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Abstract

A Chinese Input Method Engine (IME) helps
user convert a keystroke sequence into the de-
sired Chinese character sequence. It is usu-
ally a cascaded process in which the origi-
nal input sequence is firstly corrected to re-
move typos, then segmented into the pinyin
token sequence, and finally converted into
a Chinese character sequence. Errors are
prone to accumulate and propagate in that
pipeline. This paper summarizes that process as
a Key-to-Character (K2C) conversion task and
solve it in a unified end-to-end way. We pro-
pose PIANO (Pinyin bldirectional non-Auto-
regressive nQise-robust Transformers) to solve
the error propagation problem effectively and
improve the IME engine performance signifi-
cantly in experiments. Moreover, we model the
user real input behaviors and design a method
to generate the massive training corpus with
typos for the K2C task. It further improves
the robustness of PIANO. Finally, we design a
non-autoregressive (NAR) decoder for PIANO
and obtain 9x+ acceleration with limited per-
formance degradation, which makes it possible
to deploy on the commercial input software.

1 Introduction

Some of languages, such as Chinese, Japanese and
Thai language, can not be input directly through the
standard keyboard. Users type in these languages
via some commercial input software, such as Mi-
crosoft Input Method (Gao et al., 2002), Google
Chinese Input Method!, Sogou Input Method?,
Baidu Input method?, Huawei Celia Keyboard*,
and so on. Pinyin is the official romanization rep-
resentation for Chinese language. It’s natural for a

lhttps ://www.google.com/inputtools/
https://pinyin.sogou.com/
*https://shurufa.baidu.com/
*nttps://consumer.huawei.
com/uk/community/details/
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Figure 1: A user Types in Chinese via Pinyin in IME. °

user to type in pinyin through the keyboard. And
the input software converts the pinyin into the char-
acter sequence. As Figure 1 shows, a user inputs
a keystroke sequence of “woainizongguo”, and
the software segments it into the pinyin sequence
“wo’ai’ni’zong’guo” then converts it into the Chi-
nese character sequence that user desires “F.Z /R
H[E (I love you China)”.

Specifically, as Figure 2 shows, the IME en-
gine takes it as a cascaded process. Firstly, the
correction module corrects the typos in the orig-
inal keystroke sequence. In the example of Fig-
ure 1, the blade-alveolar sound of ’zong’ is cor-
rected into the cacuminal sound of ’zhong’. It
is usually implemented by some rule system for
efficiency. Secondly, the modified keystroke se-
quence is segmented into the pinyin token sequence.
For example, “woainizhongguo” is segmented into
“wo’ai’ni’zhong’guo”. The tokenizer is usually im-
plemented by some Chinese word segmentation
algorithm, i.e. the Maximum Matching (MM) algo-
rithm. Lastly, the pinyin sequence is converted into
the character sequence, which is called the Pinyin
to Character (P2C) conversion task (Zhang et al.,
2019a; Yao et al., 2018; Xiao et al., 2007). It is
usually resolved as a sequence labeling task by the
Ngram language model (Goodman, 2001) together
with the Viterbi search algorithm (Viterbi, 2006).

In the above process, the error in the previous
step is prone to accumulate and propagate to the
later step, which hurts the IME engine performance
badly as presented in the later experiments. In this
paper, we summarizes those steps into a unified
end-to-end process named the Key-to-Character

App-Gallery-Celia-Keyboard-is—-now—-available/

topicId_48409/

5The screenshot is from Sogou Input Method software
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Figure 2: The Key to Character Conversion Task
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Figure 3: PIANO Model Architecture. In the input layer, £y and E; are the position embeddings; F,, and E,
are the input token embeddings. The decoder of PIANO adopts the bidirectional attentions. An additional length
predictor is added on the top of encoder to guide the generation process.

(K2C) conversion task and proposes PIANO to
solve it. As far as we know, it’s the first work to
build the IME engine in an end-to-end way. We
summarize the main contributions of this paper as
follows:

e We propose PIANO to solve the K2C task and
build the IME engine in an end-to-end way,
which effectively resolves the error propaga-
tion problem in the cascaded IME engine. As
far as we know, it’s the first end-to-end IME
engine.

e We model the user input behavior and design
a method to generate the massive corpus with
typos automatically for the K2C task, which
further improves the robustness of PIANO.

e We adopt the NAR decoder for PIANO and
boost the inference speed significantly with
only little performance degradation.

2 Method

In this section, we describe the details about PI-
ANO. Firstly, we introduce the K2C task formally
in Section 2.1. Then we present how the PIANO
is implemented in Section 2.2. Lastly, we describe
the method that models user input behavior and
generates the massive corpus with typos in Section
2.3.

2.1 The K2C Conversion Task

As illustrated in Figure 2, the K2C conversion
task is to convert the user keystroke sequence
from keyboard directly into the Chinese sentence.
Formally, k1, ks, ..., ky, is the keystroke sequence.
They are converted into the character sequence of
c1,C2, ...Cpy, in the K2C conversion task. Usually
the value of m is smaller than n since one Chinese
character corresponds to one pinyin token which
is composed of multiple letters. The task can be
resolved in a cascaded way as most of the commer-
cial input software does, or in an end-to-end way
by PIANO in this paper.

2.2 PIANO

We build PIANO based on the standard encoder-
decoder Transformer architecture (Vaswani et al.,
2017) like MASS (Song et al., 2019), T5 (Raftel
et al., 2019) and BART (Lewis et al., 2020). To fit
for the K2C task, we make some customizations
in several aspects, including the training paradigm
as described in Section 2.2.1, the embedding layer
as described in Section 2.2.2 and the NAR decoder
described in Section 2.2.3.

2.2.1 The Training Paradigm

Currently, most of the Transformer models adopt
the pretrain-then-finetune paradigm to solve the
NLP tasks (Song et al., 2019; Raffel et al., 2019;



Lewis et al., 2020). It firstly pre-trains the model
on the massive unlabeled corpus by some self-
supervised learning tasks, for example, reconstruct-
ing text from it noisy version by token masking,
token deleting, text infilling, sentence permutation
and so on. Then the model is fine-tuned on the
labelled corpus on the target task, such as SQuUAD
(Rajpurkar et al., 2016), MNLI (Williams et al.,
2018), XSum (Narayan et al., 2018), and so on. The
pre-train process leverages the general knowledge
contained in the unlabeled corpus which boosts
the performance significantly on the target tasks.
As described in Section 2.3 later, we design the
method to create the massive labelled corpus for
the K2C task automatically. Therefore, we train
PIANO directly on the target K2C task instead of
the pretrain-then-finetune paradigm.

2.2.2 The Embedding Layer

Some pre-trained language models (Devlin et al.,
2019; Cui et al., 2019; Sun et al., 2020) adopt seg-
ment embedding in its input layer so as to pre-train
on the sentence-level tasks. However, as Figure 3
shows, there is no segment embedding in PIANO
because there is no pretrain process in PIANO. Be-
sides, PIANO takes the keystroke sequence as input
rather than the subword sequence. There are only
26 individual letters which is three order of magni-
tude smaller than the number of subword (usually
more than 50,000) used by pre-trained language
model. Thus the size of embedding layer of PI-
ANO is much smaller. In summary, the parameter
number of PIANO is usually smaller than the pre-
trained language models of the same scale.

2.2.3 The NAR Decoder

The standard Transformer network adopts the au-
toregressive decoder which predicts the current to-
ken based on the previous one. The advantage
is to leverage the dependency between tokens in
sequence, whereas it’s pretty slow during the in-
ference, which hinders its deployment in the com-
mercial input software. The NAR decoder is firstly
proposed in the machine translation domain (Gu
et al., 2018). It makes the independent assumption
on the tokens of target sequence, which makes the
inference process parallel so that accelerates the
inference significantly. This paper adopts the NAR
decoder in PIANO.

As described in Figure 3, we firstly replace the
decoder of uni-directional attention in Transformer
with the decoder of bidirectional attention in PI-

ANO, which can leverage the parallel computation
in GPU. Secondly, we add a length predictor to
predict the length of target sequence so as to pro-
vide the additional information to guide the genera-
tion process. Specifically, we add a mean pooling
layer stacked with a regression layer on the top
of the encoder. Thirdly, we co-train the PIANO
model with two tasks: the cross-entropy (CE) loss
is adopted for the target sequence prediction task,
and the mean square error (MSE) loss is adopted
for the length prediction task. They are weighted
combined together, as shown in Formula 1.

10SSiptal = A * 10SSce + Ao % 10SSse )

During the inference, the tokens in the target se-
quence are generated parallel, and the target length
is predicted as well. The length is rounded off from
float to the integer value. Then the target sequence
is simply truncated by that length.

2.3 Generating Massive Labelled Corpus

We generate the massive labelled corpus for the
K2C task. The whole process is described in Figure
4.

Firstly, the text in Chinese corpus, i.e. the
sentence of “F & /X H [E (I love you China)”,
is converted into the pinyin token sequence, i.e.
“wo’ai’ni’zhong’guo”. This task is called Text-to-
Pinyin conversion which can achieve more than
99.9% accuracy (Zhang and Laprie, 2003). In this
way, we can get the massive pinyin corpus automat-
ically. Secondly, user does not type in any separator
to split the pinyin token explicitly during its input
process in reality, so we combine the pinyin tokens
in a sequence together into the keystroke sequence.
The “wo’ai’ni’zhong’guo” is then combined into
’woainizhongguo’. Thirdly, some kind of noise is
added into the keystroke sequence so as to simu-
late user’s typos. Finally we get the parallel corpus
with the Chinese character sequence as well as the
keystroke sequence with typos.

To add noise to the keystroke sequence, we se-
lect some positions randomly from the original
sequence. Then three operators are applied on the
letters of these positions with equal probability,
including ’Delete’, "Insert’ and Replace’. Some
probability distribution is required to guide the ’In-
sert’ and ’Replace’ operator, i.e. to insert which
letter before the current position. The uniform dis-
tribution is the most straightforward choice. How-
ever, it’s sub-optimal because it does not take the
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Figure 4: Prepare the Massive Labelled Corpus for the K2C Task. From the point cloud of top left, it shows the
scope and dense of user clicks for each button. Different color helps distinguish from each other.

consideration of the keyboard layout and the user’s
behavior in reality. For example, when user types
in the letter of ’z’ in *zong’, it is prone to mistype
it as ’x’ instead of ’p’ because the position of "x’
is much closer to ’z’ on the keyboard layout than
’p’ dose. Besides, the typos of one user are also
usually different from another user due to their dif-
ferent input habits. In this paper, we collect the
user type-in behaviors in reality ®. Some of them
are visualized as the points cloud shown at the top
left of Figure 4. Based on these data, we build
the Gaussian model for each key on the keyboard
layout, as Formula 2 shows below:

1 (z — p)?
. 27T€33p(—T) 2)

f(l';,U,,U) -

According to the Gaussian model, we can calcu-
late the probability that the current key is mis-typed
to any other key. And we finally generate the typo
noise according to that mis-type probability matrix,
as illustrated at the upper half part of Figure 4.

3 Experiment

3.1 Data Set Preparation

As far as we know, there is no public benchmark
for the Chinese Pinyin input method. So we build
our own data set and will make it public to the
community later. More than 2.6 million articles are
collected from Chinese news websites. We firstly
segment them into sentences by the punctuation list
including comma, period, and so on. Then we fil-
ter the character which can not be mapped into any
pinyin token, such as punctuation and English word.
Thirdly, these sentences are further segmented by
a max length (i.e. 16 in our experiment) because

SWe get these data under the users’ authorization.

Corpus #Articles #Chars #Disk
Train 2,603,869 2,432,585,138  9.7G
Test 1000 926,792 3.7M

Table 1: The Detailed Information of Corpus

user only types in a few Chinese characters at one
time. Lastly, we make them as the labelled corpus
as described in Section 2.3. Most of the corpus are
taken as the training corpus, and another one thou-
sand disjoint articles are taken as the test corpus,
as described in Table 1.

Besides, to evaluate the performance of the cas-
cade IME engine, we build several test corpus with
different degree of noise:

e No Typos and No Segment Errors. In the
first one, we assume that there is no typo from
user’s input and the pinyin tokenizer in Figure
2 works perfectly. It looks like “F Z /K #
(wo'ai'ni’zhong’guo)”. It is a total clean
environment and the only factor that matters
the IME performance is language model. It
can be taken as the upper bound of the IME
engine performance in reality. We get this
corpus by processing only the first step of
Figure 4.

e No Typos BUT Segment Errors. In the
second corpus, we assume that there is no
typo but the pinyin tokenizer works proba-
bly with errors. It looks like “3% Z /x #
(wo'a’in’i’zhong’guo)”. It is a possible situ-
ation if the user types in carefully and pre-
cisely. We can get it by re-segmenting the
combined keystroke sequence automatically
after the second step of Figure 4 by some real
tokenizer, i.e. the MM algorithm.



e Typos and Segment Errors. In the last
one, we assume both the typo and the seg-
menting error, which is the situation in the
real world. It might look like “F &/
(wo'a’in’i’zong’guo)”. We can get it by re-
segmenting the sequence containing noises
after the third (last) step of of Figure 4.

During evaluating, we apply language model
directly on these kinds of corpus to simulate the
performance of the cascaded IME engine in various
noisy environment.

3.2 Evaluation Metrics

We use the Character-based Error Rate (CER) to
evaluate the performance of the IME engine. It is
defined as the ratio that the IME engine converts to
the Chinese character incorrectly, as described in
Formula 3.

#incorrect_converted_char
Error_Ratechar based =

F#total_converted_char

3

And the lower CER is, the better the IME engine
performs.

3.3 Baseline Models and Experiment Settings

The cascaded IME engine is taken as the baseline
model, and is evaluated on the corpus with dif-
ferent degree of noise as described in Section 3.1.
Several kinds of language models are integrated
respectively into the cascaded IME engine:

e Bigram. Bigram is the De facto model
adopted widely in the commercial IME en-
gine. We build the Bigram model on the lexi-
con of the Table of General Standard Chinese
Characters ’ which contains more than 6 thou-
sand Chinese frequent characters. No pruning
strategy is adopted since the scale of training
corpus is large enough.

e LSTM. LSTM is reported that obtains better
performance than the Bigram model (Zhang
et al., 2019b; Yao et al., 2018; Malhotra et al.,
2015). In out implement of the LSTM model,
both the embedding size and the hidden size
are 256, and the learning rate is 5e~*. The
batch size is 2k and the epoch number is 10.

"nttps://en.wikipedia.org/wiki/Table_
of General_Standard_Chinese_Characters

e Transformer. We use the standard Trans-
former in the sequence-to-sequence way. The
pinyin token sequence is taken as input, and
the Chinese character sequence is taken as out-
put. It is trained from scratch directly on the
P2C task. We follow most of the specifica-
tions in the paper (Lewis et al., 2020), except
that the max sequence length is set to 16 in-
stead of 512. The epoch number is 10.

For the PTANO model, the keystroke sequence
is taken as input. It is trained directly on the K2C
task as described in Section 2.2.1, both on the clean
corpus and on the noisy corpus generated in Section
2.3. The experimental settings are exactly the same
as the standard Transformer baseline. In Formula
1, the value of \; is 1 and the value of A5 is 0.01.

3.4 Experimental Results on the K2C Task

The experimental results are presented in Table 2.
Two ratios of typo noises (1% and 5%) are added
into the test corpus.

Firstly, let’s take a quick look at the results un-
der the clean environment (no typo and no segment
error). The Bigram model obtains 15.44% CER
and the LSTM model gets a better result of 10.29%
(5.15% ) which is consistent to the conclusion
in the previous articles (Zhang et al., 2019b). The
standard Transformer model achieves 3.03% which
outperforms the above two models (12.41% | and
7.26% ) significantly. It proves that language
model plays a crucial role in the cascaded IME
engine and its capacity can improve the perfor-
mance greatly. Besides, we also present the perfor-
mance of the end-to-end approach. PIAN O, qniita
(5.52%) also outperforms Bigram and LSTM sig-
nificantly as Transformer does. However, it per-
forms a little bit worse than Transformer. It is be-
cause the K2C task contains the additional process
of keystroke sequence segmentation implicitly, and
it’s harder than the P2C task which the Transformer
model does.

Secondly, the performance of the cascaded IME
engine decreases badly in the noisy environment.
Taking the Bigram model as an example, the CER
increases from 15.44% to 20.70% (5.26% 7) un-
der the segment errors, and further to 33.13%
(17.69% 1) under the typo errors as well, and lastly
to 62.25% (46.81% 1) as the typo ratio increases.
The similar results can be observed in the LSTM
model and even in the powerful Transformer model.
It indicates that errors are accumulated and propa-
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Model Typo Error Segment Error CER  Error Reduction
Bigram no no 15.44% NA
Bigram no yes 20.70% 5.26%7"
Bigram 1% yes 33.13% 17.69%7*
Bigram 5% yes 62.25% 46.81%1
LSTM no no 10.29% 5.15%]
LSTM no yes 15.04% 4.75%1
LSTM 1% yes 33.13% 22.84%1
LSTM 5% yes 48.25% 37.96%71
Transformer no no 3.03% 12.41%.
Transformer no yes 6.95% 3.92%7"
Transformer 1% yes 16.27% 13.24%7
Transformer 5% yes 42.61% 39.58%1
PIANO Oygnitia no no 5.52% 9.92%.
PIANOyaniita 1% yes 12.40% 3.87%]
PIANOyaniiia 5% yes 34.86% 7.75%
PIANOyp; 1% yes 7.43% 8.84%.,
PIANOypi 5% yes 13.00% 29.61%.
PIANO 1% yes 5.14% 11.13%
PIANO 5% yes 7.51% 35.10%

Table 2: The Experimental Results on the K2C Task. PIAN Oy qniiiq is the PIANO model trained on the clean
corpus without any noise. PIANQO,,; is trained on the corpus with uniform noise. PIANO is trained on the
corpus with the noise generated by user model as described in Section 2.3.

gated in the cascaded IME system and degrade its
performance badly.

Thirdly, the performance of PI AN Oyqnilia also
decreases in the noisy environment. However, its
declining degree is smaller than the above models,
especially smaller than Transformer. For example,
the error rate of Transformer is 16.27% under the
condition of 1% typos and segment errors, whereas
PIANO,anine performs 12.40% which is much
smaller (3.87% |). Considering Transformer per-
forms better under the clean environment (3.03%)
than PIAN Oyanitia (5.52%), the performance de-
clining degree of PI AN Oyaniliq in the noisy en-
vironment is smaller further. It proves that the
end-to-end process makes PIANO perform more
robust than the cascaded models do.

Fourthly, PIANQO,,; and PIANQO perform
much better than Transformer as well as
PIAN Oyanitia in the noisy environment. For ex-
ample, under the condition of 1% typos and seg-
ment errors, PIANQO,,; gets 7.43% error rate
which is much lower than Transformer (16.27%,
8.84% |) and PIAN Oyunitia (12.40%, 4.97% 1).
The error reduction becomes larger as the ratio of
typos increases. It proves that the method generat-
ing massive corpus with noise described in Section

2.3 can make our model robust further.

Lastly, PIANO gets the lowest error rate. For
example, under the condition of 1% typos and seg-
ment errors, PIANO gets 5.14% error rate which
is lower than Transformer (16.27%, 11.13% ),
PIANOyanitia (12.40%, 6.96% |) and especially
lower than PIANO,,; (7.43%, 2.29% |). The
similar experimental results can be gotten as the
ratio of typos increases. It proves that the way we
models users’ input behavior described in Section
2.3 can help to generate high quality typos and
improve the robustness of PI AN O further.

3.5 Effectiveness of the NAR Decoder

In this section, we compare the performances of
PIANOs with the AR decoder and with the NAR
decoder. The error rate and the inference speed are
reported in Table 3.

Compared to PIANO 4R, the error rate of
PIANON s increases by 0.03% under the 1%
typo ratio, and further by 0.91% under the 5% typo
ratio. Considering the fact that the performance of
PIANO is already good enough (i.e. the precision
has exceeded 90%), that performance degradation
is very slightly. Here our conclusion on the K2C
task is somehow contrary to those in machine trans-



Model Typo Error Segment Error CER Reduction ms/token Speedup
PIANO R 1% yes 5.14% NA 15.66 NA
PIANO g 5% yes 7.51% NA 15.66 NA
PIANONAR 1% yes 517%  -0.03%71 1.60 9.78x7
PIANONAR 5% yes 842%  -0.91%1 1.73 9.30x1

Table 3: Comparison between Autoregressive PLANO and Non-autoregressive PIANO. PIANO 4 is the PIANO
with the autoregressive decoder as the standard Transformer does. PIANOp 4 is the PIANO with the non-
autoregressive decoder as described in Section 2.2.3

Model Typo Error Segment Error CER Error Reduction
PIANO_pp 1% yes 5.17% NA
PIANO_p 5% yes 8.42% NA
PIANO, Lp 1% yes 4.99% 0.18%
PIANO4Lp 5% yes 8.19% 0.23%.

Table 4: Effectiveness of Length Predictor. PIANO_pp is the PIANO model without length predictor.
PIANO/ p is the PIANO model with length predictor.

lation (Gu et al., 2018; Lee et al., 2018; Gu and
Kong, 2021). It’s because that the order of tokens
in the target sequence roughly corresponds to the
source sequence, which makes the task simpler.
Whereas, in machine translation, the token order
correspondence can not be guaranteed, and the cor-
rect translation heavily relies on the dependence
between tokens in the target sequence. The NAR
decoder makes the independent assumption which
makes it a much harder task.

However, the inference process is accelerated
greatly by PIANOpnRr. The time to infer per
token drops from 15.66ms to 1.60ms which is ac-
celerated by 9.78 times under the 1% typo ratio,
and drops from 16.09ms to 1.73ms which is ac-
celerated by 9.30 times under the 5% typo ratio. It
makes the deployment possible to the commercial
input method software.®

3.6 Ablation Study on the Length Predictor

In this section, we evaluate the effectiveness of the
length predictor in the NAR decoder of PIANO. We
compare the model performance with or without
the length predictor. The experimental results are
presented in Table 4.

PIANQO., 1 p achieves the lower error rates than

8The industry usually requires that the inference latency
less than one millisecond per token. As reported by the papers
of related techniques, such as distillation (Jiao et al., 2020),
quantization (Zhao et al., 2021; Zhang et al., 2020; Qin et al.,
2022) and pruning (Zafrir et al., 2021), PIANO can easily
meet that requirement after applying those techniques. More-
over, there is open tools such as (https://github.com/huawei-
noah/bolt) to help. It’s our future work to deploy it in the real
product.

PIANO_pp, which proves the effectiveness of
the length predictor module. However, the im-
provement of PIANO,p is not as significant
as in machine translation (Lee et al., 2018). It’s
because the K2C task is a simpler task than the ma-
chine translation task, and its baseline performance
is already high as described in Section 3.5.

4 Related Works

4.1 Input Method Engine

Language model predicts the current word prob-
ability by its previous words. It plays an essen-
tial role in the P2C task in the IME engine. The
dominant model is the Ngram model (Bahl et al.,
1983). However, its simplicity and low capacity
limits its performance. In recent years, RNN is
proposed to improve the performance by model-
ing longer history information (Kalchbrenner and
Blunsom, 2013). Variant network architectures are
proposed to solve the vanishing gradient problem
and the exploding gradient problem, such as LSTM
(Malhotra et al., 2015; Graves et al., 2013), GRU
(Cho et al., 2014), and so on. Yao et al. (2018)
replaces Ngram with LSTM in the IME engine and
get performance improvement both in the candi-
date prompt task and in the P2C task. It further
proposes an incremental selective softmax method
to solve the efficiency problem of LSTM in the
Viterbi algorithm. Zhang et al. (2019b) applies
LSTM in a sequence-to-sequence way in the P2C
task, and verify it in a smart sliding input method.
Zhang et al. (2019a) designs a novel online learn-



ing method that adapts the vocabulary to the P2C
task. Huang et al. (2018) takes the P2C task as a
language translation problem. The neural machine
translation model is adopted in which RNN is used
as encoder and a global attention model is used as
decoder.

4.2 Non-autoregressive Machine Translation

Usually the decoder in the neural machine transla-
tion system is the autoregressive one. Recently, the
non-autoregressive decoder is proposed to acceler-
ate the inference speed. Especially, there are two
kinds of non-autoregressive models. The first one
is fully non-autoregressive model which gener-
ates the target sequence simultaneously with single
forward of network, such as the vanilla NAT model
(Gu et al., 2018). The NAT-CRF model (Sun et al.,
2019) adds a CRF layer on the top of the NAT de-
coder so as to build the token dependency in the
target sequence. Gu and Kong (2021) makes a de-
tailed investigation on the aspects that take effective
on the NAT model. The second one is the iterative
refinement non-autoregressive models (Lee et al.,
2018) in which an additional decoder is adopted to
refine the generated target sequence in an iterative
way. CMLM (Ghazvininejad et al., 2019) makes
use of the Masked Language Model (MLM) task
to refine the generated result. A bert-like decoder
with bidirectional attentions is adopted, and at each
iteration it selects some tokens to mask and predict
them again. In this way, the un-masked tokens can
be taken as the contexts to improve the prediction
of the masked token.

4.3 Error Propagation Problem in Cascaded
Systems

There are a lot of articles discussing the perfor-
mance in the noisy environment and how to handle
the error propagation problem in the cascaded sys-
tem, including the QA system (Ravichander et al.,
2021), speech translation (Cheng et al., 2019; Be-
linkov and Bisk, 2018), spoken language under-
standing (Chen et al., 2021), machine translation
(Li et al., 2018) and so on. Usually, the noises
degrade the performances badly. The most natu-
ral way to solve the problem is to train the model
based on the corpus with noises. It firstly analysis
the source of noise, and then synthesize the sim-
ilar noise to inject into the training corpus. For
example, it exchanges words randomly in sequence
to synthesize the random noise; it uses a TTS sys-
tem pipelined with an ASR system to generate the

ASR noise; it introduces typos based on the prox-
imity of the keys in a QWERTY keyboard layout
(Ravichander et al., 2021). PIANO takes the simi-
lar way. However, different from the above works,
we model users’ real behaviors on keyboard and
generate high quality typos which improves the
performance further as presented in Section 3.4.

Besides data augmentation, some works designs
specific network architecture and training process.
Belinkov and Bisk (2018) designs the structure-
invariant word representation to increase model ro-
bustness. Cheng et al. (2019) adopts the adversarial
learning to address encoder and decoder simulta-
neously in its training process of speech transla-
tion system. Chen et al. (2021) utilizes the pho-
netic information and designs a joint text-phonetic
pre-training tasks to improve the robustness of the
end-to-end spoken language understanding system.
Similar to the above works, PIANO combines each
component of pipeline system into a unified K2C
task and train the model in an end-to-end way so
as to improve its robustness.

5 Conclusions

In this paper, we propose the K2C conversion task
and design PIANO to build the IME engine in an
end-to-end way. Compared with the cascaded IME
engine, PIANO can solve the error propagation
problem effectively and shows much more robust-
ness in the noisy input environment. Moreover,
our method of modeling user input behavior can
improve its robustness further. Lastly, the NAR
decoder adopted in PIANO can accelerate the infer-
ence speed greatly with little performance degrada-
tion.

6 Limitations and Future Works

In the future, we are going to deploy PIANO into
the commercial input software and improve the user
experiences. There are totally 1.6 billion Chinese
people who has to type in their words by the IME
software. According to the statistics from iFLY-
TEK input method (one of most popular Chinese
IME software), the total number of Chinese input
characters from its customers in one year exceeds
10.5 trillion °. Thus our technique can make a huge
impact on the daily life of people. Not to mention
the people of other Asian countries, i.e. Japanese,
Thai, and so on.

*https://m.mydrivers.com/newsview/665433.html
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