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Abstract

With the increasing complexity of generative AI models, post-training quantization
(PTQ) has emerged as a promising solution for deploying hyper-scale models on
edge devices such as mobile and TVs. Existing PTQ schemes, however, consume
considerable time and resources, which could be a bottleneck in real situations
where frequent model updates and multiple hyperparameter tunings are required.
As a cost-effective alternative, learning-free PTQ schemes have been proposed.
However, the performance is somewhat limited because they cannot consider
the inter-layer dependency within the attention module, which is a significant
feature of Transformers. In this paper, we thus propose a novel PTQ algorithm
that balances accuracy and efficiency. The key idea of the proposed algorithm
called aespa is to perform quantization layer-wise for efficiency while targeting
attention-wise reconstruction to consider the cross-layer dependency. Through
extensive experiments on various language models and complexity analysis, we
demonstrate that aespa is accurate and efficient in quantizing Transformer models.
The code will be available at https://github.com/SamsungLabs/aespa.

1 Introduction

Model size has been gradually growing, resulting in deep generative models such as diffusion [25]
and large-scale language models (LLMs) [29, 35] becoming more mainstream; the trend of AI is
transitioning from discriminative models to generative models with numerous parameters in trillions.
With the explosive growth in model complexity (parameters), the performance of AI models has
been advancing and is now approaching or even exceeding human intelligence levels. However, this
growth in scale has resulted in a corresponding increase in computational costs, which necessitates
the efficient processing and compression of AI models. Interestingly, one attempts to expand the
complexity of AI models to scale up performance, whereas the other aims to compress models to
reduce cost.

Quantization is a promising solution and indispensable procedure facilitating the efficient deployment
of AI models on devices that mainly support fixed-point arithmetic. By reducing the precision of
weights, the memory bandwidth requirements can be relieved, and the embarrassing parallelism of
quantized models can be SIMDified using highly efficient vector processing units such as NPU. To
minimize the inevitable performance degradation caused by quantization, we can choose one of two
approaches: quantization-aware training (QAT) [5, 14] and post-training quantization (PTQ) [23, 18].
Considering the model complexity and required resources (e.g., training costs and available datasets),
QAT is not practical for compressing models with billions of parameters. Consequently, recent
quantization studies on hyper-scale Transformer [31] models have focused more on PTQ.
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Although existing PTQ schemes have successfully quantized relatively small-scale models (e.g.,
ResNet) [23, 10, 18, 6, 11], they have difficulty handling large-scale models because of their time
and space complexity. As a cost-effective alternative, learning-free algorithms have been proposed
recently [7, 13, 19], but their performance is somewhat limited because they do not consider the
inter-layer dependency and are reliant on the nearest rounding. There is an accuracy-efficiency
trade-off; thus, we aim to bridge the gap toward next-level quantization of hyper-scale Transformer
models.

In this paper, we propose a novel PTQ algorithm, called aespa,2 that pursues both accuracy and
efficiency. The key idea of aespa is to perform quantization layer-wise for efficiency while targeting
the attention-wise reconstruction to consider the cross-layer dependency.

Our contributions are summarized as follows:
• We propose a new quantization strategy that balances accuracy and efficiency. Our scheme aims to

reconstruct the attention output to consider the cross-layer dependency while quantizing models
layer-wise to pursue efficiency.

• To accelerate the quantization process, we propose refined quantization objectives for the attention
module. Through a complexity analysis, we demonstrate that quantization that is approximately
10 times faster than existing block-wise approaches can be achieved by exploiting the proposed
objectives.

• From extensive experiments on language models, we demonstrate that our approach outperforms
conventional schemes by a significant margin, particularly for low-bit precision (INT2).

2 Background

2.1 Classic PTQ methods

Recent studies on PTQ have mostly attempted to minimize the increase in the task loss incurred by
quantization rather than the quantization error itself (∆W ). Consider a pre-trained neural network
parameterized by weights W . If we assume the well-convergence of the network, the problem of
quantizing weights W to minimize the loss degradation can be formulated as [16, 23]

min
∆w

E
[
∆wT ·H(w) ·∆w

]
, (1)

where H(w) is the Hessian related to the flattened weight w. Because computing and storing H(w)

is infeasible, further assumptions have been made to simplify (1). In [23], for example, layer-wise
independence has been assumed, relaxing (1) into the layer-wise reconstruction problem:

min
∆W (ℓ)

E
[∥∥∥Q(W (ℓ))X −W (ℓ)X

∥∥∥2
F

]
, (2)

where W (ℓ) denotes the weights of the ℓ-th layer, X is the input, and Q is a quantization function.
For a uniform quantization, if the nearest-rounding is used to assign integer weights, Q is defined as

Q(x) = s
(

clamp
(⌊x

s

⌉
+ z, 0, 2n − 1

)
− z
)
, (3)

where s, z, and n are the scale, zero-point, and bit-width, respectively, and ⌊·⌉ represents the
round-off.

Early studies on PTQ focused on optimizing the weight-rounding policy [23, 10, 18, 11, 12]. These
studies have attempted to assign each weight to a “proper” grid (instead of an adjacent grid), such
that the loss degradation could be minimized. In [23], a learning-based weight-rounding optimization
algorithm, called AdaRound, has been proposed to solve the layer-wise reconstruction problem in (2).
In [18], AdaRound has been extended to the following block-wise reconstruction problem:

min
∆W (ℓ)

E
[∥∥∥f (ℓ)

(
Q(W (ℓ)),X

)
− f (ℓ)

(
W (ℓ),X

)∥∥∥2
F

]
, (4)

where W (ℓ) denotes the weights of the ℓ-th block f (ℓ) (e.g., ResNet or Transformer block). By
considering the dependency between layers inside the block, this algorithm, termed BRECQ, not only
performs better than AdaRound, but also exhibits robust performance for a low bit-width (e.g., INT2).

2aespa: attention-centric efficient and scalable post-training quantization algorithm

2



Figure 1: Overview of aespa. Each weight is quantized separately to reconstruct the attention output.

2.2 PTQ for LLMs

Although AdaRound and BRECQ have been successful in quantizing small-scale networks (e.g.,
ResNet), scaling those learning-based schemes to LLMs with billions of parameters is challenging.
In fact, BRECQ requires more than 20 GPU hours to quantize relatively small-sized language models
(e.g., OPT-2.7B; see Appendix K), which would not be suitable for the real-world deployment of
LLMs where models to be deployed are frequently updated.

Owing to the excessive time and memory costs of classic PTQ schemes, recent studies have focused
on developing cost-effective alternatives for quantizing LLMs. In OPTQ [7], a one-shot PTQ scheme
that optimizes a weight-rounding policy without relying on learning, has been proposed. In addition,
PTQ schemes that enhance the performance of the nearest-rounding, rather than optimizing the
weight-rounding policy, have been proposed. These schemes use additional “foldable” parameters3

to suppress activation outliers or quantize weights more precisely [33, 19, 13, 27, 20].

Although previous studies have mitigated the computational overhead of classic PTQ methods,
they often sacrifice the low-bit quantization performance or suffer from an unstable quantization
process. The main reason for this unsatisfactory performance is that all the schemes mentioned
above, except OPTQ, rely on nearest-rounding and do not optimize the weight-rounding policy.
Moreover, most of them target layer-wise reconstruction in (2), not block-wise reconstruction in (4),
thus ignoring the cross-layer dependency within the attention module. Although [27, 20] target
block-wise reconstruction via learning, they need to approximate gradients for a non-differentiable
quantization function, which results in an unstable training process (see Table 1 in Section 4) [19].

Thus, we propose a novel PTQ scheme that balances accuracy and efficiency. In contrast to conven-
tional LLM quantization methods, our scheme optimizes a weight-rounding policy while targeting
block-wise reconstruction to consider the cross-layer dependency. The key difference over clas-
sic block-wise weight-rounding optimization is that we quantize models layer-wise for scalability,
whereas layers are jointly quantized in the existing methods. Furthermore, we present an efficient pre-
computation-based method for the computation of the block-wise objective in (4), which significantly
reduces the computational overhead caused by repeated attention operations.

3 Method

3.1 Motivation

To gain insight into our approach, we first consider the objective of the layer-wise reconstruction
in (2). Let ∆W (ℓ) = Q(W (ℓ))−W (ℓ), then the reconstruction error can be expressed as

E
[
∥∆WX∥2F

]
=E

[
tr
(
∆WXXT∆W T

)]
=tr

(
∆W ·E

[
XXT

]
·∆W T

)
. (5)

3By foldable parameters, we mean the parameters that can be merged into other layers within the Transformer
block (e.g., LayerNorm), thereby imposing no extra computational cost during the inference [13].
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(a) Layer-Wise, Layer Output (b) Block-Wise, Block Output (c) Layer-Wise, Block Output (Proposed)

Figure 2: Quantization strategies (simplified)

Consequently, the layer-wise quantization problem can be recast as follows:

min
∆W

tr
(
∆W · E

[
XXT

]
·∆W T

)
. (6)

The new form of the quantization objective in (6) implies that if E[XXT ] is pre-computed and stored
before quantization, we can measure the reconstruction error over the entire calibration dataset with
a single matrix multiplication and element-wise multiplication.4 This is in contrast to the original
formulation in (2) which requires the computation of Q(W )X or ∆WX for every input X .

A natural question that arises from this finding is “Can we also measure the block reconstruction
error efficiently based on such a pre-computation?”. In the following subsections, we describe our
main strategy to simplify block-wise quantization and then present a refined objective for the attention
module, where the objective can be computed efficiently with certain pre-computed values.

3.2 Quantization strategy of aespa

When quantizing the attention module using conventional block-wise reconstruction methods (Fig-
ure 1(a)), the query, key, and value projections have been jointly optimized such that

min
∆WQ,∆WK ,∆WV

E
[∥∥∥SA(Q̂, K̂, V̂ )−SA(Q,K,V )

∥∥∥2
F

]
, (7)

where the output of attention module SA(Q,K,V ) is defined as

SA(Q,K,V ) = softmax

(
QKT

√
d

)
V = AV . (8)

In such a case, we need to compute SA(Q̂, K̂, V̂ ) for every batch sequence in each iteration, which
is computationally heavy and time-consuming (see Section 3.5 for details on complexity).

To overcome this computational overhead, we quantize each projection separately in a divide-and-
conquer manner. For example, when quantizing the query projection WQ, we fix WK and WV with
full-precision (Figure 1(b)), which facilitates the factoring out of common terms affected by WK and
WV (see Section 3.3 for details). We emphasize that this strategy differs from conventional layer-wise
quantization schemes (e.g., AdaRound and OPTQ) in that we aim to minimize the reconstruction
error for the attention module, not the reconstruction error for each layer.

We conduct experiments to demonstrate the importance of targeting attention-wise reconstruction and
validity of the proposed quantization strategy. In our experiments, we set the loss function for each
projection as the attention reconstruction error in (7) but quantize each projection separately (see
Figure 2(c)). Table 5 in Appendix B summarizes the performance of AdaRound, BRECQ, and our
approach. As evident, our approach uniformly outperforms AdaRound for all bit-widths, although
both methods quantize models layer-wise. This is because we can consider cross-layer dependency
(i.e., relationship between the query, key, and value) by targeting attention-wise reconstruction, which
is different from AdaRound wherein layers are considered independent. Furthermore, once we target
attention-wise reconstruction, separate layer-wise quantization does not incur severe performance
degradation compared to the joint quantization method (BRECQ). In fact, our approach causes only a
marginal performance degradation for 2-bit and exhibits comparable performance for 3-bit and 4-bit.
For further discussion on the proposed strategy, see Appendix B.

3.3 Refined quantization objectives for aespa

One might ask whether our strategy incurs more computational cost than that required by the joint
quantization because we update only one layer at a time (see Figure 1(b)). This is in contrast

4We note that the computation of tr(ABCT ) can be implemented as torch.sum((AB) ⊙ C), where ⊙
denotes the element-wise product operation. They are mathematically equivalent.
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to existing methods, in which the layers inside the attention module are updated simultaneously
(Figure 1(a)). To reduce this additional cost, we refine the quantization objective in (7) for each
projection.

Value projection When quantizing the value projection WV , the query and key projections are fixed
with full-precision. In this case, by factoring out the common term influenced by Q and K, we can
simplify the attention reconstruction error ∆SAV as follows:

∆SAV = E
[∥∥∥AV̂ −AV

∥∥∥2
F

]
= E

[
∥A∆V ∥2F

]
= E

[∥∥∆WV XAT
∥∥2
F

]
. (9)

Thus, the problem to quantize WV to minimize the attention reconstruction error can be recast as

min
∆WV

E
[∥∥∆WV XAT

∥∥2
F

]
. (10)

Query projection When the key and value projections are fixed with full-precision, the attention
reconstruction error ∆SAQ caused by ∆WQ is expressed as

∆SAQ = E
[∥∥∥SA(Q̂,K,V )− SA(Q,K,V )

∥∥∥2
F

]
= E

[
∥∆AV ∥2F

]
, (11)

where ∆A = softmax(Q̂KT /
√
d)− softmax(QKT /

√
d). To avoid the computational overhead

of repetitive softmax operations, we approximate ∆A with its first-order Taylor series as

∆A ≈ ∆QKT

√
d

· JT
softmax, (12)

where Jsoftmax is the Jacobian of the softmax function. By combining (11) and (12), we obtain

∆SAQ ≈ 1

d
E
[∥∥∆QKTJT

softmaxV
∥∥2
F

]
=

1

d
E
[∥∥V TJsoftmaxK∆WQX

∥∥2
F

]
. (13)

Although we can circumvent conducting attention operations using the modified form in (13), a large
amount of memory is required to store the Jacobian Jsoftmax (e.g., more than 100 GB of memory for
OPT-125M).5 As a cost-effective alternative, we build an upper bound of (13) and then employ it as a
surrogate of ∆SAQ when quantizing WQ. Specifically, by noting that∥∥V TJsoftmaxK∆WQX

∥∥2
F
≤
∥∥V TJsoftmax

∥∥2
F
· ∥K∆WQX∥2F (14)

and the term ∥V TJsoftmax∥2F is fixed in the quantization process, we minimize ∥K∆WQX∥2F with
the hope that ∆SAQ also decreases. In other words, our quantization objective for WQ is

min
∆WQ

E
[
∥K∆WQX∥2F

]
. (15)

Key projection By taking similar steps, the quantization objective for the key projection WK can be
formulated as (see Appendix C for the detailed derivation)

min
∆WK

E
[
∥Q∆WKX∥2F

]
. (16)

3.4 Algorithm description

The proposed aespa consists of two main steps. Specifically, aespa first determines the quantization
parameters (i.e., scale and zero-point) and then optimizes an integer weight Wint for each weight.

Note that we only used the definition of the attention operation when developing the refined objectives
in (10), (15), and (16). Thus, our objectives can be integrated into any layer-wise quantization scheme
without effort. For example, we can compute the quantization parameters by combining existing
parameter initialization algorithms (e.g., AWQ [19] and Z-FOLD [13]) with the proposed objectives.
We can also optimize a weight-rounding policy using conventional methods (e.g., AdaRound [23])

5Note that the shape of Jsoftmax is [L,L,L] (L is the input sequence length) for each attention head because
Jsoftmax(aℓ) = diag(aℓ)− aT

ℓ aℓ ∈ RL×L for each row aℓ of A.
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together with our objectives (see Appendix F for details). In the proposed aespa, we use Z-FOLD
in computing the quantization parameters and employ AdaRound in optimizing a weight-rounding
policy. In Algorithm 1 (see Appendix A), we summarize the proposed aespa.6

To accelerate the weight-rounding learning process, we further modify the objective functions such
that the value can be computed efficiently via pre-computation, as in (5).

Modified objective for (10) The proposed objective for the value projection can be recast as

E
[∥∥∆WV XAT

∥∥2
F

]
= tr

(
∆WV E

[
XATAXT

]
∆W T

V

)
. (17)

The modified objective allows us to perform each iteration of the weight-rounding learning efficiently.
Specifically, by computing E[XATAXT ] before quantization and reusing it in the quantization pro-
cess7, we can avoid the overhead of computing

∥∥∆WV XAT
∥∥2
F

for every input X and compute the
loss with one simple matrix multiplication and a single element-wise multiplication (see Footnote 4).

Another intriguing feature of this modification is that it facilitates a more reliable update of ∆WV

than the original objective in (10). Specifically, because E[XATAXT ] is pre-computed using all
calibration data, the loss computed with (17) considers the entire calibration dataset (i.e., the batch size
is the total number of data). Thus, a better estimate of the true gradient can be obtained without any
memory issues, which could lead to more consistent updates of ∆WV and faster convergence [28].

The modified objective in (17) also implies that the Hessian HV for each row of WV is

HV = 2E[XATAXT ]. (18)

We note that the proposed Hessian HV differs from H = 2E[XXT ], which has been commonly
used as an approximated Hessian in conventional methods [6, 7, 13, 3]. The key reason for the
difference is that we consider the dependency between WQ, WK , and WV by targeting attention-
wise reconstruction, whereas the previous methods assumed independence. To observe the effect of
considering the cross-layer dependency, we use different Hessians (i.e., HV and H) when quantizing
language models and then compare the performance of the quantized models (see Appendix D).
Evidently, the quantization performance is much better when the proposed Hessian HV is used,
which demonstrates the importance of considering the cross-layer dependency.

Modified objectives for (15) and (16) If we denote the vectorized representation of ∆WQ as ∆wQ,
the proposed objective in (15) can be expressed as (see Appendix E for the derivation)

E
[
∥K∆WQX∥2F

]
=∆wT

Q · E
[
XXT ⊗KTK

]
·∆wQ. (19)

where ⊗ is the Kronecker product operation. To reduce the memory cost of storing the Kronecker
product term E

[
XXT ⊗KTK

]
, we approximate it as [2]

E
[
XXT ⊗KTK

]
≈ E

[
XXT

]
⊗ E

[
KTK

]
. (20)

By combining (19) and (20), we obtain

E
[
∥K∆WQX∥2F

]
≈ ∆wT

Q ·
(
E
[
XXT

]
⊗ E

[
KTK

])
·∆wQ

(a)
= tr

(
E
[
KTK

]
∆WQE

[
XXT

]
∆W T

Q

)
, (21)

where the proof of (a) is provided in Appendix E. By taking similar steps, the objective for the key
projection can be recast as

E
[
∥Q∆WKX∥2F

]
= tr

(
E
[
QTQ

]
∆WKE

[
XXT

]
∆W T

K

)
. (22)

The modified objectives in (21) and (22) imply that the loss over the total calibration dataset can be
calculated efficiently by computing E[KTK], E[QTQ], and E[XXT ] in advance.

6We use the layer-wise objective in (6) for the weights other than the query, key, and value projections (i.e.,
out-projection and weights inside the feed-forward network).

7The term E[XATAXT ] is not affected by ∆WV and thus fixed in the quantization process.
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3.5 Complexity analysis for aespa

We discuss the computational complexity of aespa. Specifically, we analyze the number of floating-
point operations (flops) required to perform one iteration for weight-rounding optimization (line 6 in
Algorithm 1). For each projection, the required number of flops is summarized as follows.

• Value: By reusing the pre-computed E[XATAXT ], the loss value in (17) can be computed with
one matrix multiplication and one element-wise multiplication/addition (see Footnote 4). The
associated cost is 2dhd2+ dhd− 1 flops, where d is the hidden size and dh is the input dimension
for each attention head.

• Query/key: Once E[KTK], E[QTQ], and E[XXT ] have been computed in advance, the loss
values in (21) and (22) can be computed by performing two matrix multiplications and one
element-wise multiplication/addition. This requires 2dhd2 + 2d2hd− 1 flops for each projection.

To summarize, the total number of flops required in each iteration of the proposed aespa is
Caespa = 6dhd

2 + 4d2hd+ dhd− 3 = O(dhd
2). (23)

We emphasize that regardless of the amount of calibration data, the number of flops to compute the
loss considering the entire dataset is fixed as Caespa.

We now compare the complexities of aespa and conventional block-wise quantization methods. It
can be easily verified that the existing methods require the following number of flops for handling B
input sequences of length L (see Appendix G):

Cexist = B(6dhdL+ 4dhL
2 + 2L2 − L− 1) = O(BdhL ·max{d, L}). (24)

Table 7 in Appendix G summarizes the computational costs for different sizes of OPT models. For
the conventional methods, we report the cost of using four sequences in each iteration (B = 4). We
observe that the computational cost of aespa is considerably lower than that of conventional methods.
In particular, for small-scale models, aespa performs ten times fewer number of flops. It can be
observed that the gap between Caespa and Cexist decreases as the model size increases. This is because
the hidden size d exceeds the sequence length L (which is fixed for all models) for large models.
Nevertheless, aespa still incurs a lower computational cost, and the gap increases if conventional
methods use larger batch sizes.

4 Experimental results

4.1 Experimental setup

We quantize publicly available LLMs (e.g., OPT [35], BLOOM [26], LLaMA [29], and LLaMA2 [30])
using the proposed aespa. When implementing aespa, we compute the quantization parameters with
Z-FOLD [13] and optimize a weight-rounding policy via AdaRound [23], where the proposed row-
wise Hessians and loss functions (see Table 4 in Appendix A) are utilized instead of the existing ones.
When computing the quantization parameters, we follow the stopping criterion introduced by [13].
Before optimizing a weight-rounding policy, we update the full-precision weights via OPTQ [7],
which empirically reduces the number of iterations required for weight-rounding optimization. When
optimizing a weight-rounding policy, we set the number of iterations, learning rate, and weight of the
rounding loss (see λ in (28)) to 2,000, 0.015, and 1.5, respectively.

When constructing the calibration dataset, we randomly sample 128 segments consisting of 2048
tokens from the C4 dataset [24] as in [7, 13, 3]. In our experiments, we quantize only weights and
retain activations in full-precision because activations are not a significant bottleneck for LLMs [7] and
the inference of LLMs can be accelerated sufficiently by reducing memory movement through weight
quantization [15]. We evaluate the performance of the quantized models using benchmark datasets
(e.g., WikiText-2 [22], C4 [24], and PTB [21]) and zero-shot tasks. Except for the experiments
on the LLaMA2 models, which were performed using an NVIDIA H100 GPU, we conducted all
experiments using a single NVIDIA A100 GPU (80 GB).

4.2 Comparison with prior arts

Comparison with block-wise PTQ schemes We compare the proposed aespa with conventional
block-wise PTQ methods, among which BRECQ is a classic weight-rounding optimization method,
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Table 1: Performance (PPL ↓) of the proposed aespa and conventional block-wise PTQ methods.
(a) WikiText-2

Precision Method OPT LLaMA LLaMA2
125M 1.3B 2.7B 6.7B 7B 13B 30B 7B 13B

FP16 Baseline 27.65 14.63 12.47 10.86 5.677 5.091 4.101 5.472 4.884

INT3

BRECQ [18] 33.25 16.09 13.37 OOM OOM OOM OOM OOM OOM
OmniQuant [27] 39.14 17.59 14.87 12.87 6.716 5.798 4.963 6.798 5.751
AffineQuant [20] 36.15 17.26 14.25 12.30 6.712 5.820 4.951 6.795 5.757
aespa 32.71 15.79 13.14 11.23 6.579 5.611 4.688 6.241 5.462

INT2

BRECQ [18] 60.38 56.25 113.6 OOM OOM OOM OOM OOM OOM
OmniQuant [27] NaN 399.6 1.6e3 4.9e3 18.18 NaN 10.15 35.40 20.19
AffineQuant [20] 143.9 56.45 35.16 25.32 18.83 11.08 NaN NaN 18.49
aespa 71.18 24.26 22.22 15.71 11.94 10.30 7.845 13.99 12.14

(b) C4

Precision Method OPT LLaMA LLaMA2
125M 1.3B 2.7B 6.7B 7B 13B 30B 7B 13B

FP16 Baseline 26.56 16.07 14.34 12.71 7.344 6.798 6.131 7.264 6.727

INT3

BRECQ [18] 29.74 17.46 15.39 OOM OOM OOM OOM OOM OOM
OmniQuant [27] 34.92 18.83 16.80 14.21 8.605 7.604 6.822 9.085 7.821
AffineQuant [20] 32.78 18.27 16.11 13.80 8.631 7.609 6.803 9.059 7.732
aespa 29.51 17.10 15.27 13.15 8.465 7.399 6.634 8.225 7.392

INT2

BRECQ [18] 47.85 41.05 83.32 OOM OOM OOM OOM OOM OOM
OmniQuant [27] NaN 239.1 1.1e3 4.4e3 18.59 NaN 14.74 26.27 18.93
AffineQuant [20] 95.86 43.66 29.75 24.04 16.87 12.79 NaN NaN 15.20
aespa 56.88 23.54 22.53 17.28 13.63 11.46 10.35 14.36 13.59

* ‘NaN’ means that loss diverges in the quantization process.
* ‘OOM’ means that out-of-memory issues occur when quantizing models with a single A100 GPU.
* Results for high bit-widths are provided in Appendix H due to the page limitation.

and OmniQuant and AffineQuant are LLM quantization methods that mitigate the computational
overhead of BRECQ by learning only a few quantization and foldable parameters [27, 20]. For
OmniQuant and AffineQuant, we ran the official codes8 provided by the authors. For both methods, we
activated the learnable equivalent transformation (LET) and learnable weight clipping (LWC) options
and reported the obtained results. When implementing BRECQ, we employed the hyperparameter
settings provided in [18]. In this comparison, the BLOOM models and OPT-350M were excluded
because they are not supported by OmniQuant and AffineQuant.

As Table 1 shows, aespa uniformly outperforms OmniQuant/AffineQuant.9 In particular, the perfor-
mance gap is significant for 2-bit; while OmniQuant/AffineQuant suffer from instability (i.e., loss
diverges) or collapse (perplexity (PPL) > 103), aespa exhibits reasonable PPL. The outstanding
performance is attributed to the fact that aespa optimizes a weight-rounding policy after determining
the quantization parameters (lines 5-8 in Algorithm 1), whereas OmniQuant/AffineQuant rely on the
naive nearest rounding and approximate gradients for the non-differentiable quantization function.

Although BRECQ performs best for the 2-bit quantization of OPT-125M, it lacks scalability; BRECQ
requires approximately 20 GPU hours for a relatively small-scale OPT-2.7B (see Table 14 in Ap-
pendix K). Even for OPT-125M, BRECQ requires approximately 2 GPU hours, whereas the proposed
aespa completes quantization in 5 minutes. One might wonder why the performance of BRECQ wors-
ens as the model size increases. We assume that this is attributable to the choice of hyperparameters
(e.g., learning rate and weight of rounding loss). In fact, the hyperparameters presented in [18] have
been optimized for ImageNet, but not for LLMs. It is expected that we can obtain better performance
for BRECQ via deliberate hyperparameter tuning; however, this would not be feasible for real-world
deployment because it requires considerable time (see Table 14 in Appendix K).

Comparison with layer-wise PTQ schemes We compare the proposed aespa with conventional
layer-wise PTQ schemes, among which RTN is the method that naively assigns the nearest grid,
OPTQ is a backpropagation-free weight-rounding optimization algorithm [7], and Z-FOLD is the

8https://github.com/OpenGVLab/OmniQuant, https://github.com/bytedance/AffineQuant
9We note that our results are different from those reported in [27, 20] where a different calibration dataset

(WikiText-2) was used; see Appendix L for more discussion on this issue.
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Table 2: Performance (PPL ↓) of aespa and existing layer-wise PTQ methods on BLOOM models.

Precision Method WikiText-2 C4
560M 1.1B 1.7B 3B 7.1B 560M 1.1B 1.7B 3B 7.1B

FP16 Baseline 22.42 17.69 15.39 13.48 11.37 26.60 22.05 19.49 17.49 15.20

INT3

RTN 56.74 49.85 63.37 39.07 17.35 66.99 60.41 113.6 79.84 22.54
OPTQ 31.55 23.84 20.06 17.13 13.56 34.62 27.62 23.87 20.96 17.43
Z-FOLD 26.52 20.99 17.39 15.11 12.26 29.97 24.43 21.52 19.01 16.12
aespa 25.39 19.81 16.95 14.68 12.00 29.10 23.80 20.93 18.55 15.91

INT2

RTN 7.8e5 9.8e5 3.5e5 1.4e5 2.1e5 1.4e6 2.1e6 2.7e5 9.2e4 1.3e5
OPTQ 1.7e3 1.9e3 1.4e3 796.5 194.2 533.4 538.0 562.9 351.6 112.8
Z-FOLD 65.45 44.50 35.69 27.40 18.87 64.11 42.96 37.26 32.64 22.46
aespa 44.91 34.12 27.67 21.65 16.31 45.04 35.12 29.95 25.04 20.00

* Results for high bit-widths and other language models (e.g., OPT, LLaMA, and LLaMA2) are provided in Appendix I.

method exploiting additional foldable parameters to quantize weights more elaborately [13]. Table 2
and Tables 9-12 (see Appendix I) summarize the results for the OPT, BLOOM, LLaMA, and LLaMA2
models of various sizes. Evidently, aespa uniformly outperforms conventional schemes, regardless of
the size and type of LLMs. In particular, for 2-bit, there exists a significant performance gap between
aespa and existing methods; the PPL obtained by aespa is twice as low as those of conventional
methods for small-scale models (e.g., OPT-125M). The key factors leading to such an outstanding
performance are: 1) the consideration of the cross-layer dependency achieved by targeting attention-
wise reconstruction, and 2) efficient weight-rounding optimization based on pre-computations.

Zero-shot task performance We evaluate the reasoning performance of quantized models using
zero-shot tasks (e.g., ARC [4], HellaSwag [34], and MMLU [8]). We note that the zero-shot setting
was ensured in our experiments because we used excerpts from randomly crawled websites (not
task-specific data) as a calibration dataset. From the zero-shot results in Table 3 and Table 13 (see
Appendix J), we observe that the proposed aespa performs the best in almost all cases, and the
performance gap between aespa and the existing methods is large for 2-bit.

Time cost We summarize the processing times of the different quantization algorithms in Appendix K.
We note that the processing time of aespa includes the time required for pre-computations (lines 2-4
in Algorithm 1). As expected, aespa completes quantization much faster than BRECQ. For example,
while BRECQ requires more than 10 GPU hours for OPT-1.3B, aespa completes quantization in 1.24
hours, which demonstrates the effectiveness of the proposed pre-computation-based loss computation
strategy. Although other block-wise methods (OmniQuant/AffineQuant) perform quantization faster
than aespa for hyper-scale models, they suffer from unstable training processes or exhibit poor PPL
performance (e.g., PPL of OmniQuant is larger than 103 for OPT-6.7B; see Table 1). In addition, we
observe that OPTQ performs quantization quickly, but its 2-bit performance collapses regardless of
the model size (see Table 9 in Appendix I). Except for aespa, Z-FOLD is the only method that shows
both reasonable performance and processing time.

Discussion In real situations, when one needs to preserve the performance of the original model
as much as possible, the proposed aespa would be an intriguing solution. In particular, when
deploying LLMs on resource-constrained platforms where up to 7B models are commonly employed
(e.g., mobile devices), aespa would be a good fit. Even when fast quantization of hyper-scale
models is required, aespa can be used with a slight modification. Specifically, in time-limited cases,
one can skip the weight-rounding optimization (lines 5-8 in Algorithm 1) and simply determine
the quantization parameters using the proposed Hessian that considers the cross-layer dependency
(line 4 in Algorithm 1). In doing so, we can not only save the time required to optimize a weight-
rounding mechanism, but also save the memory required to store pre-computed values (E[KTK]
and E[QTQ]). Indeed, when performing only quantization parameter computation, we achieved a
significant reduction in the processing time (see Table 15 in Appendix K) while still exhibiting better
performance than conventional methods (see Table 6 in Appendix D).

5 Conclusion

We proposed a next-level PTQ scheme for Transformers, called aespa. By targeting the attention-
wise reconstruction while quantizing Transformers layer-wise, we could consider the cross-layer
dependency within the attention module and complete the quantization much faster than the existing

9



Table 3: INT2 zero-shot performance (accuracy ↑) of aespa and existing methods.
Model Method ARC-c ARC-e HellaSwag MMLU Average

LLaMA-7B

FP16 44.62 72.85 76.18 32.19 56.46

RTN 28.67 25.00 26.43 25.72 26.46
OPTQ [7] 29.18 26.14 26.18 24.04 26.39
Z-FOLD [13] 30.63 52.44 53.55 23.27 39.97
OmniQuant [27] 27.22 49.20 50.65 23.74 37.70
AffineQuant [20] 27.90 49.58 51.85 24.15 38.37
aespa 33.36 55.64 58.31 23.12 42.61

LLaMA-13B

FP16 47.87 74.75 79.08 43.46 61.29

RTN 28.16 27.15 26.09 25.53 26.73
OPTQ [7] 27.22 25.76 25.67 25.05 25.93
Z-FOLD [13] 32.68 58.08 57.89 26.44 43.77
OmniQuant [27] NaN NaN NaN NaN NaN
AffineQuant [20] 32.17 56.36 60.29 25.22 43.51
aespa 34.73 61.49 62.68 28.74 46.91

LLaMA-30B

FP16 52.90 78.96 82.63 54.66 67.29

RTN 27.05 26.39 25.87 25.48 26.20
OPTQ [7] 27.13 26.60 26.12 23.56 25.85
Z-FOLD [13] 39.93 65.07 65.89 30.85 50.44
OmniQuant [27] 34.22 58.50 64.83 25.91 45.87
AffineQuant [20] NaN NaN NaN NaN NaN
aespa 41.13 67.00 67.90 35.67 52.93

LLaMA2-7B

FP16 46.16 74.49 75.99 41.87 59.63

RTN 28.33 26.01 25.88 23.02 25.81
OPTQ [7] 26.37 26.09 25.11 25.10 25.67
Z-FOLD [13] 26.62 42.68 44.71 22.88 34.22
OmniQuant [27] 25.00 38.80 42.97 23.03 32.45
AffineQuant [20] NaN NaN NaN NaN NaN
aespa 30.29 51.47 56.75 25.59 41.03

LLaMA2-13B

FP16 49.06 77.44 79.39 52.10 64.50

RTN 27.22 25.04 25.58 24.69 25.63
OPTQ [7] 26.71 27.19 25.42 23.74 25.77
Z-FOLD [13] 28.41 48.32 51.59 23.98 38.08
OmniQuant [27] 27.13 47.98 53.27 23.81 38.05
AffineQuant [20] 30.80 52.90 57.74 24.45 41.47
aespa 31.91 55.18 55.49 29.97 43.14

* ‘NaN’ means that loss diverges in the quantization process.
* Results for high bit-widths are provided in Appendix J due to the page limitation.

approach for block-wise reconstruction (i.e., BRECQ). Extensive experiments on language models
have demonstrated the outstanding performance of aespa.

Limitations and future work While we focused on the attention output, the output of the entire
Transformer block (containing fully connected layers) can be used to consider the dependencies
between more layers. However, in this case, the objective functions would be more complicated
than those in (13) and (25) due to nonlinear activation functions (e.g., SiLU for LLaMA models),
normalization layers, and weights of larger dimensions. Enhancing the quantization performance
by developing an efficient form of the reconstruction error for the Transformer block would be an
interesting future work. Furthermore, while we focused on weight-only quantization, activations
may need to be quantized to deploy AI models on integer-only arithmetic hardware (e.g., NPU).
Extending the proposed aespa for weight-activation quantization by integrating existing techniques to
suppress activation outliers [33, 1] is also an interesting research direction. Finally, while we verified
the performance of aespa with LLMs, we believe that aespa can also be used for the quantization
of diffusion models. To that end, we may need to incorporate some diffusion-specific quantization
strategies to overcome output distribution discrepancies over different time steps (e.g., grouping of
time-steps with similar distributions [32], temporal feature preservation [9], and separate quantization
for shortcuts in U-Net [17]), which will be considered in our future studies.
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Appendices

A Pseudo-code for the proposed aespa

In this appendix, we provide the pseudo-code for the proposed aespa excluded in the main text due to
the page limitation.

Algorithm 1 Quantization
1: def QUANTIZATION(W ,X)
2: Approximate the Hessian H ▷ See Table 4
3: Estimate E[KTK],E[QTQ] for WQ,WK ▷ Table 4
4: Set the step size S s.t. minS tr

(
∆WH∆W T

)
5: repeat
6: Compute the Loss L ▷ Table 4
7: Optimize S or Wint w.r.t L by certain algorithm
8: until converged
9: return S and Wint ▷ step size and integer weight

Table 4: Row-wise Hessian H and quantization loss L for each layer
Layer H L
WQ E

[
XXT

]
tr
(
E
[
KTK

]
·∆WH∆W T

)
WK E

[
XXT

]
tr
(
E
[
QTQ

]
·∆WH∆W T

)
WV E

[
XATAXT

]
tr
(
∆WH∆W T

)
Others E

[
XXT

]
tr
(
∆WH∆W T

)
As mentioned, the proposed aespa consists of two main steps; aespa first determines the quantization
parameters (i.e., scale s and zero-point z in (3)) together with foldable parameters, as in [19, 13, 27,
20] (see line 4 in Algorithm 1), and then optimizes an integer weight Wint for each weight (see lines
5-8 in Algorithm 1). We emphasize that each iteration for the integer weight optimization can be
performed efficiently based on pre-computed values (i.e., E[XXT ], E[XATAXT ], E[KTK], and
E[QTQ] in Table 4). We also note that while we have used Z-FOLD in computing the quantization
parameters and used AdaRound in optimizing integer weights, our refined objectives in (17), (21),
and (22) can be integrated into any layer-wise quantization scheme without effort because we only
used the definition of the attention operation in our derivation.
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B Validity of the proposed separate quantization strategy

Table 5: Performance (PPL ↓) of OPT-125M quantized with different strategies.

Method Quantization
Granularity

Reconstruction
Target

W2A16 W3A16 W4A16
Wiki-2 C4 Wiki-2 C4 Wiki-2 C4

AdaRound Layer-wise Layer Output 160.7 95.63 35.44 31.86 29.51 27.78
BRECQ Block-wise Attention Output 60.38 47.85 33.25 29.74 28.86 27.43

Proposed Layer-wise Attention Output 69.23 51.92 32.89 29.75 28.98 27.42

We conduct experiments to demonstrate the importance of targeting attention-wise reconstruction
and the validity of the proposed separate quantization strategy. In our experiments, we learn a weight-
rounding policy using conventional AdaRound, but we set the loss function for each projection as the
attention reconstruction error in (7) (not the layer reconstruction error; see Figure 2(c)).

Table 5 summarizes the quantization performance of AdaRound, BRECQ, and our approach on
the OPT-125M model. As evident, our approach uniformly outperforms AdaRound for all bit-
widths, although both methods quantize models layer-wise. This is because we can consider the
cross-layer dependency (i.e., the relationship between the query, key, and value) by targeting attention-
wise reconstruction, which differs from AdaRound wherein layers are considered independent.
Furthermore, once we target attention-wise reconstruction, separate layer-wise quantization does not
incur severe performance degradation compared to the joint quantization method (BRECQ). Indeed,
our approach causes only a marginal performance degradation for 2-bit and exhibits comparable
performance for 3-bit and 4-bit.

One might wonder about the strategy of quantizing more than one layer jointly while maintaining
remaining weights with full-precision, e.g., simultaneous quantization of the query and key projections
while fixing the value projection with full-precision. To say the conclusion first, in this case,
we cannot use the proposed pre-computation-based loss computation strategy (see Section 3.4),
resulting in a much longer quantization processing time. Specifically, when quantizing WQ and WK
simultaneously, the attention reconstruction error is expressed as

∆SAQ,K = E
[∥∥∥SA(Q̂, K̂,V )− SA(Q,K,V )

∥∥∥2
F

]
= E

[
∥∆AV ∥2F

]
,

where

∆A = softmax

(
Q̂K̂T

√
d

)
− softmax

(
QKT

√
d

)
.

Then, by taking similar steps as in Section 3.3 (i.e., approximating ∆A with its first-order Taylor
series and constructing an upper bound of ∆SAQ,K ), we can obtain the following objective:

min
∆WQ,∆WK

E
[∥∥∥Q̂K̂T −QKT

∥∥∥2
F

]
= min

∆WQ,∆WK

E
[∥∥∥∆QKT +Q∆KT +∆Q∆KT

∥∥∥2
F

]
= min

∆WQ,∆WK

E
[∥∥∥XT∆W T

QKT +Q∆WKX +XT∆W T
Q∆WKX

∥∥∥2
F

]
.

Obviously, the objective becomes much more complex than the proposed ones in (15) and (16), and it
would be difficult to simplify and accelerate the loss computation by exploiting pre-computed values
as in aespa. In fact, without the proposed pre-computation-based loss computation, the simultaneous
quantization of WQ and WK requires 3.5 hours for the quantization of OPT-125M, which is about
44 times longer than the proposed aespa and even 1.9 times longer than BRECQ.
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C Refined quantization objective (16) for the key projection

When quantizing the key projection WK , we fix the query and value projections with full-precision.
In this case, the attention reconstruction error ∆SAK can be expressed as

∆SAK = E
[∥∥∥SA(Q, K̂,V )− SA(Q,K,V )

∥∥∥2
F

]
= E

[
∥∆AV ∥2F

]
,

where

∆A = softmax

(
QK̂T

√
d

)
− softmax

(
QKT

√
d

)
.

To avoid the computational overhead of repetitive softmax operation, we approximate ∆A with its
first-order Taylor series, which leads to

∆SAK ≈ 1

d
E
[∥∥∥Q∆KTJT

softmaxV
∥∥∥2
F

]
=

1

d
E
[∥∥∥Q∆WKXJT

softmaxV
∥∥∥2
F

]
. (25)

Furthermore, to reduce the huge memory cost required to store the Jacobian Jsoftmax having L3

elements (see Footnote 5), we establish an upper bound of (25) and then use it as a surrogate of ∆SAK .
Specifically, we separate the term ∥Q∆WKXJT

softmaxV ∥2F into two components as follows:∥∥∥Q∆WKXJT
softmaxV

∥∥∥2
F
≤ ∥Q∆WKX∥2F ·

∥∥∥JT
softmaxV

∥∥∥2
F
.

Noting that the term
∥∥JT

softmaxV
∥∥2
F

is not affected by the quantization of WK and thus fixed in the
quantization process, we minimize ∥Q∆WKX∥2F to enforce ∆SAK to be small, which leads to the
proposed objective in (16).
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D Effectiveness of the proposed Hessian in (18)

We recall from Section 3.4 that the proposed quantization objective for the value projection is

tr
(
∆WV E

[
XATAXT

]
∆W T

V

)
,

which implies that the Hessian HV for each row of WV is

HV = 2E[XATAXT ].

We note that the proposed Hessian HV differs from

H = 2E[XXT ],

which has been commonly used as an approximated Hessian in existing methods [6, 7, 3, 13].
The key reason for the difference is that we consider the dependency between the query, key, and
value projections by targeting attention-wise reconstruction, whereas the previous methods assumed
independence.

To observe the effect of considering the cross-layer dependency, we use different Hessians (i.e., HV
and H) when quantizing language models via Z-FOLD and then compare the performance of the
quantized models. As Table 6 shows, the quantization performance is much better when the proposed
Hessian HV is used, which demonstrates the importance of considering the cross-layer dependency.

Table 6: Quantization performance (PPL ↓) of Z-FOLD under different Hessians.
(a) WikiText-2

Hessian Precision OPT LLaMA
125M 350M 1.3B 2.7B 6.7B 7B 13B 30B

E[XXT ] [6, 7, 3, 13] INT3 39.59 25.97 16.10 13.54 11.65 6.756 5.708 4.931
E[XATAXT ] (ours) 35.05 24.81 16.25 13.40 11.43 6.529 5.669 4.693

E[XXT ] [6, 7, 3, 13] INT2 190.1 102.5 33.97 27.10 18.07 14.93 13.03 9.250
E[XATAXT ] (ours) 146.4 68.30 31.43 25.17 17.92 14.20 13.15 8.138

(b) PTB

Hessian Precision OPT LLaMA
125M 350M 1.3B 2.7B 6.7B 7B 13B 30B

E[XXT ] [6, 7, 3, 13] INT3 53.08 39.23 22.73 20.18 16.64 11.73 10.09 8.979
E[XATAXT ] (ours) 49.88 37.62 22.66 19.78 16.55 11.39 10.48 8.657

E[XXT ] [6, 7, 3, 13] INT2 331.6 130.7 53.80 46.08 26.79 26.87 19.37 15.23
E[XATAXT ] (ours) 212.8 100.1 53.64 42.93 26.09 24.88 18.01 12.99

(c) C4

Hessian Precision OPT LLaMA
125M 350M 1.3B 2.7B 6.7B 7B 13B 30B

E[XXT ] [6, 7, 3, 13] INT3 33.67 26.45 17.33 15.50 13.28 8.719 7.554 6.912
E[XATAXT ] (ours) 31.27 25.51 17.27 15.42 13.22 8.313 7.437 6.638

E[XXT ] [6, 7, 3, 13] INT2 125.3 71.37 31.67 25.99 19.79 16.88 14.61 11.90
E[XATAXT ] (ours) 112.6 56.48 30.06 25.34 19.32 16.87 13.46 10.32
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E Proof of (19) and (21)

Note that E
[∥∥K∆WQX

∥∥2
F

]
= E

[∥∥vec (K∆WQX
)∥∥2

2

]
, where vec(·) denotes the vectorization

operation. Then, by exploiting the following properties of Kronecker product

vec (ABC) =
(
CT ⊗A

)
vec(B),

(A⊗B)T = AT ⊗BT ,

(A⊗B) (C ⊗D) = AC ⊗BD,

we have

E
[∥∥K∆WQX

∥∥2
F

]
= E

[∥∥∥(XT ⊗K
)
∆wQ

∥∥∥2
2

]
= E

[
∆wT

Q

(
XT ⊗K

)T (
XT ⊗K

)
∆wQ

]
= E

[
∆wT

Q

(
X ⊗KT

)(
XT ⊗K

)
∆wQ

]
= E

[
∆wT

Q

(
XXT ⊗KTK

)
∆wQ

]
(26)

= ∆wT
Q · E

[
XXT ⊗KTK

]
·∆wQ,

which is the desired result in (19).

We now prove (21). By combining (19) and (20), we have

E
[∥∥K∆WQX

∥∥2
F

]
≈ ∆wT

Q ·
(
E
[
XXT

]
⊗ E

[
KTK

])
·∆wQ.

Note that since E[XXT ] and E[KTK] are symmetric, there exist GX and GK such that

E[XXT ] = GXGT
X , E[KTK] = GT

KGK .

Then, by following the steps used to derive (26) in the reverse order, we have

E
[∥∥K∆WQX

∥∥2
F

]
= ∆wT

Q

(
GXGT

X ⊗GT
KGK

)
∆wQ

=
∥∥GK∆WQGX

∥∥2
F

= tr
(
GK∆WQGXGT

X∆W T
QGT

K

)
= tr

(
GT

KGK ·∆WQ ·GXGT
X ·∆W T

Q

)
= tr

(
E
[
KTK

]
∆WQE

[
XXT

]
∆W T

Q

)
,

which completes the proof of (21).
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F Integration of proposed loss functions into existing PTQ schemes

We recall that we only utilized the definition of the attention operation when developing the proposed
loss functions for the attention output reconstruction. Therefore, our loss functions can be integrated
into any PTQ schemes based on layer-wise reconstruction and used to enhance their performance. In
this section, we describe how to combine our loss functions with existing quantization schemes by
taking AdaRound as an example.

In short, AdaRound learns a weight-rounding mechanism by solving the following optimization
problem [23]:

argmin
B

∥∥∥WX − W̃X
∥∥∥2
F
+ λ

∑
i,j

(
1− |2h(Bi,j)− 1|β

)
, (27)

where B is the continuous variable to be learned, h is the rectified sigmoid function, and W̃ is the
soft-quantized weights defined as

W̃ = s · clamp
(⌊

W

s

⌋
+ h(B), n, p

)
.

One can see that the loss function of AdaRound consists of two components, layer-wise reconstruction
error and weight-rounding loss.

To consider the cross-layer dependency between WQ, WK , and WV in the learning process, we
integrate the proposed loss functions developed for the attention output reconstruction into (27). In
other words, we replace the layer-wise reconstruction error in (27) with our loss functions in (17), (21),
and (22). For example, when learning the rounding policy for the query projection matrix WQ, the
objective of the proposed aespa is expressed as

argmin
BQ

tr
(
E
[
KTK

]
∆WQE

[
XXT

]
∆W T

Q

)
+ λ

∑
i,j

(
1−

∣∣2h(BQ,i,j)− 1
∣∣β) , (28)

where ∆WQ = WQ − W̃Q.
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G Complexity analysis for conventional block-wise quantization schemes

Recall from (7) that conventional block-wise quantization schemes require to compute SA(Q̂, K̂, V̂ )
in each iteration. This means that for each input sequence, one needs to perform

• forward pass for Q̂, K̂, and V̂ : 3dhL(2d− 1) flops

• matrix multiplications for computing Q̂K̂T and ÂV̂ : 4dhL2 − dhL− L2 flops

• softmax operation with additional scaling (i.e., softmax( Q̂K̂T

√
dh

)): 3L2 + dhL− L flops

• final computation of reconstruction error: 3dhL− 1 flops

If B input sequences are used in each quantization iteration, then the total number of flops required
in conventional methods is

Cexist = B(6dhdL+ 4dhL
2 + 2L2 − L− 1) = O(BdhL ·max{d, L}).

Comparison of Caespa and Cexist We now compare the complexities of aespa and conventional
block-wise quantization methods in terms of the number of flops. Table 7 summarizes the compu-
tational costs required to quantize different sizes of OPT models. For conventional methods, we
report the cost of using four sequences in each iteration (B = 4). We observe that the computational
cost of aespa is considerably lower than that of conventional methods. In particular, for small-scale
models (e.g., OPT-125M, OPT-350M, and OPT-1.3B), aespa performs ten times fewer number of
flops. One can notice that the gap between Caespa and Cexist decreases as the model size increases.
This is because the hidden size d exceeds the sequence length L (which is fixed for all models) as
the model size increases. Nevertheless, aespa still incurs a lower computational cost, and the gap
increases if conventional methods use larger batch sizes.

Table 7: Cost of aespa and conventional methods (GFLOPS)

125M 350M 1.3B 2.7B 6.7B 13B

Cexist 6.7 7.5 11 15 34 41
Caespa 0.24 0.42 1.6 3.2 13 20
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H Comparison with block-wise PTQ schemes

We provide experimental results excluded from the main text due to page limitations.

Table 8: Performance (PPL ↓) of the proposed aespa and conventional block-wise PTQ methods.
(a) INT4 performance on WikiText-2 and C4

Dataset Method OPT LLaMA LLaMA2
125M 1.3B 2.7B 6.7B 7B 13B 30B 7B 13B

WikiText-2

FP16 27.65 14.63 12.47 10.86 5.677 5.091 4.101 5.472 4.884

BRECQ [18] 28.86 14.83 12.71 OOM OOM OOM OOM OOM OOM
OmniQuant [27] 30.42 15.15 12.89 11.20 5.907 5.256 4.263 5.850 5.064
AffineQuant [20] 29.81 15.09 12.72 11.12 5.905 5.256 4.269 5.782 5.062
aespa 28.87 14.81 12.36 10.95 5.890 5.226 4.254 5.684 5.031

C4

FP16 26.56 16.07 14.34 12.71 7.344 6.798 6.131 7.264 6.727

BRECQ [18] 27.43 16.42 14.61 OOM OOM OOM OOM OOM OOM
OmniQuant [27] 28.41 16.68 14.83 12.99 7.656 6.976 6.269 7.686 6.956
AffineQuant [20] 28.04 16.58 14.74 12.92 7.654 6.974 6.270 7.644 6.927
aespa 27.24 16.31 14.55 12.82 7.633 6.945 6.256 7.508 6.891

(b) Performance on PTB

Precision Method OPT LLaMA
125M 1.3B 2.7B 6.7B 7B 13B 30B

FP16 Baseline 38.99 20.29 17.97 15.77 10.12 9.081 8.159

INT4

BRECQ [18] 41.04 20.97 18.41 OOM OOM OOM OOM
OmniQuant [27] 42.34 21.32 18.70 16.04 10.57 9.330 8.354
AffineQuant [20] 42.99 21.26 18.49 16.02 10.53 9.325 8.355
aespa 40.50 20.78 18.30 15.84 10.43 9.277 8.283

INT3

BRECQ [18] 46.93 23.41 19.82 OOM OOM OOM OOM
OmniQuant [27] 56.88 25.11 22.59 18.33 11.98 10.24 9.065
AffineQuant [20] 51.47 24.38 21.03 17.40 11.92 10.24 8.998
aespa 44.96 22.35 19.48 16.28 11.45 9.818 8.684

INT2

BRECQ [18] 90.22 344.9 282.0 OOM OOM OOM OOM
OmniQuant [27] NaN 377.9 2.0e3 7.7e3 33.51 NaN 17.38
AffineQuant [20] 177.8 75.25 47.07 37.90 29.33 18.58 NaN
aespa 99.12 37.19 32.57 22.80 19.83 15.65 12.98

* ‘NaN’ means that loss diverges in the quantization process.
* ‘OOM’ means that out-of-memory issues occur when quantizing models with a single A100 GPU.
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I Comparison with layer-wise PTQ schemes

We provide experimental results excluded from the main text due to page limitations.

I.1 Results on OPT models

Table 9: Performance (PPL ↓) of aespa and existing layer-wise PTQ methods on OPT models.
(a) WikiText-2

Precision Method 125M 350M 1.3B 2.7B 6.7B 13B 30B

FP16 Baseline 27.65 22.00 14.63 12.47 10.86 10.13 9.56

INT4

RTN 37.28 25.94 48.20 16.92 12.10 11.32 10.98
OPTQ 32.49 23.68 15.50 12.85 11.12 10.33 9.670
Z-FOLD 31.03 23.08 15.00 12.47 11.01 10.21 9.537
aespa 28.87 22.55 14.81 12.36 10.95 10.18 9.511

INT3

RTN 1.3e3 64.57 1.3e4 1.6e4 5.8e3 3.4e3 1.6e3
OPTQ 52.95 33.29 20.36 16.94 13.01 11.65 10.44
Z-FOLD 39.59 25.97 16.10 13.54 11.65 10.62 9.902
aespa 32.71 24.45 15.79 13.14 11.23 10.52 9.760

INT2

RTN 5.5e3 2.8e4 1.1e5 9.5e3 2.8e4 1.9e5 1.7e5
OPTQ 4.1e3 1.1e4 8.3e3 9.3e3 2.0e3 539.8 56.63
Z-FOLD 190.1 102.5 33.97 27.10 18.07 33.48 13.48
aespa 71.18 54.89 24.26 22.22 15.71 15.27 11.91

(b) PTB

Precision Method 125M 350M 1.3B 2.7B 6.7B 13B 30B

FP16 Baseline 38.99 31.08 20.29 17.97 15.77 14.52 14.04

INT4

RTN 53.88 36.79 75.37 32.41 18.86 16.41 15.44
OPTQ 46.54 33.27 21.74 19.04 16.42 14.88 14.21
Z-FOLD 44.17 33.51 20.96 18.45 15.98 14.65 14.11
aespa 40.50 32.17 20.78 18.30 15.84 14.65 14.09

INT3

RTN 1.4e3 87.21 1.5e4 1.4e4 5.3e3 2.2e3 1.5e3
OPTQ 74.07 46.10 29.76 25.06 19.22 16.42 15.08
Z-FOLD 53.08 39.23 22.73 20.18 16.64 15.23 14.60
aespa 44.96 36.15 22.35 19.48 16.28 15.06 14.43

INT2

RTN 4.3e3 2.8e4 1.1e4 6.8e3 1.8e4 1.2e5 1.7e5
OPTQ 3.5e3 1.2e4 6.6e3 8.0e3 2.5e3 458.4 83.81
Z-FOLD 331.6 130.7 53.80 46.08 26.79 79.69 20.39
aespa 99.12 79.86 37.19 32.57 22.80 23.93 17.51

(c) C4

Precision Method 125M 350M 1.3B 2.7B 6.7B 13B 30B

FP16 Baseline 26.56 22.59 16.07 14.34 12.71 12.06 11.44

INT4

RTN 33.88 26.21 27.50 18.83 14.37 13.32 13.55
OPTQ 29.64 24.15 16.75 14.86 13.00 12.24 11.56
Z-FOLD 28.92 23.71 16.38 14.60 12.85 12.14 11.49
aespa 27.24 23.15 16.31 14.55 12.82 12.13 11.47

INT3

RTN 834.4 55.15 6.6e3 1.2e4 5.0e3 2.8e3 1.8e3
OPTQ 42.88 30.60 20.53 17.66 14.61 13.19 12.15
Z-FOLD 33.67 26.45 17.33 15.50 13.28 12.45 11.73
aespa 29.51 24.96 17.10 15.27 13.15 12.39 11.68

INT2

RTN 3.7e3 1.6e4 7.7e3 7.7e3 1.4e4 9.7e4 5.8e4
OPTQ 2.1e3 4.4e3 3.0e3 3.7e3 290.9 157.7 29.40
Z-FOLD 125.3 71.37 31.67 25.98 19.79 47.10 14.51
aespa 56.88 46.36 23.54 22.53 17.28 16.30 13.32
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I.2 Results on BLOOM models

Table 10: Performance (PPL ↓) of aespa and existing layer-wise PTQ methods on BLOOM models.
(a) INT4 performance on WikiText-2 and C4

Precision Method WikiText-2 C4
560M 1.1B 1.7B 3B 7.1B 560M 1.1B 1.7B 3B 7.1B

FP16 Baseline 22.42 17.69 15.39 13.48 11.37 26.60 22.05 19.49 17.49 15.20

INT4

RTN 25.82 19.98 16.96 14.75 12.09 29.80 24.42 21.24 18.75 16.05
OPTQ 23.83 18.74 16.16 14.01 11.72 27.74 23.05 20.26 18.00 15.54
Z-FOLD 23.60 18.44 15.87 13.90 11.59 27.36 22.66 20.00 17.87 15.42
aespa 23.21 18.28 15.76 13.81 11.56 27.20 22.49 19.86 17.76 15.38

(b) Performance on PTB
Precision Method 560M 1.1B 1.7B 3B 7.1B

FP16 Baseline 43.69 57.96 30.00 25.34 20.83

INT4

RTN 50.96 66.79 33.52 27.65 22.40
OPTQ 46.83 62.99 31.63 26.72 21.52
Z-FOLD 45.77 61.33 31.26 26.27 21.35
aespa 44.73 60.41 31.05 26.01 21.17

INT3

RTN 124.8 184.0 105.5 66.24 34.94
OPTQ 64.43 82.91 40.27 33.13 25.94
Z-FOLD 53.01 69.93 35.12 28.41 22.83
aespa 48.87 67.01 33.06 27.61 22.03

INT2

RTN 7.4e5 1.1e6 2.5e5 1.2e5 2.2e5
OPTQ 4.1e3 2.4e3 1.4e3 1.4e3 428.4
Z-FOLD 194.9 174.9 74.03 69.49 38.50
aespa 91.14 120.7 57.48 46.40 31.28
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I.3 Results on LLaMA models

Table 11: Performance (PPL ↓) of aespa and existing layer-wise PTQ methods on LLaMA models.

Precision Method WikiText-2 PTB C4
7B 13B 30B 7B 13B 30B 7B 13B 30B

FP16 Baseline 5.677 5.091 4.101 10.12 9.081 8.159 7.344 6.798 6.131

INT4

RTN 6.291 5.525 4.536 11.25 9.775 8.653 8.121 7.232 6.537
OPTQ 6.167 5.365 4.452 11.51 9.526 8.426 7.792 7.082 6.399
Z-FOLD 6.069 5.278 4.325 11.45 9.335 8.410 7.797 6.984 6.318
aespa 5.890 5.226 4.254 10.43 9.277 8.283 7.633 6.945 6.256

INT3

RTN 25.61 11.78 14.87 98.89 28.94 28.79 30.86 14.46 30.04
OPTQ 8.290 6.729 5.705 16.11 11.91 9.964 10.51 8.832 7.977
Z-FOLD 6.756 5.708 4.931 11.73 10.09 8.979 8.719 7.554 6.912
aespa 6.579 5.611 4.688 11.45 9.818 8.684 8.465 7.399 6.634

INT2

RTN 1.1e5 5.7e4 2.7e4 9.9e4 8.1e4 3.3e4 1.1e5 5.9e4 2.8e4
OPTQ 1.0e4 3.7e3 1.5e3 1.1e4 8.5e3 1.0e3 872.7 809.7 304.4
Z-FOLD 14.93 13.03 9.250 26.87 19.37 15.23 16.88 14.61 11.90
aespa 11.94 10.30 7.845 19.83 15.65 12.98 13.63 11.46 10.35

I.4 Results on LLaMA2 models

Table 12: Performance (PPL ↓) of aespa and existing layer-wise PTQ methods on LLaMA2 models.

Precision Method WikiText-2 C4
7B 13B 7B 13B

FP16 Baseline 5.472 4.884 7.264 6.727

INT4

RTN 6.116 5.205 8.165 7.142
OPTQ 6.060 5.158 7.838 7.030
Z-FOLD 5.815 5.099 7.602 6.996
aespa 5.684 5.031 7.508 6.891

INT3

RTN 542.0 10.69 527.2 13.87
OPTQ 8.664 6.554 11.24 8.761
Z-FOLD 6.606 5.710 8.666 7.692
aespa 6.241 5.462 8.225 7.392

INT2

RTN 1.8e4 5.1e4 2.8e4 5.3e4
OPTQ 7.5e3 2.1e3 1.7e3 560.7
Z-FOLD 20.79 15.56 21.98 16.90
aespa 13.99 12.14 14.36 13.59
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J Results for zero-shot tasks

We provide INT3 zero-shot performance results that are excluded from the main text due to page
limitations.

Table 13: INT3 zero-shot performance (accuracy ↑) of aespa and existing methods.
Model Method ARC-c ARC-e HellaSwag MMLU Average

LLaMA-7B

FP16 44.62 72.85 76.18 32.19 56.46

RTN 27.47 45.45 45.46 24.94 35.83
OPTQ [7] 36.95 62.63 68.33 25.51 48.36
Z-FOLD [13] 41.21 66.92 72.50 28.90 52.38
OmniQuant [27] 38.99 67.30 70.31 29.33 51.48
AffineQuant [20] 39.25 65.61 70.56 29.68 51.28
aespa 40.87 69.15 71.54 30.57 53.03

LLaMA-13B

FP16 47.87 74.75 79.08 43.46 61.29

RTN 36.09 56.23 62.03 26.20 45.14
OPTQ [7] 43.00 67.89 72.45 28.62 52.99
Z-FOLD [13] 44.88 71.00 75.66 36.88 57.11
OmniQuant [27] 44.03 69.70 75.15 35.89 56.19
AffineQuant [20] 43.60 70.24 75.10 32.67 55.40
aespa 45.82 71.80 75.87 38.63 58.03

LLaMA-30B

FP16 52.90 78.96 82.63 54.66 67.29

RTN 27.90 43.64 31.42 23.34 31.58
OPTQ [7] 45.31 71.55 77.17 42.01 59.01
Z-FOLD [13] 50.34 75.84 79.69 51.00 64.22
OmniQuant [27] 49.49 76.52 79.76 50.68 64.11
AffineQuant [20] 49.66 77.10 79.49 50.37 64.16
aespa 50.34 77.53 79.79 50.55 64.55

LLaMA2-7B

FP16 46.16 74.49 75.99 41.87 59.63

RTN 25.94 35.48 35.39 23.14 29.99
OPTQ [7] 37.46 63.01 64.85 28.79 48.53
Z-FOLD [13] 40.10 64.65 69.92 33.69 52.09
OmniQuant [27] 40.36 67.30 71.00 31.26 52.48
AffineQuant [20] 40.78 67.21 70.75 30.93 52.42
aespa 41.38 69.11 71.78 38.18 55.11

LLaMA2-13B

FP16 49.06 77.44 79.39 52.10 64.50

RTN 34.56 55.98 59.44 25.45 43.86
OPTQ [7] 43.09 70.45 72.02 39.37 56.23
Z-FOLD [13] 46.42 72.77 74.79 47.91 60.47
OmniQuant [27] 45.65 74.33 74.77 43.92 59.67
AffineQuant [20] 47.18 75.42 75.28 45.61 60.87
aespa 46.84 75.25 75.78 47.09 61.24

25



K Time and memory cost comparison

Table 14: Time and memory cost of aespa and existing methods
(a) INT2 quantization processing time

Target Method OPT LLaMA
125M 1.3B 2.7B 6.7B 7B 13B 30B

layer-wise
reconstruction

OPTQ [7] 0.66 min 0.08 hr 0.14 hr 0.29 hr 0.25 hr 0.45 hr 1.08 hr
Z-FOLD [13] 1.09 min 0.27 hr 0.61 hr 2.58 hr 1.13 hr 2.48 hr 10.51 hr

attention-wise
reconstruction

BRECQ [18] 108.2 min 10.71 hr 19.15 hr OOM OOM OOM OOM
OmniQuant [27] 16.20 min 1.02 hr 1.63 hr 2.93 hr 2.37 hr 4.20 hr 9.84 hr
AffineQuant [20] 28.33 min 2.57 hr 4.60 hr 9.85 hr 10.09 hr 18.76 hr 47.84 hr
aespa 4.78 min 1.24 hr 2.83 hr 10.24 hr 6.84 hr 15.89 hr 53.69 hr

(b) Memory cost (GB)

Target Method OPT LLaMA
125M 1.3B 2.7B 6.7B 7B 13B 30B

layer-wise
reconstruction

OPTQ [7] 1.39 4.49 6.43 13.07 8.76 12.34 18.59
Z-FOLD [13] 1.39 4.49 6.43 13.07 8.76 12.34 18.59

attention-wise
reconstruction

BRECQ [18] 3.39 16.60 27.79 OOM OOM OOM OOM
OmniQuant [27] 1.94 5.87 7.09 11.68 12.61 17.02 24.53
AffineQuant [20] 3.47 9.96 12.25 20.08 24.28 27.10 38.59
aespa 1.68 5.47 6.84 12.26 21.69 29.27 43.00

* ‘OOM’ means that out-of-memory issues occur when quantizing models with a single NVIDIA A100 GPU.

Table 14 summarizes the processing time and memory cost of different quantization algorithms. We
note that the processing time of the proposed aespa includes the time required for pre-computations
(lines 2-4 in Algorithm 1).

As expected, aespa completes quantization much faster than BRECQ. For example, while BRECQ
requires more than 10 hours to quantize OPT-1.3B, aespa completes quantization in 1.24 hours,
which demonstrates the effectiveness of the proposed objectives and pre-computation-based loss
computation strategy. Although other block-wise PTQ methods (OmniQuant/AffineQuant) perform
quantization faster than aespa for hyper-scale models, they suffer from unstable training process
or exhibit poor PPL performance (e.g., PPL of OmniQuant is larger than 103 for OPT-6.7B; see
Table 1). We also observe that OPTQ performs quantization very fast, but its PPL performance
collapses completely regardless of the model size (see Table 9). Except aespa, Z-FOLD is the only
method that shows both reasonable performance and processing time.

In real situations, when one needs to preserve the performance of the original model as much as
possible, the proposed aespa would be an intriguing solution. In particular, when deploying LLMs on
resource-constrained platforms where up to 7B models are commonly employed (e.g., mobile devices),
aespa would be a good fit. Even when fast quantization of hyper-scale models is needed, aespa can
be used with a slight modification. Specifically, in time-limited cases, one can skip weight-rounding
optimization (lines 5-8 in Algorithm 1) and simply perform the quantization parameter computation
(line 4 in Algorithm 1) using the proposed Hessian that considers the cross-layer dependency
(see (18)). In doing so, we can not only save the time required to perform weight-rounding learning,
but also save the memory required to store pre-computed values (E[KTK] and E[QTQ]). Indeed,
when performing only quantization parameter computation, we achieved a significant reduction in
the processing time (see Table 15 below) while still exhibiting better performance than conventional
methods (see Table 6 in Appendix D).

Table 15: INT2 quantization processing time of aespa without weight-rounding optimization

OPT LLaMA
125M 1.3B 2.7B 6.7B 7B 13B 30B

1.29 min 0.35 hr 0.74 hr 2.92 hr 1.47 hr 3.26 hr 12.50 hr
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L Experimental results for different calibration datasets

One might wonder why the PPL performances of OmniQuant summarized in Table 1 are much worse
than those reported in the original paper [27]; INT2 PPL performances of quantized LLaMA models
are 18.18, NaN, and 10.15 for WikiText-2 in Table 1, which are worse than the values (15.47, 13.21,
and 8.71) reported in [27]. This is because we used a different calibration dataset for quantization.
Specifically, we used C4 when constructing a calibration dataset, while [27] used WikiText-2.

Additionally, we evaluate the performance of the proposed aespa using WikiText-2 as a calibration
dataset. From Table 16, we observe that when calibration data are sampled from WikiText-2, our
results for OmniQuant are comparable with those reported in the original paper [27]. While it has
been reported that the performance variance of OmniQuant across different calibration datasets is low
for INT3 and INT4 (see [27, Table A10]), such low variance does not hold for INT2. Furthermore,
we observe that the proposed aespa outperforms OmniQuant regardless of the type of the calibration
dataset.

Table 16: INT2 performances (PPL ↓) of aespa and OmniQuant for different calibration datasets
Calibration

Dataset Method LLaMA
7B 13B 30B

C4
OmniQuant 18.18 NaN 10.15

aespa 11.94 10.30 7.845

WikiText-2
OmniQuant 15.59 13.76 9.230

aespa 8.818 7.423 6.232
* Test dataset: WikiText-2

M Quantization performance of aespa for high bit-widths

While previous results demonstrate that the proposed aespa is very competitive for low-bit quanti-
zation (e.g., INT2 and INT3), one might wonder whether aespa can preserve the performance of
the original full-precision model at high bit-widths. We thus evaluate INT4 and INT6 quantization
performances of aespa with LLaMA models. From Table 17, we observe that aespa almost preserves
the performance of the original full-precision model for the INT6 quantization. Even for the INT4
quantization, the performance degradation is very marginal (e.g., less than 1% degradation for 13B
and 30B models).

Table 17: INT4 and INT6 quantization performances of the proposed aespa (calibration data: C4)

Model Precision Perplexity (↓) Zero-shot Accuracy (↑)
Wiki-2 C4 ARC-c ARC-e HellaSwag MMLU Average

LLaMA-7B

FP16 5.677 7.344 44.62 72.85 76.18 32.19 56.46

INT4 5.896 7.602 43.77 71.51 74.90 31.33 55.38
INT6 5.694 7.360 44.62 72.35 75.96 32.27 56.30

LLaMA-13B

FP16 5.091 6.798 47.87 74.75 79.08 43.46 61.29

INT4 5.232 6.938 47.53 73.74 78.35 43.49 60.78
INT6 5.096 6.809 48.04 74.96 78.98 43.24 61.31

LLaMA-30B

FP16 4.101 6.131 52.90 78.96 82.63 54.66 67.29

INT4 4.260 6.254 52.99 78.16 82.28 53.62 66.76
INT6 4.110 6.139 53.07 78.96 82.60 54.61 67.31
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N Experimental results for different seeds

We recall that when constructing a calibration dataset, we randomly draw 128 sequences from the C4
dataset [24]. By changing the seed for the sampling, different calibration datasets can be constructed,
which leads to different quantization results. In this appendix, we report the corresponding results
and overall statistics.

Table 18: Quantization performance (PPL ↓) of aespa on OPT models for different seeds.
(a) WikiText-2

Precision Seed 125M 350M 1.3B 2.7B 6.7B

INT4
0 28.87 22.55 14.81 12.36 10.95

10 28.60 22.55 14.91 12.31 10.83
100 28.75 22.85 14.94 12.35 10.90

INT3
0 32.71 24.45 15.79 13.14 11.23

10 32.95 24.57 16.10 13.21 11.11
100 33.38 24.45 15.70 13.27 11.24

INT2
0 71.18 54.89 24.26 22.22 15.71

10 74.41 50.84 24.38 22.36 15.06
100 77.03 53.12 25.93 22.39 15.66

(b) PTB
Precision Seed 125M 350M 1.3B 2.7B 6.7B

INT4
0 40.50 32.17 20.78 18.30 15.84

10 40.62 32.33 20.56 18.21 15.91
100 40.11 32.60 20.55 18.20 15.86

INT3
0 44.96 36.15 22.35 19.48 16.28

10 46.26 36.19 22.06 19.46 16.32
100 47.54 35.61 22.10 19.66 16.39

INT2
0 99.12 79.86 37.19 32.57 22.80

10 110.0 73.98 35.94 32.25 21.51
100 106.0 79.09 37.33 31.90 21.86

(c) C4
Precision Seed 125M 350M 1.3B 2.7B 6.7B

INT4
0 27.24 23.15 16.31 14.55 12.82

10 27.23 23.13 16.32 14.54 12.81
100 27.29 23.15 16.34 14.54 12.81

INT3
0 29.51 24.96 17.10 15.27 13.15

10 29.59 24.98 17.06 15.29 13.15
100 29.58 25.00 17.09 15.37 13.15

INT2
0 56.88 46.36 23.54 22.53 17.28

10 56.23 44.02 23.91 22.56 16.91
100 56.78 45.21 24.41 22.42 17.30

Table 19: Quantization performance statistics (PPL ↓) of aespa on OPT models.
Precision Dataset 125M 350M 1.3B 2.7B 6.7B

INT4
Wiki-2 28.74 ± 0.139 22.65 ± 0.172 14.89 ± 0.066 12.34 ± 0.023 10.89 ± 0.058
PTB 40.41 ± 0.264 32.36 ± 0.217 20.63 ± 0.128 18.24 ± 0.057 15.87 ± 0.034
C4 27.25 ± 0.036 23.14 ± 0.014 16.33 ± 0.016 14.55 ± 0.005 12.81 ± 0.002

INT3
Wiki-2 33.01 ± 0.340 24.49 ± 0.068 15.87 ± 0.209 13.21 ± 0.064 11.19 ± 0.068
PTB 46.26 ± 1.287 35.98 ± 0.321 22.17 ± 0.159 19.54 ± 0.109 16.33 ± 0.058
C4 29.56 ± 0.043 24.98 ± 0.024 17.08 ± 0.021 15.31 ± 0.050 13.15 ± 0.004

INT2
Wiki-2 74.20 ± 2.931 52.95 ± 2.029 24.86 ± 0.930 22.32 ± 0.088 15.48 ± 0.363
PTB 105.0 ± 5.495 77.64 ± 3.195 36.82 ± 0.766 32.24 ± 0.335 22.06 ± 0.667
C4 56.63 ± 0.350 45.20 ± 1.171 23.95 ± 0.438 22.50 ± 0.076 17.17 ± 0.219
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state our main contribution (proposal of a
next-level quantization algorithms that balance accuracy and efficiency for the quantization
of hyper-scale Transformer models).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations together with some future research directions
in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We have included detailed derivations and complete proofs of the proposed
quantization loss functions in Sections 3.3, 3.4, 3.5 and Appendices C, E, F, G.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have included detailed instructions, e.g., pseudo-code for the proposed
algorithm (see Algorithm 1), hyperparameter settings, and stopping criterion (see Section 4),
to reproduce the main experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code will be available at https://github.com/SamsungLabs/aespa.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified all the training details including hyperparameter settings
and stopping criterion in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have reported the results accompanied by statistics (e.g., mean and standard
deviation) in Appendix N.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have mentioned that we used a single NVIDIA A100 GPU (80 GB) in our
experiments (see the last sentence in Section 4.1).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research have been conducted in the paper conform, in every respect, with
the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed potential positive societal impacts of our work in Section 1,
Section 4, and Section 5. As evident from our experiments, the proposed algorithm can serve
as a useful quantization solution that pursues both efficiency and accuracy when deploying
LLMs on resource-constrained devices.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no risks for misuse (e.g., pretrained language models, image
generators, or scraped datasets).
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the original paper and the codes provided by the authors of the
original paper as in Footnote 8.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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