combinations.

DINOv2 MAE GraphMAE DINOv2+GraphMAE MAE+GraphMAE DINOv2+MAE

TCGA-BRCA
ABMIL 60.14 ± 3.09 78.07 ± 1.44 68.60 ± 0.84 64.63 ± 2.03 78.61 ± 1.96 77.08 ± 0.87

add-ABMIL 53.33 ± 9.00 56.30 ± 10.32 64.23 ± 2.06 45.13 ± 16.70 76.73 ± 1.61 75.70 ± 2.09

conj-ABMIL 62.30 ± 1.03 77.86 ± 1.83 70.96 ± 3.09 64.04 ± 3.32 77.18 ± 1.37 77.43 ± 1.52

BACH
ABMIL 56.02 ± 1.38 60.34 ± 2.42 68.56 ± 2.74 64.93 ± 2.80 71.78 ± 4.13 77.53 ± 2.37

add-ABMIL 56.81 ± 3.87 52.03 ± 5.41 70.70 ± 3.65 68.07 ± 2.10 71.82 ± 3.05 71.80 ± 4.32

conj-ABMIL 52.92 ± 2.87 61.97 ± 1.30 69.51 ± 3.20 67.05 ± 2.43 70.42 ± 2.26 76.68 ± 2.22

BRACS
ABMIL 44.95 ± 0.62 69.73 ± 0.35 61.90 ± 1.14 57.02 ± 1.76 71.53 ± 1.15 68.45 ± 0.78

add-ABMIL 48.04 ± 0.58 70.34 ± 0.93 63.13 ± 0.59 57.38 ± 0.86 71.38 ± 0.89 66.73 ± 0.70

conj-ABMIL 43.70 ± 0.55 70.03 ± 0.60 61.23 ± 0.34 55.97 ± 0.91 71.55 ± 0.64 68.00 ± 0.70

BreakHis
ABMIL 79.06 ± 0.45 96.90 ± 0.73 91.81 ± 1.34 89.88 ± 2.09 97.29 ± 0.72 98.06 ± 0.87

add-ABMIL 77.53 ± 2.38 96.71 ± 1.30 91.82 ± 2.41 91.88 ± 0.47 97.87 ± 0.72 98.64 ± 0.47

conj-ABMIL 77.52 ± 2.91 96.52 ± 1.15 92.38 ± 1.44 91.08 ± 1.13 97.49 ± 1.44 97.67 ± 1.00
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Figure 3. Number of principal components required by DINOv2, MAE, and GraphMAE to reach various explained-variance thresholds
across the four datasets.
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