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ABSTRACT

Large language models (LLMs) have shown remarkable instruction-following ca-
pabilities and achieved impressive performances in various applications. However,
the performances of LLMs depend heavily on the instructions given to them, which
are typically manually tuned with substantial human efforts. Recent work has used
the query-efficient Bayesian optimization (BO) algorithm to automatically optimize
the instructions given to black-box LLMs. However, BO usually falls short when
optimizing highly sophisticated (e.g., high-dimensional) objective functions, such
as the functions mapping an instruction to the performance of an LLM. This is
mainly due to the limited expressive power of the Gaussian process (GP) model
which is used by BO as a surrogate to model the objective function. Meanwhile,
it has been repeatedly shown that neural networks (NNs), especially pre-trained
transformers, possess strong expressive power and can model highly complex
functions. So, we adopt a neural bandit algorithm which replaces the GP in BO by
an NN surrogate to optimize instructions for black-box LLMs. More importantly,
the neural bandit algorithm allows us to naturally couple the NN surrogate with the
hidden representation learned by a pre-trained transformer (i.e., an open-source
LLM), which significantly boosts its performance. These motivate us to propose
our INSTruction optimization usIng Neural bandits Coupled with Transformers
(INSTINCT) algorithm. We perform instruction optimization for ChatGPT and
use extensive experiments to show that our INSTINCT consistently outperforms
the existing methods in different tasks, such as in various instruction induction
tasks and the task of improving the zero-shot chain-of-thought instruction.

1 INTRODUCTION

Large language models (LLMs) have recently achieved remarkable performances across a variety of
tasks (Zhao et al., 2023; Touvron et al., 2023). This can mainly be attributed to the strong instruction-
following capability of LLMs, which allows their adaptation to various downstream applications (Liu
et al., 2023; Chen et al., 2023a). However, it has been widely observed that the performances of
LLMs heavily depend on the instructions/prompts given to them. These instructions are typically
manually designed, which can be a human-intensive and costly process (Reynolds & McDonell,
2021; Mishra et al., 2021). Therefore, it is of paramount importance to develop efficient methods to
automatically optimize the instructions/prompts to attain the best performance of LLMs. In this work,
we refer to this problem as instruction optimization and use instructions/prompts interchangeably.

Some works have adopted gradient-based methods to optimize the instructions of LLMs (Shin et al.,
2020; Li & Liang, 2021; Lester et al., 2021). However, these methods require access to the gradient of
the LLMs and are hence restricted to white-box (i.e., open-source) LLMs, whereas the most powerful
LLMs nowadays are typically black-box (e.g., ChatGPT (OpenAI, 2023a) and GPT-4 (OpenAI,
2023b)). Furthermore, even for white-box LLMs, gradient computation becomes resource-intensive
and hence less practical as the models become larger, which is another limitation of gradient-based
methods. Therefore, recent works have proposed instruction optimization methods not requiring the
model gradient, which are able to optimize the instructions for black-box LLMs (Zhou et al., 2023;
Prasad et al., 2022; Pryzant et al., 2023). However, these methods are based on heuristic local search
and are hence not able to leverage the observation history (i.e., the previously queried instructions
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and their scores) when selecting new instructions to query. As a consequence, these methods are not
able to balance exploration of the entire space of instructions (to query instructions whose scores
are uncertain) vs. exploitation of the current observation history (to query instructions predicted to
have high scores based on the observation history). This makes them query-inefficient and hence
impractical when the API calls to black-box LLMs incur costs such as monetary and time expenses.

Figure 1: Improvements of our
INSTINCT over baselines (in 30 tasks).

In this regard, the recent work of Chen et al. (2023b)
has proposed the InstructZero algorithm which opti-
mizes the instruction using the query-efficient Bayesian
optimization (BO) algorithm (Garnett, 2023). To apply
BO, InstructZero uses a separate white-box LLM to
convert instruction optimization for black-box LLMs
to a continuous optimization problem, i.e., optimizing
the soft prompt which is a continuous vector (more de-
tails in Sec. 2.1). Then, InstructZero uses a Gaussian
process (GP) (Rasmussen & Williams, 2006) as a sur-
rogate to model the objective function (i.e., the function mapping a soft prompt to a score), and
sequentially selects the soft prompts to query by maximizing an acquisition function which balances
exploration and exploitation in a theoretically grounded manner. However, it has been shown that
BO often falls short when optimizing highly sophisticated or high-dimensional objective functions
(Dai et al., 2022), such as the function mapping a soft prompt to the performance (i.e., score) of
an LLM. This important shortcoming of BO is mainly attributed to the limited expressive power
of the GP surrogate. On the other hand, it has been repeatedly shown that neural networks (NNs),
especially pre-trained transformer models (Vaswani et al., 2017), possess strong expressive power
and can model highly complex functions with high-dimensional inputs.

Therefore, in this work, we perform instruction optimization for black-box LLMs by adopting a
recently developed neural bandit algorithm: Neural Upper Confidence Bound (NeuralUCB) (Zhou
et al., 2020) (Sec. 2.2). NeuralUCB replaces the GP surrogate in BO with an NN surrogate while
preserving the ability of BO to trade-off exploration vs. exploitation in a principled way. More
importantly, NeuralUCB allows us to naturally couple the NN surrogate with the hidden representation
learned by a pre-trained transformer (i.e., a white-box LLM), which further improves the capability
of the NN surrogate for score prediction and hence boosts the performance of our algorithm. As a
result, we propose our INSTruction optimization usIng Neural bandits Coupled with Transformers
(INSTINCT) algorithm (Sec. 3). In our empirical evaluations, we optimize the instructions for the
black-box LLM ChatGPT (OpenAI, 2023a) and adopt Vicuna (Chiang et al., 2023) as the white-box
LLM. We use extensive experiments to show that our INSTINCT consistently outperforms the
existing methods in different tasks (Sec. 4), such as in various instruction induction tasks (Sec. 4.1)
and the task of improving the zero-shot chain-of-thought (CoT) instruction (Sec. 4.2). We also use
ablation studies to unveil interesting insights about our INSTINCT algorithm (Sec. 5).

2 BACKGROUND AND PROBLEM SETTINGS

2.1 BAYESIAN OPTIMIZATION FOR INSTRUCTION OPTIMIZATION

Instruction Optimization. A black-box LLM f takes as input an instruction ρ prepended to a
test input x, and outputs a sentence ŷ = f(ρ, x). The LLM f is black-box in that we can only
query it via its API and cannot access its parameters. We consider a language task with a validation
dataset DV = {(xi, yi)}ni=1 of n pairs of input sentence xi and its corresponding ground truth output
sentence yi. For an instruction ρ and an input xi, a score function s(·, ·) compares the LLM output
sentence ŷi = f(ρ, xi) with the ground truth output sentence yi to return a score s(ŷi, yi). As a
result, instruction optimization can be formulated as the problem of finding the optimal instruction ρ∗

that achieves the highest score averaged over the validation set DV . Note that the performance of the
instruction ρ we find using the validation set DV is evaluated using a separate test set DT .

Directly optimizing the instruction ρ for a black-box LLM f is challenging because of the combina-
torial nature of the tokens forming the instruction ρ. To this end, InstructZero (Chen et al., 2023b)
has used a separate white-box (i.e., open-source) LLM w to convert this combinatorial optimization
problem (i.e., optimizing ρ) into continuous optimization, i.e., optimizing a soft prompt z. Specifi-
cally, a soft prompt z ∈ Z ⊂ Rd is a d-dimensional continuous vector and corresponds to the token
embeddings of a number Nz of soft tokens (Lester et al., 2021). A soft prompt z is prepended to
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the token embeddings of a fixed set E of input-output exemplars E = {(xτ , yτ )}κτ=1 for the task.
These concatenated embeddings are used as the input to the white-box LLM w, which subsequently
generates an instruction ρ(z) = w(z, E). The generated instruction ρ(z) is then prepended to a test
input xi (from the validation dataset DV = {(xi, yi)}ni=1) and used as input to the black-box LLM f
to generate an output sentence ŷi = f(ρ(z), xi), which is then evaluated to produce a score s(ŷi, yi).
In doing so, with a fixed set E of exemplars, the discrete optimization problem of optimizing ρ is
converted to the optimization of a continuous soft prompt z:

z∗ = argmaxz∈Zh
(
ρ(z)

)
, h

(
ρ(z)

)
≜ E(x,y)∈DV

s
(
f
(
ρ(z), x

)
, y
)
= (1/n)

∑n
i=1s

(
ŷi, yi

)
. (1)

Based on this formulation, InstructZero (Chen et al., 2023b) has adopted Bayesian optimization (BO)
(Garnett, 2023) to maximize the objective function h

(
ρ(z)

)
(equation 1). To achieve this, a Gaussian

process (GP) (Rasmussen & Williams, 2006) is used as a surrogate to model the function h
(
ρ(z)

)
. In

every iteration t of BO, the current observation history is used to update the GP model which is then
used to calculate an acquisition function αt(z). Then, a soft prompt zt is selected by maximizing
αt(z): zt = argmaxz∈Z αt(z). Next, the selected zt is used as input to the white-box LLM w to
produce an instruction ρt, which is then evaluated using the black-box LLM f to produce a score ht

(details in Sec. 3.3). Lastly, the newly collected input-output pair (zt, ht) is added to the observation
history to update the GP model, which is then used to select the soft prompt zt+1 in the next iteration.

The soft prompt z is normally high-dimensional (e.g., d = 5120×Nz when w is Vicuna 13B), which
makes it challenging for BO to optimize. So, InstructZero (Chen et al., 2023b) has adopted the
technique of random projection to reduce the input dimension. That is, given a matrix A ∈ Rd×d′

(d′ ≪ d) with randomly sampled elements and a d′-dimensional continuous vector ẑ, the vector
z = Aẑ is used as the soft prompt. After substituting the z by Aẑ, the input variable to be optimized
in equation 1 is changed to ẑ and hence the input dimension of the optimization problem is reduced to
d′. The reduced input dimension d′, i.e., the intrinsic dimension, is chosen as d′ = 10 in InstructZero.

2.2 NEURAL BANDITS

Neural bandit algorithms, such as NeuralUCB (Zhou et al., 2020) we have adopted in this work,
replace the GP surrogate in BO (Sec. 2.1) by a neural network (NN) while preserving the principled
ability of BO to trade-off exploration vs. exploitation. The strong expressive power of NNs equips
neural bandit algorithms with the ability to optimize highly complicated objective functions, which is
theoretically justified (Dai et al., 2022). In practice, neural bandit algorithms have also been shown to
outperform BO especially in problems with sophisticated objective functions (Lisicki et al., 2021).
However, naively applying NeuralUCB to our problem is challenged by the huge computational
costs. This is because every evaluation of the NeuralUCB acquisition function requires performing
an inference using the white-box LLM, which can be extremely costly since the acquisition function
needs to be evaluated many times in every iteration. So, we use a technique based on pre-computation
(Sec. 3.2) to sidestep this expensive computation and hence make our INSTINCT algorithm scalable.
Moreover, we also couple the NN surrogate in NeuralUCB with the powerful hidden representation
learned by a pre-trained transformer to further improve the performance of our INSTINCT (Sec. 3.1).

3 INSTINCT ALGORITHM FOR INSTRUCTION OPTIMIZATION

Overview. In every iteration t of our INSTINCT algorithm (Fig. 2), we firstly use the current obser-
vation history (i.e., pairs of soft prompts and observed scores) to train an NN for score prediction (step

1⃝, Sec. 3.1), and use the trained NN to calculate the NeuralUCB acquisition function (equation 2),
which is then maximized to select the next soft prompt zt to query (step 2⃝, Sec. 3.2). Next, we
feed the selected zt (and a small set E of exemplars for the task) as the input to the white-box LLM,
which then generates an instruction ρt (step 3⃝). Then, ρt is evaluated using the validation set DV

(steps 4⃝ and 5⃝), which produces a score ht. In the subsequent sections, We discuss every step of
our INSTINCT in the following sections, with some technical details deferred to App. E.

3.1 TRAINING NEURAL NETWORK FOR SCORE PREDICTION (STEP 1⃝)

In step 1⃝, we use the current observation history to train an NN, i.e., a multi-layer perceptron (MLP),
for score prediction. Here we use g to denote the mapping from a soft prompt z to its corresponding
hidden representation of the last token in the final layer of the pre-trained transformer (i.e., the
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Figure 2: Illustration of our INSTINCT algorithm. Every step is described in detail in Sec. 3.

white-box LLM w): z′ = g(z).1 Hereafter, we refer to z′ = g(z) as the hidden representation of z
for simplicity. Importantly, thanks to the strong expressive power of the pre-trained transformer, we
can stack an NN (i.e., MLP) on top of the hidden representation z′ = g(z) to achieve accurate
score predictions (more details below). Also note that connecting the hidden representation (of the
last token in the final layer) of a pre-trained transformer with an MLP to perform prediction tasks has
been commonly adopted and proven effective in various applications (Radford et al., 2018; 2019).

We use m(g(z); θ) to denote an NN (i.e., MLP) with parameters θ and input hidden representation
z′ = g(z). Note that although our NN m(g(z); θ) is used to predict a score for every soft prompt z,
we have used z′ = g(z) to represent its input because we freeze the parameters of the pre-trained
transformer model, i.e., the hidden representation z′ = g(z) for every z is fixed. In iteration t, given
the first t− 1 observations {

(
g(zτ ), hτ

)
}t−1
τ=1, we train our NN m(g(z); θ) using Adam (Kingma &

Ba, 2014) to minimize the mean squared error (MSE) loss with an L2 regularization parameter λ.
This yields the updated NN parameters θt−1. Importantly, the resulting NN m(g(z); θt−1) can both
leverage the powerful hidden representation z′ = g(z) learned by the pre-trained white-box LLM
and adapt to the task of score prediction thanks to NN training. So, the trained NN m(g(z); θt−1) is
able to accurately predict the scores of different soft prompts, which is crucial for the compelling
performance of our INSTINCT algorithm. After the NN training, we use it to select the next soft
prompt to query via the NeuralUCB acquisition function, which we discuss in the next section.

3.2 SELECTING THE NEXT SOFT PROMPT zt (STEP 2⃝)

In step 2⃝, we choose the next soft prompt zt to query by maximizing the NeuralUCB acquisition
function (Sec. 2.2). Specifically, we use the trained NN m(g(z); θt−1) (Sec. 3.1) to calculate the
acquisition function value NeuralUCBt(z) for every soft prompt z ∈ Z in the domain, which is then
maximized across all z ∈ Z to choose the next soft prompt zt to query:

zt = argmaxz∈ZNeuralUCBt(z), NeuralUCBt(z) ≜ m(g(z); θt−1) + νtσt−1(g(z); θt−1), (2)

in which m(g(z); θt−1) denotes the predicted score for soft prompt z, σt−1(g(z); θt−1) is a principled
measure of our uncertainty about the function value h(z) at z which is calculated using the gradient
of the NN (Jacot et al., 2018) (see its detailed expression in App. E), and νt is a weighting parameter.
As a result, the acquisition function NeuralUCBt(z) (equation 2) is able to select a soft prompt zt
by simultaneously encouraging both (i) exploitation of the observation history {

(
g(zτ ), hτ

)
}t−1
τ=1

to encourage the selection of soft prompts predicted to have high scores m(g(z); θt−1) and (ii)
exploration of entire domain Z of soft prompts by preferring the selection of soft prompts with larger
uncertainty σt−1(g(z); θt−1). Intuitively, we are able to both (i) leverage the accurate score prediction
enabled by the strong expressivity of the NN coupled with the powerful hidden representation learned

1Note that in addition to the soft prompt z, the hidden representation z′ also depends on other factors such as
the set E of exemplars. We have omitted the dependency on these factors here as they are kept fixed for a task.
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by the pre-trained transformer w and (ii) perform principled exploration of the entire domain of
soft prompts thanks to the principled uncertainty measure σt−1(g(z); θt−1), which combine to lead
to the strong practical performance of our INSTINCT algorithm (Sec. 4). We defer more detailed
explanations of NeuralUCBt(z) (equation 2) to App. E.

Pre-Computation to Save Costs. Interestingly, since our INSTINCT algorithm does not require
updating the pre-trained hidden representation z′ = g(z), we can adopt a natural technique to
significantly reduce its computational cost. That is, before running our INSTINCT, we generate a
discrete domain Z̃ of soft prompts (details in the next paragraph) using a scrambled Sobol sequence
following the common practice in BO (Eriksson et al., 2019), which ensures that the discrete domain
Z̃ has a good coverage of the original continuous domain Z. Then, we pre-compute the hidden
representation z′ = g(z) for every soft prompt z in this discrete domain Z̃. Given all pre-computed
hidden representations (i.e., z′ = g(z) for all z ∈ Z̃), when selecting the next soft prompt zt
during our algorithm (equation 2), we can instead maximize over the fixed discrete domain Z̃:
zt = argmaxz∈Z̃NeuralUCBt(z). This considerably reduces the computational cost because every
hidden representation g(z) (used in the calculation of NeuralUCBt(z)) has been pre-computed.

Generating the Discrete Domain Z̃. We have also adopted the technique of random projection
(Sec. 2.1) when generating the discrete domain Z̃. Specifically, instead of directly generating a
scrambled Sobol sequence of d-dimensional vectors (d is the dimension of the soft prompt z), we
generate a sequence of d′-dimensional vectors (d′ ≪ d), which constitute a discrete domain in the
d′-dimensional space, denoted as Z̃ ′ (Sec. 2.1). Next, we use a matrix A ∈ Rd×d′

(with randomly
sampled elements) to project every point ẑ ∈ Z̃ ′ in the d′-dimensional discrete domain Z̃ ′ to the
original d-dimensional space: z = Aẑ for all ẑ ∈ Z̃ ′. The resulting projected d-dimensional vectors
constitute our discrete domain Z̃. We have adopted this technique of random projection to generate
Z̃ because it provides us a simple way to adjust the overall magnitudes of the soft prompts in the
discrete domain Z̃ by tuning the intrinsic dimension d′. Intuitively, a larger intrinsic dimension d′ in
general causes the soft prompts z ∈ Z̃ to have larger magnitudes/norms (see detailed explanation
in App. E.2), and different tasks may be suitable for soft prompts with different overall magnitudes.
Therefore, this flexibility to choose d′ allows us to automatically adapt to the task at hand by using
the validation set to tune d′ and hence further boosts the performance of our INSTINCT algorithm.

3.3 EVALUATING THE SELECTED SOFT PROMPT zt (STEPS 3⃝- 5⃝)

After the soft prompt zt is selected (Sec. 3.2), we proceed to evaluate its performance. Specifically,
the selected soft prompt zt is prepended to the embeddings of a set E of exemplars (as well as
other texts such as "The instruction was to"), and then the concatenated embeddings are used as the
input to the white-box LLM w to generate an instruction ρt = w(zt, E) (Step 3⃝). Next, for every
input xi in the validation set DV = {(xi, yi)}ni=1, we prepend the generated instruction ρt to xi and
then use them as the input to the black-box LLM f to generate its output sentence ŷi = f(ρt, xi)
(Step 4⃝), which is used to calculate a score s(ŷi, yi). The score ht for ρt is therefore calculated
by averaging over the validation set: ht = (1/n)

∑n
i=1 s(ŷi, yi) (Step 5⃝). Lastly, we extract the

hidden representation of zt: z′t = g(zt) (Step 6⃝), and add the newly collected input-output pair
(g(zt), ht) to the observation history, which is subsequently used to train the NN m(g(z); θt) (Step

1⃝) and then select the soft prompt zt+1 in the next iteration (Step 2⃝).

3.4 STRENGTHS OF OUR INSTINCT

The strengths of our INSTINCT lie in not only its enhanced exploitation (i.e., accurate score
prediction) facilitated by our NN surrogate and its coupling with the hidden representation from
the pre-trained transformer (discussed in Sec. 3.1), but also its better exploration enabled by our
principled uncertainty estimation. In particular, the exploration of BO/neural bandits relies on a good
similarity measure between different pairs of soft prompts. That is, if a pair of soft prompts leads to
similar scores (i.e., function values), a reliable similarity measure should assign a large similarity
value to this pair of soft prompts. However, an important challenge faced by the framework adopted
by both InstructZero and our INSTINCT (Fig. 2) is that different soft prompts can lead to the same
instruction and hence the same score (we verify this in Sec. 5), and these pairs of soft prompts
should be given large similarity values. Unfortunately, InstructZero cannot effectively handle this
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Table 1: Average test accuracy (standard error) achieved by the best instruction discovered by
different algorithms for different tasks (3 independent trials with different random seeds). For better
distinguishability, only the tasks for which any method has an average test accuracy less than 0.8 (i.e.,
more challenging tasks) are included. The results including all tasks are given in Table 9 (App. C.2).

Task APE InstructZero INSTINCT (ours)
antonyms 0.6367(0.1416) 0.8267(0.0072) 0.8467(0.0027)
auto_categorization 0.2500(0.0094) 0.2567(0.0119) 0.2500(0.0330)
auto_debugging 0.2917(0.0340) 0.3750(0.0000) 0.2917(0.0340)
cause_and_effect 0.5733(0.0891) 0.8133(0.0109) 0.5867(0.0871)
common_concept 0.0691(0.0207) 0.0864(0.0398) 0.2129(0.0019)
diff 0.6733(0.2667) 0.6933(0.2224) 1.0000(0.0000)
informal_to_formal 0.5736(0.0026) 0.5310(0.0024) 0.5534(0.0000)
letters_list 1.0000(0.0000) 0.5900(0.1674) 1.0000(0.0000)
negation 0.7533(0.0109) 0.7767(0.0136) 0.8167(0.0027)
object_counting 0.3633(0.0191) 0.3600(0.0929) 0.3400(0.0698)
odd_one_out 0.6333(0.0144) 0.6133(0.0871) 0.7000(0.0163)
orthography_starts_with 0.4567(0.1477) 0.5067(0.0871) 0.6667(0.0272)
rhymes 0.1567(0.0640) 1.0000(0.0000) 1.0000(0.0000)
second_word_letter 0.7467(0.2028) 0.4333(0.1872) 0.1000(0.0411)
sentence_similarity 0.0000(0.0000) 0.0000(0.0000) 0.1400(0.0047)
sum 0.6733(0.2667) 1.0000(0.0000) 1.0000(0.0000)
synonyms 0.3600(0.0759) 0.2767(0.0925) 0.3067(0.0491)
taxonomy_animal 0.3467(0.2341) 0.7167(0.0838) 0.8567(0.0599)
word_sorting 0.3300(0.0374) 0.3100(0.1143) 0.5133(0.0027)
word_unscrambling 0.4400(0.1389) 0.5500(0.0170) 0.6333(0.0072)
# best-performing tasks 5 5 13
# second-best-performing tasks 5 10 5
average rank 2.25 2.0 1.45

issue because it has made use of standard similarity measures from BO (i.e., the Matérn kernel) to
measure similarity in the original space of soft prompts.2 In contrast, our INSTINCT can better
resolve this issue thanks to the use of the hidden representation in our principled uncertainty measure
σt−1(g(z); θt−1) (equation 2): if two soft prompts lead to the same instruction (and hence the same
score), the distance between their hidden representations is also small. We have empirically verified
this in our ablation study (Sec. 5). Therefore, the superiority of our INSTINCT in terms of both
exploitation and exploration helps it achieve consistently better performances than existing methods.

4 EXPERIMENTS

We perform instruction optimization for ChatGPT and use Vicuna-13B as the white-box LLM
w. We conduct instruction induction tasks using 30 datasets from Chen et al. (2023b) (Sec. 4.1),
and the task of improving the zero-shot chain-of-thought instruction using 3 arithmetic reasoning
datasets: GSM8K (Cobbe et al., 2021), AQUARAT (Ling et al., 2017) and SVAMP (Patel et al.,
2021) (Sec. 4.2). We compare our INSTINCT with two representative baselines: APE (Zhou et al.,
2023) and InstructZero (Chen et al., 2023b). Following InstructZero, we initialize our algorithm by
randomly selecting 40 soft prompts, and then run our INSTINCT to query another 125 soft prompts.
For both our INSTINCT and InstructZero, for all tasks unless specifically specified, we use the
validation set DV to perform a grid search over the intrinsic dimension d′ in {10, 50, 100} and the
number Nz of soft tokens in {3, 5, 10} (Sec. 2.1). This ensures that our INSTINCT use the same
the total number of queries to the black-box LLM as InstructZero for a fair comparison. For every
algorithm, after finding the best instruction using the validation set DV , we evaluate the discovered
instruction using the separate test set DT and report the test accuracy as the score. More details on
the experiments are deferred to App. C.1.

4.1 INSTRUCTION INDUCTION

Here we aim to find a task-specific instruction that best describes the relationship between inputs
and outputs of a given task. We report in Table 1 the test accuracy achieved by the best instruction
discovered by different methods for various instruction induction tasks. Our INSTINCT achieves
the highest accuracy in 13 out of the 20 tasks, with an average rank of 1.45 which is significantly

2 The instruction-coupled kernel used by InstructZero (Chen et al., 2023b) can only resolve this issue when
measuring the similarity between a pair of already-queried soft prompts. See detailed explanations in App. D.1.
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Method Dataset Best Zero-Shot CoT Instruction Score
Kojima et al. (2022) GSM8K Let’s think step by step. 0.71797

InstructZero GSM8K Let’s use the instruction to solve the problem. 0.74299
INSTINCT (ours) GSM8K Let’s think about it. 0.74526

Kojima et al. (2022) AQUA-RAT Let’s think step by step. 0.52362
InstructZero AQUA-RAT Let’s break down the problem. 0.54331

INSTINCT (ours) AQUA-RAT I have a new solution. 0.54724
Kojima et al. (2022) SVAMP Let’s think step by step. 0.7625

InstructZero SVAMP Let’s use the equation. 0.795
INSTINCT (ours) SVAMP Let’s use our brains. 0.81

Table 3: The best zero-shot CoT instructions found by different algorithms and their scores.

better than APE and InstructZero. We have shown these 20 tasks here because they allow for better
distinguishability among different algorithms, and the advantage of our INSTINCT is consistent in
the table including all 30 tasks (Table 9 in Appendix). We have also performed a text summarization
task using the SAMSum dataset (Gliwa et al., 2019) (Table 2), in which our INSTINCT again
performs the best. The results here demonstrate the superior capability of our INSTINCT for
instruction optimization across a variety of tasks. In the Appendix, we have also illustrated how
our INSTINCT algorithm is able to generate higher-quality instructions across different iteration in
Fig. 8, and presented the best final instruction our INSTINCT discovered for every task in Table 8.

4.2 IMPROVING ZERO-SHOT CHAIN-OF-THOUGHT PROMPT

Table 2: Instruction optimization on
SAMSum dataset (summarization task).

Method ROUGE-1 ROUGE-2 ROUGE-L
APE 0.32549 0.10308 0.30245
InstructZero 0.32595 0.10528 0.30061
INSTINCT 0.35580 0.13350 0.33600

Chain-of-thought (CoT) reasoning has been found to be
an effective technique to boost the performance of LLMs
in complex tasks that require multiple steps of reasoning
(Wei et al., 2022). The work of Kojima et al. (2022) has
discovered that the performance of LLMs in complicated
reasoning tasks can be significantly improved by simply
prepending the zero-shot CoT instruction "Let’s think step
by step." to the questions, which outperforms other manually designed instructions. Here we show
that our INSTINCT algorithm can further improve over this zero-shot CoT instruction across multiple
tasks in Table 3. We defer our detailed experimental design to App. C.3.

5 ABLATION STUDY

Effectiveness of the Hidden Representation. Here we empirically verify that the use of the hidden
representation from the pre-trained transformer when building the NN surrogate (Sec. 3.1) indeed
helps improve the performance of our INSTINCT algorithm. To this end, we compare the evolution
of the performances of our INSTINCT algorithm with and without using the hidden representation
across different iterations. The results in Fig. 3 suggest that in the early iterations with a small
number of observations, the use of the hidden representation allows our NN surrogate to quickly
learn to accurately predict the scores and hence helps our INSTINCT algorithm quickly achieve high
accuracies. After more iterations, our INSTINCT algorithm without using the hidden representation
can also achieve competitive performances after enough observations (i.e., training data) have been
collected such that the NN surrogate can be trained to accurately predict the scores.

Figure 3: The performance of best prompts in early iterations. The tasks plotted are those for which
the performance gap is larger than 0.01 with and without using the hidden representation.
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active_to_passive first_word_letter
Figure 4: Pairwise L2 distances between soft prompts (left) and hidden representations (right) for
soft prompts mapping to the same (red) and different (blue) instructions. See details in Sec. 5.

Hidden Representation Give Better Similarity Measure. As discussed in Sec. 3.4, an important
challenge faced by both InstructZero (Chen et al., 2023b) and our INSTINCT is that multiple soft
prompts can lead to the same instruction and hence the same score, and this issue cannot be effectively
handled by InstructZero (Chen et al., 2023b) (more explanations in App. D.1).2 In contrast, our
INSTINCT can better resolve this issue because our principled uncertainty measure is calculated
based on the hidden representations. For two soft prompts mapping to the same instruction, the
distance between their hidden representations is small. Here we empirically verify this and show the
results in Fig. 4 (more results in Fig. 10, App. D.1). We firstly construct 2 groups of soft prompts: the
soft prompts in the first group map to the same instruction (referred to as the "Same" group), and
the soft prompts in the second group map to different instructions (the "Different" group). For both
the "Same" group (red color in Fig. 4) and "Different" group (blue color in Fig. 4), for every pair
of soft prompts within a group, we compute the pairwise L2 distance between both the original soft
prompts (left figure for each task in Fig. 4) and their hidden representations (right figure). The right
figure for each task (Fig. 4) show that the pairwise distances between the hidden representations
within the "Same" group (red) are markedly smaller than those for the "Different" group
(blue); meanwhile, this notable difference between the 2 groups is not observed in the left figure
for each task (i.e., the pairwise distances between original soft prompts). This indicates that the
hidden representation make it significantly easier to resolve the above-mentioned issue, and hence our
INSTINCT can perform better exploration. We also use another ablation study (Table 7, App. D.4) to
verify that our principled exploration is necessary for the competitive performance of our INSTINCT.

Improving INSTINCT via One-shot In-Context Learning. Here we show that the performance of
our INSTINCT can be further improved via in-context learning (ICL) (Brown et al., 2020), which is a
widely used method to boost the performance of LLMs. We propose two methods to incorporate ICL
into our INSTINCT: (i) test-time-only one-shot INSTINCT which only appends an exemplar after
the best instruction discovered by our INSTINCT algorithm (and pass the concatenated instruction-
exemplar to the black-box LLM for evaluation) at test time, and (ii) one-shot INSTINCT which
appends an exemplar after every queried instruction ρt during our INSTINCT algorithm. The
results (Table 4) show that adding an exemplar to the best-discovered instruction (test-time-only one-
shot INSTINCT) improves the performance of our INSTINCT. Additionally adding the one-shot
exemplar to every queried instruction during our INSTINCT (one-shot INSTINCT) further enhances
the performance, which is likely because this improves the alignment between our optimization
objective and test performance. These results demonstrate the compatibility of our INSTINCT with
ICL and suggest wider potential applications of our INSTINCT through its combination with ICL.

Figure 5: Improving INSTINCTwith
ChatGPT rephrasing.

Improving INSTINCT with ChatGPT Rephrasing. Here
we propose a technique to further improve the performance
of our INSTINCT based on the resampling technique from
APE (Zhou et al., 2023). Specifically, in every iteration
after the instruction ρt is generated by the white-box LLM
(Fig. 2), instead of directly passing ρt to the black-box LLM
for evaluation, we firstly pass ρt to ChatGPT and instruct it
to rephrase and improve this instruction ρt to obtain a new
instruction ρ′t. Then, the new instruction ρ′t is evaluated by
the black-box LLM to produce the score ht. We have applied
this improved variant of our INSTINCT algorithm to those
instruction induction tasks (Sec. 4.1) with large room for
improvement, i.e., the tasks with average test accuracy below 0.8 (Table. 1). We plot the histogram of
the improvements (i.e., improved average test accuracy − original average test accuracy) in Fig. 5.
The figure shows that this technique to exploit the strong paraphrasing capability of ChatGPT has
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Table 4: Average test accuracy achieved by (i) INSTINCT, (ii) test-time-only one-shot INSTINCT,
and (iii) one-shot INSTINCT. The results including all tasks are given in Table 5 (App. D.2).

Task test-time-only one-shot one-shot
INSTINCT INSTINCT INSTINCT

antonyms 0.8467(0.0027) 0.8533(0.0027) 0.8633(0.0072)
auto_categorization 0.2500(0.0330) 0.3000(0.0125) 0.3000(0.0216)
auto_debugging 0.2917(0.0340) 0.4583(0.0680) 0.6250(0.0000)
cause_and_effect 0.5867(0.0871) 0.6267(0.0871) 0.7733(0.0109)
common_concept 0.2129(0.0019) 0.2496(0.0019) 0.1812(0.0243)
diff 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
informal_to_formal 0.5534(0.0000) 0.5159(0.0000) 0.5362(0.0139)
letters_list 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
negation 0.8167(0.0027) 0.8567(0.0054) 0.8433(0.0223)
object_counting 0.3400(0.0698) 0.3567(0.0119) 0.4600(0.0216)
odd_one_out 0.7000(0.0163) 0.6333(0.0109) 0.6667(0.0054)
orthography_starts_with 0.6667(0.0272) 0.6667(0.0191) 0.7167(0.0027)
rhymes 1.0000(0.0000) 0.7467(0.2068) 1.0000(0.0000)
second_word_letter 0.1000(0.0411) 0.2433(0.0530) 0.4567(0.0191)
sentence_similarity 0.1400(0.0047) 0.1600(0.0000) 0.2400(0.0573)
sum 1.0000(0.0000) 1.0000(0.0000) 0.9933(0.0054)
synonyms 0.3067(0.0491) 0.3700(0.0694) 0.4600(0.0047)
taxonomy_animal 0.8567(0.0599) 0.8967(0.0495) 0.9233(0.0098)
word_sorting 0.5133(0.0027) 0.6200(0.0047) 0.6200(0.0340)
word_unscrambling 0.6333(0.0072) 0.5833(0.0098) 0.5467(0.0191)
# best-performing tasks 7 7 14
average rank 2.2 1.8 1.45

the potential to further enhance our INSTINCT algorithm (at the expense of an additional query to
ChatGPT in every iteration). More details on the experiments here are given in App. D.3.

6 RELATED WORK

Instruction Optimization for Black-Box LLMs. The methods BBT (Sun et al., 2022b), BBTv2 (Sun
et al., 2022a) and clip-tuning (Chai et al., 2022) have proposed to use evolutionary algorithms (EAs)
to optimize the prompts for black-box LLMs. However, these methods are inapplicable to our setting
because they additionally require access to the input token embeddings and output logits of the
black-box LLMs, whereas the black-box LLMs we consider only allow query access. GRIPS (Prasad
et al., 2022) and APO (Pryzant et al., 2023) have used edit-based operations to propose candidate
instructions and performed instruction optimization in a gradient-free manner. Diao et al. (2023)
have applied reinforcement learning for prompt optimization, and Guo et al. (2023) (concurrent
to our paper) have adopted EAs while using an LLM as the evolutionary operator. The recent
work of Zhou et al. (2023) has proposed APE, which searches for high-scoring instructions by
adopting an LLM to produce candidate instructions and then using iterative re-sampling to generate
other candidates similar to the promising instructions. However, these methods above are usually
query-inefficient, mostly because they are based on local search and hence cannot effectively handle
the exploration-exploitation trade-off (Sec. 1). Another concurrent work (Yang et al., 2023) has
used an LLM as an optimizer to solve generic optimization problems and applied their method to
instruction optimization. The previous method most closely related to our paper is InstructZero (Chen
et al., 2023b), which has applied the query-efficient BO algorithm to instruction optimization for
black-box LLMs (see Sec. 2.1). We also discuss the related works on instruction optimization for
white-box LLMs (App. B.1), as well as BO and neural bandits (App. B.3). Moreover, we give a
visual summarization of the related works on instruction optimization in App. B.2.

7 CONCLUSION

We introduce our INSTINCT algorithm to optimize the instructions for black-box LLMs. Our
INSTINCT replaces the GP surrogate in BO by an NN surrogate, and couples the NN surrogate
with the hidden representation learned by a pre-trained transformer. We optimize the instructions
for ChatGPT, and use extensive experiments to show that our INSTINCT consistently outperforms
existing methods in various tasks. A potential limitation of our INSTINCT is that it needs a numeric
score during optimization and hence requires a validation set. Although we have followed the common
practice from previous works, a validation set may not be easy to obtain in some applications, which
will require additional techniques to attain a reliable score to guide our optimization process.
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REPRODUCIBILITY STATEMENT

We have described in Sec. 4 and App. C our detailed experimental settings, including the datasets we
have adopted, data pre-processing steps, evaluation metrics, white-box and black-box LLMs adopted,
values for the hyperparameters, prompting templates for different experiments, among others. In
every experiment, different algorithms have used the same random seeds to ensure fair comparison.
We have also submitted the code for better reproducibility.
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A ETHICAL CONSIDERATIONS

Since our proposed method aims to improve the performance of LLMs (via instruction optimization)
for different tasks, there may exist some ethical implications related to the usage of LLMs. Specifically,
in certain maliciously designed tasks, our method may be used by a malicious party to produce
harmful/inappropriate instructions. This is because currently our method only aims to maximize the
test performance of the black-box LLM when selecting the instructions for any given task. Therefore,
to account for such potential ethical issues and prevent the generation of harmful instructions, we
may explore extensions of our method which can also account for additional objectives or constraints
(e.g., harmfulness) during the optimization process.

B ADDITIONAL RELATED WORK

B.1 RELATED WORKS ON INSTRUCTION OPTIMIZATION FOR WHITE-BOX LLMS

AutoPrompt (Shin et al., 2020) and FluentPrompt (Shi et al., 2022) have adopted gradient-based
methods to search for an optimal sequence of discrete tokens that form an instruction. To sidestep
this combinatorial optimization problem, several works (Lester et al., 2021; Li & Liang, 2021; Zhong
et al., 2021) have used gradient descent to optimize a sequence of continuous task-specific vectors
(i.e., soft prompt) prepended to the input prompt. RLPrompt (Deng et al., 2022) has instead trained a
task-specific network inserted into a frozen pre-trained LLM via reinforcement learning (RL) reward
signals. However, these methods cannot be used to optimize prompts for black-box LLMs, which are
typically more powerful.

B.2 SUMMARIZATION OF RELATED WORK ON INSTRUCTION OPTIMIZATION

Continuous Discrete

B
la

ck
-b

ox

BBT (Sun et al., 2022b)
BBTv2 (Sun et al., 2022a)

Clip-Tuning (Chai et al., 2022)
InstructZero (Chen et al., 2023b)

INSTINCT (Ours)

GRIPS (Prasad et al., 2022)
APO (Pryzant et al., 2023)

APE (Zhou et al., 2023)
EvoPrompt (Guo et al., 2023)

PROMPTBREEDER (Fernando et al., 2023)
BDPL (Diao et al., 2023)
OPRO (Yang et al., 2023)

W
hi

te
-b

ox Prefix-Tuning (Li & Liang, 2021)
Lester et al. (2021)

OptiPrompt Zhong et al. (2021)

AutoPrompt (Shin et al., 2020)
FluentPrompt (Shi et al., 2022)
RLPrompt (Deng et al., 2022)

B.3 RELATED WORK ON BAYESIAN OPTIMIZATION AND NEURAL BANDITS

Multi-armed bandits algorithms have been extensively studied to address sequential decision-marking
problems by balancing the trade-off between exploration and exploitation (Lattimore & Szepesvári,
2020). Bayesian optimization (BO), also known as kernelized bandits, is a type of bandit algorithm
which uses a Gaussian process (GP) (Rasmussen & Williams, 2006) to model the objective function
(i.e., the reward function in bandits) (Garnett, 2023). However, traditional BO algorithms Bergstra
et al. (2011); Tiao et al. (2021); Garnett (2023) can not handle the high-dimensional input objective
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functions. Fortunately, leveraging the expressive power of neural networks (NNs), recent works such
as NeuralUCB (Zhou et al., 2020) and NeuralTS (Zhang et al., 2021) have been proposed to better
model the reward function in bandits using NNs and hence are able to deal with high-dimensional
input objective functions while preserving strong theoretical guarantees. The application of neural
bandits has been further extended to batched (Gu et al., 2021), federated (Dai et al., 2023) and
graph-structured (Kassraie et al., 2022) settings, among others.

C ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

C.1 DATASETS AND IMPLEMENTATION DETAILS

We provide comprehensive comparisons between our method and the existing baselines using various
widely-used datasets. All experiments were carried out on a server with AMD EPYC processors and
NVIDIA A100 GPUs.

Prompting Templates. Carefully designed language input prompts are important to elicit expected
responses from the LLMs. We follow InstructZero for the template designs.

For instruction generation, we use the following prompting template with five-shot demonstrations
(Fig. 6) where each [INPUT] and [OUTPUT] pairs are replaced with the input-output pairs from the
exemplar set E = {(xτ , yτ )}κτ=1 when κ = 5. The output from the LLM is our instruction ρ.

Instruction Generation Template

Input: [INPUT]
Output: [OUTPUT]

Input: [INPUT]
Output: [OUTPUT]

Input: [INPUT]
Output: [OUTPUT]

Input: [INPUT]
Output: [OUTPUT]

Input: [INPUT]
Output: [OUTPUT]

The instruction was to

Figure 6: The prompt for our white-box LLM to generate instructions.

To evaluate an instruction, we use the following prompting template on a test input (Fig. 7) where
[INSTRUCTION] is replaced with the instruction ρ and [TEST INPUT] is replaced with test input
from a separate test set DT .

Evaluation Template

Instruction: [INSTRUCTION]

Input: [TEST INPUT]

Output:

Figure 7: The prompt for the black-box LLM to generate answer/output.

Datasets & Preprocessing. The 30 datasets for instruction induction in Sec. 4.1 are the same as
those in InstructZero (Chen et al., 2023b). We omitted 2 datasets, namely CS Algorithms, and ASCII,
because the test datasets for these two tasks are not open-sourced. For the SAMSum dataset, we
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select 200 data points from the original test dataset as a test dataset to save the cost of evaluation (i.e.,
the cost of calling ChatGPT API). For the arithmetic reasoning datasets (i.e., GSM8K, AQUARAT,
SVAMP), we process the dataset the same way as APE (Zhou et al., 2023) does. For GSM8K and
AQUARAT, we use all test data from each corresponding test dataset to evaluate the test accuracy of
the instruction. For AQUARAT, we sample 400 data points from its test datasets as DT for evaluating
the test accuracy to save the cost of the evaluation. For all arithmetic reasoning datasets, we sample
200 data points from each corresponding training dataset as the validation dataset DV .

Evaluation Metrics. For instruction induction, we use the F1 score for “common_concept”, “infor-
mal_to_formal” and SAMSum; we use the exact set matching for “orthography_starts_with” and
“taxonomy_animal”; we check whether the output label is contained in the model output for the task
of “synonyms”; and we adopt the “exact match” metric for the rest of instruction induction tasks. For
the SAMSum dataset, we additionally provide ROUGE-1, ROUGE-2, and ROUGE-L (Lin, 2004) as
the evaluation metrics. For the arithmetic reasoning datasets, we use the same way as APE (Zhou
et al., 2023) to extract the answer (e.g., numbers or choices) from the generated text and use accuracy
as the metric.

White/Black-box Models. We follow InstructZero to use Vicuna-13B as the default white-box
model for instruction generation and GPT-3.5-turbo as the default black-box model for evaluation.
However, the versions for these models are not specified by the InstructZero paper. Especially
for GPT-3.5-turbo, the model is continually updated by OpenAI. To ensure fair comparison and
reproducibility, we use GPT-3.5-turbo-0301 (which will be supported by OpenAI until at least June
2024) and Vicuna-13B-v1.1 as the default model choices for all the experiments carried out in this
paper.

Hyperparameter Details for the Neural Bandit Algorithm. We set λ = 0.1 (Sec. 3.1) and νt = 1
(Sec. 3.2) in all experiments. When doing the random projection, the elements in the projection
matrix are sampled i.i.d. from Uni(−1, 1). We choose the number of hidden representations in the
discrete domain Z̃ to be 10000 and at each iteration of our INSTINCT, we randomly sample 1000

data points from the Z̃ to evaluate the NeuralUCB acquisition function to accelerate our algorithm.
We stack an MLP on top of the hidden representations of the pre-trained transformer language model.
The MLP has an input dimension of 5120, an output dimension of 1, and a hidden layer of size 100.
We train the MLP following to minimize the mean squared error (MSE) loss for 1000 iterations after
each new observation point. A default learning rate of 0.001 is used.

Repeated Experiments with Seeding. For both our INSTINCT and InstructZero, when we perform
a grid search over the intrinsic dimension (within {10, 50, 100}) and the number of soft tokens (within
{3, 5, 10}) using the validation set for each task, we only conduct this grid search for 1 of the 3 trials,
and directly use the best parameters found in the first trial in the remaining 2 trials. This is done to
save computational costs.

C.2 INSTRUCTION INDUCTION

For better distinguishability, we only presented the tasks for which any method has an average test
accuracy less than 0.8 (i.e., more challenging tasks) in the main text. A full comparison including
all tasks is given in Table 9 below. Overall, our INSTINCT significantly outperforms the APE and
InstructZero baselines, achieving the best performance in 19 out of the 30 instruction induction tasks.
To assess the performance of the methods from their ranks in each task, INSTINCT also achieves
the highest average ranking of 1.53 over all instruction induction tasks.

Visualizing the Optimization Process. We additionally investigate the optimization process of our
INSTINCT algorithm in finding the best instruction. Fig. 8 presents the average test performance
(over 3 random seeds) of the best instruction so far over optimization iterations. We partition the
optimization process into three stages, namely stage A, B, C, which corresponds to iteration 30, 90,
150, respectively. We see steady improvements as the optimization progresses, producing better
instructions that capture the input-output relationships of the tasks. The instructions at stage C
matches closely to the task descriptions provided in Fig. 8. Interestingly, we also observe that
the instruction that performs best on LLM does not necessarily correspond to human perception.
For example, in the task of object_counting, the instruction outputted at stage B may seem more
appropriate to a human being as compared to the instruction at stage C. However, the latter achieves
better test performance. This further necessitates an automatic instruction tuning algorithm like
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Task description: given a sentence and a letter, output the words
that start with the letter in the sentence.

Iteration Instruction
A The instruction was to find a word that could be

formed by rearranging the letters of the given word
B The instruction was to find the word that the input

corresponds to, and output it
C The instruction was to output the word that starts

with the letter that was inputted

Task description: given a sentence, output the number of objects in
the sentence.

Iteration Instruction
A The instruction was to output the number of items

that the speaker has, given the list of items that the
speaker possesses

B The instruction was to output the number of objects
mentioned in the input

C The instruction was to output the number of items
the player has, but the player has entered the num-
ber of items instead

Task description: given a list of shuffled letters, rearrange the letters
to form a meaningful word.

Iteration Instruction
A The instruction was to output the word that the

input word spells when the letters are rearranged
in a specific order

B The instruction was to output the word that is
formed by rearranging the letters of the given word

C The instruction was to output the word that is
formed by rearranging the letters of the given word

Task description: translate the words from English to Spanish.
Iteration Instruction

A The instruction was to translate the words from
Spanish to English

B The instruction was to translate the words from
English to Spanish

C The instruction was to translate the words from
English to Spanish

Figure 8: The test accuracy of the best instruction found as the iteration increases. The quality of the
instruction (i.e., test accuracy) increases as more iterations are used to perform our INSTINCT.

INSTINCT which streamlines the process to generate task-specific instructions that work the best on
a given black-box LLM.

C.3 IMPROVING ZERO-SHOT CHAIN-OF-THOUGHT INSTRUCTIONS

To improve the chain-of-thought instruction for arithmetic reasoning tasks, we use the following
instruction generation prompt for the white-box LLM. Note that when finding the chain-of-thought
instruction, we fix the intrinsic dimension d′ to be 1000 and search the number of soft tokens Nz

over {3, 5, 10} for both InstructZero and INSTINCT. The intrinsic dimension is set to be higher
because we find that when the intrinsic dimension is smaller than 1000, the variety of the generated
instructions will be small (i.e., different soft prompts will result in the same instruction). Increasing
the number of intrinsic dimensions will increase the L2 norm of the soft prompt (as we will investigate
in App. E.2) and thus affect the generated instruction more (i.e., generating different instructions
given different soft prompts). As shown in Fig. 9, we ask the white-box LLM to generate prompts
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to solve the math problems and we provide 3 example chain-of-thought instructions to guide the
white-box LLM to generate chain-of-thought style instructions as similarly used by (Yang et al.,
2023). These examples are important since the white-box LLM needs to know what are the possible
instructions for other LLMs to do chain-of-thought. The other part of the setting is the same as the
setting in the instruction induction task.

Instruction Generation Template for Chain-of-thought

I have some instruction examples for solving school math problems.

Instruction:
Let’s figure it out!

Instruction:
Let’s solve the problem.

Instruction:
Let’s think step by step.

Write your new instruction that is different from the examples to solve the school math problems.

Instruction:

Figure 9: The prompt for our white-box LLM to generate chain-of-thought instructions.

D MORE DETAILS ON ABLATION STUDY

D.1 HIDDEN REPRESENTATIONS GIVE BETTER SIMILARITY MEASURE (MORE DETAILS)

informal_to_formal num_to_verbal

Figure 10: Two additional tasks for Fig. 4. See the caption of Fig. 4 for a detailed explanation.

Here we give more discussions as to why the hidden representations lead to better similarity measures
compared with the original soft prompts, which has been verified by our experiments in Sec. 5.

Note that we feed every soft prompt zt (i.e., a continuous vector) to the white-box LLM w to produce
the instruction ρt (i.e., a sentence), which is then passed to the black-box LLM f for evaluation
(Fig. 2). As a result, there exist multiple soft prompts (i.e., continuous vectors) that map to the
same instruction. Therefore, it is important for an instruction optimization algorithm to take this
into account in order to achieve efficient exploration of the space of soft prompts (i.e., to avoid
unnecessary queries at multiple soft prompts which map to the same instruction). Despite their
instruction-coupled kernel (Chen et al., 2023b), InstructZero is unable to account for this issue when
computing the similarity between an already-queried soft prompt and a new soft prompt, because
its similarity measure reduces to the standard L2 distance-based kernel (i.e., the Matérn kernel). In
contrast, our INSTINCT algorithm is able to take this issue into account because it builds the NN
surrogate on top of the hidden representations of the soft prompts (Sec. 3.1) which makes it easier to
identify pairs of soft prompts that map to the same instruction.
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Fig. 10 below presents the results for two additional tasks (in addition to the two tasks shown in the
main paper in Fig. 4). The results from these additional figures lead to the same interpretations as
Fig. 4 in the main paper, i.e., for pairs of soft prompts leading to the same instruction, the hidden
representations make it much easier to identify that they should be assigned high similarity values.

Table 5: Table containing the results for all tasks in our ablation study on further improving our
INSTINCT algorithm via one-shot in-context-learning (Sec. 5) The results here correspond to Table
4 in Sec. 5 in the main paper.

Task zero-shot test-time-only one-shot one-shot
INSTINCT INSTINCT INSTINCT

active_to_passive 0.9700(0.0245) 1.0000(0.0000) 0.9967(0.0027)
antonyms 0.8467(0.0027) 0.8533(0.0027) 0.8633(0.0072)
auto_categorization 0.2500(0.0330) 0.3000(0.0125) 0.3000(0.0216)
auto_debugging 0.2917(0.0340) 0.4583(0.0680) 0.6250(0.0000)
cause_and_effect 0.5867(0.0871) 0.6267(0.0871) 0.7733(0.0109)
common_concept 0.2129(0.0019) 0.2496(0.0019) 0.1812(0.0243)
diff 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
first_word_letter 0.9300(0.0531) 1.0000(0.0000) 1.0000(0.0000)
informal_to_formal 0.5534(0.0000) 0.5159(0.0000) 0.5362(0.0139)
larger_animal 0.9367(0.0027) 0.9267(0.0027) 0.9300(0.0000)
letters_list 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
negation 0.8167(0.0027) 0.8567(0.0054) 0.8433(0.0223)
num_to_verbal 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
object_counting 0.3400(0.0698) 0.3567(0.0119) 0.4600(0.0216)
odd_one_out 0.7000(0.0163) 0.6333(0.0109) 0.6667(0.0054)
orthography_starts_with 0.6667(0.0272) 0.6667(0.0191) 0.7167(0.0027)
periodic_elements 0.9267(0.0272) 0.9800(0.0000) 1.0000(0.0000)
rhymes 1.0000(0.0000) 0.7467(0.2068) 1.0000(0.0000)
second_word_letter 0.1000(0.0411) 0.2433(0.0530) 0.4567(0.0191)
sentence_similarity 0.1400(0.0047) 0.1600(0.0000) 0.2400(0.0573)
sentiment 0.8967(0.0144) 0.9167(0.0072) 0.8933(0.0027)
singular_to_plural 1.0000(0.0000) 0.9933(0.0027) 0.8433(0.0650)
sum 1.0000(0.0000) 1.0000(0.0000) 0.9933(0.0054)
synonyms 0.3067(0.0491) 0.3700(0.0694) 0.4600(0.0047)
taxonomy_animal 0.8567(0.0599) 0.8967(0.0495) 0.9233(0.0098)
translation_en-de 0.8400(0.0047) 0.8300(0.0082) 0.8367(0.0027)
translation_en-es 0.8800(0.0000) 0.8700(0.0047) 0.8833(0.0027)
translation_en-fr 0.8300(0.0205) 0.8767(0.0072) 0.8867(0.0119)
word_sorting 0.5133(0.0027) 0.6200(0.0047) 0.6200(0.0340)
word_unscrambling 0.6333(0.0072) 0.5833(0.0098) 0.5467(0.0191)
# best-performing tasks 11 11 19
average rank 2.13 1.83 1.53

D.2 IMPROVING INSTINCT VIA ONE-SHOT IN-CONTEXT LEARNING

We have demonstrated in Table 4 (in the main text) the improved performance of instruction induction
when incorporating one-shot in-context learning into our algorithm. Table 5 shows the results of all
30 instruction induction tasks. One-shot INSTINCT is the best-performing method in 19 out of 30
tasks with a highest average ranking of 1.53. Therefore, we draw the same conclusion as the main
text that our INSTINCT is compatible with in-context learning and has wider potential applications
of our INSTINCT through its combination with in-context learning.

Now, we elaborate on the necessary modifications in the implementation to carry out one-shot
in-context learning with INSTINCT. To directly adopt in-context learning at test time (i.e., for our
test-time-only one-shot INSTINCT algorithm), we modify the evaluation template to include one
exemplar as a demonstration. Referring to Fig. 11, [INSTRUCTION] is replaced with the instruction
ρ, [INPUT] and [OUTPUT] pairs are replaced with one exemplar’s input and output, and [TEST
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INPUT] is replaced with test input from a separate test set DT . For one-shot INSTINCT, we use the
one-shot evaluation template (Fig. 11) for both validation and test.

One-shot Evaluation Template

Instruction: [INSTRUCTION]

Input: [INPUT]
Output: [OUTPUT]

Input: [TEST INPUT]

Output:

Figure 11: The prompt for the black-box LLM to generate answer/output.

D.3 IMPROVE INSTINCT WITH CHATGPT REPHRASING (MORE DETAILS)

To rephrase the instruction using ChatGPT to further improve the performance of INSTINCT as
discussed in Sec. 5, we use the prompting template as shown in Fig. 12 to rephrase every instruction
ρt generated by Vicuna in every iteration t. The [INSTRUCTION] in Fig. 12 is replaced by the
instruction ρt generated by Vicuna and the [INPUT] and [OUTPUT] are the same exemplars we used
for generating the instruction from Vicuna (i.e., the set E of exemplars in Fig. 2).

Rephrasing Template

We have an instruction to write an output for each input: [INSTRUCTION]. Here are some
input-output pairs:
Input: [INPUT]
Output: [OUTPUT]

Input: [INPUT]
Output: [OUTPUT]

Input: [INPUT]
Output: [OUTPUT]

Input: [INPUT]
Output: [OUTPUT]

Input: [INPUT]
Output: [OUTPUT]

We need a better rephrasing of the instruction to guide a person in writing a correct
output for an input. The rephrased instruction is to

Figure 12: The prompt template for rephrasing instruction generated by INSTINCT using ChatGPT
to further boost the performance.

We also present Table. 6 containing results corresponding to Fig. 5 in the main text. We observe
the potential to further improve difficult tasks by exploiting the strong paraphrasing capability of
ChatGPT.

D.4 EFFECTIVENESS OF PRINCIPLED EXPLORATION

We verify the effectiveness of the principled exploration of our INSTINCT algorithm facilitated
by the uncertainty term σ(·, ·) in equation 2, which is one of the important strengths of our
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Table 6: Test accuracy achieved by our technique of ChatGPT rephrasing (Sec. 5) to further improve
the performance of our INSTINCT. The results here correspond to Fig. 5 in the main paper.

INSTINCT INSTINCT+ChatGPT
auto_categorization 0.2500(0.0330) 0.2800(0.0027)
auto_debugging 0.2917(0.0340) 0.2917(0.0113)
cause_and_effect 0.5867(0.0871) 0.7867(0.0960)
common_concept 0.2129(0.0019) 0.1644(0.0024)
informal_to_formal 0.5534(0.0000) 0.5533(0.0057)
odd_one_out 0.7000(0.0163) 0.7067(0.0048)
object_counting 0.3400(0.0698) 0.5400(0.0072)
orthography_starts_with 0.6667(0.0272) 0.7133(0.0048)
second_word_letter 0.1000(0.0411) 0.9733(0.0059)
sentence_similarity 0.1400(0.0047) 0.1367(0.0524)
synonyms 0.3067(0.0491) 0.2867(0.0398)
word_sorting 0.5133(0.0027) 0.6200(0.0047)
word_unscrambling 0.6333(0.0072) 0.6067(0.0119)

INSTINCT (Sec. 3.4). To achieve this, we compare the performance of our INSTINCT algo-
rithm when the weighting parameter νt (equation 2) is set to (i) the default value of νt = 1 (i.e.,
with exploration) which is used in all our experiments and (ii) νt = 0 (i.e., no exploration). As
shown in Table 7, having principled exploration helps dramatically improve the instruction induction
performance, which verifies the necessity of the principled exploration in our INSTINCT algorithm.

Table 7: Performance of INSTINCT with νt = 1 (with our principled exploration) and νt = 0 (no
exploration). See a detailed explanation in App. D.4.

Algorithm νt = 1 νt = 0
active_to_passive 1.000000 0.950000
antonyms 0.850000 0.860000
auto_categorization 0.300000 0.320000
common_concept 0.217614 0.210471
informal_to_formal 0.553387 0.553387
negation 0.820000 0.810000
object_counting 0.410000 0.380000
odd_one_out 0.740000 0.680000
second_word_letter 0.160000 0.100000
sentence_similarity 0.150000 0.140000
sentiment 0.930000 0.880000
synonyms 0.390000 0.370000
taxonomy_animal 0.930000 0.950000
translation_en-fr 0.880000 0.820000
word_sorting 0.510000 0.520000
word_unscrambling 0.650000 0.410000

E MORE TECHNICAL DETAILS ON OUR INSTINCT ALGORITHM (SEC. 3)

E.1 MORE TECHNICAL DETAILS ON OUR PRINCIPLED UNCERTAINTY MEASURE

Here we explain the detailed calculation of our principled measure of uncertainty σt−1(g(z); θt−1)
Sec. 3.2), which has been derived based on the theory of neural tangent kernel (NTK) (Jacot et al.,
2018; Arora et al., 2019) and neural bandits (Zhou et al., 2020; Zhang et al., 2021).

We use ∇θm(g(z), θt−1) to represent the gradient of the NN parameters θ evaluated at θt−1, denote
by p the total number of parameters of the NN surrogate, and use Ip×p to represent the p × p-
dimensional identity matrix. In iteration t, i.e., after the first t− 1 observations {

(
g(zτ ), hτ

)
}t−1
τ=1
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have been collected, we firstly calculate the following p× p-dimensional matrix:

Vt−1 =

t−1∑
τ=1

∇θm(g(z), θt−1)∇θm(g(z), θt−1)
⊤ + λIp×p. (3)

Next, our uncertainty about the function value h(z) at z is calculated as:

σt−1(g(z); θt−1) =
√
∇θm(g(z), θt−1)⊤V

−1
t−1∇θm(g(z), θt−1). (4)

Formally, σt−1(g(z); θt−1) is the Gaussian process (GP) posterior standard deviation (Ras-
mussen & Williams, 2006) when the empirical NTK is used as the kernel: k(z1, z2) =
∇θm(g(z1), θt−1)

⊤∇θm(g(z2), θt−1). Note that when calculating the uncertainty σt−1(g(z); θt−1)
here, we have treated the hidden representation g(z) as the input, which is justified because the hidden
representation is fixed since we freeze the parameters of the white-box LLM w (i.e., the pre-trained
transformer).

The calculation of σt−1(g(z); θt−1) in equation 4 requires inverting the matrix Vt−1 which is usually
computationally prohibitive since the number p of parameters of the NN is usually very large.
Therefore, we have followed the common practice in neural bandits (e.g., adopted by both NeuralUCB
(Zhou et al., 2020) and NeuralTS (Zhang et al., 2021)) to use a diagonal approximation of Vt−1. That
is, we only keep the diagonal elements of Vt−1 and set all other matrix elements to 0, which allows
us to sidestep the computational cost of matrix inversion.

E.2 DETAILED EXPLANATION ON THE IMPACT OF THE INTRINSIC DIMENSION

In this section, through both theoretical analysis and empirical demonstrations, we analyze the impact
of the intrinsic dimension d′ of the random variable drawn from the Sobel sequence on the norm of
the soft prompt. Our results here provide justifications for our discussion in Sec. 3.2 in the paragraph
Generating the Discrete Domain Z̃.

Let z′ ∈ Rd′
be the vector drawn from the Sobel sequence where d′ is the intrinsic dimension. Note

that each element of z′ is identically and independently distributed (i.i.d.), i.e., z′j ∼ Uni(0, 1). We
use A ∈ Rd×d′

to denote a random projection matrix where each element Aij ∼ Uni(−1, 1) is also
i.i.d. distributed.

Now, consider z = Az′ and we want to calculate ∥z∥2. We can alternatively express

A =


A1

A2

...
Ad

 , Az′ =


A1z

′

A2z
′

...
Adz

′


where each Ai is a row vector of dimension d′ and Aiz

′ =
∑d′

j=1 Aijz
′
j .

Then,

E
[
∥z∥2

]
= E

[
∥Az′∥2

]
= E

 d∑
i=1

(Aiz
′)2


= E

 d∑
i=1

 d′∑
j=1

Aijz
′
j

2


(a)
=

d∑
i=1

d′∑
j=1

E
[(

Aijz
′
j

)2
]

(b)
= dd′E

[
A2

ij

]
E
[
z′2j

]
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where (a) follows from the fact that all elements are independent random variables and (b) follows
from i.i.d. Aij and i.i.d. z′j . Therefore, we have shown that E

[
∥z∥2

]
∝ d′.

We perform a synthetic experiment to verify the result we derived above. Specifically, for a fixed
intrinsic dimension, we sample 1000 Sobol sequences and use random projection to project them to
the soft prompt space. We compute the average square of the L2 norm of the 1000 soft prompts. We
vary the intrinsic dimension from 10 to 1000. As shown in Fig. 13, when increasing the number of
intrinsic dimensions, the square of the L2 norm of the corresponding soft prompts increases linearly
with the number of intrinsic dimensions.

Figure 13: The square of the L2 norm of the soft prompt as the number of intrinsic dimensions
increases from 10 to 1000.
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Table 8: The best instruction discovered by our INSTINCT algorithm for every instruction induction
task (Sec. 4.1).

Task Best instruction
active_to_passive The instruction was to flip the subject and verb in each sentence, but keep the

preposition the same
antonyms The instruction was to take a word and change it to its opposite
auto_categorization The instruction was to create a list of things that the input could be associated with,

and the output would be the category that the input belongs to
auto_debugging The instruction was to add a line of code to the input to change the output
cause_and_effect The instruction was to identify the sentence that is the cause of the effect in the input

sentence pair
common_concept The instruction was to "involve" the objects mentioned in the input, so the answer

would be "involve oscillations" for the input "guitars, pendulums"
diff The instruction was to be:. Input: 41 13. Output: 28. The instruction was to be:.

Input: 72 31. Output: 41. The instruction was to be:. Input: 125 35. Output: 90.
first_word_letter The instruction was to input the word "year" into the computer and the output was

"y". The instruction was to input the word "trust" into the computer and the output
was "t". The instruction was to input the word "qualification" into the computer and
the output was "q".

informal_to_formal The instruction was to convert the input sentence into an output sentence that is
grammatically correct and idiomatic in English

larger_animal The instruction was to create a program that takes an input of two animals and
outputs the animal that is bigger

letters_list The instruction was to output the input with a space after each letter
negation The instruction was to make the output false by adding the word "not" to the input
num_to_verbal The instruction was to convert numbers to words
object_counting The instruction was to output the number of objects in the input list, but the number

of objects was not limited to just whole numbers
odd_one_out The instruction was to find the word that is most dissimilar to the others in the group
orthography_starts_with The instruction was to output the word that starts with the letter that was inputted
periodic_elements The instruction was to write a program that takes an input of a number and outputs

the name of the element that corresponds to that number on the periodic table
rhymes The instruction was to output the first word that appeared in the input text, with no

extra spaces
second_word_letter The instruction was to input the word ’year’ and output the word ’e’. The input ’year’

was not found in the list of words provided
sentence_similarity The instruction was to classify the following sentences based on their degree of

certainty, using the following scale:. 1 - probably. 2 - possibly. 3 - probably not. The
results are as follows:. Sentence 1: 3 - probably not. Sentence 2: 2 - possibly.

sentiment The instruction was to output positive or negative based on the sentiment of the
review, regardless of whether the review was actually positive or negative

singular_to_plural The instruction was to add -s to the end of each word, which indicates plural
sum The instruction was to add the numbers of the two input numbers
synonyms The instruction was to create a list of words that could be used in the same way as

the original words
taxonomy_animal The instruction was to output the name of an animal that starts with the letter "H".

Input: horse, pajamas, scarf, hippo, egg, whale. Output: whale, horse, pajamas, scarf,
hippo. The instruction was to output the name of an animal

translation_en-de The instruction was to translate the input words into German, and the output was the
German word that corresponded to the input word

translation_en-es The instruction was to translate the following text:. Input: press. Output: prensa.
Input: participant. Output: participante. Input: company. Output: compañía. Input:
outline. Output: contorno. Input: label. Output: etiquetar. The translation is not
accurate, the output does

translation_en-fr The instruction was to be given in French, but the words were often mispronounced,
and the. Input: student. Output: étudiant. Input: doctor. Output: médecin. Input:
lawyer. Output: avocat. Input: engineer. Output: ingénieur. Input: chef. Output:
chef

word_sorting The instruction was to "List: Serve wittgenstein emissive explicable ahmedabad
grebe" and the output was "ahmedabad emissive explicable grebe serve wittgenstein"

word_unscrambling The instruction was to output the word that is formed by rearranging the letters of
the given word
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Table 9: Test accuracy (standard error) for the best instruction discovered by different algorithms for
all instruction induction tasks (Sec. 4.1). The results are obtained using 3 independent trials with
different random seeds. The Table corresponds to Table 1 in the main paper, except that all tasks are
shown here.

Algorithm APE InstructZero INSTINCT
active_to_passive 1.0000(0.0000) 0.9967(0.0027) 0.9700(0.0245)
antonyms 0.6367(0.1416) 0.8267(0.0072) 0.8467(0.0027)
auto_categorization 0.2500(0.0094) 0.2567(0.0119) 0.2500(0.0330)
auto_debugging 0.2917(0.0340) 0.3750(0.0000) 0.2917(0.0340)
cause_and_effect 0.5733(0.0891) 0.8133(0.0109) 0.5867(0.0871)
common_concept 0.0691(0.0207) 0.0864(0.0398) 0.2129(0.0019)
diff 0.6733(0.2667) 0.6933(0.2224) 1.0000(0.0000)
first_word_letter 1.0000(0.0000) 1.0000(0.0000) 0.9300(0.0531)
informal_to_formal 0.5736(0.0026) 0.5310(0.0024) 0.5534(0.0000)
larger_animal 0.8967(0.0054) 0.9000(0.0408) 0.9367(0.0027)
letters_list 1.0000(0.0000) 0.5900(0.1674) 1.0000(0.0000)
negation 0.7533(0.0109) 0.7767(0.0136) 0.8167(0.0027)
num_to_verbal 0.9967(0.0027) 1.0000(0.0000) 1.0000(0.0000)
object_counting 0.3633(0.0191) 0.3600(0.0929) 0.3400(0.0698)
odd_one_out 0.6333(0.0144) 0.6133(0.0871) 0.7000(0.0163)
orthography_starts_with 0.4567(0.1477) 0.5067(0.0871) 0.6667(0.0272)
periodic_elements 0.9267(0.0218) 0.8667(0.0606) 0.9267(0.0272)
rhymes 0.1567(0.0640) 1.0000(0.0000) 1.0000(0.0000)
second_word_letter 0.7467(0.2028) 0.4333(0.1872) 0.1000(0.0411)
sentence_similarity 0.0000(0.0000) 0.0000(0.0000) 0.1400(0.0047)
sentiment 0.9133(0.0144) 0.8767(0.0242) 0.8967(0.0144)
singular_to_plural 1.0000(0.0000) 0.9867(0.0109) 1.0000(0.0000)
sum 0.6733(0.2667) 1.0000(0.0000) 1.0000(0.0000)
synonyms 0.3600(0.0759) 0.2767(0.0925) 0.3067(0.0491)
taxonomy_animal 0.3467(0.2341) 0.7167(0.0838) 0.8567(0.0599)
translation_en-de 0.8400(0.0047) 0.8233(0.0098) 0.8400(0.0047)
translation_en-es 0.8700(0.0000) 0.8733(0.0054) 0.8800(0.0000)
translation_en-fr 0.8867(0.0027) 0.8767(0.0027) 0.8300(0.0205)
word_sorting 0.3300(0.0374) 0.3100(0.1143) 0.5133(0.0027)
word_unscrambling 0.4400(0.1389) 0.5500(0.0170) 0.6333(0.0072)
#tasks that perform the best 12 7 19
#tasks that perform the second 5 14 6
Average ranking 2.03 2.07 1.53
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E.3 PERFORMANCE OF INSTRUCTZERO AND INSTINCT UNDER DIFFERENT SOFT PROMPT
DIMENSIONALITIES

We vary the soft prompt dimensionality by changing the number of soft tokens to see how the
performance of INSTINCT and InstructZero changes. Specifically, we vary the number of soft
tokens among [3, 5, 10] which corresponds to soft prompt dimensionalities of [15360, 26500, 51200]
respectively. Fig. 14 shows the performance comparison between INSTINCT and InstructZero. The
performance is measured by the fraction of tasks that each approach achieves the best performance
among the performance of InstructZero and INSTINCT. As the soft prompt dimensionality increases,
the performance of InstructZero drops. When the soft prompt dimensionality is 51200, the fraction of
achieving the best performance for InstructZero drops dramatically compared to when the soft prompt
dimensionality is 5120. While for INSTINCT, the performance does not drop significantly as the soft
prompt dimensionality increases. Fig. 15 shows the test accuracy of the instructions generated from
InstructZero and INSTINCT for the detailed tasks when the soft prompt dimensionality changes.
Similarly, the performance of InstructZero generally drops when the soft prompt dimensionality
increases while the performance of INSTINCT remains stable and better than InstructZero.

Figure 14: The fraction of tasks that one approach achieves the best performance among 30 instruction
induction tasks under different soft prompt dimensionalities. Higher is better.

Figure 15: Test accuracy on different instruction induction tasks under different soft prompt dimen-
sionalities.
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F SPEEDUP OF USING PRE-COMPUTATION

We have conducted additional experiments to compare the running time of our INSTINCT algorithm
with and without the pre-computation of the representations. The results (Table 10) show that the
pre-computation dramatically reduces the running time of our INSTINCT algorithm.

Table 10: The running time (± standard error) of our INSTINCT algorithm with and without
pre-computation. The results are averaged on 20 instruction induction tasks in Table 1.

Algorithm Running time
(165 iterations)

Running time
(500 iterations)

Running time
(1000 iterations)

Running time
(2000 iterations)

Without pre-computation 77.71 mins (±6.03 mins) 270.88 mins (±5.11 mins) 541.76 mins (±10.21 mins) 1083.52 mins (±20.42 mins)
INSTINCT (with pre-computation) 29.05 mins (±0.54 mins) 80.13 mins (±0.17 mins) 156.37 mins (±0.24 mins) 308.86 mins (±0.38 mins)
Speedup 2.68 times 3.38 times 3.46 times 3.50 times

In Table 10, "Without pre-computation" is the baseline whose only difference with our INSTINCT al-
gorithm is that this baseline uses forward pass to compute every hidden representation in each
iteration, and "INSTINCT (with pre-computation)" is our algorithm. The first column in Table 10
(165 iterations, same as the experiments in our paper) shows that pre-computation drastically reduces
the running time of our INSTINCT algorithm from 78 mins to 29 mins. In addition, Table 10 also
shows that in tasks that require more iterations, the pre-computation brings even more significant
speed-ups. This is because as the number of iterations increases, the cost of pre-computation is further
amortized across more iterations, which makes the computational savings offered by pre-computation
more pronounced.

We perform additional experiments to empirically compare the running time of InstructZero and our
INSTINCT. The results (Table 11) show that our INSTINCT has comparable computational costs
with InstructZero.

Table 11: The running time (± standard error) of InstructZero and our INSTINCT. The results are
averaged over the 20 instruction induction tasks in Table 1.

Algorithm Total running time Time for querying ChatGPT
InstructZero 18.00 mins (±0.41 mins) 11.97 mins (±0.35 mins)
INSTINCT (including pre-computation) 29.05 mins (±0.54 mins) 11.99 mins (±0.32 mins)

Our INSTINCT is slightly slower than InstructZero due to the use of the neural network and
the pre-computation of the transformer representations. However, with this slight increase in the
computational cost, our INSTINCT has achieved significantly better performances than InstructZero
as demonstrated in Table 1, Table 3, Table 2, and Table 4. Moreover, as shown in Table 10, the
method of pre-computation is crucial for our INSTINCT to achieve a comparable computational
cost with InstructZero, and the benefit of the pre-computation becomes more significant as a larger
query budget is adopted. This further demonstrates the importance of the contribution of our method
of pre-computation.

G ADDTIONAL COMPARISON WITH THE EVOLUTIONARY ALGORITHM

Recent concurrent works (e.g., EvoPrompt (Guo et al., 2023) and PROMPTBREEDER (Fernando
et al., 2023)) use the evolutionary algorithm to find the best instructions. To further demonstrate
our superior performance over these evolutionary algorithm-based methods, we perform additional
experiments to compare with the concurrent work: EvoPrompt (released on arXiv only on Sep 15,
2023). The results (Table 12) show that our INSTINCT significantly outperforms the concurrent
work of EvoPrompt, even though EvoPrompt requires more queries to ChatGPT. To elaborate,
EvoPrompt uses more queries to ChatGPT than our INSTINCT. This is because, in every iteration,
Evoprompt needs to query ChatGPT to generate a new instruction and query ChatGPT again to
obtain its score, whereas our INSTINCT only needs the latter query to ChatGPT (to obtain the score).
Despite of getting less feedbacks from the black-box LLM (i.e., ChatGPT), our INSTINCT still
performs better than EvoPrompt. This is because our INSTINCT is based on neural bandits which
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Table 12: Average test accuracy (standard error) achieved by the best instruction discovered by
different algorithms (including the new evolutionary algorithm-based baseline: EvoPrompt) for
different tasks (3 independent trials with different random seeds). The results including all tasks are
given in Table 1.

Task APE InstructZero EvoPrompt INSTINCT (ours)
antonyms 0.6367(0.1416) 0.8267(0.0072) 0.7967(0.0152) 0.8467(0.0027)
auto_categorization 0.2500(0.0094) 0.2567(0.0119) 0.2600(0.0309) 0.2500(0.0330)
auto_debugging 0.2917(0.0340) 0.3750(0.0000) 0.3750(0.0000) 0.2917(0.0340)
cause_and_effect 0.5733(0.0891) 0.8133(0.0109) 0.8267(0.0475) 0.5867(0.0871)
common_concept 0.0691(0.0207) 0.0864(0.0398) 0.1211(0.0000) 0.2129(0.0019)
diff 0.6733(0.2667) 0.6933(0.2224) 1.0000(0.0000) 1.0000(0.0000)
informal_to_formal 0.5736(0.0026) 0.5310(0.0024) 0.6182(0.0047) 0.5534(0.0000)
letters_list 1.0000(0.0000) 0.5900(0.1674) 1.0000(0.0000) 1.0000(0.0000)
negation 0.7533(0.0109) 0.7767(0.0136) 0.7867(0.0027) 0.8167(0.0027)
object_counting 0.3633(0.0191) 0.3600(0.0929) 0.1167(0.0626) 0.3400(0.0698)
odd_one_out 0.6333(0.0144) 0.6133(0.0871) 0.6533(0.0109) 0.7000(0.0163)
orthography_starts_with 0.4567(0.1477) 0.5067(0.0871) 0.6000(0.0205) 0.6667(0.0272)
rhymes 0.1567(0.0640) 1.0000(0.0000) 0.6133(0.0178) 1.0000(0.0000)
second_word_letter 0.7467(0.2028) 0.4333(0.1872) 0.4133(0.2397) 0.1000(0.0411)
sentence_similarity 0.0000(0.0000) 0.0000(0.0000) 0.2833(0.0357) 0.1400(0.0047)
sum 0.6733(0.2667) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
synonyms 0.3600(0.0759) 0.2767(0.0925) 0.1367(0.0054) 0.3067(0.0491)
taxonomy_animal 0.3467(0.2341) 0.7167(0.0838) 0.7167(0.1308) 0.8567(0.0599)
word_sorting 0.3300(0.0374) 0.3100(0.1143) 0.5167(0.0435) 0.5133(0.0027)
word_unscrambling 0.4400(0.1389) 0.5500(0.0170) 0.6033(0.0072) 0.6333(0.0072)
# best-performing tasks 4 3 9 11
average rank 3.05 2.6 1.95 1.8

is a global optimization algorithm that is able to utilize the historical data to efficiently balance
exploration vs. exploitation. In contrast, EvoPrompt uses evolutionary algorithm which is a local
optimization algorithm that cannot utilize historical data to efficiently explore the global search
space of instructions. Moreover, some other concurrent works on black-box methods for instruction
optimization (e.g., PROMPTBREEDER (Fernando et al., 2023)) are based on similar core ideas as
EvoPrompt, i.e., they also use a powerful LLM (e.g., ChatGPT) to propose new candidate instructions
via rephrasing and use evolutionary algorithm for instruction optimization. Therefore, we expect our
performance advantage over EvoPrompt (which is the most relevant work to our setting and the most
recent of these works to the best of our knowledge) to also hold for the other black-box methods.

H PERFORMANCE PROFILE CURVE FOR INSTRUCTION INDUCTION TASKS

Figure 16: The performance profile curve for the 20 instruction induction tasks in Table 1.

The performance profile curve (Dolan & Moré, 2002) shows how frequently the performance of
different approaches is within a certain distance of the best performance. To draw the performance
profile curve for a method, for each task i, we check whether the performance of this method in task i
is within τ distance to the best performance (among different methods) in task i, and hence define an
indicator function I(). Next, we average this indicator function across all np tasks, which yields a
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value ρ(τ) (equation 5). Finally, the performance profile curve for this method is obtained by varying
the value of τ and calculating the corresponding ρ(τ).

ρ(τ) =

∑np

i=1 I
(
(Best performance of task i − Performance of the approach on task i) ≤ τ

)
np

(5)

Fig. 16 shows the performance profile for APE, InstructZero, and INSTINCT. INSTINCT consis-
tently performs the best since it always has the highest ρ(τ) under different τ . The performance profile
curves also make it easier to visualize the performance superiority of our INSTINCT algorithm.

H.1 PEFORMANCE OF DIFFERENT COMBINATIONS OF WHITE-BOX LLMS AND BLACK-BOX
LLMS

We conduct further experiments to show that our approach is able to generalize to different com-
binations of black-box LLM and white-box LLM. Specifically, we further consider the black-box
LLM: PaLM2 (Anil et al., 2023)3, GPT4 and white-box LLM: WizardLM (Xu et al., 2023). We com-
pare six combinations: GPT3.5+Vicuna, PaLM2+Vicuna, GPT3.5+WizardLM, PaLM2+WizardLM,
GPT4+Vicuna and GPT4+WizardLM. The number of soft tokens is set to 3 and we vary the intrinsic
dimension among [10, 50, 100] to obtain the best performance. Table 13 shows the results for different
combinations.

Table 13: Test accuracy for different combinations of black-box LLMs + white-box LLMs using
INSTINCT.

Black-box LLM GPT3.5 PaLM2 GPT3.5 PaLM2 GPT4 GPT4
White-box LLM Vicuna Vicuna WizardLM WizardLM Vicuna WizardLM
antonyms 0.8200 0.8200 0.8400 0.8300 0.8300 0.8000
auto_categorization 0.1600 0.2200 0.2600 0.2100 0.1500 0.3400
auto_debugging 0.3750 0.3750 0.3750 0.3750 0.2500 0.2500
cause_and_effect 0.8000 1.0000 0.5600 1.0000 0.9600 0.8800
common_concept 0.1959 0.0312 0.1103 0.1688 0.1107 0.1562
diff 0.6700 0.9700 1.0000 1.0000 0.9800 1.0000
informal_to_formal 0.5534 0.4950 0.6071 0.5372 0.5594 0.4596
letters_list 1.0000 0.9900 1.0000 0.9300 1.0000 1.0000
negation 0.7600 0.7900 0.8000 0.8400 0.8100 0.7600
object_counting 0.3300 0.6500 0.2800 0.6000 0.5700 0.6500
odd_one_out 0.7400 0.6200 0.7400 0.6200 0.7800 0.7800
orthography_starts_with 0.4700 0.4800 0.7100 0.5200 0.6700 0.7200
rhymes 1.0000 0.9900 0.6100 0.8100 1.0000 0.9900
second_word_letter 0.1400 0.2000 0.3500 0.2300 0.8800 0.7400
sentence_similarity 0.0000 0.0000 0.0000 0.1900 0.0000 0.1100
sum 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
synonyms 0.3400 0.3600 0.1700 0.2000 0.4700 0.1400
taxonomy_animal 0.8900 0.8400 0.9300 0.8900 0.9500 1.0000
word_sorting 0.2700 0.0700 0.5400 0.1900 0.6000 0.7100
word_unscrambling 0.6500 0.1200 0.6100 0.1900 0.6900 0.6700
Average ranking 3.5 3.85 3.0 3.15 2.45 2.65

In addition to showing that our INSTINCT algorithm performs consistently well across different
combinations, the results in Table 13 also provide some additional interesting insights. Firstly,
GPT4+Vicuna achieves the best performance followed by GPT4+WizardLM, which is reasonable
because GPT4 is the state-of-the-art LLM. Secondly, using WizardLM as the white-box LLM in
general leads to better performances than using Vicuna (i.e., GPT3.5+WizardLM is better than
GPT3.5+Vicuna, and PaLM2+WizardLM is better than PaLM2+Vicuna), even though WizardLM
and Vicuna have the same number of parameters (i.e., 13B). This can also be justified because it
is corroborated by some LLM leaderboards (Li et al., 2023; Huggingface, 2023), in which Wiz-
ardLM ranks higher than Vicuna. Thirdly, using GPT3.5 as the black-box LLM generally leads

3We use text-bison-001 which is based on PaLM2
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Table 14: Test accuracy for the best instruction generated by random selection of 40 soft prompts and
the instruction generated by INSTINCT.

Task Initialization only INSTINCT (ours)
antonyms 0.8500 0.8467
auto_categorization 0.0100 0.2500
auto_debugging 0.2500 0.2917
cause_and_effect 0.5200 0.5867
common_concept 0.0045 0.2129
diff 1.0000 1.0000
informal_to_formal 0.5394 0.5534
letters_list 1.0000 1.0000
negation 0.7600 0.8167
object_counting 0.2200 0.3400
odd_one_out 0.6400 0.7000
orthography_starts_with 0.4400 0.6667
rhymes 0.4900 1.0000
second_word_letter 0.1300 0.1000
sentence_similarity 0.0000 0.1400
sum 1.0000 1.0000
synonyms 0.4200 0.3067
taxonomy_animal 0.9300 0.8567
word_sorting 0.0400 0.5133
word_unscrambling 0.5800 0.6333
# best-performing tasks 7 16

to better performances than using PaLM2 (which can be seen by comparing GPT3.5+Vicuna with
PaLM2+Vicuna, and comparing GPT3.5+WizardLM with PaLM2+WizardLM), which is consistent
with the LLM leaderboard in LMSYS (2023).

I PERFORMANCE GAIN WITH RESPECT TO RANDOM INITIALIZATION

We compare the instruction generated by INSTINCT with the best instruction generated by random
selection of 40 and 165 soft prompts to show the improvement of our algorithm over random
selection. The results are in Table 14 and Table 15. The results show that our INSTINCT consistently
outperforms these two pure exploration baselines. This is because our INSTINCT effectively
balances exploration vs. exploitation during the optimization process.

J COMPARISON WITH OTHER MODERN BO STRATEGIES

We conduct additional experiments on using other modern BO strategies: BORE (Tiao et al., 2021)
and TuRBO (Eriksson et al., 2019) to modify the BO strategy used in InstructZero and show that our
INSTINCT algorithm performs significantly better than BORE and TuRBO. Specifically, we further
compare BORE and TuRBO which are two of the state-of-the-art modern BO strategies. Note that
TPE (Bergstra et al., 2011) is compared in the BORE paper and BORE outperforms TPE by a large
margin. Therefore, we will not compare TPE here.

From Table 16, we can see that our INSTINCT algorithm performs the best and is significantly better
than other BO strategies, i.e., InstructZero, InstructZero (BORE), InstructZero (TuRBO). Specifically,
InstructZero (BORE) performs better than the original InstructZero, this is because BORE enjoys
an improved expressiveness by casting the computation of EI as a binary classification problem
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Table 15: Test accuracy for the best instruction generated by random selection of 165 soft prompts
and the instruction generated by INSTINCT.

Task 165 random INSTINCT (ours)
antonyms 0.8067 0.8467
auto_categorization 0.2033 0.2500
auto_debugging 0.2917 0.2917
cause_and_effect 0.5467 0.5867
common_concept 0.0196 0.2129
diff 0.2533 1.0000
informal_to_formal 0.4200 0.5534
letters_list 1.0000 1.0000
negation 0.6733 0.8167
object_counting 0.3533 0.3400
odd_one_out 0.6733 0.7000
orthography_starts_with 0.5233 0.6667
rhymes 0.6000 1.0000
second_word_letter 0.1167 0.1000
sentence_similarity 0.0133 0.1400
sum 0.9433 1.0000
synonyms 0.2300 0.3067
taxonomy_animal 0.9367 0.8567
word_sorting 0.2400 0.5133
word_unscrambling 0.5867 0.6333
# best-performing tasks 5 17

Table 16: Average test accuracy (standard error) achieved by the best instruction discovered by
different algorithms (including the new modern BO strategies: BORE and TuRBO) for different tasks
(3 independent trials with different random seeds). The results including all tasks are given in Table
1.

Task APE InstructZero InstructZero (TuRBO) InstructZero (BORE) EvoPrompt INSTINCT (ours)
antonyms 0.6367(0.1416) 0.8267(0.0072) 0.8400(0.0100) 0.8467(0.0067) 0.7967(0.0152) 0.8467(0.0027)
auto_categorization 0.2500(0.0094) 0.2567(0.0119) 0.1333(0.1135) 0.2633(0.0033) 0.2600(0.0309) 0.2500(0.0330)
auto_debugging 0.2917(0.0340) 0.3750(0.0000) 0.2917(0.0417) 0.2917(0.0417) 0.3750(0.0000) 0.2917(0.0340)
cause_and_effect 0.5733(0.0891) 0.8133(0.0109) 0.6400(0.1442) 0.6400(0.1007) 0.8267(0.0475) 0.5867(0.0871)
common_concept 0.0691(0.0207) 0.0864(0.0398) 0.1122(0.0371) 0.1280(0.0576) 0.1211(0.0000) 0.2129(0.0019)
diff 0.6733(0.2667) 0.6933(0.2224) 0.5567(0.2774) 0.6500(0.2829) 1.0000(0.0000) 1.0000(0.0000)
informal_to_formal 0.5736(0.0026) 0.5310(0.0024) 0.3341(0.1454) 0.4941(0.0275) 0.6182(0.0047) 0.5534(0.0000)
letters_list 1.0000(0.0000) 0.5900(0.1674) 0.6200(0.2610) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
negation 0.7533(0.0109) 0.7767(0.0136) 0.7867(0.0384) 0.7800(0.0603) 0.7867(0.0027) 0.8167(0.0027)
object_counting 0.3633(0.0191) 0.3600(0.0929) 0.3667(0.0484) 0.4167(0.0233) 0.1167(0.0626) 0.3400(0.0698)
odd_one_out 0.6333(0.0144) 0.6133(0.0871) 0.5333(0.1775) 0.5000(0.1747) 0.6533(0.0109) 0.7000(0.0163)
orthography_starts_with 0.4567(0.1477) 0.5067(0.0871) 0.6933(0.0219) 0.5067(0.1067) 0.6000(0.0205) 0.6667(0.0272)
rhymes 0.1567(0.0640) 1.0000(0.0000) 1.0000(0.0000) 0.5800(0.2139) 0.6133(0.0178) 1.0000(0.0000)
second_word_letter 0.7467(0.2028) 0.4333(0.1872) 0.4100(0.2902) 0.2267(0.0318) 0.4133(0.2397) 0.1000(0.0411)
sentence_similarity 0.0000(0.0000) 0.0000(0.0000) 0.0400(0.0400) 0.0167(0.0167) 0.2833(0.0357) 0.1400(0.0047)
sum 0.6733(0.2667) 1.0000(0.0000) 0.9867(0.0133) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
synonyms 0.3600(0.0759) 0.2767(0.0925) 0.3433(0.0536) 0.3833(0.0067) 0.1367(0.0054) 0.3067(0.0491)
taxonomy_animal 0.3467(0.2341) 0.7167(0.0838) 0.7300(0.1242) 0.8600(0.0693) 0.7167(0.1308) 0.8567(0.0599)
word_sorting 0.3300(0.0374) 0.3100(0.1143) 0.2200(0.1266) 0.2567(0.1087) 0.5167(0.0435) 0.5133(0.0027)
word_unscrambling 0.4400(0.1389) 0.5500(0.0170) 0.4533(0.0581) 0.5567(0.0088) 0.6033(0.0072) 0.6333(0.0072)
average rank 4.25 3.55 3.85 3.05 2.55 2.35

and further uses an MLP as the classifier, and hence BORE is a better BO strategy in instruction
optimization. Since the BORE paper already shows that BORE performs significantly better than
TPE, we believe that our INSTINCT will also perform significantly better than TPE. InstructZero
(TuRBO) performs slightly worse than InstructZero, this is because the InstructZero adopts the
instruction-coupled Kernel that uses the instruction scores to improve the kernel function which
cannot be easily adopted by TuRBO.
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