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Abstract

Open-weight large language models (LLMs)
have significantly advanced performance in
the Natural Language to SQL (NL2SQL) task.
However, their effectiveness diminishes when
dealing with large database schemas, as the
context length increases. To address this lim-
itation, we present SQLong, a novel and effi-
cient data augmentation framework designed
to enhance LLM performance in long-context
scenarios for the NL2SQL task. SQLong gen-
erates augmented datasets by extending exist-
ing database schemas with additional synthetic
CREATE TABLE commands and correspond-
ing data rows, sampled from diverse schemas
in the training data. This approach effectively
simulates long-context scenarios during finetun-
ing and evaluation. Through experiments on
the Spider and BIRD datasets, we demonstrate
that LLMs finetuned with SQLong-augmented
data significantly outperform those trained on
standard datasets. These imply SQLong’s prac-
tical implementation and its impact on improv-
ing NL2SQL capabilities in real-world settings
with complex database schemas.1

1 Introduction

The NL2SQL task focuses on translating natural
language questions into SQL queries, enabling non-
experts to interact with databases seamlessly (Deng
et al., 2022). Recent advances leverage LLMs, fine-
tuned on structured input prompts (e.g., task in-
structions, database schema, and natural language
question), to achieve state-of-the-art performance
(Yang et al., 2024b; Liu et al., 2024) on bench-
marks such as Spider (Yu et al., 2018) and BIRD
(Li et al., 2023). Despite significant progress, a
critical challenge persists: LLMs finetuned on ex-
isting benchmarks still struggle with large database
schemas due to limited context handling. Current
datasets primarily feature small schemas, failing
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Figure 1: Our proposed SQLong Pipeline.

to represent real-world complexities. Addition-
ally, the absence of publicly available large-schema
datasets further hinders progress. Addressing this,
we propose SQLong, a data augmentation frame-
work designed to enhance LLM performance in
long-context NL2SQL tasks by extending schemas
to meet predefined context thresholds.

SQLong constructs augmented data by sampling
CREATE TABLE commands and data rows from
diverse schemas. These datasets enable LLMs to
effectively manage large schemas and maintain
robustness in long-context scenarios. Our exper-
iments with CodeQwen1.5-7B-Chat (Bai et al.,
2023) and Llama-3.1-8B-Instruct (Dubey et al.,
2024) show SQLong consistently outperforms base-
line finetuning, achieving an average accuracy
improvement of over 2.2% on benchmarks like
Spider-dev, Spider-test, and BIRD-dev.

Moreover, SQLong enables the creation of 45
long-context test sets, with context lengths up to
128k tokens. Models finetuned with SQLong ex-
hibit significant performance gains, achieving an
11% improvement over base models and a 6%
improvement over larger-scale models within the
same family. These results highlight SQLong’s ef-
fectiveness in real-world, large-schema scenarios.

In this paper, we focus on demonstrating
that SQLong-augmented models outperform their
unaugmented counterparts across varying context



Figure 2: Prompt template for the NL2SQL task.

lengths. While direct comparisons to retrieval-
augmented generation (RAG) schema linking are
beyond this paper’s scope, our findings suggest
combining SQLong with RAG could unlock fur-
ther gains. Our main contributions include:
• Introducing long-context NL2SQL: A chal-

lenging new task for evaluating LLM performance
on large database schemas.
• SQLong pipeline: A novel, scalable data aug-

mentation approach for generating long-context
training and test datasets.
• Empirical insights: Comprehensive experi-

ments validating SQLong’s effectiveness in enhanc-
ing LLM robustness and accuracy in long-context
scenarios.
• Resource sharing: Plans to release SQLong

datasets and code to support further research.

2 The Proposed SQLong Pipeline

The NL2SQL task aims to translate a natural-
language question about a database schema into
a corresponding SQL query. Following the stan-
dardized prompt template (Rajkumar et al., 2022),
we represent the input prompt to LLMs in the
format of (task instructions, database schema,
natural language question).2 As illustrated in

2In datasets with additional complexity, such as BIRD, the
question may be supplemented with extra information, such as
evidence. For simplicity, this additional information is omitted
in Figure 2.

Figure 2, the database schema is represented by
CREATE TABLE commands and three sample
data rows for each corresponding table.

Using supervised finetuning (SFT) (Wei et al.,
2022), LLMs can be trained on pairs of input
prompts and target SQL queries to optimize their
performance on the NL2SQL task. Specifically,
given a training set T comprising pairs of input
prompts x and corresponding target SQL queries
s, the supervised finetuning process can be formu-
lated as minimizing the log-likelihood loss (Wei
et al., 2022), as shown below:

E(x,s)∼T

[∑|s|
i=1 log pθ (si|s<i,x)

]
wherein |s| is the length of s, si is the i-th token,
s<i is the prefix of s up to the i-th position, and θ
denotes the given LLM’s parameters.

In this work, we introduce SQLong, a novel
approach for constructing long-context finetuning
and benchmark datasets, as illustrated in Figure 1.
SQLong augments database schemas to enable
large language models (LLMs) to effectively han-
dle long-context scenarios in natural language to
SQL (NL2SQL) tasks.

The SQLong pipeline has three main steps:
1. Schema Collection. We collect all

CREATE TABLE commands and three sample
data rows for each table from the training database
schemas, compiling them into a comprehensive
schema set.

2. Schema Augmentation. For each training
pair, consisting of an input prompt (task instruc-
tions, database schema, natural language question)
and its target SQL query, SQLong randomly sam-
ples items from the schema set. These sampled
items contain table names distinct from those in
the given database schema. The sampled items are
combined with the original schema, and the result-
ing schema is randomly shuffled to produce a new,
long-context database schema. This shuffling in-
troduces variability in the positions of the original
tables and columns.

3. Long-Context Prompt Generation. SQ-
Long generates an augmented input prompt in
the format of task instructions, the long-context
database schema, and the natural language ques-
tion, while keeping the target SQL query un-
changed. It ensures that the combined length of
the long-context input prompt and the target SQL
query does not exceed a predefined context length
(e.g., 32k tokens), maintaining compatibility with
the model’s tokenizer constraints.



By systematically extending and diversifying
the context, SQLong enhances the robustness and
effectiveness of LLMs in handling long-context
NL2SQL tasks. We summarise the steps involved
in SQLong in Algorithm 1 in Appendix A.1.

3 Evaluation

We assess the effectiveness of our proposed SQ-
Long model in enhancing NL2SQL performance
in both short-context and long-context scenarios.

3.1 Experimental Setup
Datasets For the short-context evaluation, we uti-
lize widely adopted benchmark datasets, includ-
ing Spider (Yu et al., 2018), Spider-realistic (Deng
et al., 2020), Spider-syn (Gan et al., 2021), and
BIRD (Li et al., 2023). 3 It is noted that Spider-Syn
is manually created based on Spider training and
development sets using synonym substitution in the
original questions, while Spider-realistic is created
based on Spider development set by manually re-
moving the explicit mention of column names in
the original questions. The BIRD-test set is not
publicly available.

For the long-context evaluation, we extend each
of the Spider-dev, Spider-test, Spider-realistic,
Spider-syn, and BIRD-dev datasets by applying
SQLong with a pre-defined context length. Specifi-
cally, we generate augmented long-context test sets
for nine context lengths: 8k, 16k, 24k, 32k, 40k,
48k, 56k, 64k, and 128k. This process results in
a total of 45 long-context test sets, constructed in
accordance with the tokenizer of the base model.

Importantly, the long-context test sets are con-
structed with distinct database schema alignments.
To build Spider-based long-context test sets, we
use the database schemas from the BIRD training
set, whereas for the BIRD-dev long-context test
sets, we use the database schemas from the Spider
training set. This ensures a robust evaluation across
diverse schema configurations and context lengths.
The data statistics of the experimental datasets are
presented in Figure 3 and Tables 1 and 2.

Baseline Models and Evaluation Metrics We
evaluate SQLong using two powerful base models:
CodeQwen1.5-7B-Chat (Bai et al., 2023), which
supports a context length of up to 64k, and Llama-
3.1-8B-Instruct (Dubey et al., 2024), which sup-
ports a context length of up to 128k. Following Yu

3We use the latest BIRD-dev dataset, updated on June 27,
2024. The BIRD-test set is not publicly available.

Figure 3: Statistics of input prompt lengths with re-
spect to Llama-3.1-8B-Instruct’s tokenizer (left) and
CodeQwen1.5-7B-Chat’s tokenizer (right) on the origi-
nal BIRD-dev set. Similarly, the maximum input prompt
lengths for the original Spider-related sets are approx-
imately 2,000 tokens for Llama-3.1-8B-Instruct’s tok-
enizer and 2,500 tokens for CodeQwen1.5-7B-Chat’s
tokenizer.

Dataset #DB #tables #training #dev #test
Spider 200 5 ± 3 6,712 1,034 2,019
Spider-syn 200 5 ± 3 6,712 1,034 –
Spider-realistic 200 5 ± 3 6,712 508 –
BIRD 98 7 ± 3 9,428 1,534 –

Table 1: Statistics of the experimental datasets. #DB
denotes the number of databases. #tables denotes the
mean and standard deviation of numbers of tables in the
databases.

Length CodeQwen1.5-7B-Chat Llama-3.1-8B-Instruct
Spider-related BIRD-dev Spider-related BIRD-dev

8k 37 ± 4 35 ± 8 48 ± 5 48 ± 8
16k 72 ± 6 76 ± 8 94 ± 7 102 ± 9
24k 107 ± 7 118 ± 8 141 ± 8 157 ± 9
32k 142 ± 8 159 ± 9 186 ± 8 211 ± 9
40k 177 ± 8 200 ± 9 233 ± 9 269 ± 9
48k 212 ± 9 242 ± 9 279 ± 9 320 ± 10
56k 247 ± 9 283 ± 9 326 ± 9 374 ± 9
64k 283 ± 9 324 ± 9 372 ± 8 429 ± 9
128k 551 ± 4 639 ± 7 725 ± 9 843 ± 8

Table 2: Mean and standard deviation statistics of the
numbers of tables in input prompts for our augmented
long-context test sets with respect to each model’s tok-
enizer.

et al. (2018), we report execution-match accuracy
on both the original short-context test sets and the
augmented long-context test sets.

Training Protocol For each original training set,
we use SQLong to create an augmented long-
context finetuning dataset with context lengths of
up to 32k.4 The augmented dataset is combined
with the original training set to form the final

4Due to computational constraints, we limit finetuning
to context lengths of up to 32k. Specifically, for each train-
ing example, the context length is randomly sampled from a
range starting at 4,096 and increasing by 512 increments up
to 32,768.



Model Spider-dev Spider-realistic Spider-syn Spider-test BIRD-dev Average
Qwen2-72B-Instruct 82.7 80.7 73.0 82.9 53.7 74.6
CodeQwen1.5-7B-Chat 76.4 70.1 62.7 75.1 44.3 65.7

Finetuned without SQLong 81.9 76.2 68.7 79.6 51.4 71.6
Finetuned with SQLong 83.4 79.7 71.2 81.3 53.3 73.8

Llama-3.1-70B-Instruct 80.7 78.0 73.0 83.7 61.5 75.4
Llama-3.1-8B-Instruct 71.1 63.8 61.0 65.7 40.9 60.5

Finetuned without SQLong 79.2 76.4 69.6 80.4 51.9 71.5
Finetuned with SQLong 83.2 78.0 73.1 81.8 53.3 73.9

Table 3: Execution-match accuracy results (in %) across different datasets and model configurations. Finetuning
with SQLong consistently improves performance, with the best results highlighted in bold.

dataset used for finetuning the base models.5

We experiment with two base models:
CodeQwen1.5-7B-Chat (Bai et al., 2023), which
supports a 64k context length, and Llama-
3.1-8B-Instruct (Dubey et al., 2024), which
supports a 128k context length. Finetuning
is performed with a batch size of 1, gradient
accumulation steps of 8, a learning rate chosen
from 1× 10−6, 5× 10−6, 1× 10−5, and up to 5
epochs on 8×H100 80GB GPUs.

We use Huggingface’s TRL (von Werra et al.,
2020) for supervised finetuning, employing 8-bit
AdamW (Dettmers et al., 2021), Flash Attention
v2 (Dao, 2023), and DeepSpeed ZeRO-3 Offload
(Ren et al., 2021). For a fair comparison, we also
finetune the base models on the original training
set (i.e., without SQLong) under the same settings.

Inference Protocol We utilize vLLM (Kwon
et al., 2023) for the inference process. For long-
context test sets, we employ dynamic NTK RoPE
scaling (Peng et al., 2023) to extend support up to
a 128k context length for CodeQwen1.5-7B-Chat
and its finetuned variants.

3.2 Main Results

Performance on Original Datasets Table 3 sum-
marizes the results on the original development
and test sets, comparing base models with larger
LLMs such as Llama-3.1-70B-Instruct (Dubey
et al., 2024) and Qwen2-72B-Instruct (Yang et al.,
2024a). Models finetuned using long-context aug-
mentation via SQLong consistently outperform
their counterparts finetuned on original contexts.
On average, SQLong delivers an absolute improve-
ment of over 2.2% across five benchmark datasets.
Additionally, SQLong-finetuned models achieve

5For Spider, we finetune the base models on the Spider
training set and evaluate performance on Spider-dev, Spider-
test, Spider-realistic, and Spider-syn.

performance comparable to much larger LLMs on
specific datasets, showcasing the scalability and
efficiency of the approach.

Performance on Long-Context Datasets Fig-
ure 4 illustrates the experimental results on long-
context test sets. The full details are presented in
Tables 4 and 5 in Appendix A.2. Across all datasets,
models finetuned with SQLong demonstrate supe-
rior performance compared to those trained without
SQLong. For instance, on the Spider-test datasets
with 8k and 24k context lengths, the Llama-3.1-
8B-Instruct model achieves outstanding results of
77.1% and 72.3%, reflecting absolute gains of 7.2%
and 13.3%, respectively. Notably, the SQLong-
finetuned Llama-8B model outperforms the larger
Llama-70B model on 41 out of 45 long-context
test sets, with minor exceptions on Spider-realistic
8k and BIRD-dev 8k, 16k, and 24k sets. Similar
performance trends are observed with the Qwen
models.

On average, SQLong finetuning delivers an
11% absolute improvement over models without
SQLong and a 6% advantage over 70B models
within the same model family. These results un-
derscore the efficacy of SQLong in handling long-
context scenarios and advancing the performance
of NL2SQL systems.

Positional robustness We conduct an experi-
ment wherein each original database schema is
placed at different positions within the input
prompt, assessing the models’ ability to detect it
regardless of its location.

We select a set of 124 samples from Spider-
dev, Spider-realistic, and Spider-syn, ensuring
each sample has a maximum input prompt and
target SQL query length of 384 tokens accord-
ing to CodeQwen1.5-7B-Chat’s tokenizer. Using
SQLong, we augment this set to a 64k context



8k 16k 24k 32k 40k 48k 56k 64k 128k
0

10

20

30

40

50

60

70

80 77.1
74.1

72.3

68.6
66.8

65.5
63.5

62.1

41.6

69.9

62.9

59
56.2

52.4
51.1

48.3
45.7

30.6

61.7

54.7

51.2

47

43.2 43.8
41.5

39

26.1

76.9

70.2
68.4

63.7
60.8

58.3 57.8

54.1

23.4

Context Length

E
xe

cu
tio

n-
M

at
ch

A
cc

ur
ac

y
(%

)

Spider-test Long-Context Test Sets (Llama-3.1)

Finetuned with SQLong
Finetuned without SQLong
Llama-3.1-8B-Instruct
Llama-3.1-70B-Instruct

8k 16k 24k 32k 40k 48k 56k 64k 128k
0

5

10

15

20

25

30

35

40

45

50

55

60

49.3

46
43.8 43.9

42.7
41.2

39.7
37.6

24.5

43.2

37.9

35.2

32.6 33.5

30.5
28.8 29.3

18.8

35.1

31.3

28.1
26.2

25.2
23.9 23.6

21.6

15.7

52.3

47.1

44.2

40.8
39.5

37.1 36.5
34.4

11

Context Length

E
xe

cu
tio

n-
M

at
ch

A
cc

ur
ac

y
(%

)

BIRD-dev Long-Context Test Sets (Llama-3.1)

Finetuned with SQLong
Finetuned without SQLong
Llama-3.1-8B-Instruct
Llama-3.1-70B-Instruct

8k 16k 24k 32k 40k 48k 56k 64k 128k
0

10

20

30

40

50

60

70

80

73.4

68.6

64.2
62.9

59.1 58
56.1

54.1

40.1

66.6

57.8
55.1

51.3
49.3

45.3
42.3

39.8

24.1

60.6

51.7

47.9
45

40.6 39.6

34
32.7

16.1

70.9

65.5

56.5
53.9 52.7

49.2

45.6 45

33.3

Context Length

E
xe

cu
tio

n-
M

at
ch

A
cc

ur
ac

y
(%

)

Spider-test Long-Context Test Sets (Qwen)

Finetuned with SQLong
Finetuned without SQLong
CodeQwen1.5-7B-Chat
Qwen2-72B-Instruct

8k 16k 24k 32k 40k 48k 56k 64k 128k
0

5

10

15

20

25

30

35

40

45

50

46.9

42.5

40.3
39.2

37

33.4
32

30.8

19.4

39

35.7

30.1 29.6

26
24.4

23.3
22.1

9.4

32.4

29.3

25.6
23.7

21.1
19.6

17.3
16.5

7.1

45.9

40.2

37.1
35.8 35.4

32.8 32.5 33

24.9

Context Length

E
xe

cu
tio

n-
M

at
ch

A
cc

ur
ac

y
(%

)

BIRD-dev Long-Context Test Sets (Qwen)

Finetuned with SQLong
Finetuned without SQLong
CodeQwen1.5-7B-Chat
Qwen2-72B-Instruct

Figure 4: Execution-match accuracy (in %) for Llama-3.1 (top) and Qwen (bottom) families on Spider-test (left)
and BIRD-dev (right) long-context test sets.

Figure 5: Robust impact of fine-tuned models.

length. In each augmented set, the original database
schemas are positioned at specific offsets, starting
from 512 and incrementing by 512 up to 64k. This
results in 125 new test sets, each containing 124
samples with a 64k context length, corresponding
to a distinct schema position.

We compute the number of correctly executed
samples for each test set, as shown in Figure 5. The

results demonstrate that the long-context fine-tuned
model with SQLong is significantly more robust
compared to the model without fine-tuning.

4 Conclusion and Future Work

Handling large database schemas poses a signifi-
cant challenge for NL2SQL models. In this paper,
we introduce long-context NL2SQL generation, a
novel task that reflects real-world scenarios, and
propose SQLong, a simple yet effective augmenta-
tion approach for creating long-context finetuning
and benchmark datasets. Experiments show that
LLMs finetuned with SQLong significantly outper-
form their counterparts on benchmarks like Spider,
BIRD, and our long-context test sets (up to 128k
context length).

Future work includes leveraging a RAG-based
schema linking approach to retrieve relevant
schema elements, enabling more concise and effi-
cient inputs for SQLong-tuned models.
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A Appendix

A.1 The algorithm steps in SQLong
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Algorithm 1: The algorithm steps involved in the proposed SQLong.

1 Input: A training set T of pairs of input prompts and target SQL queries:
T = {((instructionsi, database_schemai, questioni), target_sqli)}Ni=1, wherein each
database_schemai is a set of CREATE TABLE commands and three data rows for each
corresponding table; a set
T = {((instructionsj , database_schemaj , questionj), target_sqlj)}Mj=1; the base model’s
tokenizer tk, a starting number s_n (default 4096), an ending number e_n (default 32768), an
increasing number i_n (default 512), and a pre-defined number p_n (default 8192).

2 Output: The augmented long-context set T ′.
3 schema_set← collect_unique_commands_and_data_rows({database_schemai}Ni=1)
4 table_names← get_table_names(schema_set)
5 item_lengths← {}
6 for item ∈ schema_set do
7 item_lengths← item_lengths ∪ {get_length(item, tk)}

8 T ′ ← {}
9 diverse_lengths← range(s_n, e_n+ 1, i_n)

10 for ((instructions, database_schema, question), target_sql) ∈ T do
11 original_length←

get_length(instructions+ database_schema+ question+ target_sql, tk)
12 certain_length← randomly_select_value(diverse_lengths) // This aims to

construct long-context fine-tuning data with T = T . Otherwise,
certain_length is set to p_n to construct long-context benchmark data.

13 local_table_names← get_table_names(database_schema)
14 augmented_schema← {}
15 for idx ∈ shuffle_list(range(0, get_size(schema_set))) do
16 if schema_set[idx] /∈ database_schema and table_names[idx] /∈

local_table_names and original_length+ item_lengths[idx] < certain_length
then

17 original_length← original_length + item_lengths[idx]
18 augmented_schema← augmented_schema ∪ {schema_set[idx]}

19 augmented_long_context_schema←
shuffle_list(augmented_schema ∪ database_schema)

20 T ′ ← T ′ ∪ {((instructions, augmented_long_context_schema, question), target_sql)}

A.2 Full execution-match accuracy results for
all long-context test sets



Model Context Dataset Average
length Spider-dev Spider-realistic Spider-syn Spider-test BIRD-dev across 45 sets

Llama-3.1-8B-Instruct 8k 61.9 53.5 45.1 61.7 35.1
16k 58.5 47.0 38.9 54.7 31.3
24k 53.2 43.1 32.7 51.2 28.1
32k 49.6 42.9 29.9 47.0 26.2
40k 48.7 38.4 28.4 43.2 25.2 37.2
48k 46.9 35.8 24.9 43.8 23.9
56k 45.5 32.1 23.8 41.5 23.6
64k 42.6 33.1 22.5 39.0 21.6

128k 28.0 17.9 10.3 26.1 15.7
Our model fine-tuned 8k 71.7 63.4 49.3 69.9 43.2

Without SQLong 16k 66.6 54.7 39.9 62.9 37.9
24k 63.6 52.4 35.5 59.0 35.2
32k 59.4 48.0 33.1 56.2 32.6
40k 57.0 45.1 30.2 52.4 33.5 43.8
48k 55.9 43.7 28.0 51.1 30.5
56k 52.5 40.4 25.7 48.3 28.8
64k 51.4 40.9 25.3 45.7 29.3

128k 34.7 23.6 13.5 30.6 18.8
Our model fine-tuned 8k 77.4 67.1 61.7 77.1 49.3

With SQLong 16k 75.2 66.1 53.4 74.1 46.0
24k 71.8 64.2 50.0 72.3 43.8
32k 68.3 61.6 46.5 68.6 43.9
40k 67.5 62.8 44.9 66.8 42.7 54.8
48k 66.9 56.7 40.2 65.5 41.2
56k 63.3 52.6 38.4 63.5 39.7
64k 61.3 52.2 39.3 62.1 37.6

128k 43.0 33.7 21.7 41.6 24.5
Llama-3.1-70B-Instruct 8k 73.9 67.3 55.0 76.9 52.3

16k 67.7 59.4 48.9 70.2 47.1
24k 62.4 54.9 43.8 68.4 44.2
32k 60.9 49.6 41.7 63.7 40.8
40k 59.0 52.6 37.4 60.8 39.5 48.5
48k 57.6 46.9 35.0 58.3 37.1
56k 55.3 46.3 32.3 57.8 36.5
64k 55.0 43.9 31.7 54.1 34.4

128k 28.0 25.6 12.3 23.4 11.0

Table 4: Execution-match accuracy results (in %) on the augmented long-context test sets with respect to the
Llama-3.1 model family.



Model Context Dataset Average
length Spider-dev Spider-realistic Spider-syn Spider-test BIRD-dev across 45 sets

CodeQwen1.5-7B-Chat 8k 61.7 49.6 38.1 60.6 32.4
16k 55.9 42.1 30.7 51.7 29.3
24k 51.5 37.8 27.9 47.9 25.6
32k 48.0 30.9 22.8 45.0 23.7
40k 46.7 28.9 21.0 40.6 21.1 31.7
48k 42.4 27.8 18.7 39.6 19.6
56k 36.4 24.0 17.5 34.0 17.3
64k 36.4 21.3 15.8 32.7 16.5
128k 19.2 7.9 6.4 16.1 7.1

Our model fine-tuned 8k 68.9 57.1 39.5 66.6 39.0
Without SQLong 16k 62.6 51.4 31.8 57.8 35.7

24k 57.6 49.0 29.3 55.1 30.1
32k 53.0 41.5 25.6 51.3 29.6
40k 53.7 38.4 23.5 49.3 26.0 37.8
48k 48.7 34.6 22.3 45.3 24.4
56k 44.5 33.1 20.9 42.3 23.3
64k 43.8 30.3 18.4 39.8 22.1
128k 26.1 15.6 9.2 24.1 9.4

Our model fine-tuned 8k 75.9 65.7 53.2 73.4 46.9
With SQLong 16k 72.9 62.6 46.6 68.6 42.5

24k 68.9 58.5 43.0 64.2 40.3
32k 67.5 54.3 40.0 62.9 39.2
40k 63.4 53.7 37.4 59.1 37.0 50.2
48k 63.9 52.8 35.3 58.0 33.4
56k 60.3 51.0 33.6 56.1 32.0
64k 60.6 52.4 31.0 54.1 30.8
128k 43.4 33.7 19.4 40.1 19.4

Qwen2-72B-Instruct 8k 70.6 63.4 47.2 70.9 45.9
16k 69.1 58.7 40.6 65.5 40.2
24k 60.9 53.3 34.1 56.5 37.1
32k 59.6 45.5 31.1 53.9 35.8
40k 55.8 45.7 29.5 52.7 35.4 44.2
48k 52.3 43.7 27.8 49.2 32.8
56k 50.8 39.4 27.6 45.6 32.5
64k 47.3 34.6 25.1 45.0 33.0
128k 36.8 28.3 18.6 33.3 24.9

Table 5: Execution-match accuracy results (in %) on the augmented long-context test sets with respect to the Qwen
mdoel family.
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