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ABSTRACT

Bayesian neural networks (BNNs) are touted for robustness under data drift, re-
silience to overfitting and catastrophic forgetting whilst also producing actionable
uncertainty estimates. In variational inference, these elegant properties are contin-
gent on the expressivity of the variational approximation. Posteriors over parame-
ters of large models are usually multimodal and highly correlated and hence cannot
be well-approximated by simple, prescribed densities. We posit implicit varia-
tional distributions specified using differentiable generators are more flexible and
propose a novel bound for training BNNs using such approximations (amortized
neural samplers). The proposed bound uses an approximation of the variational
distribution’s entropy by locally linearising the generator. Unlike existing works,
our method does not require a discriminator network and moves away from an
unfavourable adversarial objective. Our formulation resembles normalizing flows
but does not necessitate invertibility of the generator. Moreover, we use a dif-
ferentiable numerical lower bound on the Jacobians of the generator, mitigating
computational concerns. We report log-likelihoods on UCI datasets competitive
with deep ensembles and test our method on out-of-distribution benchmarks.

1 INTRODUCTION

Deep neural networks are considered state of the art in numerous tasks in computer vision, speech
and natural language processing. Scaling up neural architectures has led to outstanding performance
on a myriad of generative and discriminative tasks, albeit some fundamental flaws remain. Neural
networks are usually trained by maximising likelihood resulting in a single best estimate of parameters
which renders these models highly overconfident of their predictions, prone to adversarial attacks and
unusable in risk-averse domains. Furthermore, their usage remains restricted in sequential learning
applications due to catastrophic forgetting (McCloskey & Cohen, 1989) and data-scarce regimes due
to overfitting. When deployed in the wild, deep networks do not output a comprehensive measure of
their uncertainty, prompting expert intervention.

The Bayesian paradigm provides solutions to a number of these issues. In summary, Bayesian
neural networks specify a prior distribution over parameters p(θ), and the neural network relates the
parameters to the data D through a likelihood p(D|θ). The goal is to infer a conditional density over
the parameters, called the posterior p(θ|D), given by the Bayes’ rule,

p(θ|D) =
p(D|θ)p(θ)

p(D)
=

p(D|θ)p(θ)∫
p(D, θ) dθ

. (1)

This conditional density provides a range of suitable parameters with a probability over them given
by the dataset. After training, predictions from an ensemble of parameters (models) can then be
combined, weighted by their posterior probability forming a Bayesian model average (BMA). The
variance of these aggregated predictions informs the user/human about the model’s confidence in a
particular prediction. Finding the normalization constant in eq. (1) is analytically intractable for large
models, and hence there is a clear focus on approximate inference techniques. Various approaches
have been proposed, including Markov chain Monte Carlo (MCMC, Neal, 1995), variational inference
(VI, Saul et al., 1996; Peterson, 1987) and the Laplace approximation (Mackay, 1991).

Variational inference is a strategy that converts the inference problem into an optimisation over a
family of distributions (variational family), denoted hereafter by Q, indexed by variational parameters
denoted by γ. We optimise γ using a lower bound on the marginal log-likelihood of the data log p(D)
called the evidence lower bound (ELBO). Usually, we are computationally limited to choosing simple
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Figure 1: Model confidence on toy regression. We compare both lower bounds for implicit
variational inference presented (LIVI) in this work with standard uncertainty quantification approaches
deep ensembles (DE), mean-field variational inference (MVI), Hamiltonian Monte Carlo (HMC) and
multiplicative normalizing flows (MNF, Louizos & Welling, 2017). We train using 25 dimensional
noise input to a MLP generator having a single hidden layer consisting of 25 weights modeling
105 neural network parameters. Here we plot the 5-95% percentile of the BMA to represent model
uncertainty. Notably both our approaches capture in-between uncertainties (Foong et al., 2019).

distribution families like an isotropic Gaussian distribution (Tanaka, 1998; Blundell et al., 2015).
The true posterior is much more complex and is approximated poorly using such approximations
(Foong et al., 2019; 2020). This issue is exacerbated in large models that contain many symmetries
and correlations. Notably, there have been attempts to extend VI to more structured and expressive
distributions (Saul & Jordan, 1995; Bishop et al., 1997; Louizos & Welling, 2016) yet, capturing
correlations between parameters with a flexible variational approximation remains the Achilles heel
of these class of models.

We propose an approach based on implicit generative modelling where the distribution over vari-
ables of interest is implicit and can only be sampled. This is in contrast to usual VI methods that
use prescribed distributions with explicit parametrisation as the approximating density over latent
variables (Diggle & Gratton, 1984; Mohamed & Lakshminarayanan, 2016). Although, this idea takes
inspiration from GAN generators that try to recover the true data distribution, we do not require a
discriminator network for training the generator and as a result do not suffer from the complicacies
introduced by an adversarial objective. As emphasised by Tran et al. (2017), is a more natural way of
capturing the generative process instead of forcing it to conform to an assumed latent structure which
could be misspecified.

Similar to other works in implicit VI (Shi et al., 2018), we posit using general (non-invertible)
stochastic transformations that can produce highly flexible implicit densities to model posteriors of
neural networks. We believe that these approximations can better capture the intricacies of posterior
landscape. Additionally, when trying to model complicated densities in high-dimensions, it is sensible
to learn a sampler instead of parameters of an expressive intractable approximation, especially if
these approximations do not admit one-line samplers (Devroye, 1996). For example, EBMs can be
very flexible but are not easy to sample from (Song & Kingma, 2021).

If we were to use a fully correlated Gaussian to model the posterior of a neural network, we would
need to optimize parameters quadratic in the number of weights of the network, O(dim(θ)2) to
arrive at the optimum covariance matrix. In this work, we test our hypothesis of using an under-
parameterised generator to capture the important correlations in orders of magnitude less parameters
than that. At the same time, we hint at the possibility that a constrained generator will probably avoid
modelling redundancies present in BNN posteriors like permutationally symmetric modes.

Succinctly, our contributions are presented as follows:

• We derive a novel lower bound for variational inference in Bayesian Neural Networks using
implicit variational approximation avoiding unstable minmax objectives.

• We augment this lower bound by reducing its compute requirement, as we substitute a
differentiable numerical lower bound for the entropy term comprising of Jacobians of neural
networks.

• We comprehensively empirically evaluate the capacity of this implicit variational approxima-
tion and the quality of the posteriors inferred using different out of distribution benchmarks.
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2 VARIATIONAL INFERENCE FOR BAYESIAN NEURAL NETWORKS

Consider the supervised learning setting, where we have training set D = {(xi,yi)}ni=1, where
X = {xi}ni=1 are the covariates (inputs) and y = {yi}ni=1 are the labels (outputs). We consider a
Bayesian regression or classification model given by

p(D,θ) = p(θ)p(D|θ) = p(θ)

n∏
i=1

p(yi|xi,θ), (2)

where the likelihood is parameterised by θ ∈ Θ ≡ Rm. The objective function L in VI, called the
ELBO is a lower bound on the log marginal likelihood of the data - log p(D), and the discrepancy
between the two is equal to the KL divergence between the approximate and true posterior given by

DKL[qγ(θ)||p(θ|D)] = log p(D)− Eθ∼qγ(γ)

[
log

p(D,θ)

qγ(θ)

]
︸ ︷︷ ︸

L(γ)

, (3)

where qγ is the variational approximation of the posterior with parameters γ ∈ Γ. Since the KL
divergence is non-negative, L is a lower bound on the evidence. This objective function can be
written in terms of a likelihood term and a regularisation term as

L(γ) =

[
Eθ∼qγ(θ)

[
log p(D|θ)

]︸ ︷︷ ︸
likelihood term

−DKL[qγ(θ)||p(θ)]︸ ︷︷ ︸
regularisation term

]
≤ log p(D), (4)

where the likelihood term promotes the variational approximation to model the data well and the
regularisation term keeps the posterior close to the prior. Since the log-evidence, log p(D), does not
depend on γ, minimising the the KL divergence is equivalent to maximising the ELBO, i.e.,

argmin
γ

DKL[qγ(θ)||p(θ|D)] ≡ argmax
γ

L(γ). (5)

2.1 IMPLICIT VARIATIONAL INFERENCE

In implicit VI (IVI), the variational distribution is only implicitly defined through its generative
process over the parameters θ

z ∼ q(z), θ = gγ(z), (6)

where the q is a fixed base distribution and gγ : Rd → Rm is a non-linear mapping and typically not
a diffeomorphism. For IVI, the likelihood term from eq. (4) and its gradients can be estimated using
Monte Carlo and the reparameterization trick. However, the regularisation term is more difficult as it
involves the entropy of qγ ,

DKL[qγ(θ)||p(θ)] = Eθ∼qγ(θ)

[
log

qγ(θ)

p(θ)

]
= −Hq(qγ)− Eθ∼qγ(θ)

[
log p(θ)

]
. (7)

Generally, the entropy of the generative process in eq. (6) is not available in an explicit form as the
density of the process is not tractable. A prevalant technique to estimate the regularisation term uses
density ratio estimators based on a GAN-like discriminator(Sugiyama et al., 2012; Huszár, 2017),
and Geng et al. (2021) have given a tractable and differentiable lower bound on this entropy .

Furthermore, when the dimensions of the base distribution d is smaller than m, the KL divergence is
not well defined. In the KL divergance, we integrate over the whole space Θ but qγ does not have full
support over this space and exists on a manifold embedded in the Θ space. In the GAN literature this
problem is called mode dropping and is caused by the inability of the generator to recover all modes
of the true data distribution (Che et al., 2020; Xu et al., 2018). To alleviate this, we draw inspiration
from works in the GAN literature (Che et al., 2020) and add m dimensional noise to the output of the
generator and redefine the variational approximation in the following section.
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3 A DEEP LATENT VARIABLE MODEL AND ITS ENTROPY

As the variational distribution, we propose to use a Gaussian deep latent variable model (DLVM) of a
real variable θ ∈ Rm and with a real latent variable z ∈ Rd with density

q(θ) =

∫
q(θ|z)q(z) dz = Ez∼q(z)[q(θ|z)]. (8)

We assume a Gaussian base density and a Gaussian output density, that is

q(z) = N (z|0, Id) (9)

q(θ|z) = N (θ|gγ(z), σ2Im), (10)

where g : Rd → Rm is the decoder/generator and σ2 ∈ R+ is the fixed homoscedastic variance of
the output density. In general, we do not have a closed form for q(θ) due to the the integral in eq. (8)
and the non-linear gγ , but we note that KL divergence in eq. (7) is well defined for this variational
distribution. Below we propose a novel approximation of the differential entropy of this model.

This model can equivalently be viewed as a variational autoencoder (VAE, Kingma & Welling, 2014;
Rezende et al., 2014) with a Gaussian prior and a Gaussian output density with constant constant
homoscedastic variance and no encoder, or as a implicit distribution from eq. (6) with added Gaussian
noise. The latter is clearly seen from the generative process of by describe the generative process for
The generative process of θ, which is

θ′ = gγ(z), z ∼ N (0, Id) (11)

θ = θ′ + η, η ∼ N (0, σ2Im). (12)

3.1 DIFFERENTIAL ENTROPY

We want to calculate the different entropy of the Gaussian DLVM given by

H[q(θ)] = −Eθ∼q(θ)[log q(θ)]. (13)

We can in general not compute this analytically since we do not have a closed form of p(θ). Since we
can sample from p(θ), we can approximate the expectation in eq. (13) using Monte Carlo sampling
from p(z). However, since we do not have a closed form of p(θ), we still need an approximation of
log q(θ). We could approximate p(θ) using Monte Carlo sampling from p(z), but this approximation
has high variance. Usually, the variance is reduced by learning and encoder and doing importance
sampling. Here we derive an approximation without using an encoder.

3.1.1 LINEARISATION OF THE GENERATOR

First we consider a local linearisation of the generator. Assuming that the Jacobian of g exists, the
first order Taylor polynomial of g at z0 is given by

T 1
z0
(z) = g(z0) + Dg(z0) (z − z0), (14)

where Dg(z0) is the Jacobian of g evaluated in z0. This assumes that the Jacobian exists, i.e. the
generator has at least one derivative. We can approximate g(z) by T 1

z0
(z) when z is close to z0. We

apply this approximation to q(θ) from eq. (8), which gives us

q(θ) = Ez∼q(z)[q(θ|z)] = Ez∼q(z)[N (θ|g(z), σ2Im)] (15)

≈ Ez∼q(z)[N (θ|g(z0) + Dg(z0) (z − z0), σ
2Im)] = N (θ|µ(z0), C(z0)) =: q̃z0(θ), (16)

where

µ(z0) = g(z0)−Dg(z0) z0 (17)

C(z0) = Dg(z0)Dg(z0)
⊺ + σ2Im. (18)

The result in eq. (16) can be obtained analytically by integrating over the latent variable, see e.g.
Tipping & Bishop (1999).
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3.2 APPROXIMATION OF THE DIFFERENTIAL ENTROPY

We use the Gaussian approximation of q(θ) to approximate the entropy of the DLVM, that is

H[q(θ)] = −Ez∼q(z)Eθ∼q(θ|z)[log q(θ)] ≈ −Ez∼q(z)Eθ∼q(θ|z)[log q̃z0=z(θ)] =: H̃[p(θ)]. (19)

Importantly, we do the linearisation of q(θ) around the latent value z that is used to sample each θ in
the expectation. We have that

log q̃z0=z(θ) = −p

2
log 2π − 1

2
log detC(z0)−

1

2
(θ − µ(z0))

⊺C(z0)
−1(θ − µ(z0))︸ ︷︷ ︸

=:h(θ,z0)

, (20)

which means that our approximation of the entropy is

H̃[q(θ)] =
m

2
log 2π +

1

2
Ez∼q(z)[log detC(z)] + Ez∼q(z)Eθ∼q(θ|z)[h(θ, z)]. (21)

As shown in appendix A.1, the last term can be written as

Ez∼q(z)Eθ∼q(θ|z)[h(θ, z)] =
1

2
Ez∼q(z)

[
tr

((
Dg(z)2 + σ2Im

)−1 (
σ2Im + (Dg(z) z)2

))]
,

(22)
where we used the notation M2 = MM⊺ for a matrix M . Now, if we let σ2 tend to zero, we find that

lim
σ2→0

Ez∼q(z)Eθ∼q(θ|z)[g(θ, z)] =
1

2
Ez∼q(z)

[
tr

((
Dg(z)2

)−1

(Dg(z) z)2
)]

(23)

=
1

2
Ez∼q(z) [z

⊺z] =
1

2
tr(Id) =

d

2
. (24)

Similar, we can also take the limit of the determinant term from eq. (21), that is

lim
σ2→0

1

2
Ez∼q(z)[log detC(z)] =

1

2
Ez∼q(z)

[
log det

(
Dg(z)Dg(z)⊺

)]
(25)

Combining eqs. (21), (24) and (25), gives us the final approximation. For small values of the output
variance σ2, we can approximate the differential entropy of a DLVM as

H[p(θ)] ≈ lim
σ2→0

H̃[p(θ)] =
d

2
+

m

2
log 2π +

1

2
Ez∼q(z)

[
log det

(
Dg(z)Dg(z)⊺

)]
. (26)

We can get a slightly more accurate approximation, by only applying the limit from eq. (23), and not
the limit from eq. (25), which gives us

H[p(θ)] ≈ d

2
+

m

2
log 2π +

1

2
Ez∼q(z)

[
log det

(
Dg(z)Dg(z)⊺ + σ2Im

)]
. (27)

4 LINEARISED IMPLICIT VARIATIONAL INFERENCE (LIVI)

We propose a novel bound for IVI. As the variational distribution, we use the DLVM of eq. (8), which
is equivalent to adding noise to the implicit distribuion of eq. (6). Using the entropy approximation
from eq. (26), we propose the approximate ELBO,

L̃(γ) = Eθ∼qγ(θ)

[
log p(D|θ)

]
+ Eθ∼qγ(θ)

[
log p(θ)

]
+ lim

σ2→0
H̃[p(θ)] (28)

= Eθ∼qγ(θ)

[
log p(D|θ) + log p(θ)

]
+

1

2
Ez∼q(z)

[
log det

(
Dg(z)Dg(z)⊺

)]
+ c, (29)

where c = d
2 + m

2 log 2π. We can reparameterise the above with the base variables z,η to get

L̃(γ) = Ez∼q(z),η∼q(η)

[
log p(D|g(z) + η) + log p(g(z) + η) +

1

2
log det

(
Dg(z)Dg(z)⊺

)]
+ c.

(30)
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To avoid the calculation of the log-determinant term, we can follow Geng et al. (2021, eq. 10) and
lower-bound it as

1

2
log det(Dg(z)Dg(z)⊺) =

1

2

m∑
i=1

log s2i (z) ≥ m log s1(z), (31)

where sm(z) ≥ . . . ≥ s1(z) are the singular values of the Jacobian Dg(z). This gives us a lower
bound on L̃(γ) given by

˜̃L(γ) =Eθ∼qγ(θ)

[
log p(D|θ) + log p(θ)

]
+ Ez∼q(z)

[
m log s1(z)

]
+ c ≤ L̃(γ) (32)

Again, by reparameterisation with z,η we get

˜̃L(γ) = Ez∼q(z),η∼q(η)

[
log p(D|g(z) + η) + log p(g(z) + η) +m log s1(z)

]
+ c. (33)

We denote L̃(γ) the LIVI bound with accurate Jacobian and ˜̃L(γ) the LIVI bound with a differentiable
lower bounded on the determinant. Depending on the amount of compute available, the two bounds
provide a trade-off between the accuracy of uncertainties and the resources consumed. In both cases,
the entropy maximisation promotes the generator to generate diverse weight samples which is in
accordance with the principle behind Bayesian model averaging and supported by the performance of
deep ensembles (Lakshminarayanan et al., 2017). We present connections with existing works in the
literature in the following section highlighting similarities and divergences.

5 RELATED WORK

The usage of a secondary network to generate parameters of a primary network first appeared in
the form of hypernetworks (Ha et al., 2017). Our approach is probabilistic and is hence closer to
Bayesian hypernetworks (Krueger et al., 2017). Compared to our approach, these models require
invertibility of the generator and thereby avoid the complexities of estimating the entropy term. This
corresponds to using a normalizing flow as a variational approximation. Training a normalizing
flow over large parameter spaces is computionally costly due to large Jacobian matrices, typically
requiring particular focus on the design of the variational approximation to curb dimensionality of
the flow. In particular, Louizos & Welling (2017) use an expressive flow on multiplicative factors
of weights in each layer and not on all weights jointly. Our bound uses a very similar change in
volume formulation, log det(Dg(z)Dg(z)), for obtaining the log probability of samples under the
variational density, but does not necessitate invertibility making it more general.

Subsequently, Shi et al. (2018); Tran et al. (2017); Pawlowski et al. (2017) have successfully
demonstrated implicit variational inference in BNNs using hypernetworks. Shi et al. (2018); Tran
et al. (2017) do not focus on the entropy term, but rather try to estimate the ratio of the variational
approximation to the prior (regularisation-term) in a procedure called density ratio estimation (also
referred to as the prior-contrastive formulation by Huszár, 2017). Tran et al. (2017) opt for training
a discriminator network to maximally distinguish two distributions given only i.i.d. samples from
each. This approach, though general, adds to the computational requirements and becomes more
challenging in high dimensions (Sugiyama et al., 2012). To mitigate the overhead of training the
discriminator for each update of the ELBO, many works limit the discriminator training to a single
or few iterations. Furthermore, this approach entails an adversarial objective that are infamously
unstable (Mescheder et al., 2017). Pawlowski et al. (2017) treat all the weights as independent and
find that a single discriminator network is inaccurate at estimating log ratios when compared to the
analytical form of Bayes by backprop (Blundell et al., 2015), and opt to use a kernel method that
matches the analytical form more closely. Shi et al. (2018) propose a novel way of estimating the ratio
of the two densities using kernel regression in the space of parameters which obviates the need for a
minmax objective. An obvious difficulty with kernel ridge regression in practice is its inaccuracy to
estimate high-dimensional density ratios which is similar to using discriminators. This is especially
the case given a limited number of samples from both the densities as well as the RBF kernel. While
the RBF kernel still takes the same high-dimensional inputs and does not involve learning massive
sets of parameters, its accuracy at larger scales is still doubtful. This work also proposes matrix
multiplication neural network (MMNN) a novel generator architecture for generating large set of
parameters. Pradier et al. (2018) are also motivated by the possibility of compressing the posterior in
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Table 1: UCI regression datasets. We report RMSE and log-likelihoods on the test set and average
across three different seeds for each model to quantify the variance in the results.

Test RMSE ↓ Test LL ↑
Dataset LIVI Deep Ensembles KIVI LIVI Deep Ensembles KIVI

Boston 2.461± 0.131 3.28 ± 1.00 2.798± 0.173 −2.318± 0.092 −2.41 ± 0.25 −2.527± 0.102
Concrete 5.150± 0.169 6.03 ± 0.58 4.702± 0.116 −3.068± 0.120 3.06 ± 0.18 −3.054± 0.043
Energy 0.580± 0.270 2.09 ± 0.29 0.467± 0.015 −1.170± 0.110 −1.38 ± 0.22 −1.298± 0.005
Kin8nm 0.081± 0.001 0.09 ± 0.00 0.0075±0.0010 1.180± 0.011 1.20 ± 0.02 1.162± 0.008
Naval 0.001± 0.000 0.000± 0.000 0.00 ± 0.00 5.523± 0.170 5.63 ± 0.05 5.501± 0.121

a lower dimensional space and use an inference network with a generator. Their model differs from
ours as they also consider the parameters of the generator/decoder to be stochastic. Moreover they
require empirical weight samples to train which doubles the training steps. D-SIVI (Molchanov et al.,
2019) and SIVI (Yin & Zhou, 2018) use Monte Carlo (MC) averaging to approximate the entropy
term. Both works use the implicit formulation to only model the mixing coefficients and not all the
weights of the network. Our entropy term 8 also has a similar form and can be MC approximated.

In the spirit of some recent works (Izmailov et al., 2020; Daxberger et al., 2021b;a) that alternatively
choose a lower dimensional representation to preclude costly, high-dimensional inference, our work
can be seen as allowing the approximate posterior in the form of the generator to choose which
dimensions and parts of posterior are crucial and model them accordingly.

6 EXPERIMENTS

6.1 TOY DATA

In fig. 1, we compare inference with our method against the gold standard for posterior inference on
a simple toy dataset. After training, we also plot a KDE-plot of the samples the generator outputs
in appendix A.6. We infer from this plot that the generator is capable of representing non-trivial
distributions as we can spot heavy tails and multiple modes.

6.2 UCI DATASETS

We perform experiments on UCI regression datasets with the setups by Lakshminarayanan et al.
(2017) and Shi et al. (2018), using a BNN with one hidden layer MLP with 50 units on all of
these datasets. We report the RMSE and log-likelihood on held out data for our method. We use
generator architectures that are either equally or less powerful than Shi et al. (2018) and do not
assume independence across layers, i.e. using one MLP to generate all the weights of the BNN. All
of the generator architectures are one hidden layered MLP with a slightly varying number of units
depending on the dataset. At this scale it is feasible to estimate uncertainties using accurate Jacobians.
We require far fewer number of samples (5-10) per iteration compared to 100 used by KIVI to achieve
very competitive results. We suspect they use high number of samples to curb the variance of the
kernel estimator.

Our results are summarised in table 1. We train our method with a homoscedastic assumption i.e. the
variance in the dataset is assumed to be constant and we train an observation noise parameter using
type II maximum likelihood.

6.3 MNIST DATASET

Next we test our method on the MNIST dataset. While using the MMNN as the generator, we were
able to achieve errors on the test set on par with KIVI for MLP with 400 and 800 hidden units. With
the total number of parameters generated exceeding 400K even for 400 hidden units we chose to train
the model only with the differentiable lower bound due to prohibitively high memory usage. For OOD
testing we compare our method to last-layer laplace, deep ensembles and a simple MAP estimate.
We intentionally choose these methods to compare against as a mean-field approximation usually
does not achieve good accuracy on in-distribution data and has been shown, repeatedly, to suffer from
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Figure 2: Rotated MNIST benchmark. We compare a Bayesian neural network trained via our
method with MAP, deep ensembles (DE) and last-layer laplace (LAP) where our best model achieves
results competitive with deep ensembles and with post-hoc method like laplace.

many optimisation difficulties. On the other hand it is possible to run HMC samplers at this scale, it
is not preferable. Very few works in the literature report results using full batch HMC (Izmailov et al.,
2021). Deep ensembles predict using neural networks that have converged onto different minima
hence encompassing information from diverse modes of the posterior, and as such remains one of
the best in terms of uncertainty estimation. As for benchmarks we choose two OOD benchmarks
presented in Daxberger et al. (2021a). First we test the OOD AUROC and confidence of a LeNet5
BNN trained on MNIST by using FMNIST, KMNIST and EMNIST. We used a MMNN architecture
for generating over 40K parameters and trained using the differentiable numerical approximation
with 3-6 samples depending on the architecture. We expand on few generator architectures here and
leave the rest for appendix appendix A.2.

The BNN trained with the implicit variational approximation, a generator with a 1225 dimension
noise input and 2 matrix multiplication layers of 350 units each achieves accuracy of 99.071%±0.02,
and calibration error of 0.084 ± 0.011 with nll −0.021 ± 0.001 on the test set. The same model
reports an averaged OOD AUCROC of 97.15 ± 0.17 with an averaged confidence 68.53 ± 0.24.
According to results provided in Daxberger et al. (2021a, Table 1), our model does not outperform
in terms of confidence values yet, we notice that the performance degrades very smoothly as it
encounters OOD data as opposed to models like Deep Ensembles and Laplace both of which fail
relatively immediately and drastically in terms of confidence values. Our model does perform quite
well on the averaged AUROC as well as on test set calibration error and log-likelihood.

To probe out of distribution performance further, we compare our method on the rotated MINST
benchmark from Daxberger et al. (2021a). In this benchmark we plot the negative log-likelihoods
and empirical calibration errors for different rotated MNIST images. In this benchmark task we plot
results in fig. 2 for three different architectures and our best (LIVI 3) remains the same architecture
as above. Here too, we nearly match the performance of deep ensembles on these two metrics. The
other two architectures, LIVI 1 has 1764 dimensional noise input and one matrix multiplication
hidden layer with 350 units while LIVI 2 has 900 dimensional noise input with 2 hidden matrix
multiplication layers of 320 units each.

6.4 COMPARISON BETWEEN IMPLICIT VARIATIONAL APPROXIMATIONS

Variational inference for BNNs relies heavily on the expressivity of the family of approximations
chosen to model the posterior. In our case the architecture of the generator represents the flexibility
and overall modeling capability of the implicit variational density. We trained different architectures
and noticed that generator architectures with more hidden layers perform better on in-distribution
metrics like accuracy and log-likelihood. Additional hidden layers afford the generators the capacity
to warp the input Gaussian noise into a suitable posterior distribution. On the other hand, the
dimensionality of input noise becomes crucial for uncertainty quantification and OOD performance.
We believe this is because the number of noise inputs are all the degrees of freedom available to
the generator to model the parameters of the BNN. As such, the entropy of resulting posterior is

8
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Figure 3: Empirical CDF plot. On the x-axis is the entropy of individual predictions and empirical
CDF on the y-axis. As we count over the whole dataset, we would like to encounter more high
entropy predictions closer to the value 2.30 on the x-axis.

directly dependent on the this factor. Although this number cannot be increased without repercussions
because the base distribution and the number of samples affect the signal to noise ratio of our objective
function eq. (29) and a very large z results in large gradient variance hindering covergence, requiring
more samples during training or higher number of iterations to converge. In these experiments we
also noticed that down scaling only the prior log probability has a very positive effect on the results.
This is due to the fact that the prior term regularises the generator, forcing it to find minimas close
to itself, a standard normal distribution. The scale of this prior log probability term is significant
in the ELBO and gradients of this term are detrimental to the overall optimisation process. Unlike
cold-posteriors(Wenzel et al., 2020), we keep the gradients of the entropy term as is and only reduce
regularisation by downscaling the prior.

As the last benchmark we opt to ascertain the quality of our model’s posterior and the implied
predictive uncertainties by plotting the empirical CDF of predictive entropies across OOD im-
ages(Lakshminarayanan et al., 2017; Louizos & Welling, 2017) in fig. 3. Given a model trained on
MNIST, the predictions on a data point from a different distribution should be given a high entropy
prediction like a uniform distribution. For this plot we first obtain entropies of the output softmax
distributions for all the models across data points and use an empirical CDF to represent how many of
these predictive entropies are closer to a uniform distribution which has an entropy of 2.3. Ideally, we
are looking lines closer to the right bottom corner, i.e. the number of low-entropy or highly confident
predictions should be less. We compare our model to MAP, deep ensembles and last-layer Laplace
and find that our model trained on MNIST is quite competitive in the quality of uncertainty estimates
for this test over FMNIST dataset. For this plot we use the best generator architecture with a LeNet5
BNN which is called LIVI 3 in the tests above.

7 CONCLUSION

In this paper we present a novel method for implicit variational inference for Bayesian Neural
Networks that circumvents the need for a discriminator network to estimate intractable density ratios.
We find that modelling the posterior with a highly flexible approximation indeed does have benefits.
Our methods, in the wide range of variational approximations, get closer to the performance of deep
ensembles, a non-probabilistic method on in distribution and out of distributions performance. Unlike
conventional probabilistic methods we do not. One possible limitation of such hypernetworks can be
generating massive parameter vectors for large neural networks. Works like Pawlowski et al. (2017);
Shi et al. (2018) use different generator architectures to generate weights for each hidden layer in
turn loose the information from modelling correlations across layers. Similarly this approach can be
extended to use multiple smaller generators at the sacrifice of modelling correlations across layers.

9
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A APPENDIX

A.1 DETAILS ON APPROXIMATION OF THE DIFFERENTIAL ENTROPY

In this section we derive eq. (22). To simplify the derivation, we will use the notation v2 = v⊺v for
vectors and M2 = M⊺M for matrices.

Starting from the left hand side of eq. (22), we have that

Ez∼q(z)Eθ∼q(θ|z)[g(θ, z)] = Ez∼q(z)Eθ∼q(θ|z)

[
1

2
(θ − µ(z))⊺C(z)−1(θ − µ(z))

]
(34)

=
1

2
Ez∼q(z)Eθ∼q(θ|z)[tr((θ − µ(z))⊺C(z)−1(θ − µ(z)))] (35)

=
1

2
Ez∼q(z)[tr(C(z)−1Eθ∼q(θ|z)[(θ − µ(z))⊺(θ − µ(z))])] (36)

The inner expectation simplifies to

Eθ∼q(θ|z)[(θ − µ(z))2] = Eθ∼q(θ|z)[(θ − g(z) + Dg(z) z)2] (37)

= Eθ∼q(θ|z)

[
(θ − g(z))2 + (Dg(z) z)2 + 2(θ − g(z))Dg(z) z

]
(38)

= σ2Im + (Dg(z) z)2, (39)

where we that Eθ∼N (θ|g(z),σ2Im)[(θ− g(z))] = 0 and Eθ∼N (θ|g(z),σ2Im)[(θ− g(z))2] = σ2Im. If
we plug in the result of eq. (39) into eq. (36), we obtain

Ez∼q(z)Eθ∼q(θ|z)[g(θ, z)] =
1

2
Ez∼q(z)

[
tr

((
Dg(z)2 + σ2Im

)−1 (
σ2Im + (Dg(z) z)2

))]
.

(40)
Note that eq. (40) could also be derived from eq. (34) using Petersen & Pedersen (2012, eq. 380) and
some reordering the terms. Equations (37) to (39) also follows from Petersen & Pedersen (2012, eq.
325).

A.2 EXPERIMENT DETAILS

We use the MMNN architecture as presented in Shi et al. (2018) for generating weights of the MLP
BNN that was trained on MNIST as well as LeNet BNN that was used for all the OOD benchmarks.
For the MLP experiment to compare with KIVI we used one MM network that generated all the
parameters of the network Following architectures were tried for LeNet5 generators:

• Noise input - 25x25, 2 MM hidden layers with 250 units, output layer size 350x127.
• Noise input - 30x30, 2 MM hidden layers with 350 units, output layer same as above.
• Noise input - 35x35, 2 MM hidden layers with 350 units, output layer same as above.
• Noise input - 35x35, 3 MM hidden layers with 350 units, output layer same as above.
• Noise input - 38x38, 2 MM hidden layers with 350 units, output layer same as above.
• Noise input - 42x42, 2 MM hidden layers with 325 units, output layer same as above.

All the above architectures were trained without dataset augmentation and with a maximum of 6
samples per minibatch. The last architecture required higher number of samples due to gradient
noise which is proportional to the dimensionality of input noise. This phenomenon has been widely
observed in training high dimensional variational approximations (Osawa et al., 2019; Mohamed
et al., 2020). As all the architectures are trained for 100 epochs with the same learning rate, increasing
gradient noise can significantly deter convergence when the input noise dimensions are increased.

A.3 PRIOR DOWNWEIGHTING

We choose to down scale the log prior probability in all the benchmark experiments. This term
appears in the ELBO objective function and serves an important purpose. When the prior is chosen by
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domain experts this term ensures that the approximate posterior inferred is not too different from the
intelligently chosen prior and hence the log prior probability of samples coming from the variational
approximation should be high when the ELBO is being maximised. However, the choice of an
appropriate prior is an active area of research in Bayesian deep learning(Fortuin, 2022) and this prior
term and the regularisation effect is known to limit the variational approximation. DKL[q(θ)||p(θ)]
should be minimised as a result of the optimisation of ELBO using gradient ascent and when the
prior is naively chosen to be a standard normal it forces most of the weights of the posterior to be
zero-centered. This forces the model to look for minimas that are very close to 0 and has a detrimental
effect on the in-distribution performance. We use the plotting tool used by Shi et al. (2018) to
demonstrate this effect. The line-plot below has all of the weights of a neural network used to solve
a toy regression task on the x-axis and their respective magnitudes on the y-axis. We chose to sort
the weights in order of their magnitude as the positions of weights are not very informative in neural
networks due to permutation invariance. In the first plot, most of the weights are zero-centred and are
not very active, on the other hand the second plot shows what happens when we down weight the
prior by just 0.1.

A.4 DETAILS OF FIG. 1

In fig. 1 we compare both the objective functions presented in this work for training with implicit
variational approximations to different methods for uncertainty quantification for neural networks.
All models were trained for 10K iterations and had to learn observation noise present in the toy
sinusoidal dataset. We deliberately removed a part of the data to see if the models tested were able to
find in-between uncertainties. All methods were given the same sized 2 hidden layered MLP with 7
and 10 units respectively. We trained 5 networks with different seeds for Deep Ensembles and average
their predictions to make the plot. The variance of the predictions were then used for the confidence
bands in blue. We also train the model with an observation noise parameter. For MFVI, we used KL
down weighting to get it to convergence and increase the weight in the end of training. For HMC we
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Figure 6: Multimodal densities over weights using KDE

sample 5000 samples using the library Pyro. We also tried to make multiplicative normalizing flows
converge for this dataset, but with even 20K parameters and training for 15K iteration with a very
long learning rate did not help. We even tried KL down weighting to reduce the effect of the prior in
the initial iterations but that did not work either.

A.5 COMPUTATION GRAPH

Here we provide some details about how the combination of the joint generator-BNN model works.
The Bayesian neural network classes for all types of architectures(feed forward, convolutions, etc.)
require a generator in the init function. As such, the generator networks reside inside the BNN
and reparametrise it with a simple sample_parameters function. The most important part of
this kind of implementation was the layers themselves. PyTorch provides different kinds of mutable
layer implementations in nn.module but these layers do not expose their state i.e. their parameters
in a manner that allows changes on the fly during training. We reimplemented the layers allowing
such resampling to occur with the generator. In the init function of the BNN, we generate one set
of parameters with the generator, package it in a dict that has the weight sample as well as a index
to know the number of weights used by a previous layer. This counter index is updated by each layer
in their init and sample_parameters function. As such, only the parameters of the generator
are trainable, the parameters of the BNN are switchable and relay gradients to the generator via the
likelihood or the entropy term.

A.6 KDE PLOT

Figure 6 shows a KDE plot of weights randomly chosen from samples obtained from a trained
generator.
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