
A Probabilistic Representation for Deep Learning:
Delving into The Information Bottleneck Principle

Anonymous Author(s)
Affiliation
Address
email

Abstract

The Information Bottleneck (IB) principle has recently attracted great attention to1

explaining Deep Neural Networks (DNNs), and the key is to accurately estimate the2

mutual information between a hidden layer and dataset. However, some unsettled3

limitations weaken the validity of the IB explanation for DNNs. To address these4

limitations and fully explain deep learning in an information theoretic fashion, we5

propose a probabilistic representation for deep learning that allows the framework6

to estimate the mutual information, more accurately than existing non-parametric7

models, and also quantify how the components of a hidden layer affect the mutual8

information. Leveraging the probabilistic representation, we take into account the9

back-propagation training and derive two novel Markov chains to characterize the10

information flow in DNNs. We show that different hidden layers achieve different11

IB trade-offs depending on the architecture and the position of the layers in DNNs,12

whereas a DNN satisfies the IB principle no matter the architecture of the DNN.13

1 Introduction14

Deep learning [18] has already achieved great success in numerous applications. Deep Neural15

Networks (DNNs), however, are still commonly viewed as ‘black boxes’ [27]. Considerable efforts16

have been devoted to explaining the internal mechanism of DNNs from various perspectives, such as17

mathematics [5, 12], statistics [14, 20, 23], computer vision [37, 21], etc. Recently, the Information18

Bottleneck (IB) principle has attracted attention in opening the ‘black boxes’ of DNNs [30, 33].19

Given a joint distribution P (X,Y ), the IB principle posits a random variable T = f(X) obeying the20

Markov chain Y → X → T and optimizes T by the IB Lagrangian [32, 31]21

min
P (T |X)

I(X;T )− βI(Y ;T ), (1)

where f(·) is an arbitrary function, I(·; ·) denotes mutual information, and the Lagrange multiplier22

β > 0 controls the IB trade-off between compressing the input X and preserving the information23

of the label Y . In the seminal work [30], Tishby et al. manifest the IB trade-off in every layer of24

DNNs = {x; t1; · · · ; tI ; ŷ} via studying I(X;Ti) and I(Y ;Ti), where Ti is the random variable of25

the ith hidden layer ti. Especially, the authors ascribe DNN generalization to the compression [29].26

In the context of deterministic DNNs, recent works reveal some limitations of the IB principle for27

explaining DNNs. Amjad et al. argue that the IB principle becomes an ill-posed optimization problem28

due to I(X;Ti) =∞ [1], and Kolchinsky et al. demonstrate that not every layer of DNNs satisfies a29

strict IB trade-off, i.e., different layers only differ in I(X;Ti) but I(Y ;Ti) keeps consistent in all30

layers [15]. In addition, Saxe et al. experimentally show that the compression does not occur in31

DNNs with non-saturating activation functions, e.g., the popular ReLU function [28], and Goldfeld32

et al. doubt the causality between the generalization of DNNs and the compression [10, 7]. These33

unsettled limitations greatly weakens the validity of the IB explanations for DNNs.34
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The key to examining the IB principle in DNNs is the accurate estimation of the mutual information.35

However, regarding DNNs as deterministic models hinders us from specifying the random variable36

Ti and the distribution P (Ti), thus it is difficult to accurately estimate I(X;Ti) and I(Y ;Ti). More37

specifically, in the absence of a clear definition of Ti, simply assuming the activations of ti as the i.i.d.38

samples of Ti induces Ti being a continuous random variable and I(X;Ti) = ∞ in deterministic39

DNNs (see Appendix C in [28]). The complicated architecture of DNNs makes it challenging to40

specify P (Ti). Therefore, most previous works have to indirectly estimate P (Ti) via non-parametric41

models [35], such as the empirical distribution [30], Kernel Density Estimation (KDE) [28], and42

Gaussian convolution [10]. However, we experimentally confirm that classical non-parametric models43

derives poor mutual information estimation [24, 22] in DNNs, and one reason is because activations44

do not satisfy the i.i.d. prerequisite of non-parametric models (see Appendix G). In summary, the45

limitations mainly stem from the lack of an explicit probabilistic representation for deep learning.46

The IB principle only formulates the information flow in DNNs = {x, t1, · · · , tI , ŷ} after training,47

and the corresponding Markov chain (see Fig. 1 in [30])48

Y → X → T1 · · · → TI → Ŷ (2)

indicates that the information of Y transfers to Ti in the forward direction and Ti receives the49

information of Y only via X . However, training DNNs by the back-propagation [25] implies that the50

information of Y transfers to Ti in the backward direction during training and retains information51

in Ti after training. Notably, Zhang et al. show that a DNN can fit labels well even using Gaussian52

noise as input to train the DNN [38], which implies that Ti can directly receive the information of Y .53

Hence, the IB principle does not comprehensively characterize the information flow in DNNs.54

To address the above limitations and comprehensively explain DNNs in an information theoretic55

fashion, we introduce the probability space (ΩTi
,F , PTi

) [6] for the ith hidden layer ti in DNNs.56

Compared to previous works, the probability space (ΩTi
,F , PTi

) enables us to: (i) accurately estimate57

I(X;Ti) and I(Y ;Ti) via specifying Ti and P (Ti), and (ii) quantify the effect of the architecture of58

ti and the back-propagation on I(X;Ti) and I(Y ;Ti) via explicitly modeling all the ingredients of ti,59

such as the activation function and the weights in a probabilistic way. To the best of our knowledge,60

this is the first time the probability space of a hidden layer in DNNs is as defined.61

Leveraging (ΩTi
,F , PTi

), we derive information theoretic explanations for DNNs as follows:62

• Two Markov chains1 characterize the information flow in DNNs = {x, t1, · · · , tI , ŷ}63

X̄ →T1 → · · · → TI → Ŷ

T1 ← · · · ← TI ← Ŷ ← Y.
(3)

• Different hidden layers manifest different IB trade-offs depending on the architecture and64

the position of hidden layers in DNNs.65

• A DNN satisfies the IB principle no matter the architecture of the DNN.66

Preliminaries. P (X,Y ) = P (X)P (Y |X) is an unknown joint distribution between X and Y . A67

dataset D = {(xj , yj)|xj ∈ RM , yj ∈ Z}Jj=1 consists of J i.i.d. samples generated from P (X,Y )68

with finite L labels, i.e., yj ∈ {1, · · · , L}. In the context of supervised learning, we focus on69

feedfworad fully connected DNNs = {x, t1, · · · , tI , ŷ}, i.e., Multi-Layer Perceptions (MLPs) [8]70

for the image classification task. Without loss of generality, we use the MLP = {x, t1, t2, ŷ} with71

the cross-entropy loss `CE for most theoretical derivations. In addition, H(·) denotes entropy.72

In the MLP, t1 and t2 have N and K neurons, respectively, and t1 = {t1n = σ1[〈ω(1)
n ,x〉]}Nn=1,73

where 〈ω(1)
n ,x〉 =

∑M
m=1 ω

(1)
mn · xm + b1n is the nth dot-product given the weight ω(1)

mn and the bias74

b1n, and σ1(·) denotes an activation function, e.g., ReLU. Similarly, t2 = {t2k = σ2[〈ω(2)
k , t1〉]}Kk=1,75

where 〈ω(2)
k , t1〉 =

∑N
n=1 ω

(2)
nk · t1n + b2k. The output layer ŷ is softmax with L nodes76

ŷ = {ŷl =
1

ZY
exp[〈ω(3)

l , t2〉] =
1

ZY
exp[gl(t2(t1(x)))]}Ll=1, (4)

where 〈ω(3)
l , t2〉 =

∑K
k=1 ω

(3)
kl · t2k + byl and ZY =

∑L
l=1 exp[〈ω(3)

l , t2〉] is the partition function.77

1In which the virtual random variable X̄ has all the information of X except Y , namely H(X̄) = H(X|Y ).
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Figure 1: Given a 4×4 input z, a fully connected layer t is equivalent to a convolution layer with 4×4
convolution kernels. The definition of convolution (Chapter 9.1 in [11]) implies that the 4×4 weights
ω1 and ω2 define two global features, and the two activations t1, t2 indicate the cross-correlation
between ω1,ω2 and z, respectively. PT |Z(ω1|z) and PT |Z(ω2|z) measure the probability of ω1

and ω2 being recognized as the feature with the largest cross-correlation to z, respectively.

2 A probabilistic representation for deep learning78

To accurately estimate I(X;Ti) and I(Y ;Ti), in this section, we specify the probability space [6] for79

a fully connected layer and derive the probabilistic explanations of the entire MLP.80

It is known that a convolution kernel (namely the weights of convolution) defines a local feature,81

and a convolution operation derives a feature map to measure the cross-correlation between the82

local feature and input in a receptive field (Chapter 9.1 in [11]). Notably, a fully connected layer83

is equivalent to a convolution layer with the kernel size having the same dimension as input. Thus84

the weights of a neuron can be viewed as a global feature, and a fully connected layer with multiple85

neurons derives activations to measure the cross-correlation between the multiple global features and86

the input. The cross-correlation explanation for a fully connected layer is visualized in Figure 1.87

Assuming that a fully connected layer t consists ofN neurons {tn = σ[〈ωn, z〉]}Nn=1, where z ∈ RM88

is the input of t, 〈ωn, z〉 =
∑M

m=1 ωmn · zm + bn is the dot-product between z and ωn, and σ(·) is89

an activation function. Based on the cross-correlation explanation, the behavior of t is to measure90

the cross-correlations between z and the N possible features defined by the the weights {ωn}Nn=1.91

In the context of pattern recognition [34], we define a virtual random process or ‘experiment’ as t92

recognizing one of the patterns/features with the largest cross-correlation to z from the N possible93

features. The experiment characterizes the behavior of t (i.e., before recognizing the features with94

the largest cross-correlation, t must measure the cross-correlations between z and all the N possible95

features) while meets the requirement of the ‘experiment’ definition (i.e., only one outcome will96

occur on each trial of the experiment [6]). The probability space (ΩT ,F , PT ) is defined as follows:97

Definition 1. (ΩT ,F , PT ) consists of three components: the sample space ΩT has N possible98

outcomes (features) {ωn = {ωmn}Mm=1}Nn=1 defined by the weights2 of the N neurons; the event99

space F is the σ-algebra; and the probability measure PT is a Gibbs distribution [19] to quantify the100

probability of ωn being recognized as the feature with the largest cross-correlation to z.101

Taking into account the randomness of z, the conditional distribution PT |Z is formulated as102

PT |Z(ωn|z) =
1

ZT
exp(tn) =

1

ZT
exp[σ(〈ωn, z〉)], (5)

where Z is the random variable of z and ZT =
∑N

n=1 exp(fn) is the partition function.103

(ΩT ,F , PT ) clearly explains all the ingredients of t in a probabilistic fashion. The nth neuron104

defines a global feature by the weights wn and the activation tn = σ(〈ωn, z〉) measures the cross-105

correlation between wn and z. The Gibbs distribution PT |Z indicates that if wn has the higher106

activation, i.e., the larger cross-correlation to z, it has the larger probability being recognized as107

the feature with largest cross-correlation to z. For instance, if z ∈ R16 and t includes N = 2108

neurons, then ΩT = {ω1,ω2} defines two possible outcomes (features), where ωn = {ωmn}16m=1.109

F = {∅, {ω1}, {ω2}, {ω1,ω2}} means that neither, one, or both of the features are recognized110

by t given z, respectively. PT |Z(ω1|z) and PT |Z(ω2|z) are the probability of ω1 and ω2 being111

recognized as the feature with the largest cross-correlation to z, respectively.112

2We do not take into account the scalar value bn for defining ΩT , as it not affects the feature defined by ωn.
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(ΩT ,F , PT ) explains the representation ability of deep learning. Compared to Restricted Boltzmann113

Machines (RBMs) [26] simply using binary units to indicate features being recognized or not given114

input, the Gibbs distribution3 PT |Z(ωn|z) measures the probability of ωn being recognized with115

the largest cross-correlation to z, i.e., it characterizes the relation between features and input more116

accurately. Moreover, Equation 5 shows that tn = σ(〈ωn, z〉) is the negative energy function [19] of117

the Gibbs distribution, thus PT |Z(ωn|z) can be derived as long as σ(〈ωn, z〉) are known because118

the energy function is the sufficient statistics [2] of the Gibbs distribution. That enables subsequent119

hidden layers to generate high-level features of input via directly processing the activations {tn}Nn=1,120

thus deep learning can form a hierarchical structure to represent much complex features.121

(ΩT ,F , PT ) answers a fundamental question: which component of a hidden layer contains the122

information of the layer? Since ωn defines ΩT , the weights contain all the information of a layer. In123

particular, since the activation tn = σ(〈ωn, z〉) is a function of ωn, the data processing inequality124

[4] indicates that the information of tn is no more than the information of ωn. Simulations in Section125

4.2 demonstrate that if activations do not correctly characterize the cross-correlation between weights126

and input, activations contain less information than weights do.127

Based on (ΩT ,F , PT ), we define the random variable T as follows:128

Definition 2. Given the fully connected layer t, we define the random variable T : ΩT → ET as129

T (ωn) , n, (6)

where the measurable space ET = {1, · · · , N}.130

Since ΩT is composed of finite N possible outcomes, T is a discrete random variable. Notably, the131

one-to-one correspondence between ωn and n indicates132

PT |Z(ωn|z) = PT |Z(n|z). (7)

If not considering the back-propagation training, the weights (namely ΩTi) of each layer are fixed.133

Thus Ti+1 entirely depends on Ti and the MLP = {x; t1; t2; ŷ} forms a Markov chain134

X → T1 → T2 → Ŷ . (8)

Based on the corresponding joint distribution P (Ŷ , T2, T1|X) = P (T1|X)P (T2|T1)P (Ŷ |T2) and135

Definition 2, we derive a probabilistic explanation for the entire MLP, which is summarized in136

Theorem 1. The detailed derivation is presented in Appendix B.137

Theorem 1. The MLP = {x; t1; t2; ŷ} formulates a conditional Gibbs distribution138

PŶ |X(l|x) =

K∑
k=1

N∑
n=1

P (Ŷ = l, T2 = k, T1 = n|X = x) =
1

ZMLP(x)
exp[gl(t2(t1(x)))], (9)

where ZMLP(x) =
∑L

l=1

∑K
k=1

∑N
n=1 PŶ ,T2,T1|X(l, k, n|x) is the partition function.139

Since PŶ |X(l|x) exactly equals the output ŷl of the MLP, namely Equation (4), we conclude that140

the entire architecture of the MLP forms a family of Gibbs distribution PŶ |X(l|x). In general, the141

back-propagation updates a weight ω based on the gradient of `CE with respect to ω,142

ω(s+ 1) = ω(s)− α · ∂`CE

∂ω(s)
= ω(s)− α · ∂KL[P (Y |X)||P (Ŷ |X)]

∂ω(s)
, (10)

where s is the index of training iteration, α is the training rate, and KL[·||·] is the KL-divergence.143

Figure 2 summarizes the probabilistic explanation for deep learning based on the MLP. In general,144

a single learning iteration, an epoch, consists of two phases: training and inference (after training).145

During inference, the MLP bridges X and Ŷ via multiple intermediate features ΩT1
, ΩT2

, and ΩŶ146

defined by weights, and formulates the statistical relation between Ŷ and X as a family of conditional147

Gibbs distribution P (Ŷ |X). During training, the back-propagation updates weights to learn optimal148

intermediate features for searching an optimal P (Ŷ |X) to accurately approximate P (Y |X).149

3Recent works about Gibbs explanations for a hidden layer are discussed in Appendix A.
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Figure 2: The visualization of the probabilistic explanation for deep learning based on the MLP.

3 The information theoretic explanations for deep learning150

To address the limitations of existing IB explanations, this section proposes some novel information151

theoretic explanations for DNNs based on the proposed probabilistic representation.152

Proposition 1. The mutual information between a fully connected layer and dataset is finite.153

I(X;T ) <∞. (11)

Proof: Definition 2 shows ET = {1, · · ·N}. Thus T is a discrete random variable and H(T ) <∞,154

thereby I(X;T ) ≤ H(T ) <∞.155

Proposition 1 circumvents the infinite mutual information problem. In the absence of a clear definition156

T : ΩT → ET , most previous works [28, 3, 1] simply viewing the activation tn as the sample of T ,157

namely tn ∈ ET = R, implies T being continuous and gives rise to the infinite mutual information158

problem in deterministic DNNs. However, (ΩT ,F , PT ) indicates that tn actually is a variable159

measuring the cross-correlation between wn and z rather than the sample of T , namely tn /∈ ET .160

Theorem 2. The information of Y flows into the MLP in the backward direction during training161

T1 ← T2 ← Ŷ ← Y. (12)

Proof: First, since ΩT is defined by ω in (ΩT ,F , PT ) and Equation (10) shows that ω(s + 1) is162

determined by all the previous gradients { ∂`CE
∂ω(s)}

S
s=1, and ω(0) is randomly initialized and α is a163

constant, we can derive that ΩT is determined by ∂`CE
∂ω . Second, based on the back-propagation, the164

relation between gradients in two adjacent layers in the MLP = {x; t1; t2; ŷ} is formulated as165

∂`?CE

∂ω
(3)
kl

= [PŶ |X(l|x)−PY |X(l|x)] · t2k,

∂`�CE

∂ω
(2)
nk

=

L∑
l=1

∂`?CE

∂ω
(3)
kl

· ω(3)
kl ·

σ′2(〈ω(2)
k , t1〉)
f2k

· t1n,
∂`�CE

∂ω
(1)
mn

=

K∑
k=1

∂`�CE

∂ω
(2)
nk

· ω(2)
nk ·

σ′1(〈ω(1)
n ,x〉)
t1n

· xm.

(13)

Equation 13 shows that ∂`CE
∂ω(3) is a function of PY |X(l|x) and ∂`CE

∂ω(i) is a function of ∂`CE
∂ω(i+1) , where166

ω(3) denotes the weight of ŷ. The two points above enable us to derive that ΩTi is a function of ΩTi+1167

and ΩŶ is a function of P (Y |X). Based on Definition 2, we can further derive that Ti is a function168

of Ti+1 and Ŷ is a function of Y , i.e., T1 ← T2 ← Ŷ ← Y . (See the detailed proof in Appendix C).169

Theorem 2 is consistent with the prevailing explanation for deep learning. LeCunn et al. show that170

deep learning exploits the hierarchical property of signals [18], i.e., the layers farther from output171

learn lower-level features, such as edges, whereas the layers closer to output assemble lower-level172

features into the higher-level features corresponding to labels (see Figure 2 in [37]). Notably, since173

lower-level features commonly exist in signals with different labels (e.g., lower-level features, such174

as the edges of the vehicle frame and the circular contour of wheels, exist in both the car and the175

truck classes in the CIFAR-10 dataset [16] in Figure 2), lower-level features do not contain much176

information of labels. Therefore, the layers farther from output do not have much information of177

labels, which is consistent with the Markov chain T1 ← T2 ← Ŷ ← Y .178
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Since all the information of Y stems from X (i.e., H(Y ) = I(X;Y ) proven in Appendix D),179

Theorem 2 implies that partial information of X flows into the MLP in the backward direction during180

training. Equation (2) shows the information of X flowing into the MLP in the forward direction181

during inference. Overall, the information of X flows in the backward and forward directions during182

training and inference, respectively. As a result, the Markov chain, Equation (2), proposed by recent183

works could not fully characterize the information flow of X in the MLP in each epoch. In other184

words, I(X;Ti) is not necessarily greater than I(X;Ti+1) in the MLP in each epoch.185

Equation (2) shows that Ti receives the information of Y via X during inference. Theorem 2 shows186

that Ti also directly receives information of Y during training, because the back-propagation updates187

weights (i.e., ΩTi
) based on the label Y . Thus Equation (2) cannot fully characterize the information188

flow of Y in the MLP in each epoch, when we take into account the back-propagation training.189

To fully characterize the information flow in the MLP in each epoch, we introduce Corollary 1.190

Corollary 1. The information flow in the MLP can be characterized by two Markov chains as191

X̄ →T1 → T2 → Ŷ

T1 ← T2 ← Ŷ ← Y.
(14)

The virtual random variable X̄ contains all the information of X except Y , i.e., H(X̄) = H(X|Y ).192

Proof of the first Markov chain: Since X̄ does not have any information of Y , it can only flow into193

the MLP in the forward direction during inference. Again since X̄ does not have any information of194

Y , the information flow of Y during training will not affect the information flow of X̄ . Therefore,195

X̄ → T1 → T2 → Ŷ characterizes the information flow of X̄ in both training and inference phases.196

Proof of the second Markov chain: Since the weights are fixed after training, the sample space and197

the distribution of hidden layers are fixed after training. Therefore, the information of Y transferred198

into hidden layers during training will retain there after training (i.e., during inference). In addition,199

Definition 1 indicates that a fully connected layer t = {tn = σ(〈ωn, z〉)}Nn=1 measures the cross-200

correlation between ω
(1)
n and z during inference, thus {ω(1)

n }Nn=1 can be viewed as a representation201

of Z. As a result, even though Z has all the information of Y , the information of Y that t can learn202

from Z is determined by how much information of Y the representation {ω(1)
n }Nn=1 has. Overall, the203

information flow of Y during inference will be the same as that during training. Based on Theorem 2,204

we conclude that T1 ← T2 ← Ŷ ← Y characterizes the information flow of Y in the MLP in both205

training and inference phases. Detailed derivations and explanations are presented in Appendix E.206

To quantify how much information of X and Y is learned by the MLP, we introduce Corollary 2.207

Corollary 2. The mutual information between dataset and the entire MLP can be expressed as208

I(X;TMLP) = I(X̄;T1) + I(Y ; Ŷ )

I(Y ;TMLP) = I(Y ; Ŷ )
(15)

where TMLP denotes a random variable corresponding to the entire architecture of the MLP.209

Proof: Since H(Y ) = I(X;Y ) (Appendix D), H(X) = H(X̄) + I(X;Y ) = H(X̄) + H(Y ).210

Hence, Corollary 2 can be derived by Corollary 1 and the chain rule. The proof is in Appendix F.211

4 Simulations212

In this section, we propose a mutual information estimator based on (ΩT ,F , PT ) and demonstrate the213

probabilistic representation and information theoretic explanations for deep learning on a synthetic214

dataset with known entropy. Additional experiments on benchmark datasets are in Appendix H.215

4.1 Setup216

Mutual information estimator. Based on the definition of mutual information, we have217

I(X;Ti) = H(Ti)−H(Ti|X). (16)

Previous works simply estimate I(X;Ti) = H(Ti), because Ti is assumed to be entirely dependent218

on X in the Markov chain, Equation (2), thereby H(Ti|X) = 0. However, Corollary 1 shows that Ti219

depends on both X and Y if taking into account the training phase, thereby H(Ti|X) 6= 0.220
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Figure 3: (A) the deterministic image x̂. Image0 is generated by addingN (µ, σ2) without rotation, Image1 is
generated by rotating x̂ along the secondary diagonal direction and addingN (µ, σ2), Image2 and Image are
generated by rotating x̂ along the vertical and horizontal directions, respectively, and addingN (µ, σ2).

Table 1: The number of neurons(nodes) and the activation function in the layers of the MLPs

x t1 t2 ŷ σ(·)
MLP1 1024 (32× 32) 8 6 2 ReLU(z) = max(0, z)
MLP2 1024 (32× 32) 8 6 2 Tanh(z) = (ez − e−z)/(ez + e−z)
MLP3 1024 (32× 32) 2 6 2 ReLU

To accurately estimate I(X;Ti), we need to specify P (Ti|X) and P (Ti). Based on (ΩTi ,F , PTi),221

we formulate PTi|X(n|xj) of the three fully connected layers in the MLP as222

PT1|X(n|xj) = 1
ZF1

exp[σ1(〈ω(1)
n ,xj〉)], PT2|X(k|xj) = 1

ZF2
exp[σ2(〈ω(2)

k , t1(xj)〉)],

PTY |X(l|xj) = 1
ZFY

exp[〈ω(3)
l , t2(t1(xj))〉].

(17)

To derive the marginal distribution P (Ti), we sum the joint distribution P (Ti, X) over x ∈ X ,223

P (Ti = n) =
∑

x∈X PX(x)PTi|X(n|x) ≈
∑

xj∈D PX(xj)PTi|X(n|xj) = 1
J

∑
xj∈D PTi|X(n|xj),

(18)

where PX(xj) is estimated by the empirical distribution 1/J givenD. Finally, we can derive I(X;Ti)224

by Equation 16, 17, and 18. Similarly, based on the definition of mutual information, we have225

I(Y ;Ti) = H(Ti)−H(Ti|Y ). (19)

To estimate H(Ti|Y ), we reformulate P (Ti|Y ) as226

PTi|Y (n|l) =
∑

x∈X PTi|X(n|x)PX|Y (x|l) ≈ 1
N(l)

∑
xj∈D,yj=l PTi|X(n|xj), (20)

where PX|Y (xj |l) is estimated by the empirical distribution 1/N(l) and N(l) denotes the number of227

samples with the label l in D. Finally, we can derive I(Y ;Ti) by Equation 18, 19, and 20.228

Synthetic dataset. The dataset consists of 512 gray-scale 32×32 images, which are evenly generated229

by rotating a deterministic image x̂ in four different orientations and adding Gaussian noise with230

expectation µ = E(x̂) and variance σ2 = 1, namely x = r(x̂) + N (µ, σ2), where r(·) denotes231

the rotation method shown in Figure 3. The reason for adding Gaussian noise is to avoid DNNs232

directly memorizing the deterministic image. In addition, the binary labels [1,0] and [0,1] evenly233

divide the synthetic dataset into two classes. As a result, the synthetic dataset has (approximately)234

2 bits information and the labels have 1 bit information. Compared to popular benchmark dataset235

with unknown features and entropy, e.g., MNIST [17] and Fashion-MNIST [36], the features and the236

entropy of the synthetic dataset are clear and known, which enables us to examine the probabilistic237

representation and the mutual information estimator.238

Neural Networks. We train three MLPs, namely MLP1, MLP2 and MLP3, on the synthetic dataset239

by a variant of Stochastic Gradient Descent (SGD) method, namely Adam [13], over 1000 epochs240

with the learning rate α = 0.03. Table 1 summarizes the architecture of the three MLPs.241

4.2 Validating the probability space and the mutual information estimator242

We demonstrate the sample space ΩT by visualizing the weights4 of the eight neurons in t1, i.e.,243

ω
(1)
n = {ω(1)

mn}1024m=1, in 5 different epochs (i.e., 0,1,4,128,1000) in Figure 4 (Left). As training244

continues, we observe that ω(1)
n quickly learns all the spatial features of the synthetic dataset. For245

instance, ω(1)
2 has low magnitude at top-left positions and high magnitude at bottom-right positions,246

which correctly characterizes the spatial feature of Image0. Similarly, ω(1)
3 , ω(1)

4 , and ω
(1)
5 correctly247

characterize the spatial feature of Image1, Image2, and Image3 in Figure 3, respectively.248

4We only show the learned weights in MLP1 because we observe that the learned weights in MLP1 and
MLP2 are very similar, though they use different activation functions.
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Figure 4: (Left) The eight features {ω(1)
n }8n=1 learned by the weights of the eight neurons in 5 different epochs

(i.e., 0,1,4,128,1000), where ω(1)
n = {ω(1)

mn}1024m=1 are reshaped into 32× 32 to show the spatial structure. (Right)
The variation of I(X;T1) in the MLP1, MLP2, and MLP3 during 1000 epochs.

Table 2: The Gibbs probability PF1|X(ω
(1)
n |Image0) in MLP1 and MLP2 in the 1000 epoch

ω
(1)
1 ω

(1)
2 ω

(1)
3 ω

(1)
4 ω

(1)
5 ω

(1)
6 ω

(1)
7 ω

(1)
8

〈ω(1)
n ,x〉 -63.6 208.8 -181.6 45.1 -55.6 157.5 -210.0 -30.1

fReLU
1n (x) 0.0 208.8 0.0 45.1 0.0 157.5 0.0 0.0

exp[fReLU
1n (x)] 1.0 4.79e+90 1.0 3.86e+19 1.0 2.51e+68 1.0 1.0
PReLU
T1|X 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

fTanh
1n (x) -1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 -1.0

exp[fTanh
1n (x)] 0.36 2.71 0.36 2.71 0.36 2.71 0.36 0.36

P Tanh
T1|X 0.037 0.272 0.037 0.272 0.037 0.272 0.037 0.037

fTanh
1n (x) = σTanh(〈ω(1)

n ,x〉) and fReLU
1n (x) = σReLU(〈ω(1)

n ,x〉) are the activations given the same 〈ω(1)
n ,x〉.

We demonstrate that P (T1|X) correctly measures the probability of {ω(1)
n }8n=1 being recognized the249

feature with the largest cross-correlation to x in Table 2. For instance, ω(1)
2 correctly characterizes250

the feature of Image0 and has the largest cross-correlation 〈ω(1)
2 ,x〉 = 190.8, thus it has the largest251

probability PReLU
T1|X (ω

(1)
2 |Image0) = 1.0 being recognized as the feature with largest cross-correlation252

to Image0. In contrast, since ω
(1)
7 incorrectly characterizes the feature of Image0 and has the lowest253

cross-correlation 〈ω(1)
7 ,x〉 = −210.0, so it has the lowest probability PReLU

T1|X (ω
(1)
7 |Image0) = 0.0254

being recognized as the feature with largest cross-correlation to Image0.255

We observe that an activation function (abbr. ACT) plays an important role in the distribution.256

Specifically, ReLU, a non-saturating (unbounded) ACT [9], preserves the positive cross-correlations257

while resets all the negative ones as zero. PReLU
T1|X (ω

(1)
2 |Image0) = 1.0 shows that ReLU derives the258

correct probability of ω(1)
2 being recognized as the feature with largest cross-correlation. In contrast,259

though ω
(1)
2 has stronger cross-correlation to Image0 than ω

(1)
4 , i.e., 〈ω(1)

2 ,x〉 > 〈ω(1)
4 ,x〉, Tanh, a260

saturating (bounded) ACT, derives fTanh
12 (x) = fTanh

14 (x) = 1.0, and makes ω(1)
4 to incorrectly have261

the same probability 0.272 to ω
(1)
2 being recognized as the feature with the largest cross-correlation262

to Image0, i.e., Tanh hinders t1 from correctly recognizing the features of input. The simulations for263

validating the probability space based on other synthetic images are presented in Appendix G.264

To validate the mutual information estimator, we follow recent works [30, 28] to train the three265

MLPs with 50 different random initialization and study the average mutual information. Figure 4266

(Right) shows that I(X;T1) quickly increases to 1.81 and keeps stable in the MLP1, i.e., t1 learns267

most information of the dataset as H(X) = 2.0. Notably, the result is consistent with the variation268

of the weights in Figure 4 (Left), which shows that the weights correctly characterize the features269

of the dataset and keeps stable after the fourth epoch. As a comparison, we observe that I(X;T1)270

keeps stable at 0.44 in the MLP2, which confirms the statement that Tanh hinders t1 from correctly271

recognizing the features of input. In addition, Figure 4 (Right) shows that I(X;T1) ≈ 0.79 in MLP3272

is smaller than I(X;T1) ≈ 1.81 in MLP1, which is consistent with Definition 1, i.e., a layer with273

fewer neurons would represent fewer possible features, thus it contains less information.274

In summary, we demonstrate the probability space (ΩT ,F , PT ) and show that if an ACT cannot275

preserve the cross-correlation between weights(features) and input, it would distort the distribution276

of a layer, thereby affecting the mutual information between the layer and data/labels. In addition,277

we show that the proposed mutual information estimator outperforms the existing non-parametric278

models, e.g., empirical distribution [30] and KDE [28], based on the synthetic dataset. Especially,279

activations do not satisfy the i.i.d. prerequisite of non-parametric models is an important reason for280

non-parametric models deriving inaccurate mutual information in DNNs. Due to limited space, the281

experimental comparison and study of non-parametric models are presented in Appendix G.282
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Figure 5: All the x-axis index training epochs. In each column, the first three figures show I(X;Ti), I(X̄;Ti),
and I(Y ;Ti) respectively. The forth figure shows I(X;TMLP) and I(Y ;TMLP) in a MLP. The pink line denotes
H(Y ) = 1.0 and the orange line denotes H(X) = 2.0.

4.3 Validating the information theoretic explanations for DNNs283

In Figure 5, we observe I(X;Ti) ≤ I(X; Ŷ ) in MLP2 and MLP3, which confirms that the Markov284

chain proposed by previous works, Equation (2), cannot fully explain the information flow in MLPs,285

if taking into account the back-propagation training. As a comparison, the second and third row286

show I(X̄;T1) ≥ I(X̄;T2) ≥ I(X̄; Ŷ ) and I(Y ;T1) ≤ I(Y ;T2) ≥ I(Y ; Ŷ ) in all the three MLPs,287

which validates that Corollary 1, i.e., Equation (14) characterizes the information flow in MLPs.288

Figure 5 demonstrates that different hidden layers achieve different IB trade-offs depending on289

the architecture and the position of the layers in MLPs. In terms of architecture, I(Y ;T1) > 0.8290

and I(X̄;T1) > 0.75 in MLP1 indicate that t1, with ReLU, achieves a good prediction without291

much compression, whereas I(Y ;T1) < 0.5 and I(X̄;T1) < 0.1 in MLP2 show that t1, with Tanh,292

achieves a different IB trade-off. In addition, I(Y ;T1) ≈ 0.45 and I(X̄;T1) ≈ 0.25 in MLP3 show293

the effect of neuron numbers on the IB trade-off. In terms of position, I(Y ; Ŷ ) = 1 and I(X̄; Ŷ ) = 0294

in MLP1 means that ŷ has a different IB trade-off to t1 in MLP1.295

We demonstrate that a MLP satisfies the IB principle no matter what the architecture of the MLP296

is. Figure 5 visualizes I(X;TMLP) and I(Y ;TMLP) based on Corollary 2. It shows that all of three297

MLPs satisfy the IB principle, namely I(X;TMLP) < H(X) = 2 and I(Y ;TMLP) = H(Y ) = 1,298

though they have different architectures. Importantly, in contrast to previous work [28] claiming that299

the compression not exists in DNNs with non-saturating ACT, such as ReLU, Figure 5 clearly shows300

that the compression exists in all the MLPs, no matter the activation function of MLPs.301

We further demonstrate the information theoretic explanations for DNNs on the benchmark MNIST302

and Fashion-MNIST datasets. The experiments are presented in Appendix H.303

5 Conclusion and future work304

In this work, we (1) specify the probability space for a hidden layer for (2) accurately estimating the305

mutual information and (3) clearly explaining how the components of the layer affect the mutual306

information. We take into account the back-propagation training and derive two novel Markov chains307

to characterize the information flow in DNNs. Furthermore, we demonstrate that a DNN satisfies the308

IB principle no matter the architecture of the DNN. In contrast, different hidden layers show different309

IB trade-offs depending on the architecture and the position of the layers in DNNs. A potential310

direction is to study the generalization of DNNs based on the probabilistic representation.311

9



References312

[1] Rana Ali Amjad and Bernhard Claus Geiger. Learning representations for neural network-based classi-313

fication using the information bottleneck principle. IEEE transactions on pattern analysis and machine314

intelligence, 2019.315

[2] George Casella and Roger L Berger. Statistical inference. Cengage Learning, 2021.316

[3] Ivan Chelombiev, Conor Houghton, and Cian O’Donnell. Adaptive estimators show information compres-317

sion in deep neural networks. In International Conference on Learning Representations, 2019.318

[4] Thomas Cover and Joy Thomas. Elements of Information Theory. Wiley-Interscience, Hoboken, New319

Jersy, 2006.320

[5] Balázs Csanád Csáji et al. Approximation with artificial neural networks. Faculty of Sciences, Etvs Lornd321

University, Hungary, 24(48):7, 2001.322

[6] Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.323

[7] Marylou Gabrié, Andre Manoel, Clément Luneau, Nicolas Macris, Florent Krzakala, Lenka Zdeborová,324

et al. Entropy and mutual information in models of deep neural networks. In Advances in Neural325

Information Processing Systems, pages 1821–1831, 2018.326

[8] Matt W Gardner and SR Dorling. Artificial neural networks (the multilayer perceptron)—a review of327

applications in the atmospheric sciences. Atmospheric environment, 32(14-15):2627–2636, 1998.328

[9] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural329

networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics,330

pages 249–256, 2010.331

[10] Ziv Goldfeld, Ewout Van Den Berg, Kristjan Greenewald, Igor Melnyk, Nam Nguyen, Brian Kingsbury,332

and Yury Polyanskiy. Estimating information flow in deep neural networks. In Proceedings of the 36th333

International Conference on Machine Learning, volume 97, pages 2299–2308, 2019.334

[11] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1. MIT335

press Cambridge, 2016.336

[12] Patrick Kidger and Terry Lyons. Universal approximation with deep narrow networks. In Conference on337

Learning Theory, pages 2306–2327. PMLR, 2020.338

[13] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint339

arXiv:1412.6980, 2014.340

[14] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In341

International Conference on Machine Learning, pages 1885–1894. PMLR, 2017.342

[15] Artemy Kolchinsky, Brendan D Tracey, and Steven Van Kuyk. Caveats for information bottleneck in343

deterministic scenarios. arXiv preprint arXiv:1808.07593, 2018.344

[16] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technique Report, 2009.345

[17] Y. LeCun, BE. Boser, and JS. Denker. Handwritten digit recognition with a back-propagation network. In346

NeurIPS, pages 396–494, 1990.347

[18] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.348

[19] Yann LeCun, Sumit Chopra, Raia Hadsell, Marc’Aurelio Ranzato, and Fu Jie Huang. A tutorial on349

energy-based learning. MIT Press, 2006.350

[20] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington, and Jascha351

Sohl-Dickstein. Deep neural networks as gaussian processes. In ICLR, 2018.352

[21] Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by inverting them.353

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5188–5196,354

2015.355

[22] David McAllester and Karl Stratos. Formal limitations on the measurement of mutual information. In356

International Conference on Artificial Intelligence and Statistics, pages 875–884. PMLR, 2020.357

10



[23] Julian D Olden and Donald A Jackson. Illuminating the “black box”: a randomization approach for358

understanding variable contributions in artificial neural networks. Ecological modelling, 154(1-2):135–150,359

2002.360

[24] Liam Paninski. Estimation of entropy and mutual information. Neural computation, 15(6):1191–1253,361

2003.362

[25] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-363

propagating errors. Nature, 323:533–536, October 1986.364

[26] Ruslan Salakhutdinov and Geoffrey Hinton. Deep boltzmann machines. In Artificial intelligence and365

statistics, pages 448–455. PMLR, 2009.366

[27] Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller. Explainable artificial intelligence: Under-367

standing, visualizing and interpreting deep learning models. arXiv preprint arXiv:1708.08296, 2017.368

[28] Andrew Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan Tracey, and369

David Cox. On the information bottleneck theory of deep learning. In International Conference on370

Representation Learning, 2018.371

[29] Ohad Shamir, Sivan Sabato, and Naftali Tishby. Learning and generalization with the information372

bottleneck. Theoretical Computer Science, 411(29-30):2696–2711, 2010.373

[30] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information.374

arXiv preprint arXiv:1703.00810, 2017.375

[31] Noam Slonim. The information bottleneck: Theory and applications. PhD thesis, Citeseer, 2002.376

[32] Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv377

preprint physics/0004057, 2000.378

[33] Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In 2015 IEEE379

Information Theory Workshop (ITW), pages 1–5. IEEE, 2015.380

[34] Vladimir N Vapnik. An overview of statistical learning theory. IEEE transactions on neural networks,381

10(5):988–999, 1999.382

[35] Larry Wasserman. All of nonparametric statistics. Springer Science & Business Media, 2006.383

[36] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking384

machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.385

[37] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In European386

conference on computer vision, pages 818–833. Springer, 2014.387

[38] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep388

learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.389

11



Checklist390

1. For all authors...391

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contribu-392

tions and scope? [Yes]393

(b) Did you describe the limitations of your work? [Yes] see Section 5394

(c) Did you discuss any potential negative societal impacts of your work? [N/A]395

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]396

2. If you are including theoretical results...397

(a) Did you state the full set of assumptions of all theoretical results? [Yes]398

(b) Did you include complete proofs of all theoretical results? [Yes]399

3. If you ran experiments...400

(a) Did you include the code, data, and instructions needed to reproduce the main experimental401

results (either in the supplemental material or as a URL)? [Yes] see the URL in Appendix G402

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?403

[Yes] see Section 4.1, Appendix G, and Appendix H404

(c) Did you report error bars (e.g., with respect to the random seed after running experiments405

multiple times)? [Yes] see Section 4406

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,407

internal cluster, or cloud provider)? [Yes] see Appendix G408

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...409

(a) If your work uses existing assets, did you cite the creators? [Yes]410

(b) Did you mention the license of the assets? [Yes]411

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes] see412

Appendix H413

(d) Did you discuss whether and how consent was obtained from people whose data you’re us-414

ing/curating? [N/A]415

(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-416

tion or offensive content? [N/A]417

5. If you used crowdsourcing or conducted research with human subjects...418

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?419

[N/A]420

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)421

approvals, if applicable? [N/A]422

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on423

participant compensation? [N/A]424

12


	Introduction
	A probabilistic representation for deep learning
	The information theoretic explanations for deep learning
	Simulations
	Setup
	Validating the probability space and the mutual information estimator
	Validating the information theoretic explanations for DNNs

	Conclusion and future work

