
PIANO: An End-to-End Chinese Input Method

Anonymous ACL submission

Abstract

A Chinese Input Method Engine (IME) helps001
user convert a keystroke sequence into the de-002
sired Chinese character sequence. It is usu-003
ally a cascaded process in which the origi-004
nal input sequence is firstly corrected to re-005
move typos, then segmented into the pinyin006
token sequence, and finally converted into007
a Chinese character sequence. Errors are008
prone to accumulate and propagate in that009
pipeline. This paper summarizes that process as010
a Key-to-Character (K2C) conversion task and011
solve it in a unified end-to-end way. We pro-012
pose PIANO (Pinyin bIdirectional non-Auto-013
regressive nOise-robust Transformers) to solve014
the error propagation problem effectively and015
improve the IME engine performance signifi-016
cantly in experiments. Moreover, we model the017
user real input behaviors and design a method018
to generate the massive training corpus with019
typos for the K2C task. It further improves020
the robustness of PIANO. Finally, we design a021
non-autoregressive (NAR) decoder for PIANO022
and obtain 9x+ acceleration with limited per-023
formance degradation, which makes it possible024
to deploy on the commercial input software.025

1 Introduction026

Some of languages, such as Chinese, Japanese and027

Thai language, can not be input directly through the028

standard keyboard. Users type in these languages029

via some commercial input software, such as Mi-030

crosoft Input Method (Gao et al., 2002), Google031

Chinese Input Method1, Sogou Input Method2,032

Baidu Input method3, Huawei Celia Keyboard4,033

and so on. Pinyin is the official romanization rep-034

resentation for Chinese language. It’s natural for a035

1https://www.google.com/inputtools/
2https://pinyin.sogou.com/
3https://shurufa.baidu.com/
4https://consumer.huawei.

com/uk/community/details/
App-Gallery-Celia-Keyboard-is-now-available/
topicId_48409/

Figure 1: A user Types in Chinese via Pinyin in IME. 5

user to type in pinyin through the keyboard. And 036

the input software converts the pinyin into the char- 037

acter sequence. As Figure 1 shows, a user inputs 038

a keystroke sequence of “woainizongguo”, and 039

the software segments it into the pinyin sequence 040

“wo′ai′ni′zong′guo” then converts it into the Chi- 041

nese character sequence that user desires “我爱你 042

中国 (I love you China)”. 043

Specifically, as Figure 2 shows, the IME en- 044

gine takes it as a cascaded process. Firstly, the 045

correction module corrects the typos in the orig- 046

inal keystroke sequence. In the example of Fig- 047

ure 1, the blade-alveolar sound of ’zong’ is cor- 048

rected into the cacuminal sound of ’zhong’. It 049

is usually implemented by some rule system for 050

efficiency. Secondly, the modified keystroke se- 051

quence is segmented into the pinyin token sequence. 052

For example, “woainizhongguo” is segmented into 053

“wo′ai′ni′zhong′guo”. The tokenizer is usually im- 054

plemented by some Chinese word segmentation 055

algorithm, i.e. the Maximum Matching (MM) algo- 056

rithm. Lastly, the pinyin sequence is converted into 057

the character sequence, which is called the Pinyin 058

to Character (P2C) conversion task (Zhang et al., 059

2019a; Yao et al., 2018; Xiao et al., 2007). It is 060

usually resolved as a sequence labeling task by the 061

Ngram language model (Goodman, 2001) together 062

with the Viterbi search algorithm (Viterbi, 2006). 063

In the above process, the error in the previous 064

step is prone to accumulate and propagate to the 065

later step, which hurts the IME engine performance 066

badly as presented in the later experiments. In this 067

paper, we summarizes those steps into a unified 068

end-to-end process named the Key-to-Character 069

5The screenshot is from Sogou Input Method software

1

https://www.google.com/inputtools/
https://pinyin.sogou.com/
https://shurufa.baidu.com/
https://consumer.huawei.com/uk/community/details/App-Gallery-Celia-Keyboard-is-now-available/topicId_48409/
https://consumer.huawei.com/uk/community/details/App-Gallery-Celia-Keyboard-is-now-available/topicId_48409/
https://consumer.huawei.com/uk/community/details/App-Gallery-Celia-Keyboard-is-now-available/topicId_48409/
https://consumer.huawei.com/uk/community/details/App-Gallery-Celia-Keyboard-is-now-available/topicId_48409/


Figure 2: The Key to Character Conversion Task

Figure 3: PIANO Model Architecture. In the input layer, E0 and E1 are the position embeddings; Ew and Eo

are the input token embeddings. The decoder of PIANO adopts the bidirectional attentions. An additional length
predictor is added on the top of encoder to guide the generation process.

(K2C) conversion task and proposes PIANO to070

solve it. As far as we know, it’s the first work to071

build the IME engine in an end-to-end way. We072

summarize the main contributions of this paper as073

follows:074

• We propose PIANO to solve the K2C task and075

build the IME engine in an end-to-end way,076

which effectively resolves the error propaga-077

tion problem in the cascaded IME engine. As078

far as we know, it’s the first end-to-end IME079

engine.080

• We model the user input behavior and design081

a method to generate the massive corpus with082

typos automatically for the K2C task, which083

further improves the robustness of PIANO.084

• We adopt the NAR decoder for PIANO and085

boost the inference speed significantly with086

only little performance degradation.087

2 Method088

In this section, we describe the details about PI-089

ANO. Firstly, we introduce the K2C task formally090

in Section 2.1. Then we present how the PIANO091

is implemented in Section 2.2. Lastly, we describe092

the method that models user input behavior and093

generates the massive corpus with typos in Section094

2.3.095

2.1 The K2C Conversion Task 096

As illustrated in Figure 2, the K2C conversion 097

task is to convert the user keystroke sequence 098

from keyboard directly into the Chinese sentence. 099

Formally, k1, k2, ..., kn is the keystroke sequence. 100

They are converted into the character sequence of 101

c1, c2, ...cm in the K2C conversion task. Usually 102

the value of m is smaller than n since one Chinese 103

character corresponds to one pinyin token which 104

is composed of multiple letters. The task can be 105

resolved in a cascaded way as most of the commer- 106

cial input software does, or in an end-to-end way 107

by PIANO in this paper. 108

2.2 PIANO 109

We build PIANO based on the standard encoder- 110

decoder Transformer architecture (Vaswani et al., 111

2017) like MASS (Song et al., 2019), T5 (Raffel 112

et al., 2019) and BART (Lewis et al., 2020). To fit 113

for the K2C task, we make some customizations 114

in several aspects, including the training paradigm 115

as described in Section 2.2.1, the embedding layer 116

as described in Section 2.2.2 and the NAR decoder 117

described in Section 2.2.3. 118

2.2.1 The Training Paradigm 119

Currently, most of the Transformer models adopt 120

the pretrain-then-finetune paradigm to solve the 121

NLP tasks (Song et al., 2019; Raffel et al., 2019; 122

2



Lewis et al., 2020). It firstly pre-trains the model123

on the massive unlabeled corpus by some self-124

supervised learning tasks, for example, reconstruct-125

ing text from it noisy version by token masking,126

token deleting, text infilling, sentence permutation127

and so on. Then the model is fine-tuned on the128

labelled corpus on the target task, such as SQuAD129

(Rajpurkar et al., 2016), MNLI (Williams et al.,130

2018), XSum (Narayan et al., 2018), and so on. The131

pre-train process leverages the general knowledge132

contained in the unlabeled corpus which boosts133

the performance significantly on the target tasks.134

As described in Section 2.3 later, we design the135

method to create the massive labelled corpus for136

the K2C task automatically. Therefore, we train137

PIANO directly on the target K2C task instead of138

the pretrain-then-finetune paradigm.139

2.2.2 The Embedding Layer140

Some pre-trained language models (Devlin et al.,141

2019; Cui et al., 2019; Sun et al., 2020) adopt seg-142

ment embedding in its input layer so as to pre-train143

on the sentence-level tasks. However, as Figure 3144

shows, there is no segment embedding in PIANO145

because there is no pretrain process in PIANO. Be-146

sides, PIANO takes the keystroke sequence as input147

rather than the subword sequence. There are only148

26 individual letters which is three order of magni-149

tude smaller than the number of subword (usually150

more than 50,000) used by pre-trained language151

model. Thus the size of embedding layer of PI-152

ANO is much smaller. In summary, the parameter153

number of PIANO is usually smaller than the pre-154

trained language models of the same scale.155

2.2.3 The NAR Decoder156

The standard Transformer network adopts the au-157

toregressive decoder which predicts the current to-158

ken based on the previous one. The advantage159

is to leverage the dependency between tokens in160

sequence, whereas it’s pretty slow during the in-161

ference, which hinders its deployment in the com-162

mercial input software. The NAR decoder is firstly163

proposed in the machine translation domain (Gu164

et al., 2018). It makes the independent assumption165

on the tokens of target sequence, which makes the166

inference process parallel so that accelerates the167

inference significantly. This paper adopts the NAR168

decoder in PIANO.169

As described in Figure 3, we firstly replace the170

decoder of uni-directional attention in Transformer171

with the decoder of bidirectional attention in PI-172

ANO, which can leverage the parallel computation 173

in GPU. Secondly, we add a length predictor to 174

predict the length of target sequence so as to pro- 175

vide the additional information to guide the genera- 176

tion process. Specifically, we add a mean pooling 177

layer stacked with a regression layer on the top 178

of the encoder. Thirdly, we co-train the PIANO 179

model with two tasks: the cross-entropy (CE) loss 180

is adopted for the target sequence prediction task, 181

and the mean square error (MSE) loss is adopted 182

for the length prediction task. They are weighted 183

combined together, as shown in Formula 1. 184

losstotal = λ1 ∗ lossce + λ2 ∗ lossmse (1) 185

During the inference, the tokens in the target se- 186

quence are generated parallel, and the target length 187

is predicted as well. The length is rounded off from 188

float to the integer value. Then the target sequence 189

is simply truncated by that length. 190

2.3 Generating Massive Labelled Corpus 191

We generate the massive labelled corpus for the 192

K2C task. The whole process is described in Figure 193

4. 194

Firstly, the text in Chinese corpus, i.e. the 195

sentence of “我爱你中国 (I love you China)”, 196

is converted into the pinyin token sequence, i.e. 197

“wo′ai′ni′zhong′guo”. This task is called Text-to- 198

Pinyin conversion which can achieve more than 199

99.9% accuracy (Zhang and Laprie, 2003). In this 200

way, we can get the massive pinyin corpus automat- 201

ically. Secondly, user does not type in any separator 202

to split the pinyin token explicitly during its input 203

process in reality, so we combine the pinyin tokens 204

in a sequence together into the keystroke sequence. 205

The “wo′ai′ni′zhong′guo” is then combined into 206

’woainizhongguo’. Thirdly, some kind of noise is 207

added into the keystroke sequence so as to simu- 208

late user’s typos. Finally we get the parallel corpus 209

with the Chinese character sequence as well as the 210

keystroke sequence with typos. 211

To add noise to the keystroke sequence, we se- 212

lect some positions randomly from the original 213

sequence. Then three operators are applied on the 214

letters of these positions with equal probability, 215

including ’Delete’, ’Insert’ and ’Replace’. Some 216

probability distribution is required to guide the ’In- 217

sert’ and ’Replace’ operator, i.e. to insert which 218

letter before the current position. The uniform dis- 219

tribution is the most straightforward choice. How- 220

ever, it’s sub-optimal because it does not take the 221

3



Figure 4: Prepare the Massive Labelled Corpus for the K2C Task. From the point cloud of top left, it shows the
scope and dense of user clicks for each button. Different color helps distinguish from each other.

consideration of the keyboard layout and the user’s222

behavior in reality. For example, when user types223

in the letter of ’z’ in ’zong’, it is prone to mistype224

it as ’x’ instead of ’p’ because the position of ’x’225

is much closer to ’z’ on the keyboard layout than226

’p’ dose. Besides, the typos of one user are also227

usually different from another user due to their dif-228

ferent input habits. In this paper, we collect the229

user type-in behaviors in reality 6. Some of them230

are visualized as the points cloud shown at the top231

left of Figure 4. Based on these data, we build232

the Gaussian model for each key on the keyboard233

layout, as Formula 2 shows below:234

f(x;µ, σ) =
1

σ
√
2π
exp(−(x− µ)2

σ2
) (2)235

According to the Gaussian model, we can calcu-236

late the probability that the current key is mis-typed237

to any other key. And we finally generate the typo238

noise according to that mis-type probability matrix,239

as illustrated at the upper half part of Figure 4.240

3 Experiment241

3.1 Data Set Preparation242

As far as we know, there is no public benchmark243

for the Chinese Pinyin input method. So we build244

our own data set and will make it public to the245

community later. More than 2.6 million articles are246

collected from Chinese news websites. We firstly247

segment them into sentences by the punctuation list248

including comma, period, and so on. Then we fil-249

ter the character which can not be mapped into any250

pinyin token, such as punctuation and English word.251

Thirdly, these sentences are further segmented by252

a max length (i.e. 16 in our experiment) because253

6We get these data under the users’ authorization.

Corpus #Articles #Chars #Disk
Train 2,603,869 2,432,585,138 9.7G
Test 1000 926,792 3.7M

Table 1: The Detailed Information of Corpus

user only types in a few Chinese characters at one 254

time. Lastly, we make them as the labelled corpus 255

as described in Section 2.3. Most of the corpus are 256

taken as the training corpus, and another one thou- 257

sand disjoint articles are taken as the test corpus, 258

as described in Table 1. 259

Besides, to evaluate the performance of the cas- 260

cade IME engine, we build several test corpus with 261

different degree of noise: 262

• No Typos and No Segment Errors. In the 263

first one, we assume that there is no typo from 264

user’s input and the pinyin tokenizer in Figure 265

2 works perfectly. It looks like “我爱你中 266

国 (wo′ai′ni′zhong′guo)”. It is a total clean 267

environment and the only factor that matters 268

the IME performance is language model. It 269

can be taken as the upper bound of the IME 270

engine performance in reality. We get this 271

corpus by processing only the first step of 272

Figure 4. 273

• No Typos BUT Segment Errors. In the 274

second corpus, we assume that there is no 275

typo but the pinyin tokenizer works proba- 276

bly with errors. It looks like “我爱你中国 277

(wo′a′in′i′zhong′guo)”. It is a possible situ- 278

ation if the user types in carefully and pre- 279

cisely. We can get it by re-segmenting the 280

combined keystroke sequence automatically 281

after the second step of Figure 4 by some real 282

tokenizer, i.e. the MM algorithm. 283

4



• Typos and Segment Errors. In the last284

one, we assume both the typo and the seg-285

menting error, which is the situation in the286

real world. It might look like “我爱你中国287

(wo′a′in′i′zong′guo)”. We can get it by re-288

segmenting the sequence containing noises289

after the third (last) step of of Figure 4.290

During evaluating, we apply language model291

directly on these kinds of corpus to simulate the292

performance of the cascaded IME engine in various293

noisy environment.294

3.2 Evaluation Metrics295

We use the Character-based Error Rate (CER) to296

evaluate the performance of the IME engine. It is297

defined as the ratio that the IME engine converts to298

the Chinese character incorrectly, as described in299

Formula 3.300

Error_Ratechar_based =
#incorrect_converted_char

#total_converted_char
(3)301

302

And the lower CER is, the better the IME engine303

performs.304

3.3 Baseline Models and Experiment Settings305

The cascaded IME engine is taken as the baseline306

model, and is evaluated on the corpus with dif-307

ferent degree of noise as described in Section 3.1.308

Several kinds of language models are integrated309

respectively into the cascaded IME engine:310

• Bigram. Bigram is the De facto model311

adopted widely in the commercial IME en-312

gine. We build the Bigram model on the lexi-313

con of the Table of General Standard Chinese314

Characters 7 which contains more than 6 thou-315

sand Chinese frequent characters. No pruning316

strategy is adopted since the scale of training317

corpus is large enough.318

• LSTM. LSTM is reported that obtains better319

performance than the Bigram model (Zhang320

et al., 2019b; Yao et al., 2018; Malhotra et al.,321

2015). In out implement of the LSTM model,322

both the embedding size and the hidden size323

are 256, and the learning rate is 5e−4. The324

batch size is 2k and the epoch number is 10.325

7https://en.wikipedia.org/wiki/Table_
of_General_Standard_Chinese_Characters

• Transformer. We use the standard Trans- 326

former in the sequence-to-sequence way. The 327

pinyin token sequence is taken as input, and 328

the Chinese character sequence is taken as out- 329

put. It is trained from scratch directly on the 330

P2C task. We follow most of the specifica- 331

tions in the paper (Lewis et al., 2020), except 332

that the max sequence length is set to 16 in- 333

stead of 512. The epoch number is 10. 334

For the PIANO model, the keystroke sequence 335

is taken as input. It is trained directly on the K2C 336

task as described in Section 2.2.1, both on the clean 337

corpus and on the noisy corpus generated in Section 338

2.3. The experimental settings are exactly the same 339

as the standard Transformer baseline. In Formula 340

1, the value of λ1 is 1 and the value of λ2 is 0.01. 341

3.4 Experimental Results on the K2C Task 342

The experimental results are presented in Table 2. 343

Two ratios of typo noises (1% and 5%) are added 344

into the test corpus. 345

Firstly, let’s take a quick look at the results un- 346

der the clean environment (no typo and no segment 347

error). The Bigram model obtains 15.44% CER 348

and the LSTM model gets a better result of 10.29% 349

(5.15% ↓) which is consistent to the conclusion 350

in the previous articles (Zhang et al., 2019b). The 351

standard Transformer model achieves 3.03% which 352

outperforms the above two models (12.41% ↓ and 353

7.26% ↓) significantly. It proves that language 354

model plays a crucial role in the cascaded IME 355

engine and its capacity can improve the perfor- 356

mance greatly. Besides, we also present the perfor- 357

mance of the end-to-end approach. PIANOvanilla 358

(5.52%) also outperforms Bigram and LSTM sig- 359

nificantly as Transformer does. However, it per- 360

forms a little bit worse than Transformer. It is be- 361

cause the K2C task contains the additional process 362

of keystroke sequence segmentation implicitly, and 363

it’s harder than the P2C task which the Transformer 364

model does. 365

Secondly, the performance of the cascaded IME 366

engine decreases badly in the noisy environment. 367

Taking the Bigram model as an example, the CER 368

increases from 15.44% to 20.70% (5.26% ↑) un- 369

der the segment errors, and further to 33.13% 370

(17.69% ↑) under the typo errors as well, and lastly 371

to 62.25% (46.81% ↑) as the typo ratio increases. 372

The similar results can be observed in the LSTM 373

model and even in the powerful Transformer model. 374

It indicates that errors are accumulated and propa- 375

5

https://en.wikipedia.org/wiki/Table_of_General_Standard_Chinese_Characters
https://en.wikipedia.org/wiki/Table_of_General_Standard_Chinese_Characters


Model Typo Error Segment Error CER Error Reduction
Bigram no no 15.44% NA
Bigram no yes 20.70% 5.26%↑
Bigram 1% yes 33.13% 17.69%↑
Bigram 5% yes 62.25% 46.81%↑
LSTM no no 10.29% 5.15%↓
LSTM no yes 15.04% 4.75%↑
LSTM 1% yes 33.13% 22.84%↑
LSTM 5% yes 48.25% 37.96%↑
Transformer no no 3.03% 12.41%↓
Transformer no yes 6.95% 3.92%↑
Transformer 1% yes 16.27% 13.24%↑
Transformer 5% yes 42.61% 39.58%↑
PIANOvanilla no no 5.52% 9.92%↓
PIANOvanilla 1% yes 12.40% 3.87%↓
PIANOvanilla 5% yes 34.86% 7.75%↓
PIANOuni 1% yes 7.43% 8.84%↓
PIANOuni 5% yes 13.00% 29.61%↓
PIANO 1% yes 5.14% 11.13%↓
PIANO 5% yes 7.51% 35.10%↓

Table 2: The Experimental Results on the K2C Task. PIANOvanilla is the PIANO model trained on the clean
corpus without any noise. PIANOuni is trained on the corpus with uniform noise. PIANO is trained on the
corpus with the noise generated by user model as described in Section 2.3.

gated in the cascaded IME system and degrade its376

performance badly.377

Thirdly, the performance of PIANOvanilla also378

decreases in the noisy environment. However, its379

declining degree is smaller than the above models,380

especially smaller than Transformer. For example,381

the error rate of Transformer is 16.27% under the382

condition of 1% typos and segment errors, whereas383

PIANOvanilla performs 12.40% which is much384

smaller (3.87% ↓). Considering Transformer per-385

forms better under the clean environment (3.03%)386

than PIANOvanilla (5.52%), the performance de-387

clining degree of PIANOvanilla in the noisy en-388

vironment is smaller further. It proves that the389

end-to-end process makes PIANO perform more390

robust than the cascaded models do.391

Fourthly, PIANOuni and PIANO perform392

much better than Transformer as well as393

PIANOvanilla in the noisy environment. For ex-394

ample, under the condition of 1% typos and seg-395

ment errors, PIANOuni gets 7.43% error rate396

which is much lower than Transformer (16.27%,397

8.84% ↓) and PIANOvanilla (12.40%, 4.97% ↓).398

The error reduction becomes larger as the ratio of399

typos increases. It proves that the method generat-400

ing massive corpus with noise described in Section401

2.3 can make our model robust further. 402

Lastly, PIANO gets the lowest error rate. For 403

example, under the condition of 1% typos and seg- 404

ment errors, PIANO gets 5.14% error rate which 405

is lower than Transformer (16.27%, 11.13% ↓), 406

PIANOvanilla (12.40%, 6.96% ↓) and especially 407

lower than PIANOuni (7.43%, 2.29% ↓). The 408

similar experimental results can be gotten as the 409

ratio of typos increases. It proves that the way we 410

models users’ input behavior described in Section 411

2.3 can help to generate high quality typos and 412

improve the robustness of PIANO further. 413

3.5 Effectiveness of the NAR Decoder 414

In this section, we compare the performances of 415

PIANOs with the AR decoder and with the NAR 416

decoder. The error rate and the inference speed are 417

reported in Table 3. 418

Compared to PIANOAR, the error rate of 419

PIANONAR increases by 0.03% under the 1% 420

typo ratio, and further by 0.91% under the 5% typo 421

ratio. Considering the fact that the performance of 422

PIANO is already good enough (i.e. the precision 423

has exceeded 90%), that performance degradation 424

is very slightly. Here our conclusion on the K2C 425

task is somehow contrary to those in machine trans- 426

6



Model Typo Error Segment Error CER Reduction ms/token Speedup
PIANOAR 1% yes 5.14% NA 15.66 NA
PIANOAR 5% yes 7.51% NA 15.66 NA
PIANONAR 1% yes 5.17% -0.03%↑ 1.60 9.78x↑
PIANONAR 5% yes 8.42% -0.91%↑ 1.73 9.30x↑

Table 3: Comparison between Autoregressive PIANO and Non-autoregressive PIANO. PIANOAR is the PIANO
with the autoregressive decoder as the standard Transformer does. PIANONAR is the PIANO with the non-
autoregressive decoder as described in Section 2.2.3

Model Typo Error Segment Error CER Error Reduction
PIANO−LP 1% yes 5.17% NA
PIANO−LP 5% yes 8.42% NA
PIANO+LP 1% yes 4.99% 0.18%↓
PIANO+LP 5% yes 8.19% 0.23%↓

Table 4: Effectiveness of Length Predictor. PIANO−LP is the PIANO model without length predictor.
PIANO+LP is the PIANO model with length predictor.

lation (Gu et al., 2018; Lee et al., 2018; Gu and427

Kong, 2021). It’s because that the order of tokens428

in the target sequence roughly corresponds to the429

source sequence, which makes the task simpler.430

Whereas, in machine translation, the token order431

correspondence can not be guaranteed, and the cor-432

rect translation heavily relies on the dependence433

between tokens in the target sequence. The NAR434

decoder makes the independent assumption which435

makes it a much harder task.436

However, the inference process is accelerated437

greatly by PIANONAR. The time to infer per438

token drops from 15.66ms to 1.60ms which is ac-439

celerated by 9.78 times under the 1% typo ratio,440

and drops from 16.09ms to 1.73ms which is ac-441

celerated by 9.30 times under the 5% typo ratio. It442

makes the deployment possible to the commercial443

input method software.8444

3.6 Ablation Study on the Length Predictor445

In this section, we evaluate the effectiveness of the446

length predictor in the NAR decoder of PIANO. We447

compare the model performance with or without448

the length predictor. The experimental results are449

presented in Table 4.450

PIANO+LP achieves the lower error rates than451

8The industry usually requires that the inference latency
less than one millisecond per token. As reported by the papers
of related techniques, such as distillation (Jiao et al., 2020),
quantization (Zhao et al., 2021; Zhang et al., 2020; Qin et al.,
2022) and pruning (Zafrir et al., 2021), PIANO can easily
meet that requirement after applying those techniques. More-
over, there is open tools such as (https://github.com/huawei-
noah/bolt) to help. It’s our future work to deploy it in the real
product.

PIANO−LP , which proves the effectiveness of 452

the length predictor module. However, the im- 453

provement of PIANO+LP is not as significant 454

as in machine translation (Lee et al., 2018). It’s 455

because the K2C task is a simpler task than the ma- 456

chine translation task, and its baseline performance 457

is already high as described in Section 3.5. 458

4 Related Works 459

4.1 Input Method Engine 460

Language model predicts the current word prob- 461

ability by its previous words. It plays an essen- 462

tial role in the P2C task in the IME engine. The 463

dominant model is the Ngram model (Bahl et al., 464

1983). However, its simplicity and low capacity 465

limits its performance. In recent years, RNN is 466

proposed to improve the performance by model- 467

ing longer history information (Kalchbrenner and 468

Blunsom, 2013). Variant network architectures are 469

proposed to solve the vanishing gradient problem 470

and the exploding gradient problem, such as LSTM 471

(Malhotra et al., 2015; Graves et al., 2013), GRU 472

(Cho et al., 2014), and so on. Yao et al. (2018) 473

replaces Ngram with LSTM in the IME engine and 474

get performance improvement both in the candi- 475

date prompt task and in the P2C task. It further 476

proposes an incremental selective softmax method 477

to solve the efficiency problem of LSTM in the 478

Viterbi algorithm. Zhang et al. (2019b) applies 479

LSTM in a sequence-to-sequence way in the P2C 480

task, and verify it in a smart sliding input method. 481

Zhang et al. (2019a) designs a novel online learn- 482

7



ing method that adapts the vocabulary to the P2C483

task. Huang et al. (2018) takes the P2C task as a484

language translation problem. The neural machine485

translation model is adopted in which RNN is used486

as encoder and a global attention model is used as487

decoder.488

4.2 Non-autoregressive Machine Translation489

Usually the decoder in the neural machine transla-490

tion system is the autoregressive one. Recently, the491

non-autoregressive decoder is proposed to acceler-492

ate the inference speed. Especially, there are two493

kinds of non-autoregressive models. The first one494

is fully non-autoregressive model which gener-495

ates the target sequence simultaneously with single496

forward of network, such as the vanilla NAT model497

(Gu et al., 2018). The NAT-CRF model (Sun et al.,498

2019) adds a CRF layer on the top of the NAT de-499

coder so as to build the token dependency in the500

target sequence. Gu and Kong (2021) makes a de-501

tailed investigation on the aspects that take effective502

on the NAT model. The second one is the iterative503

refinement non-autoregressive models (Lee et al.,504

2018) in which an additional decoder is adopted to505

refine the generated target sequence in an iterative506

way. CMLM (Ghazvininejad et al., 2019) makes507

use of the Masked Language Model (MLM) task508

to refine the generated result. A bert-like decoder509

with bidirectional attentions is adopted, and at each510

iteration it selects some tokens to mask and predict511

them again. In this way, the un-masked tokens can512

be taken as the contexts to improve the prediction513

of the masked token.514

4.3 Error Propagation Problem in Cascaded515

Systems516

There are a lot of articles discussing the perfor-517

mance in the noisy environment and how to handle518

the error propagation problem in the cascaded sys-519

tem, including the QA system (Ravichander et al.,520

2021), speech translation (Cheng et al., 2019; Be-521

linkov and Bisk, 2018), spoken language under-522

standing (Chen et al., 2021), machine translation523

(Li et al., 2018) and so on. Usually, the noises524

degrade the performances badly. The most natu-525

ral way to solve the problem is to train the model526

based on the corpus with noises. It firstly analysis527

the source of noise, and then synthesize the sim-528

ilar noise to inject into the training corpus. For529

example, it exchanges words randomly in sequence530

to synthesize the random noise; it uses a TTS sys-531

tem pipelined with an ASR system to generate the532

ASR noise; it introduces typos based on the prox- 533

imity of the keys in a QWERTY keyboard layout 534

(Ravichander et al., 2021). PIANO takes the simi- 535

lar way. However, different from the above works, 536

we model users’ real behaviors on keyboard and 537

generate high quality typos which improves the 538

performance further as presented in Section 3.4. 539

Besides data augmentation, some works designs 540

specific network architecture and training process. 541

Belinkov and Bisk (2018) designs the structure- 542

invariant word representation to increase model ro- 543

bustness. Cheng et al. (2019) adopts the adversarial 544

learning to address encoder and decoder simulta- 545

neously in its training process of speech transla- 546

tion system. Chen et al. (2021) utilizes the pho- 547

netic information and designs a joint text-phonetic 548

pre-training tasks to improve the robustness of the 549

end-to-end spoken language understanding system. 550

Similar to the above works, PIANO combines each 551

component of pipeline system into a unified K2C 552

task and train the model in an end-to-end way so 553

as to improve its robustness. 554

5 Conclusions 555

In this paper, we propose the K2C conversion task 556

and design PIANO to build the IME engine in an 557

end-to-end way. Compared with the cascaded IME 558

engine, PIANO can solve the error propagation 559

problem effectively and shows much more robust- 560

ness in the noisy input environment. Moreover, 561

our method of modeling user input behavior can 562

improve its robustness further. Lastly, the NAR 563

decoder adopted in PIANO can accelerate the infer- 564

ence speed greatly with little performance degrada- 565

tion. 566

6 Limitations and Future Works 567

In the future, we are going to deploy PIANO into 568

the commercial input software and improve the user 569

experiences. There are totally 1.6 billion Chinese 570

people who has to type in their words by the IME 571

software. According to the statistics from iFLY- 572

TEK input method (one of most popular Chinese 573

IME software), the total number of Chinese input 574

characters from its customers in one year exceeds 575

10.5 trillion 9. Thus our technique can make a huge 576

impact on the daily life of people. Not to mention 577

the people of other Asian countries, i.e. Japanese, 578

Thai, and so on. 579

9https://m.mydrivers.com/newsview/665433.html

8



References580

Lalit R. Bahl, Frederick Jelinek, and Robert L. Mercer.581
1983. A maximum likelihood approach to continuous582
speech recognition. IEEE Trans. Pattern Anal. Mach.583
Intell., 5(2):179–190.584

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic585
and natural noise both break neural machine transla-586
tion. In 6th International Conference on Learning587
Representations, ICLR 2018, Vancouver, BC, Canada,588
April 30 - May 3, 2018, Conference Track Proceed-589
ings. OpenReview.net.590

Qian Chen, Wen Wang, and Qinglin Zhang. 2021. Pre-591
training for spoken language understanding with joint592
textual and phonetic representation learning. In Inter-593
speech 2021, 22nd Annual Conference of the Inter-594
national Speech Communication Association, Brno,595
Czechia, 30 August - 3 September 2021, pages 1244–596
1248. ISCA.597

Qiao Cheng, Meiyuan Fang, Yaqian Han, Jin Huang,598
and Yitao Duan. 2019. Breaking the data barrier: To-599
wards robust speech translation via adversarial stabil-600
ity training. In Proceedings of the 16th International601
Conference on Spoken Language Translation, IWSLT602
2019, Hong Kong, November 2-3, 2019. Association603
for Computational Linguistics.604

Kyunghyun Cho, Bart van Merrienboer, Çaglar605
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-606
ger Schwenk, and Yoshua Bengio. 2014. Learning607
phrase representations using RNN encoder-decoder608
for statistical machine translation. In Proceedings of609
the 2014 Conference on Empirical Methods in Nat-610
ural Language Processing, EMNLP 2014, October611
25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a612
Special Interest Group of the ACL, pages 1724–1734.613
ACL.614

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing615
Yang, Shijin Wang, and Guoping Hu. 2019. Pre-616
training with whole word masking for chinese BERT.617
CoRR, abs/1906.08101.618

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and619
Kristina Toutanova. 2019. BERT: pre-training of620
deep bidirectional transformers for language under-621
standing. In Proceedings of the 2019 Conference of622
the North American Chapter of the Association for623
Computational Linguistics: Human Language Tech-624
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,625
June 2-7, 2019, Volume 1 (Long and Short Papers),626
pages 4171–4186. Association for Computational627
Linguistics.628

Jianfeng Gao, Joshua Goodman, Mingjing Li, and Kai-629
Fu Lee. 2002. Toward a unified approach to statistical630
language modeling for chinese. ACM Trans. Asian631
Lang. Inf. Process., 1(1):3–33.632

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and633
Luke Zettlemoyer. 2019. Mask-predict: Parallel634
decoding of conditional masked language models.635

In Proceedings of the 2019 Conference on Empiri- 636
cal Methods in Natural Language Processing and 637
the 9th International Joint Conference on Natural 638
Language Processing, EMNLP-IJCNLP 2019, Hong 639
Kong, China, November 3-7, 2019, pages 6111–6120. 640
Association for Computational Linguistics. 641

Joshua T. Goodman. 2001. A bit of progress in language 642
modeling. Comput. Speech Lang., 15(4):403–434. 643

Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. 644
Hinton. 2013. Speech recognition with deep recur- 645
rent neural networks. In IEEE International Con- 646
ference on Acoustics, Speech and Signal Processing, 647
ICASSP 2013, Vancouver, BC, Canada, May 26-31, 648
2013, pages 6645–6649. IEEE. 649

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O. K. 650
Li, and Richard Socher. 2018. Non-autoregressive 651
neural machine translation. In 6th International Con- 652
ference on Learning Representations, ICLR 2018, 653
Vancouver, BC, Canada, April 30 - May 3, 2018, 654
Conference Track Proceedings. OpenReview.net. 655

Jiatao Gu and Xiang Kong. 2021. Fully non- 656
autoregressive neural machine translation: Tricks of 657
the trade. In Findings of the Association for Com- 658
putational Linguistics: ACL/IJCNLP 2021, Online 659
Event, August 1-6, 2021, volume ACL/IJCNLP 2021 660
of Findings of ACL, pages 120–133. Association for 661
Computational Linguistics. 662

Yafang Huang, Zuchao Li, Zhuosheng Zhang, and Hai 663
Zhao. 2018. Moon IME: neural-based chinese pinyin 664
aided input method with customizable association. In 665
Proceedings of ACL 2018, Melbourne, Australia, July 666
15-20, 2018, System Demonstrations, pages 140–145. 667
Association for Computational Linguistics. 668

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao 669
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020. 670
Tinybert: Distilling BERT for natural language un- 671
derstanding. In Findings of the Association for Com- 672
putational Linguistics: EMNLP 2020, Online Event, 673
16-20 November 2020, volume EMNLP 2020 of Find- 674
ings of ACL, pages 4163–4174. Association for Com- 675
putational Linguistics. 676

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent 677
continuous translation models. In Proceedings of the 678
2013 Conference on Empirical Methods in Natural 679
Language Processing, EMNLP 2013, 18-21 October 680
2013, Grand Hyatt Seattle, Seattle, Washington, USA, 681
A meeting of SIGDAT, a Special Interest Group of the 682
ACL, pages 1700–1709. ACL. 683

Jason Lee, Elman Mansimov, and Kyunghyun Cho. 684
2018. Deterministic non-autoregressive neural se- 685
quence modeling by iterative refinement. In Proceed- 686
ings of the 2018 Conference on Empirical Methods 687
in Natural Language Processing, Brussels, Belgium, 688
October 31 - November 4, 2018, pages 1173–1182. 689
Association for Computational Linguistics. 690

9

https://doi.org/10.1109/TPAMI.1983.4767370
https://doi.org/10.1109/TPAMI.1983.4767370
https://doi.org/10.1109/TPAMI.1983.4767370
https://openreview.net/forum?id=BJ8vJebC-
https://openreview.net/forum?id=BJ8vJebC-
https://openreview.net/forum?id=BJ8vJebC-
https://openreview.net/forum?id=BJ8vJebC-
https://openreview.net/forum?id=BJ8vJebC-
https://doi.org/10.21437/Interspeech.2021-234
https://doi.org/10.21437/Interspeech.2021-234
https://doi.org/10.21437/Interspeech.2021-234
https://doi.org/10.21437/Interspeech.2021-234
https://doi.org/10.21437/Interspeech.2021-234
https://aclanthology.org/2019.iwslt-1.29
https://aclanthology.org/2019.iwslt-1.29
https://aclanthology.org/2019.iwslt-1.29
https://aclanthology.org/2019.iwslt-1.29
https://aclanthology.org/2019.iwslt-1.29
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
http://arxiv.org/abs/1906.08101
http://arxiv.org/abs/1906.08101
http://arxiv.org/abs/1906.08101
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1145/595576.595578
https://doi.org/10.1145/595576.595578
https://doi.org/10.1145/595576.595578
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.1006/csla.2001.0174
https://doi.org/10.1006/csla.2001.0174
https://doi.org/10.1006/csla.2001.0174
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1109/ICASSP.2013.6638947
https://openreview.net/forum?id=B1l8BtlCb
https://openreview.net/forum?id=B1l8BtlCb
https://openreview.net/forum?id=B1l8BtlCb
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/P18-4024
https://doi.org/10.18653/v1/P18-4024
https://doi.org/10.18653/v1/P18-4024
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://aclanthology.org/D13-1176/
https://aclanthology.org/D13-1176/
https://aclanthology.org/D13-1176/
https://doi.org/10.18653/v1/d18-1149
https://doi.org/10.18653/v1/d18-1149
https://doi.org/10.18653/v1/d18-1149


Mike Lewis, Yinhan Liu, Naman Goyal, Marjan691
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,692
Veselin Stoyanov, and Luke Zettlemoyer. 2020.693
BART: denoising sequence-to-sequence pre-training694
for natural language generation, translation, and com-695
prehension. In Proceedings of the 58th Annual Meet-696
ing of the Association for Computational Linguistics,697
ACL 2020, Online, July 5-10, 2020, pages 7871–7880.698
Association for Computational Linguistics.699

Xiang Li, Haiyang Xue, Wei Chen, Yang Liu, Yang700
Feng, and Qun Liu. 2018. Improving the robustness701
of speech translation. CoRR, abs/1811.00728.702

Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and703
Puneet Agarwal. 2015. Long short term memory net-704
works for anomaly detection in time series. In 23rd705
European Symposium on Artificial Neural Networks,706
ESANN 2015, Bruges, Belgium, April 22-24, 2015.707

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.708
2018. Don’t give me the details, just the summary!709
topic-aware convolutional neural networks for ex-710
treme summarization. In Proceedings of the 2018711
Conference on Empirical Methods in Natural Lan-712
guage Processing, Brussels, Belgium, October 31 -713
November 4, 2018, pages 1797–1807. Association714
for Computational Linguistics.715

Haotong Qin, Yifu Ding, Mingyuan Zhang, Qinghua716
Yan, Aishan Liu, Qingqing Dang, Ziwei Liu, and Xi-717
anglong Liu. 2022. Bibert: Accurate fully binarized718
BERT. CoRR, abs/2203.06390.719

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine720
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,721
Wei Li, and Peter J. Liu. 2019. Exploring the limits722
of transfer learning with a unified text-to-text trans-723
former. CoRR, abs/1910.10683.724

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and725
Percy Liang. 2016. Squad: 100, 000+ questions726
for machine comprehension of text. In Proceedings727
of the 2016 Conference on Empirical Methods in728
Natural Language Processing, EMNLP 2016, Austin,729
Texas, USA, November 1-4, 2016, pages 2383–2392.730
The Association for Computational Linguistics.731

Abhilasha Ravichander, Siddharth Dalmia, Maria732
Ryskina, Florian Metze, Eduard H. Hovy, and733
Alan W. Black. 2021. Noiseqa: Challenge set eval-734
uation for user-centric question answering. In Pro-735
ceedings of the 16th Conference of the European736
Chapter of the Association for Computational Lin-737
guistics: Main Volume, EACL 2021, Online, April 19738
- 23, 2021, pages 2976–2992. Association for Com-739
putational Linguistics.740

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-741
Yan Liu. 2019. MASS: masked sequence to sequence742
pre-training for language generation. In Proceedings743
of the 36th International Conference on Machine744
Learning, ICML 2019, 9-15 June 2019, Long Beach,745
California, USA, volume 97 of Proceedings of Ma-746
chine Learning Research, pages 5926–5936. PMLR.747

Yu Sun, Shuohuan Wang, Yu-Kun Li, Shikun Feng, Hao 748
Tian, Hua Wu, and Haifeng Wang. 2020. ERNIE 2.0: 749
A continual pre-training framework for language un- 750
derstanding. In The Thirty-Fourth AAAI Conference 751
on Artificial Intelligence, AAAI 2020, The Thirty- 752
Second Innovative Applications of Artificial Intelli- 753
gence Conference, IAAI 2020, The Tenth AAAI Sym- 754
posium on Educational Advances in Artificial Intel- 755
ligence, EAAI 2020, New York, NY, USA, February 756
7-12, 2020, pages 8968–8975. AAAI Press. 757

Zhiqing Sun, Zhuohan Li, Haoqing Wang, Di He, Zi Lin, 758
and Zhi-Hong Deng. 2019. Fast structured decod- 759
ing for sequence models. In Advances in Neural 760
Information Processing Systems 32: Annual Confer- 761
ence on Neural Information Processing Systems 2019, 762
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, 763
Canada, pages 3011–3020. 764

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 765
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 766
Kaiser, and Illia Polosukhin. 2017. Attention is all 767
you need. In Advances in Neural Information Pro- 768
cessing Systems 30: Annual Conference on Neural 769
Information Processing Systems 2017, December 4-9, 770
2017, Long Beach, CA, USA, pages 5998–6008. 771

Andrew J. Viterbi. 2006. A personal history of the 772
viterbi algorithm. IEEE Signal Process. Mag., 773
23(4):120–142. 774

Adina Williams, Nikita Nangia, and Samuel R. Bow- 775
man. 2018. A broad-coverage challenge corpus for 776
sentence understanding through inference. In Pro- 777
ceedings of the 2018 Conference of the North Amer- 778
ican Chapter of the Association for Computational 779
Linguistics: Human Language Technologies, NAACL- 780
HLT 2018, New Orleans, Louisiana, USA, June 1-6, 781
2018, Volume 1 (Long Papers), pages 1112–1122. 782
Association for Computational Linguistics. 783

Jinghui Xiao, Bingquan Liu, and Xiaolong Wang. 2007. 784
An empirical study of non-stationary ngram model 785
and its smoothing techniques. Int. J. Comput. Lin- 786
guistics Chin. Lang. Process., 12(2). 787

Jiali Yao, Raphael Shu, Xinjian Li, Katsutoshi Ohtsuki, 788
and Hideki Nakayama. 2018. Real-time neural-based 789
input method. CoRR, abs/1810.09309. 790

Ofir Zafrir, Ariel Larey, Guy Boudoukh, Haihao Shen, 791
and Moshe Wasserblat. 2021. Prune once for 792
all: Sparse pre-trained language models. CoRR, 793
abs/2111.05754. 794

Sen Zhang and Yves Laprie. 2003. Text-to-pinyin con- 795
version based on contextual knowledge and d-tree 796
for mandarin. In IEEE International Conference on 797
Natural Language Processing and Knowledge Engi- 798
neering, NLP-KE 2003, Beijing, China, 2003. 799

Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao 800
Chen, Xin Jiang, and Qun Liu. 2020. Ternarybert: 801
Distillation-aware ultra-low bit BERT. In Proceed- 802
ings of the 2020 Conference on Empirical Methods in 803

10

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://arxiv.org/abs/1811.00728
http://arxiv.org/abs/1811.00728
http://arxiv.org/abs/1811.00728
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2015-56.pdf
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2015-56.pdf
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2015-56.pdf
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.48550/arXiv.2203.06390
https://doi.org/10.48550/arXiv.2203.06390
https://doi.org/10.48550/arXiv.2203.06390
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/2021.eacl-main.259
https://doi.org/10.18653/v1/2021.eacl-main.259
https://doi.org/10.18653/v1/2021.eacl-main.259
http://proceedings.mlr.press/v97/song19d.html
http://proceedings.mlr.press/v97/song19d.html
http://proceedings.mlr.press/v97/song19d.html
https://ojs.aaai.org/index.php/AAAI/article/view/6428
https://ojs.aaai.org/index.php/AAAI/article/view/6428
https://ojs.aaai.org/index.php/AAAI/article/view/6428
https://ojs.aaai.org/index.php/AAAI/article/view/6428
https://ojs.aaai.org/index.php/AAAI/article/view/6428
https://proceedings.neurips.cc/paper/2019/hash/74563ba21a90da13dacf2a73e3ddefa7-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/74563ba21a90da13dacf2a73e3ddefa7-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/74563ba21a90da13dacf2a73e3ddefa7-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1109/MSP.2006.1657823
https://doi.org/10.1109/MSP.2006.1657823
https://doi.org/10.1109/MSP.2006.1657823
https://doi.org/10.18653/v1/n18-1101
https://doi.org/10.18653/v1/n18-1101
https://doi.org/10.18653/v1/n18-1101
http://www.aclclp.org.tw/clclp/v12n2/v12n2a2.pdf
http://www.aclclp.org.tw/clclp/v12n2/v12n2a2.pdf
http://www.aclclp.org.tw/clclp/v12n2/v12n2a2.pdf
http://arxiv.org/abs/1810.09309
http://arxiv.org/abs/1810.09309
http://arxiv.org/abs/1810.09309
http://arxiv.org/abs/2111.05754
http://arxiv.org/abs/2111.05754
http://arxiv.org/abs/2111.05754
https://hal.inria.fr/inria-00107717/document
https://hal.inria.fr/inria-00107717/document
https://hal.inria.fr/inria-00107717/document
https://hal.inria.fr/inria-00107717/document
https://hal.inria.fr/inria-00107717/document
https://doi.org/10.18653/v1/2020.emnlp-main.37
https://doi.org/10.18653/v1/2020.emnlp-main.37
https://doi.org/10.18653/v1/2020.emnlp-main.37


Natural Language Processing, EMNLP 2020, Online,804
November 16-20, 2020, pages 509–521. Association805
for Computational Linguistics.806

Zhuosheng Zhang, Yafang Huang, and Hai Zhao. 2019a.807
Open vocabulary learning for neural chinese pinyin808
IME. In Proceedings of the 57th Conference of809
the Association for Computational Linguistics, ACL810
2019, Florence, Italy, July 28- August 2, 2019, Vol-811
ume 1: Long Papers, pages 1584–1594. Association812
for Computational Linguistics.813

Zhuosheng Zhang, Zhen Meng, and Hai Zhao. 2019b.814
A smart sliding chinese pinyin input method editor815
on touchscreen.816

Changsheng Zhao, Ting Hua, Yilin Shen, Qian Lou,817
and Hongxia Jin. 2021. Automatic mixed-precision818
quantization search of BERT. In Proceedings of the819
Thirtieth International Joint Conference on Artificial820
Intelligence, IJCAI 2021, Virtual Event / Montreal,821
Canada, 19-27 August 2021, pages 3427–3433. ij-822
cai.org.823

11

https://doi.org/10.18653/v1/p19-1154
https://doi.org/10.18653/v1/p19-1154
https://doi.org/10.18653/v1/p19-1154
http://arxiv.org/abs/arXiv:1909.01063
http://arxiv.org/abs/arXiv:1909.01063
http://arxiv.org/abs/arXiv:1909.01063
https://doi.org/10.24963/ijcai.2021/472
https://doi.org/10.24963/ijcai.2021/472
https://doi.org/10.24963/ijcai.2021/472

