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Abstract

Pretrained vision-language models (VLMs), such as CLIP, have shown promising
zero-shot out-of-distribution (OOD) detection capabilities by leveraging semantic
similarities between input images and textual labels. However, most existing
approaches focus solely on expanding the label space in the text domain, ignoring
complementary visual cues that can further enhance discriminative power. In this
paper, we introduce DualCnst, a novel framework that integrates text-image dual
consistency for improved zero-shot OOD detection. Specifically, we generate
synthetic images from both ID and mined OOD textual labels using a text-to-image
generative model, and jointly evaluate each test image based on (i) its semantic
similarity to class labels and (ii) its visual similarity to the synthesized images.
The resulting unified score function effectively combines multimodal information
without requiring access to in-distribution images or additional training. We further
provide theoretical analysis showing that incorporating multimodal negative labels
reduces score variance and improves OOD separability. Extensive experiments
across diverse OOD benchmarks demonstrate that DualCnst achieves state-of-the-
art performance while remaining scalable, data-agnostic, and fully compatible with
prior text-only VLM-based methods. The code is publicly available at: https:
//github.com/TMLSIAT/DualCnst.

1 Introduction

Out-of-distribution (OOD) detection aims to identify whether an input sample lies outside the training
data distribution of a machine learning model during inference [1]. This capability is critical for
preventing erroneous predictions when models encounter novel or anomalous inputs. It is especially
vital in high-stakes applications such as medical imaging [2, 3, 4] and autonomous driving [5, 6, 7]
where failures in OOD detection may lead to severe consequences like misdiagnoses or safety hazards.

Traditional OOD detection methods primarily rely on representations learned from the image modality.
While effective to some extent, such approaches often neglect the rich semantic structure embedded in
textual descriptions. The emergence of large-scale vision-language models (VLMs), such as CLIP [8],
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Figure 1: Motivating the use of visual similarity in OOD detection. (a) Semantically similar but
visually distinct classes (e.g., wild horses and zebras) present a major challenge for text-only OOD
detection. (b) Using only semantic similarity (e.g., CLIP text embeddings) results in significant
overlap between ID and OOD score distributions. (c) Incorporating visual features from real ID
images helps distinguish these ambiguous OOD samples by better capturing visual structure. (d) Even
without access to real ID images, synthesizing class-conditional image exemplars via text-to-image
models enables similar gains, narrowing the gap between ID and OOD scores. CIFAR-100 [10] is
used as the ID dataset, and iNaturalist [11] as the OOD dataset.

has enabled the alignment of visual and textual modalities in a shared embedding space, thereby
facilitating zero-shot OOD detection by measuring the similarity between test images and class names
in natural language. For example, methods like MCM [9] perform inference by computing cosine
similarity between test image embeddings and textual label embeddings, classifying inputs with low
similarity scores as OOD—without requiring any additional training.

However, relying solely on semantic similarity has inherent limitations. Challenging OOD ex-
amples—particularly those lying near the decision boundary—may share semantic attributes with
in-distribution (ID) classes, thereby causing significant overlap between ID and OOD score distribu-
tions (Figure 1(b)). Interestingly, such samples often remain visually distinguishable despite semantic
ambiguity. For example, “zebra” and “wild horse” share strong semantic overlap but are visually
distinct due to the zebra’s unique striping (1(a)). This observation motivates a key question:

Can visual similarity between test samples and ID/OOD exemplars improve the separability of
semantically similar but visually distinct samples?

We empirically confirm this hypothesis in Figure 1(c), where access to actual ID images allows more
effective separation of ambiguous OOD cases. Unfortunately, real ID images are typically unavailable
in open-world settings due to privacy, licensing, or infrastructure constraints. To overcome this
limitation, we propose synthesizing visual exemplars using text-to-image diffusion models. As
shown in Figure 1(d), these generated samples can approximate the visual structure of class concepts,
enabling reliable similarity computation even without access to real ID data.

Building on this idea, we propose DualCnst, a novel zero-shot OOD detection framework that
integrates semantic and visual consistency across the label space. Specifically, we synthesize images
for both ID and mined OOD labels and define a scoring function that jointly considers: (i) semantic
similarity between a test image and textual labels, and (ii) visual similarity between the test image
and synthesized images. DualCnst offers several key advantages: (1) Training-free: It does not
require fine-tuning or any labeled ID data. (2) Data-agnostic: It generalizes across domains without
assuming access to ID images. (3) Scalable: Its modular similarity function can be plugged into
existing VLM-based pipelines with minimal overhead.
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Figure 2: The framework of the proposed DualCnst is outlined as follows. Given a set of ID class
labels Y id, we first leverage NegLabel [12]) to generate OOD labels Yood. These class labels are
then input into Stable Diffusion [13] to synthesize both ID and OOD images. Subsequently, both the
ID/OOD class labels and the synthesized images are fed into the text and image encoders to construct
the textual and image classifiers. During the testing phase, given an input image, its visual features
are extracted using the image encoder, and the semantic similarity with the class labels is computed,
along with the visual similarity to the synthesized images. Finally, the OOD score is derived by
scaling and coupling these similarities using the proposed detection score function SDualCnst.

Our contributions can be summarized as follows:

• We propose DualCnst, a dual-consistency framework that fuses semantic and visual similarities for
zero-shot OOD detection (Section 3).

• We introduce a text-driven synthetic image generation pipeline to build visual exemplars for both
ID and OOD labels without accessing in-distribution samples (Section 3).

• We provide theoretical analysis showing that multimodal negative labels reduce similarity score
variance, enhancing ID/OOD separability (Section 4).

• Extensive experiments on standard OOD benchmarks show that DualCnst consistently outperforms
previous zero-shot approaches. In particular, it achieves absolute gains of 3.95%, 3.9%, 9.9% in
FPR95 on ImageNet-1K far-OOD, near-OOD, and robust-OOD tasks, respectively (Section 5).

2 Preliminaries

CLIP and Zero-shot OOD Detection: CLIP [8] is a multimodal pre-trained model designed to
align visual and textual modalities within a shared embedding space. Trained on large-scale image-
text datasets using contrastive learning, CLIP consists of an image encoder and a text encoder that
generate embeddings for images and text, respectively. By computing cosine similarity between these
embeddings, the model performs similarity-based matching. A key strength of CLIP is its remarkable
zero-shot capability: trained on diverse and extensive image-text pairs, it can be directly applied to
various vision tasks—including image classification [14, 15, 16, 17], object detection [18, 19, 20],
semantic segmentation [21, 22, 23], and OOD detection—without requiring additional labeled data
or fine-tuning.

For zero-shot OOD detection, CLIP determines whether an input image belongs to one of the known
categories or represents an OOD sample. This is achieved by comparing the image’s visual features
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with the semantic representations of known class labels encoded as text. Images with low similarity
to all known labels are identified as OOD samples. This zero-shot paradigm offers high flexibility,
allowing CLIP to generalize across diverse domains without retraining, making it a powerful tool for
OOD detection in real-world applications.

Stable Diffusion: Stable Diffusion is a generative model based on Latent Diffusion Models
(LDMs) [13], designed for efficient text-to-image synthesis. Unlike conventional diffusion models
that operate in pixel space, Stable Diffusion performs the diffusion process in a lower-dimensional
latent space, significantly enhancing computational efficiency and scalability. The model employs a
pre-trained Variational Autoencoder (VAE) [24] to encode high-resolution images into a compact
latent representation, which serves as the input for the diffusion process. Within this latent space,
a U-Net-based [25] denoising network executes both forward and reverse diffusion: in the forward
process, noise is gradually added to the latent representation until it converges to a Gaussian distribu-
tion, while in the reverse process, the model learns to iteratively denoise the latent representation,
reconstructing it into the original data distribution.

To enhance the fidelity and semantic alignment of generated images, Stable Diffusion incorporates
CLIP as a guidance mechanism during the reverse diffusion process. CLIP provides a similarity-
based gradient signal that directs the latent representation toward alignment with the textual prompt,
ensuring that the generated images faithfully capture both the semantic intent and fine-grained
details. This method builds on previous CLIP-guided generative models [26, 27, 28, 29], which
utilize multimodal representations to improve the coherence and expressiveness of generated content.
By leveraging CLIP’s semantic understanding, Stable Diffusion generates visually coherent and
contextually relevant images, even for abstract or complex prompts. This significantly broadens the
model’s applicability in text-to-image synthesis [30].

3 Text-Image Dual Consistency-Guided OOD Detection

In this paper, a novel approach is proposed to enhance zero-shot OOD detection performance by
leveraging text-image dual consistency. Specifically, the method is divided into two stages: (i)
Synthesis Stage: To evaluate the visual similarity of test samples with ID and OOD images, a
text-to-image generative model, Stable Diffusion, is employed to synthesize image labels from the
combined label space, Y id ∪ Yood. (ii) Testing Stage: To integrate textual and visual information,
a novel score function is proposed. This function simultaneously evaluates the semantic similarity
between test images and textual labels and measures the visual similarity between test samples and
the synthesized ID/OOD image labels. The overall framework of the proposed method is illustrated
in Figure 2.

3.1 Synthesize Images from the Label Space

To broaden the scope of visual information, NegLabel [12] is employed to identify potential OOD
labels, which serve as prompts for an image generator. These prompts guide the generation of
semantically consistent visual representations for OOD images. The label space is defined as
Y id ∪ Yood = y1, y2, . . . , yK , yK+1, . . . , yK+M , where K denotes the number of ID labels and M
denotes the number of OOD labels.

To ensure semantic alignment between textual descriptions and generated images, the diffusion
model’s capacity for aligning textual and visual representations is utilized. For each label, a consistent
text prompt, such as “A photo of a <label>,” is constructed. These prompts are input into the diffusion
model to generate synthetic images semantically aligned with the combined label space Y id ∪ Yood.
This process enriches visual information and addresses the limitations of relying solely on semantic
information for image-text alignment.

The generated images are represented as X̄ = {x̄i}, where each x̄i corresponds to a unique synthetic
image associated with a specific label. These images not only capture the known ID data distributions
but also simulate visual representations of OOD categories. By integrating this diverse set of
synthetic images into the OOD detection process, the proposed method enhances the model’s ability
to differentiate ID from OOD instances. This is achieved by leveraging visual distinctions between
ID and OOD images, leading to more accurate identification and rejection of OOD samples.
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3.2 Integrate Textual and Visual Metrics for OOD Detection

We calculate the visual similarity between the test sample x and the synthesized image set X̄ , as well
as the semantic similarity with the label set Y , in the feature space encoded by CLIP’s text encoder
T (·) and image encoder I(·).
Image-to-Image Similarity. In particular, both low-level and high-level visual features are incorpo-
rated. We extract features from intermediate layers and the final output layer of the image encoder
to calculate cosine similarity between the test sample and the synthetic images at multiple levels
of representation. Distinct weights are assigned to each layer to balance their contributions. For
instance, using ViT-B/16 as the visual encoder, we select the third, sixth, ninth, and final semantic
layers to compute cosine similarity between the test image and each synthetic image. A weight of
0.25 is assigned to the similarity score from each layer, and the overall visual similarity is calculated
as the weighted sum of these scores.

The visual similarity between the input image x and the synthesized image set X̄ is defined as:

s
(l)
i,img(x) =

I(l)(x) · I(l)(x̄i)

∥I(l)(x)∥ · ∥I(l)(x̄i)∥
; x̄i ∈ X̄ . (1)

where I(l)(x) represents the feature embedding at layer l. The final similarity score si,img(x) is
obtained by summing the weighted similarity scores across all layers:

si,img(x) =

L∑
l=1

wl · s(l)i,img(x), (2)

where wl represents the weight assigned to layer l and is defined as:

wl =

{
r, l < L

1− r · (L− 1), l = L
,

where L denotes the total number of layers in the visual encoder, and r is the weight factor applied to
intermediate layers, ensuring a balanced contribution across all layers.

Image-to-Text Similarity. The semantic similarity between the test image x and the combined label
space Y id ∪ Yood is computed as:

si,text(x) =
I(x) · T (ti)

∥I(x)∥ · ∥T (ti)∥
. (3)

where ti = prompt < yi > and yi ∈ Y id ∪Yood, and ti represents the textual description of the label
yi, using a prompt format such as "A photo of a <label>."

Fusion of Similarity Scores. To fully utilize both image-to-image and image-to-text similarity
information, we compute a fused similarity score using a weighted sum-softmax method:

SDualCnst(x) =

K∑
i=1

exp(s̃i(x))∑K+M
j=1 exp(s̃j(x))

, (4)

where the fused similarity score s̃i(x) is defined as:

s̃i(x) = α · si,img(x) + (1− α) · si,text(x), (5)

where α is a fusion hyperparameter that balances the contributions of image-to-image and image-to-
text similarities. Details on the choice of α are provided in Appendix G.6.

OOD Detection Framework. Based on SDualCnst(x), the OOD detector Gλ(x;Y id ∪ Yood, T , I) is
defined as a binary classification function:

Gλ(x;Y id ∪ Yood, X̄ , T , I) =
{

ID SDualCnst(x) ≥ λ

OOD SDualCnst(x) < λ
, (6)

where λ is a threshold selected such that a high fraction of ID samples (typically 95%) exceed this
value. See Algorithm 1 for the complete zero-shot OOD detection procedure.
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4 Theoretical Analysis of Multimodal Negative Label Aggregation for OOD
Separability

We provide a simplified probabilistic analysis to illustrate how incorporating multimodal negative
labels reduces the variance of similarity scores and improves ID–OOD separability. The key idea is to
enrich the negative label space by augmenting existing textual labels with corresponding synthesized
image labels across multiple feature levels. To better understand how such multimodal expansion
improves OOD detection, we frame the problem from the perspective of multi-label classification
and derive a theoretical formulation of detection performance.

Let the multimodal negative label set be defined as Ỹi = {ỹi,1, ỹi,2, . . . , ỹi,N} ∈ Yood, where
ỹi,1 denotes the primary-modality negative label (e.g., text), and ỹi,2, . . . , ỹi,N represent auxiliary-
modality labels (e.g., synthetic images encoded through image encoder I at different layers: ỹi,j =
I(j−1)(x̄i)). We compute the similarity between the test image x and each negative label yi,j , denoted
by si,j . Specifically, si,1 = si,text(x) corresponds to the text-based similarity, and si,j = s

(j−1)
i,img (x)

for j > 1 corresponds to image-based similarities (see Eq. (1).

To aggregate these scores across modalities, a non-uniform weighting scheme is applied as defined in
Eqs. (2) and (5). Without loss of generality, we assign a fraction a/N (where N > a > 1) to the
primary modality and distribute the remaining weight evenly among the auxiliary modalities:

wj =

{
a
N , j = 1 (primary modality weight)
1− a

N

N−1 , j = 2, . . . , N (auxiliary modality weights)

The aggregated similarity score si is then computed as a weighted sum:

si =
a

N
si,1 +

N∑
j=2

(
1− a

N

N − 1

)
si,j .

Assuming that similarity scores si,j are independently and identically distributed (i.i.d.) with
expectation E[si,j ] = µ and variance Var(si,j) = σ2, we derive:

E[si] = µ, Var(si) =
σ2

N ′(N)
, where N ′(N) :=

N(N − 1)

a2 +N − 2a
.

By the Central Limit Theorem (CLT), for sufficiently large N , the distribution of si can be approxi-
mated by

si ∼ N
(
µ,

σ2

N ′(N)

)
.

This results in the probability expression:

p(N ′) = P (si ≥ ψ) = 1− Φ

(
ψ − µ

σ

√
N ′(N)

)
,

where Φ(·) denotes the cumulative distribution function (CDF) of the standard normal distribution.
The binary indicator s∗i is then defined as s∗i = I[si ≥ ψ] which serves as the basis for the OOD
detection score. The negative label match count is then defined as c =

∑M
i=1 s

∗
i , representing the

OOD score, which follows a binomial distribution B(M,p(N ′)). Specifically, the match counts for
ID and OOD samples are given by cin ∼ B(M,p1(N

′)) and cout ∼ B(M,p2(N
′)), where p1(N ′)

and p2(N ′) represent the distributions of the aggregated similarity scores si,j for ID and OOD
samples, respectively:

p1(N
′) = 1− Φ

(
ψ − µ1

σ

√
N ′
)
, p2(N

′) = 1− Φ

(
ψ − µ2

σ

√
N ′
)

where (µ1, σ) and (µ2, σ) denote the mean and standard deviation of similarity scores for ID and
OOD samples, respectively. Since OOD samples typically exhibit higher similarity with OOD labels
than ID samples, it follows that µ2 > µ1. Consequently, the fundamental inequality p2 > p1 holds
due to the monotonicity of the standard normal CDF Φ(·).
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For sufficiently large M , the CLT allows for the normal approximations

cin ∼ N (Mp1,Mp1(1− p1)), cout ∼ N (Mp2,Mp2(1− p2)).

To evaluate the separability between ID and OOD samples, the false positive rate FPRλ is introduced
as a performance metric of the OOD detector:

FPRλ = Fout
(
F−1

in (λ)
)
,

where Fin and Fout are the CDFs of cin and cout, respectively, and λ ∈ [0, 1] represents the true positive
rate (TPR), quantifying the proportion of correctly classified ID samples. This yields the expression:

FPRλ = Φ

(
Mp1(N

′) +
√
Mp1(N ′)(1− p1(N ′)) · Φ−1(λ)−Mp2(N

′)√
Mp2(N ′)(1− p2(N ′))

)
.

To examine the relationship between FPRλ and the number of multimodal labels N , the partial
derivative ∂FPRλ/∂N

′ is computed. Assuming µ2 > µ1 and µ1 + σ/
√
N ′ > µ2, the result shows

that ∂FPRλ/∂N
′ < 0 when µ1 + σ/

√
N ′u > ψ > µ2. Since N ′ increases with N , it follows that

FPRλ decreases with N , demonstrating that incorporating more auxiliary modalities in negative
labels enhances OOD detection performance.

5 Experiments

5.1 Experiment Setup

Datasets and Benchmarks. For our experiments, we use ImageNet-1k [31] as the primary ID dataset.
OOD datasets include iNaturalist [11], SUN [32], Places [33], and Textures [34], which cover a wide
variety of scenes and semantic categories. We also adopt the experimental setup from MCM [9],
which leverages subsets of ImageNet-1k to evaluate our method. Specifically, ImageNet-10 and
ImageNet-20 are alternately used as ID and OOD datasets. Furthermore, we extend our evaluation to
more generalized ImageNet variants, including ImageNet-R [35].

Implementation Details. Our framework is built upon CLIP [8] as the core model. Unless otherwise
noted, we utilize the ViT-B/16 architecture as the image encoder and a Masked Self-Attention
Transformer [36] as the text encoder. For image generation, we employ the Stable Diffusion. We
set α = 0.2 and w = 0.15, and provide ablation experiments. Further details can be found in
Appendix G. To improve inference efficiency, all synthetic images are pre-generated before the
evaluation phase, eliminating the need for additional computational overhead during testing. Further
details in Appendix F.3.

For evaluation, we use two primary metrics: (1) FPR95: The false positive rate (FPR) at a true positive
rate (TPR) of 95% for ID data. (2) AUROC: The area under the receiver operating characteristic
curve. Additionally, we report the results in terms of AUPR in Appendix F.2.

Baseline Methods. We benchmark our method against several state-of-the-art zero-shot OOD
detection approaches, including Mahalanobis Distance [37], Energy Score [38], ZOC [39], MCM [9],
and NegLabel [12]. Additionally, we compare our approach with OOD detection models that have
been trained or fine-tuned using ID data, such as MOS [40], MSP [1], CLIPN [41], VOS [42], and
NPOS [43].

5.2 Main Results

Far-OOD Detection on ImageNet-1k. We compare our method with representative OOD de-
tection approaches—including zero-shot methods (MCM, EOE, NegLabel) and supervised re-
implementations that fine-tune CLIP on ImageNet-1k—summarized in Table 1. Our approach
attains the strongest overall performance on ImageNet-1k: relative to the strongest prior method,
NegLabel, it reduces average FPR95 by 1.75% and increases average AUROC by 0.14%, and it
outperforms NegLabel on all evaluated OOD datasets. Robustness under domain shifts is analyzed in
Appendix E.1.

Near-OOD Detection on ImageNet Subsets. We further report near-OOD results on the ImageNet-
10/ImageNet-20 subsets in the main text (Table 2). When ImageNet-10 is treated as the in-distribution
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Table 1: Performance Comparison of ImageNet-1k on Far OOD Detection. The bold indicates the
best performance on each dataset, and the gray indicates methods requiring an additional massive
auxiliary dataset.

Method iNaturalist SUN Places Textures Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MOS (BiT) [40] 9.28 98.15 40.63 92.01 49.54 89.06 60.43 81.23 39.97 90.11
MSP [1] 40.89 88.63 65.81 81.14 67.90 80.14 64.96 78.16 59.89 82.04

CLIPN [41] 19.13 96.20 25.69 94.18 32.14 92.26 44.60 88.93 30.39 92.89
VOS [42] 28.99 94.62 36.88 92.57 38.39 91.23 61.02 86.33 41.32 91.19

NPOS [43] 16.58 96.19 43.77 90.44 45.27 89.44 46.12 88.80 37.93 91.22
Mahalanobis [37] 99.33 55.89 99.41 59.94 98.54 65.96 98.46 64.23 98.94 61.50

Energy [38] 81.08 85.09 79.02 84.24 75.08 83.38 93.65 65.56 82.21 79.57
ZOC [39] 87.30 86.09 81.51 81.20 73.06 83.39 98.90 76.46 85.19 81.79
MCM [9] 30.91 94.61 37.59 92.57 44.69 89.77 57.77 86.11 42.74 90.77

NegLabel [12] 1.91 99.49 20.53 95.49 35.59 91.64 43.56 90.22 25.40 94.21
DualCnst 0.98 99.70 18.13 95.66 31.77 91.81 34.91 91.73 21.45 94.72

Table 2: Performance Comparison of ImageNet Subsets on Near OOD Detection. The bold indicates
the best performance on each dataset, and the gray indicates methods requiring an additional massive
auxiliary dataset.

Method ID ImageNet-10 ImageNet-20 AverageOOD ImageNet-20 ImageNet-10

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
CLIPN [41] 7.80 98.07 13.67 97.47 10.74 97.77

MaxLogit [1] 9.70 98.09 14.00 97.81 11.85 97.95
Energy [38] 10.30 97.94 16.40 97.37 13.35 97.66
MCM [9] 5.00 98.71 17.40 97.87 11.20 98.29

NegLabel [12] 5.10 98.86 17.60 97.04 11.35 97.95
DualCnst 2.20 98.96 12.20 97.44 7.45 98.20

(ID) dataset and ImageNet-20 as OOD, our method lowers FPR95 by 2.4% and improves AUROC by
0.1% over NegLabel. Conversely, when ImageNet-20 is ID and ImageNet-10 is OOD, our method
achieves a 5.4% reduction in FPR95 and a 0.4% gain in AUROC. The subset splits and ID label
configurations follow MCM [9]. For a fair comparison, we reproduce NegLabel and MCM under the
same protocol.
Far-OOD Across Alternative ID Datasets To assess generality beyond ImageNet-1k and to under-
stand how ID semantics affect far-OOD detection, we evaluate our method across seven ID datasets
with diverse granularity and domain bias: CUB-200-2011 (fine-grained birds) [44], Stanford-Cars
(fine-grained vehicles) [45], Food-101 (coarse-to-fine foods) [46], Oxford-IIIT Pet (fine-grained
pets) [47], and three ImageNet-derived subsets (ImageNet-10, ImageNet-20, ImageNet-100). For
each ID dataset, we evaluate on the standard far-OOD suite iNaturalist, SUN, Places, and Texture,
reporting FPR95 ↓ and AUROC ↑ (Table 3). Unless otherwise specified, we use the same CLIP
backbone as prior work and do not tune the backbone on OOD data. We set α = 0.1, extract features
from the 3rd, 6th, and 9th layers of the visual encoder, and use a fusion weight of w = 0.15. All
hyperparameters are selected once using ID-only validation and are shared across datasets to avoid
per-dataset cherry picking.

Across all seven ID datasets and four OOD benchmarks, our method surpasses the strongest base-
line. On fine-grained IDs such as Stanford-Cars and Oxford-IIIT Pet, performance approaches the
numerical ceiling (near-zero FPR95 with AUROC ≈ 100), indicating that our dual-constraint design
preserves class discrimination while suppressing spurious activations. On more heterogeneous IDs
(e.g., ImageNet-100), our approach yields lower false-positive rates than NegLabel while maintaining
high AUROC, suggesting improved calibration under broader intra-class variation. Notably, gains are
most pronounced on Texture and Places, which are known to challenge methods that overly rely on
background or style cues.

5.3 Ablation Study

Score Functions. To demonstrate the superiority of the proposed OOD detection score SDualCnst,
we present the average results on the ImageNet-1K dataset in Figure 3 (a), comparing it with other
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Table 3: Performance Comparison of Different ID Datasets on Far OOD Detection. The bold
indicates the best performance on each dataset.

ID Dataset Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Stanford-Cars
MCM [9] 0.05 99.77 0.02 99.95 0.24 99.89 0.02 99.96 0.08 99.89

NegLabel [12] 0.01 99.99 0.01 99.99 0.03 99.99 0.01 99.99 0.01 99.99
DualCnst 0.00 100.00 0.00 100.00 0.03 99.99 0.00 100.00 0.01 100.00

CUB-200
MCM [9] 9.83 98.24 4.93 99.10 6.65 98.57 6.97 98.75 7.09 98.66

NegLabel [12] 0.18 99.96 0.02 99.99 0.33 99.90 0.01 99.99 0.13 99.96
DualCnst 0.12 99.98 0.02 99.99 0.38 99.89 0.00 100.00 0.13 99.96

Oxford-Pet
MCM [9] 2.85 99.38 1.06 99.73 2.11 99.56 0.80 99.81 1.70 99.62

NegLabel [12] 0.01 99.99 0.02 99.99 0.17 99.96 0.11 99.97 0.07 99.98
DualCnst 0.00 100.00 0.00 100.00 0.15 99.97 0.09 99.98 0.06 99.99

Food-101
MCM [9] 0.64 99.78 0.90 99.75 1.86 99.58 4.04 98.62 1.86 99.43

NegLabel [12] 0.01 99.99 0.01 99.99 0.01 99.99 1.61 99.60 0.40 99.90
DualCnst 0.00 100.00 0.00 100.00 0.01 100.00 1.52 99.57 0.38 99.89

ImageNet-10
MCM [9] 0.12 99.80 0.29 99.79 0.88 99.62 0.04 99.90 0.33 99.78

NegLabel [12] 0.02 99.83 0.20 99.88 0.71 99.75 0.02 99.94 0.24 99.85
DualCnst 0.01 99.97 0.09 99.93 0.57 99.75 0.02 99.96 0.17 99.90

ImageNet-20
MCM [9] 1.02 99.66 2.55 99.50 4.40 99.11 2.43 99.03 2.60 99.32

NegLabel [12] 0.15 99.95 1.93 99.51 4.40 98.97 2.41 99.11 2.22 99.39
DualCnst 0.13 99.97 1.22 99.66 3.66 99.13 2.18 99.17 1.80 99.48

ImageNet-100
MCM [9] 18.13 96.77 36.45 94.54 34.52 94.36 41.22 92.25 32.58 94.48

NegLabel [12] 0.53 99.87 9.91 98.12 20.26 96.18 25.50 95.27 14.05 97.36
DualCnst 0.41 99.90 8.68 98.34 18.72 96.43 23.51 95.72 12.83 97.60

scoring functions: SMAX, SEnergy, and SMaxLogit. All these functions are specifically designed for the
Dual Consistency approach. Please refer to Appendix G.12 for the specific forms and results on
more datasets. Results show that our SDualCnst achieves the best OOD performance. This verifies the
superiority and importance of the proposed OOD detection score.

Different Layers of the Visual Encoder. To explore the effectiveness of pixel-level features from
different layers of the visual encoder, we sample various pixel layers and assign different weights,
as shown in Figure 3 (b). Specifically, we experiment by selecting the (1st, 2nd, 3rd) layers, (4th,
5th, 6th) layers, (7th, 8th, 9th) layers, (9th, 10th, 11th) layers, and all pixel layers to combine with
semantic layers. In Figure 3 (c), we further investigate the impact of different weight distributions for
w to identify the most suitable pixel-level feature weighting. For details on the selection of w, layers,
and results, refer to Appendix G.5.
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Figure 3: Ablation study on (a) score function, (b) Different Layers, and (c) Different Weight. ID
dataset: ImageNet-10; OOD dataset: ImageNet-20.

5.4 Further Analysis

More Experimental Results. We conducted experiments on the CIFAR-10/CIFAR-100 [10] bench-
mark to further validate our method. The details of the ImageNet-A [48] and ImageNet-V2 [49]
generalization datasets are also provided in the Appendix E.2. Additionally, we explored the impact of
randomness introduced by Stable Diffusion when generating synthetic images with different random
seeds, as demonstrated in Table 33 . The results show that the effect of Stable Diffusion’s randomness
on our method is negligible. It is important to note that we did not manually select the most favorable
random seed for Stable Diffusion. Instead, we generated a 32-bit integer random seed by hashing
the combination of each class label and synthetic image index. Each synthetic image generated for a
class using this seed exhibits substantial randomness, further demonstrating that our method is not
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(b) NegLabel (b) DualCnst

ID Samples

OOD Samples

Figure 4: T-SNE visualizations obtained by the classifier output. ID set: ImageNet-10; OOD set:
ImageNet-20. We use distinct colors to represent different OOD classes. Our DualCnst method
achieves better separability between ID and OOD classes compared to NegLabel.

influenced by the randomness of Stable Diffusion-generated images. We also conducted experiments
with different CLIP visual encoders, and the results showed that stronger visual encoders, which
capture more detailed information, are more beneficial to our method. For more details, please refer
to Appendix G.3.

Effectiveness of DualCnst. Figure 4 shows the T-SNE [50] visualization of the softmax outputs.
We compare the results of NegLabel and DualCnst, using the ImageNet-10 dataset for ID and
ImageNet-20 dataset for OOD. In this setup, there are several semantically similar pairs of ID and
OOD categories, such as: horse (ID) vs. zebra (OOD), Swiss mountain dog (ID) vs. timberwolf
(OOD), warplane (ID) vs. space shuttle (OOD), and garbage truck (ID) vs. steam locomotive (OOD).
In the presence of such datasets, methods that expand the label space, like NegLabel, often struggle to
find labels with a high overlap probability with true OOD labels, leading to suboptimal performance.
As shown in (a) with the black bounding box, it is difficult to distinguish between ID and OOD
samples, as they tend to interweave. DualCnst, however, addresses this issue by leveraging visual
information to differentiate between ID and OOD samples. As demonstrated in (b), we incorporate
visual information into NegLabel, allowing for better differentiation based on unique visual features
inherent to ID and OOD samples, such as the stripes on a zebra or the ears and fur of a timberwolf.
These observations indicate that DualCnst enables a significant improvement in the classifier’s ability,
making semantically similar ID and OOD samples more separable.

6 Conclusion

This work presented DualCnst, a training-free framework for zero-shot OOD detection that integrated
both semantic and visual consistency. By generating synthetic exemplars from ID and OOD labels,
it enabled robust similarity computation without requiring access to ID data or additional training.
A unified scoring function fused semantic and visual cues, and theoretical analysis demonstrated
that multimodal negative label aggregation reduced score variance and enhanced ID–OOD separa-
bility. Extensive experiments across diverse benchmarks confirmed that DualCnst outperformed
existing zero-shot approaches and achieved state-of-the-art performance. By unifying vision-language
alignment with generative visual synthesis in a training-free manner, DualCnst offered a scalable,
plug-and-play solution for OOD detection in open-world scenarios.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly outline the paper’s contributions:(1)
proposing DualCnst, a framework that integrates text-image dual consistency for zero-shot
OOD detection; (2) introducing a synthetic image generation pipeline for visual exemplars
without requiring real ID data. The scope is well-defined, emphasizing assumptions (no
access to ID images, compatibility with text-only methods like NegLabel) and limitations
(dependency on text-to-image model quality).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discusses limitations in a dedicated section (Appendix D)
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We present a theoretical analysis in Section 4 that examines how multimodal
negative label aggregation enhances OOD separability, with comprehensive proofs provided
in Appendix C.1.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The implementation details and hyperparameter configurations for all ex-
periments are comprehensively documented in Section 5 and Appendices E, F, and G.
Specifically, experiments on ImageNet-1K were conducted on a single NVIDIA RTX A6000
GPU using Python 3.8 and PyTorch 1.13. We employed the CLIP-B/16 model with the
following key parameterizations:Label Space: 10,000 potential OOD labels mined via text-
based augmentation; Feature Layers: Layer weights of 0.15 applied to intermediate layers 7,
8, 9, and the final layer for visual feature aggregation; Fusion Parameters: Image-text simi-
larity fusion coefficient α = 0.2; Temperature Scaling: Temperature parameter T = 0.01
for logit calibration.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We plan to open-source our dataset after the acceptance of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The implementation details and hyperparameter configurations for all experi-
ments are comprehensively documented in Section 5 and Appendices E, F, and G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Appendix G.8 systematically analyzes the stochastic variations inherent in
generative models during synthetic image synthesis and their implications on detection
robustness.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Detailed specifications of computational resources and experimental configura-
tions are comprehensively documented in Appendix F.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our paper strictly adheres to the NeurIPS Code of Ethics across all aspects,
including data sourcing, algorithmic fairness, and societal impact considerations.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed the impact of our paper in Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: All models and datasets used in this work are publicly available open-source
resources, which have undergone community vetting and incorporate built-in safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: All datasets utilized in this work are properly cited,section 5. For each model,
we specify version numbers and provide authoritative source URLs,Appendix G.3 and
Appendix G.4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce new datasets, models, or codebases requiring
formal release.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing. All experiments are conducted on
publicly available benchmark datasets (e.g., ImageNet-1K, iNaturalist) using pre-trained
models (CLIP, Stable Diffusion) without human annotation or intervention.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing. All datasets used (e.g., ImageNet-
1K, iNaturalist) are publicly available benchmarks with pre-existing ethical compliance.
Synthetic images were generated algorithmically via Stable Diffusion without human anno-
tation or personal data usage.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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A Broader Impacts

Positive Impacts: Our framework could enhance the reliability of AI systems in safety-critical
domains like medical imaging, where undetected OOD samples may lead to diagnostic errors. By
enabling synthetic data-driven OOD detection without real patient data, it also mitigates privacy risks
associated with medical dataset sharing.

Negative Impacts: Malicious actors could exploit our text-to-image synthesis pipeline to generate
adversarial OOD samples that evade detection. Additionally, energy-intensive image generation
processes may contribute to environmental costs if scaled without optimization.

Mitigations: We recommend (1) adversarial robustness testing against synthetic OOD benchmarks,
(2) controlled access to synthetic image generators in high-stakes applications.

B Related Works

OOD Detection. Early methods for OOD detection include classification-based approaches that
rely on a well-trained ID classifier, such as MSP [1]. Density-based methods, such as likelihood
ratios [51] and likelihood regret [52], estimate the likelihood of data points to identify OOD samples.
Reconstruction-based methods [53, 54, 55] leverage reconstruction errors from generative models,
including VAEs and autoencoders, to detect OOD instances. Post-hoc methods, including ODIN [56]
and energy-based scoring [38], enhance pre-trained models without modifying their parameters.
More recently, multimodal vision-language models such as CLIP and its variants [57] have enabled
zero-shot OOD detection by leveraging text-image embeddings, marking a shift toward more versatile
and scalable solutions.

Zero-shot OOD Detection. Recent advancements in zero-shot OOD detection take advantage of
the powerful pretraining capabilities of models like CLIP, allowing for efficient OOD detection
without the need for large external OOD labels. ZOC [39] introduces a CLIP-based framework for
zero-shot OOD detection, where potential OOD labels are generated for input instances using image
captions, aligning images and text for zero-shot classification. MCM [9] performs OOD detection
by utilizing scaled softmax values of the maximum logits as confidence scores, but it relies solely
on ID class labels and does not fully exploit open-world textual information. CLIPN [41] improves
the model’s ability to reject mismatched inputs by introducing learnable "negative" prompts and a
dedicated "negative" text encoder. EOE [58] utilizes the expert knowledge and reasoning abilities
of large language models (LLMs) to generate potential anomalies, enabling more effective OOD
detection. NegLabel [12] proposes a novel method that enhances the distinguishability between ID
and OOD samples by mining potential OOD labels from a corpus. However, these methods do not
fully consider the visual effectiveness of images. In contrast, DualCnst addresses this limitation
by making semantically similar ID and OOD samples more distinguishable. Moreover, it can be
seamlessly integrated into existing OOD frameworks.

Stable Diffusion for OOD Detection. Stable Diffusion has been explored for OOD detection in
several studies. [59] introduced a semantic mismatch-guided variant by masking input regions and
measuring semantic inconsistencies between original and reconstructed samples, which addresses
the limitation of pixel-level error metrics in traditional reconstruction methods. Diffusion-based
neighborhood analysis [60] injects noise perturbations to generate sample variants and quantifies
latent feature distribution divergence for enhanced sensitivity to local anomalies. LMD [55] introduces
a diffusion-based approach for image inpainting, where the input image is reconstructed, and the
reconstruction error is used as an indicator for OOD detection. In contrast, DualCnst employs
Stable Diffusion for image generation, offering a more efficient solution in open-world scenarios.
Unlike LMD, DualCnst reduces the computational burden on the inference process, making it a more
practical and scalable approach for OOD detection in dynamic environments.

Systematic Comparative Analysis. To better characterize methodological distinctions, we conduct
a systematic comparison across three key dimensions: (1) Enhancement strategy spectrum (seman-
tic/image space), (2) Training requirement compatibility, and (3) Multimodal-generative integration.
As Table 4 demonstrates, existing approaches exhibit notable limitations: classification baselines
lack multimodal awareness, zero-shot methods neglect visual space enhancement, while generative
approaches impose substantial training overhead. DualCnst uniquely combines semantic-textual align-
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Algorithm 1 Zero-shot OOD detection with text-image dual consistency
1: Input: ID class labels Y id, test sample x, text encoder T , image encoder I, Stable Diffusion

(SD), NegLabel, fusion coefficient α, layer weight w, threshold λ;
Synthesis stage:
// Synthesize OOD class labels

2: Given Y id, Yood = NegLabel(Y id);
// Synthesize ID/OOD image labels

3: Given Y id ∪ Yood, X̄ = SD(prompt < Y id ∪ Yood >);
Testing stage:
// Calculate image-to-image similarity

4: s(l)i,img(x) =
I(l)(x)·I(l)(x̄i)

∥I(l)(x)∥·∥I(l)(x̄i)∥
; x̄i ∈ X̄ ;

5: si,img(x) =
∑L

l=1 wl · s(l)i,img(x);
// Calculate image-to-text similarity

6: ti = prompt<yi>; yi ∈ Y id ∪ Yood;

7: si,text(x) =
I(x)·T (ti)

∥I(x)∥·∥T (ti)∥ ;
// Integrate text and visual information

8: s̃i(x) = α · si,img(x) + (1− α) · si,text(x);
// Calculate OOD detection score

9: SDualCnst(x) =
∑K

i=1
exp(s̃i(x))∑K+M

j=1 exp(s̃j(x))
;

10: Output: ID if SDualCnst(x) > λ, else OOD.

ment with visual-space consistency learning, achieving full compliance with all evaluation criteria–the
only method supporting both training-free deployment and multimodal-generative synergy.

Table 4: Comparative Analysis of Method Characteristics

Method Category Representative Methods Enhancement Strategy Training-Free
Multimodal
Utilization

Generative Model
Application

Semantic Space Image Space

Classification Benchmarks
MSP [1] × × × × ×

ODIN [56] × × ✓ × ×
Energy [38] × × ✓ × ×

Zero-Shot Methods

ZOC [39] ✓ × ✓ ✓ ×
MCM [9] × × ✓ × ×

CLIPN [41] ✓ × ✓ ✓ ×
NegLabel [12] ✓ × ✓ ✓ ×

Generative Approaches
Yang [59] × ✓ × × ✓
LMD [55] × ✓ × × ✓

Diffusion [60] × ✓ ✓ × ✓

DualCnst (Ours) ✓ ✓ ✓ ✓ ✓

Notation: ✓=Supported, ×=Not Supported. Text in parentheses indicates implementation specifics.

C Theoretical Justification for Section 4

C.1 Fusion under weak dependence

To analyze the dependence of the false positive rate FPRλ on the number of multimodal labels N ,
consider its reformulation in terms of the error function erf(·):

FPRλ =
1

2
+

1

2
erf

(√
p1(N ′)(1− p1(N ′))

p2(N ′)(1− p2(N ′))
· erf−1(2λ− 1) +

√
M(p1(N

′)− p2(N
′))√

2p2(N ′)(1− p2(N ′))

)
,
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where the error function is defined as erf(x) = 2√
π

∫ x

0
e−t2dt, which satisfies Φ(x) =

1
2

[
1 + erf

(
x√
2

)]
. Define:

A =

√
p1(1− p1)

p2(1− p2)
erf−1(2λ− 1), B =

√
M(p1 − p2)√
2p2(1− p2)

,

where
p1 = 1− Φ(k1

√
N ′), p2 = 1− Φ(k2

√
N ′),

and
k1 =

ψ − µ1

σ
, k2 =

ψ − µ2

σ
.

Since µ1 < µ2 and ψ > µ2, it follows that k1 > k2 > 0. Now,

∂A

∂N
= erf−1(2λ− 1) · ∂

∂N

√
p1(1− p1)

p2(1− p2)
.

Letting Q = p1(1−p1)
p2(1−p2)

, we obtain

∂Q

∂N ′ =
(1− 2p1)

∂p1

∂N ′ · p2(1− p2)− p1(1− p1)(1− 2p2)
∂p2

∂N ′

[p2(1− p2)]2
.

From the definition of p1 and p2, the derivatives are given by

∂p1
∂N ′ = −ϕ(k1

√
N ′) · k1

2
√
N ′

,
∂p2
∂N ′ = −ϕ(k2

√
N ′) · k2

2
√
N ′

,

where ϕ(x) = 1√
2π
e−x2/2 is the standard normal probability density function (PDF). Since ψ <

µ1+
σ√
N ′ , then 0 < k2 < k1 <

1√
N ′ , the function ϕ(k

√
N ′) ·k is increasing with respect to k. Thus,

we have
− ∂p1
∂N ′ > − ∂p2

∂N ′ > 0.

Moreover, since ψ > µ2 and p2 > p1, it follows that

p2(1− p2)(1− 2p1) > p1(1− p1)(1− 2p2) > 0.

Thus, we conclude that
∂A

∂N ′ < 0.

On the other hand,

∂B

∂N ′ =

√
M√
2

·

(
∂p1

∂N ′ − ∂p2

∂N ′

)√
p2(1− p2)− (p1 − p2) · 1−2p2

2
√

p2(1−p2)

∂p2

∂N ′

p2(1− p2)
.

By the monotonicity of ϕ(k
√
N ′) · k, it follows that(

∂p1
∂N ′ −

∂p2
∂N ′

)√
p2(1− p2) < 0.

Furthermore, since p2 > p1 and p2 < 1/2, we obtain

−(p1 − p2) ·
1− 2p2

2
√
p2(1− p2)

∂p2
∂N

< 0.

Thus, it follows that
∂B

∂N ′ < 0.

By the definition of FPRλ,

∂FPRλ

∂N ′ =
e−(A+B)2

√
π

· ∂(A+B)

∂N ′ < 0.
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C.2 Empirical Validation under Weak Dependence

We complement the theoretical analysis by empirically quantifying cross-modal and cross-layer
dependencies and by examining how multimodal score fusion reduces variance. To this end, we
compute pairwise correlations and covariances among similarity scores extracted from the text and
image branches, as well as from multiple vision encoder layers. We additionally visualize these
relationships in Figures 5 and 6 as heatmaps to illustrate the dependence structure across all layers.

Cross-modal and cross-layer correlations. Table 5 shows that the Pearson correlation between
text-based and image-based similarities is nearly zero (r = 0.01), indicating that the two modalities
convey largely independent information. Table 6 and the corresponding correlation heatmap in
Figure 5 reveal that inter-layer dependencies are also weak: most off-diagonal correlations are
close to zero and none exceed 0.2 in magnitude. This observation empirically supports our weak-
dependence assumption—different layers capture complementary but only mildly correlated cues.

Table 5: Pairwise Pearson correlations between modalities.

img_sim text_sim

img_sim 1.00 0.01
text_sim 0.01 1.00

Table 6: Pairwise Pearson correlations across layers.

text_sim layer1_sim layer5_sim layer9_sim

text_sim 1.00 0.00 -0.12 0.04
layer1_sim 0.00 1.00 0.06 -0.10
layer5_sim -0.12 0.06 1.00 0.19
layer9_sim 0.04 -0.10 0.19 1.00

Covariance matrices. The covariance analysis in Tables 7–8 and Figure 6 further substantiates this
independence trend. Cross-modal covariance is extremely small (1.11× 10−5), indicating negligible
shared variance between the text and image similarities. Across layers, off-diagonal covariances
remain several orders of magnitude lower than diagonal terms (Table 8), implying that fluctuations
between different similarity sources are largely uncorrelated.

The covariance heatmap in Figure 6 visually emphasizes this structure—bright diagonal dominance
with near-zero off-diagonal intensity—demonstrating that each layer contributes distinct but weakly
dependent information. This empirical finding supports the theoretical premise that aggregating such
weakly dependent scores will monotonically reduce overall variance and yield a more stable OOD
decision boundary.

Table 7: Covariance matrix between img_sim and text_sim.

img_sim text_sim

img_sim 4.20e-04 1.11e-05
text_sim 1.11e-05 4.20e-04

Table 8: Covariance matrix across layers.

text_sim layer1_sim layer5_sim layer9_sim

text_sim 4.20e-04 -8.02e-07 -1.88e-04 2.77e-06
layer1_sim -8.02e-07 6.08e-04 1.08e-04 -9.57e-05
layer5_sim -1.88e-04 1.08e-04 5.10e-03 5.16e-04
layer9_sim 2.77e-06 -9.57e-05 5.16e-04 1.50e-03
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Figure 5: Heatmap of Pearson correlations across text and vision encoder layers. Off-diagonal
elements remain close to zero, confirming weak cross-layer dependence.

Variance reduction under fusion. Finally, Table 9 quantifies the empirical variance of the ag-
gregated score S as more weakly dependent signals are fused. We observe a clear monotonic
decline—from 0.711× 10−3 using only the text score to 0.257× 10−3 when six intermediate layers
are integrated—demonstrating that fusing multiple partially independent cues effectively smooths
stochastic fluctuations in similarity estimation. This empirical trend aligns with the theoretical
prediction that Var(S)∝1/N under weak dependence, confirming that multimodal and multilayer
fusion yields more stable and discriminative OOD scores.

Table 9: Empirical variance (×10−3) vs. number of fused signals.

Setting Empirical variance

Only Text score 0.7110
Only Image score 0.3691
Fusion score (1 intermediate layer) 0.3553
Fusion score (2 intermediate layers) 0.3366
Fusion score (3 intermediate layers) 0.3274
Fusion score (4 intermediate layers) 0.3038
Fusion score (5 intermediate layers) 0.2717
Fusion score (6 intermediate layers) 0.2567
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Figure 6: Heatmap of covariance values across text and vision encoder layers. Strong diagonal
dominance and weak off-diagonal terms indicate low inter-layer variance coupling.

D Limitations

Limitation I. Dependence on synthetic image quality. The proposed method relies on pre-generated
synthetic images to capture visual exemplars for both in-distribution and OOD labels. Consequently,
its performance may degrade if the generative model fails to produce high-quality images. In
particular, artifacts such as severe noise, blur, or unstructured patterns may introduce misleading visual
cues that hinder effective similarity computation. To address this, we recommend employing robust
text-to-image models such as Stable Diffusion XL-Turbo, which substantially reduces generation
failures. Notably, as shown in Table 31, even when the synthesized images are stylistically mismatched
with the test samples (e.g., rendered as oil paintings instead of natural photos), they can still offer
marginal performance gains over the text-only baseline.

Limitation II. Computational cost of image synthesis. The framework incurs additional computa-
tional overhead during the image synthesis stage. As reported in Table 18, generation time scales
with the number of candidate OOD labels, which may pose challenges for large open-set label spaces.
To mitigate this, we adopt the following optimizations: (1) using accelerated generative models such
as Stable Diffusion XL-Turbo; and (2) pre-generating all synthetic exemplars offline before inference.
Since image synthesis is performed once per label set and reused across test samples, the runtime
cost during inference remains negligible, making the approach scalable to large datasets.

Limitation III. Independence assumption (weak dependence in practice). In Section 4, the
theoretical analysis assumes i.i.d. similarity scores si,j for clarity. This assumption can be relaxed:
in practice, similarity signals across modalities and encoder layers are typically weakly dependent.
Provided that the aggregated score satisfies a Lindeberg-type condition—or, more generally, arises
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from a bounded-variance sequence with limited dependence (e.g., m-dependent or exchangeable
variables)—a central-limit approximation remains valid. Crucially, the key insight persists: increasing
the number N of (appropriately weighted) modalities/layers reduces the variance of the fused score
and improves separability; under weak dependence, the variance of the weighted sum continues to
decay on the order of 1/N , up to constants determined by the dependence structure. Empirically, we
observe (i) small cross-modal and cross-layer Pearson correlations and (ii) a monotonic decrease in
the empirical variance of the fused score as more signals are aggregated (Tables 5–9), supporting the
practical validity of this relaxation.

E Further Experiments

E.1 Robustness to Domain Shift

To assess the generalization ability of our method under domain shifts, we conducted experiments
using the ImageNet Domain Shift dataset, with ImageNet-R serving as the ID dataset. Table 10
presents the results based on CLIP-B/16 with α = 0.1, selecting the 3rd, 6th, and 9th layers of the
visual encoder, and assigning a weight ofw = 0.15. Our method demonstrates stronger generalization
performance compared to NegLabel. ImageNet-R [35] consists of 30,000 images spanning 200
ImageNet categories, with representations in diverse artistic styles, including art, cartoons, graffiti,
embroidery, graphics, origami, paintings, patterns, plastic objects, plush objects, sculptures, sketches,
tattoos, toys, and video game renditions. Table 11 presents an evaluation of DualCnst’s robustness
using the ImageNet-A [48] generalization dataset as the ID dataset, while iNaturalist [11], SUN [32],
Places [33], and Textures [34] serve as OOD datasets. We compare DualCnst against state-of-the-art
methods. DualCnst outperforms NegLabel across all datasets, achieving an improvement of 2.09% in
FPR95 and 0.25% in AUROC on average.

In Table 12, we further investigate the robustness of DualCnst under the same experimental setup
using another generalization dataset, ImageNet-V2 [49]. The experimental results demonstrate that
our proposed method exhibits superior performance in handling domain shifts.

Table 10: Robustness results on ImageNet-R dataset. The black bold indicates the best performance.

Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Energy [38] 99.91 30.36 99.33 33.20 98.84 34.74 99.56 23.09 99.41 30.35
MaxLogit [1] 86.53 81.58 82.11 81.48 78.16 79.86 91.24 69.45 84.51 78.09

MCM [9] 51.59 92.24 52.88 89.97 52.04 88.01 56.45 85.65 53.24 88.97
NegLabel [12] 1.60 99.58 15.77 96.03 29.48 91.97 35.67 90.60 20.63 94.54

DualCnst 0.59 99.86 8.92 98.19 19.27 95.20 14.13 95.50 10.73 97.19

Table 11: Robustness results on ImageNet-A dataset. The ID class labels are the same as ImageNet.
The black bold indicates the best performance.

Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Energy 99.48 50.03 95.01 58.83 93.52 60.86 97.46 42.18 96.37 52.97
MaxLogit 92.88 74.14 81.54 80.55 78.51 79.06 90.00 69.41 85.73 75.79

MCM 80.41 77.02 76.12 78.92 76.90 76.48 74.10 77.36 76.88 77.45
NegLabel 4.09 98.80 44.38 89.83 60.10 82.88 64.34 80.25 43.23 87.94
DualCnst 3.54 98.99 32.41 92.79 48.66 87.04 47.77 89.54 33.09 92.09

Following the near-OOD evaluation protocol in OpenOOD v1.5, we conducted robustness evaluation
using ImageNet-1k and ImageNet-R as in-distribution (ID) datasets, with SSB-Hard, NINCO, iNatu-
ralist, and Texture as out-of-distribution (OOD) benchmarks. As summarized in Table 13, DualCnst
demonstrates stronger robustness than baseline methods under this more challenging near-OOD
experimental setup.
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Table 12: Robustness results on ImageNet-V2 dataset. The ID class labels are the same as ImageNet.
The black bold indicates the best performance.

Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Energy 99.85 32.93 99.12 34.45 98.02 39.51 99.57 21.52 99.14 32.10
MaxLogit 83.78 83.84 83.55 81.79 80.27 80.33 93.51 64.34 85.28 77.58

MCM 44.89 92.14 51.17 89.69 56.73 86.44 69.57 81.51 55.10 87.56
NegLabel 2.47 99.40 25.69 94.46 42.03 90.00 48.90 88.46 29.77 93.08
DualCnst 1.49 99.60 21.90 94.92 36.71 90.62 50.62 88.18 27.68 93.33

Table 13: Robustness experiments on ImageNet-1k and ImageNet-R. The black bold indicates the
best performance.

Method
OOD Dataset AverageSSB-Hard NINCO iNaturalist Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Energy [38] 96.62 51.92 87.39 67.17 94.54 61.56 94.89 45.94 93.36 56.65
MaxLogit [1] 90.98 57.92 79.69 70.72 65.41 87.29 72.04 80.84 77.03 74.19

MCM [9] 94.00 57.42 88.98 63.40 75.39 83.18 67.94 81.80 81.58 71.45
NegLabel [12] 85.64 66.30 70.38 74.74 1.56 99.59 42.59 89.89 50.04 82.63

DualCnst 82.33 69.65 67.57 76.41 1.07 99.68 42.55 88.93 48.38 83.67

E.2 Other OOD Detection Benchmarks

In Table 14, we present the performance evaluation results using CIFAR-10 and CIFAR-100 [10]
as the ID datasets, along with four OOD datasets: iNaturalist [11], SUN [32], Places [33], and
Textures [34]. Compared to the NegLabel method, our approach demonstrates significant performance
gains. Specifically, on CIFAR-100, DualCnst achieves an average improvement of 23.59% in FPR95
and 9.34% in AUROC. On CIFAR-10, it yields improvements of 7.56% in FPR95 and 1.39% in
AUROC. Although DualCnst does not achieve the best performance on CIFAR-10 individually, it
outperforms existing methods in terms of overall average performance across both CIFAR-10 and
CIFAR-100, highlighting its effectiveness in OOD detection across diverse datasets.

Additionally, in Table 15, we follow the fine-grained dataset setup proposed by EOE [58] and conduct
experiments on CUB-200-2011 [44], STANFORD-CARS [45], Food-101 [46], and Oxford-IIIT
Pet [47].Under this experimental setting, the four datasets are randomly split into two equal subsets,
with one serving as the ID dataset and the other as the OOD dataset. Since NegLabel identifies
the most semantically distant candidate labels as potential OOD categories during the OOD label
mining process, its performance in fine-grained experiments is relatively suboptimal. In contrast,
DualCnst demonstrates superior performance, achieving a 1.48% reduction in FPR95 and an 8.56%
improvement in AUROC.

E.3 Structured Domains: Medical Imaging

We evaluate a highly structured domain by using CheXpert [61] as ID data and sampling 10,000 OOD
exemplars from PubMedVision [62]. Medical images present strong, localized morphological cues
(e.g., lung fields, cardiomediastinal contours, lesion textures) that can be complementary to textual
semantics. Hence, the dual-consistency design is expected to sharpen separability when semantically
related categories remain visually distinct.

Results and interpretation. As shown in Table 16, DualCnst achieves near-ceiling performance
(FPR95= 0.00, AUROC= 99.97), outperforming the text-only NegLabel baseline (FPR95= 0.11,
AUROC= 99.92). The improvement, albeit on an already saturated operating point, indicates that
incorporating visual similarity to synthesized exemplars reduces residual false positives that persist
under text-only scoring. In a domain where subtle visual patterns (e.g., striations, opacities) carry
decisive information, the added image-space constraint likely filters spurious semantic matches,
consistent with our variance-reduction analysis under weak dependence.

Implications and caveats. First, the gains arrive without access to real ID images, preserving data
privacy while still leveraging visual priors via synthetic exemplars. Second, because AUROC is
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Table 14: Additional empirical results with CIFAR-10 and CIFAR-100 as ID datasets. The bold
indicates the best performance on each dataset.

ID Dataset Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CIFAR-10

Energy 60.70 82.12 53.14 86.00 58.29 82.86 62.52 77.89 58.66 82.22
MaxLogit 8.99 97.85 11.81 97.36 16.74 95.55 11.54 97.60 12.27 97.09

MCM 17.87 96.75 30.78 93.17 36.57 90.78 16.38 96.44 25.40 94.29
NegLabel 0.55 99.84 23.31 95.50 38.70 91.53 19.33 96.65 20.47 95.88
DualCnst 0.42 99.83 15.23 97.07 25.46 94.17 10.55 98.00 12.91 97.27

CIFAR-100

Energy 82.74 74.47 67.16 81.69 68.20 80.96 81.19 66.51 74.82 75.91
MaxLogit 67.77 81.41 63.26 80.72 65.73 80.81 62.94 82.00 64.93 81.24

MCM 97.95 67.50 97.69 60.71 98.40 61.34 90.23 73.58 96.07 65.78
NegLabel 13.95 96.47 86.61 69.04 91.50 62.08 70.60 80.26 65.66 76.96
DualCnst 2.88 99.23 49.35 84.25 60.68 79.06 55.35 82.65 42.07 86.30

Average

Energy 71.72 78.30 60.15 83.84 63.25 81.91 71.86 72.20 66.74 79.06
MaxLogit 38.38 89.63 37.54 89.04 41.24 88.18 37.24 89.80 38.60 89.16

MCM 57.91 82.12 64.24 76.94 67.49 76.06 53.31 85.01 60.73 80.03
NegLabel 7.25 98.15 54.96 82.27 65.10 76.81 44.96 88.45 43.07 86.42
DualCnst 1.65 99.53 32.29 95.75 37.45 90.31 45.79 86.77 27.49 91.78

Table 15: Zero-shot fine-grained OOD detection results. The black bold indicates the best perfor-
mance. The gray indicates that the comparative methods require training or an additional massive
auxiliary dataset.

Method ID CUB-100 Stanford-Cars-98 Food-50 Oxford-Pet-18 AverageOOD CUB-100 Stanford-Cars-98 Food-51 Oxford-Pet-19

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CLIPN 73.54 74.65 53.33 82.25 43.33 88.89 53.90 86.92 56.05 83.18
Energy 76.13 72.11 73.78 73.82 44.95 89.97 68.51 88.34 65.84 81.06

MaxLogit 76.89 73.00 72.18 74.80 41.73 90.79 65.66 88.49 64.11 81.77
MCM 83.58 67.51 83.99 68.71 43.38 91.75 63.92 84.88 68.72 78.21

NegLabel 82.48 68.55 79.32 70.00 37.32 92.48 66.30 88.64 66.36 79.92
DualCnst 77.99 72.58 78.87 70.38 36.18 92.85 66.46 88.45 64.88 81.07

Table 16: Performance on medical imaging.

Method FPR95↓ / AUROC↑
DualCnst 0.00 / 99.97
NegLabel 0.11 / 99.92

already near 100, absolute headroom is small; the main benefit is reducing high-TPR false alarms
(captured by FPR95). Finally, although medical images are stylistically constrained, domain shifts
(scanner, protocol) or prompt/style mismatch in generation could attenuate the benefit; our fusion
reduces sensitivity to such shifts by aggregating weakly dependent cues across modalities and layers
(Sec. C.2).

F Experimental Configuration and Details

F.1 Details of Mining Potential OOD Labels

Before generating synthetic images, it is crucial to identify effective OOD labels by leveraging ID
labels as a reference. Specifically, we define the set of ID labels as Y id = {y1, y2, . . . , yK} and collect
a pool of nouns and adjectives from open-world resources (e.g., WordNet [63], ConceptNet [64], and
Wikipedia Categories [65]) as candidate OOD labels, denoted by Yc = {ỹ1, ỹ2, . . . , ỹC}, where C
represents the total number of candidates.

To assess the semantic relationship between candidate OOD labels and ID labels, we utilize CLIP’s
text encoder to extract text embeddings for both sets. The embedding of a candidate OOD label
is given by ẽc = T (prompt(ỹc)), while the embedding of an ID label is represented as ek =
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T (prompt(yk)). By default, we employ the prompt format "A photo of a <label>" to generate
these embeddings.

Following the methodology outlined in NegMining [12], we quantify the semantic distance between
each candidate OOD label and the ID labels using negative cosine similarity. Specifically, for a
given candidate OOD label, we compute its negative cosine similarity with all ID label embeddings,
resulting in K similarity scores. The overall semantic distance of an OOD label to the ID label set is
then determined as the η-percentile (default η = 0.05) of these scores:

dc = percentileη
(
{− cos (ẽc, ek)}Kk=1

)
. (7)

After computing distances for all candidate OOD labels, we select the top M = 10, 000 labels with
the greatest distances. The selected OOD label set is defined as:

Yood = TopK
(
{dc}Cc=1,Yc,M

)
. (8)

During the generation phase, DualCnst utilizes Yood ∪ Y id as the label space for synthetic image
generation. To ensure semantic consistency, it employs stable diffusion to generate images that
align with these labels, thereby providing meaningful visual representations to enhance the inference
process.

F.2 Evaluation Metrics

In this study, we adopt the most widely used evaluation metrics in the OOD detection domain, includ-
ing FPR95 and AUROC [66]. To further assess the effectiveness of the proposed dual consistency
method under additional evaluation criteria, we also report AUPR results for CLIP-B/16 in Table 17.
The results demonstrate that our dual consistency method achieves superior performance across all
evaluation metrics.

Table 17: Performance in terms of AUPR. ID dataset: The experiments are zero-shot OOD detection
results with ImageNet-1K as the ID dataset. The black bold indicates the best performance. The
gray indicates that the comparative methods require training or an additional massive auxiliary

dataset.

Method
OOD Dataset AverageiNaturalist SUN Places Texture

CLIPN 99.15 98.59 98.22 98.38 98.59
Energy 96.84 96.50 96.16 94.66 96.04

MaxLogit 97.74 97.12 96.65 95.61 96.78
MCM 98.86 98.28 97.49 98.04 98.17

NegLabel 99.80 98.79 97.76 98.08 98.61
DualCnst 99.93 99.06 98.04 98.79 98.96

F.3 Experimental Configuration

This paper introduces a dual consistency (DualCnst) method, implemented using Python 3.8 and
PyTorch 1.13 library [67], with all experiments conducted on a single NVIDIA RTX A6000 GPU.
Prior to experimentation, the proposed method generates synthetic images, with each image requiring
approximately 3 seconds for generation. To mitigate redundant computational overhead across
multiple runs, we precompute and store the visual features of the generated images.

We systematically benchmark computational efficiency through two key aspects: (1) Temporal cost
analysis for synthetic image batch generation across five scales (0, 1k, 10k), with comparative
inference latency evaluation against NegLabel [12] (Table 18). DualCnst achieves efficient batch
generation in 0.1 seconds (excluding directory initialization overhead), while maintaining competitive
inference efficiency (12m 42s vs. 9m 36s for full ImageNet-1k evaluation) with enhanced detection
robustness. (2) Performance comparison under varying OOD label quantities. To ensure fair
comparison with NegLabel, we adopt its optimal configuration (10,000 OOD labels) for benchmarking.
As evidenced in Table 19, our method demonstrates consistent superiority over NegLabel regardless
of its OOD label selection size.
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For the selection of negative label parameters, we adopt the optimal configuration recommended in
NegLabel. All experiments in this study are conducted within the CLIP framework. Unless otherwise
specified, we utilize CLIP-B/16 for zero-shot OOD detection. The default hyperparameter settings are
as follows: We set w = 0.1 and extract intermediate-layer features from the 9th, 10th, and 11th layers
of the visual encoder, which are then fused with the final semantic features. The sum-softmax score
is employed, with the fusion parameter set to α = 0.1 and the temperature parameter to τ = 0.01.

Table 18: Computational cost of DualCnst and NegLabel on ImageNet-1k.

Method
0k-ood-image

Gen. Time
1k-ood-image

Gen. Time
10k-ood-image

Gen. Time
Inference

Time

DualCnst 4m 10s 9m 42s 51m 52s 12m 42s
NegLabel - - - 9m 36s

Table 19: Performance Comparison Under Varying OOD Label Quantities. The black bold indicates
the best performance.

Method(Number of OOD labels)
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

NegLabel(0k) 30.91 94.61 37.59 92.57 44.69 89.77 57.77 86.11 42.74 90.77
DualCnst(0k) 28.56 94.77 35.23 93.38 43.99 89.79 58.72 85.82 41.63 90.94
NegLabel(1k) 33.76 93.56 34.34 93.07 44.51 89.49 56.51 85.73 42.28 90.46
DualCnst(1k) 20.75 95.96 42.09 91.40 50.61 87.48 47.70 87.43 40.29 90.57

NegLabel(10k) 1.29 99.65 17.60 95.89 31.91 92.13 42.15 90.51 23.24 94.55
DualCnst(10k) 0.98 99.70 18.13 95.66 31.77 91.81 34.91 91.73 21.45 94.72

F.4 Compute Profile and Deployment Details

Offline pre-generation. All synthetic exemplars are generated offline per label set and reused at
inference, so the online overhead is negligible. Using accelerated backbones (e.g., SDXL-Turbo),
generating images for 10,000 OOD labels takes ≈55 minutes on a single RTX A6000, i.e., about
0.33 s per label on average. Because this cost is paid once per label set and cached thereafter, latency
at serving time is dominated by a single forward pass of the encoders.

Memory footprint. We report GPU memory usage under identical configurations and separate
inference from one-time generation.

Table 20: GPU Memory Overhead During Inference and Generation (RTX A6000).

Method Inference (MiB) Generation (MiB)

DualCnst 33245 9465
NegLabel 26353 –
MCM 17827 –

Results and interpretation. From Table 20, DualCnst uses 33245 MiB at inference, which is
a +26.2% increase over the text-only NegLabel baseline (26353 MiB), and +86.6% over MCM
(17827 MiB). This overhead is expected: DualCnst keeps both text and image similarity branches
active and aggregates multi-layer signals, trading extra activation/feature memory for improved
robustness. Crucially, the generation footprint (9465 MiB) applies only to the offline synthesis
stage; it does not affect online serving because exemplars are reused. Thus, for deployment on a
single A6000, generation comfortably fits within memory with headroom for modest batching, while
inference-time costs remain stable once the exemplars are cached.

Practical deployment notes. (i) Amortization. Since generation is one-off per label set, the cost
amortizes across all future queries and model updates that reuse the same labels. (ii) Latency. Online
latency is unchanged relative to NegLabel/MCM aside from the added fusion step, which is negligible
compared to encoder forward passes. (iii) Memory controls. Mixed precision (FP16/BF16), gradient
disabling at serve time, and per-layer feature caching reduce inference memory without accuracy loss;
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exemplar retrieval can be streamed from pinned host memory when VRAM is tight. (iv) Scalability.
For larger label vocabularies or multi-tenant settings, shard exemplar banks across GPUs or persist
them on disk with an in-memory LRU cache to keep the working set small.

G Additional Ablation Studies

G.1 Efficacy of DualCnst

Our method is not limited to applications with NegLabel. To address this concern, we have conducted
ablation studies using the DualCnst method combined with MCM (an OOD detection approach that
does not require negative labels) . As shown in Table 21, the results demonstrate that incorporating
synthetic image labels can effectively enhance OOD detection performance even without negative
labels/images. In addition, we have conducted ablation studies using real OOD samples (Table 22).
The results demonstrate that while the proposed method achieves better performance with real samples
compared to synthetic ones, the improvement margin is not substantial, demonstrating synthetic
samples’ effectiveness.

Table 21: Performance comparison of integrating DualCnst with MCM for OOD detection on
ImageNet-1k (ID dataset). The black bold indicates the best performance.

Method
OOD Dataset Averagessb-hard [68] NINOC [69] iNaturalist Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MCM 89.43 64.15 82.70 69.85 30.91 94.61 57.77 86.11 65.20 78.68
MCM+DualCnst 88.69 63.66 78.96 74.05 28.56 94.77 58.72 85.82 63.73 79.58

Table 22: Experimental comparison between real OOD samples and synthetic OOD samples, with
ImageNet-1k as the ID dataset. The black bold indicates the best performance.

Source of OOD images
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Synthetic OOD samples 1.29 99.65 17.60 95.89 31.91 92.13 42.15 90.51 23.24 94.55
Real OOD samples 1.73 99.28 6.55 98.67 18.51 95.69 22.64 95.35 12.36 97.25

G.2 Effect of Prompt Engineering

We evaluate NegLabel with different prompt template on the ImageNet-1k benchmark, as shown in
Table 23. The first four rows are selected from the 80 prompt templates proposed by CLIP [8]. The
last two rows are NegLabel designed prompt templates.According to the results in the table, DualCnst
significantly outperforms NegLabel in OOD detection performance across multiple prompts.

G.3 Vision Backbone

This section explores the performance of DualCnst using different CLIP vision encoders.

Table 24 presents the results for ImageNet-1K (ID) with various CLIP vision encoders, including
ViT-B/321, ViT-L/142, RN503, RN50x4, RN50x16, and RN101. Across all tested encoders, DualCnst
achieves the highest performance. Specifically, compared to ViT-B/16, using ViT-L/14 results in an
improvement of 2.33% in FPR95 and 0.37% in AUROC. Furthermore, DualCnst outperforms both
zero-shot and fine-tuning methods in OOD detection, achieving the best results in terms of FPR95
and AUROC when utilizing ViT-L/14.

1https://huggingface.co/openai/clip-vit-base-patch32
2https://huggingface.co/openai/clip-vit-large-patch14
3https://github.com/openai/CLIP
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Table 23: Performance Comparison of Different Prompts. The bold indicates the best performance
on each dataset.

Prompt Method
OOD Dataset Average

iNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

a photo of a <label> NegLabel 31.89 94.33 50.63 91.54 64.21 87.37 84.95 73.17 57.92 86.60
DualCnst 19.67 96.02 49.54 91.52 58.74 87.66 71.29 79.70 49.81 88.72

a photo of many <label> NegLabel 71.03 86.84 79.96 85.94 77.04 83.94 86.10 73.01 78.53 82.43
DualCnst 56.51 90.70 79.23 86.67 76.48 83.77 71.72 80.52 70.98 85.41

a photo of the <label> NegLabel 45.53 92.06 43.81 91.83 55.91 88.13 74.73 78.32 55.00 87.59
DualCnst 39.37 92.94 43.30 92.02 53.08 87.99 63.32 83.64 49.77 89.15

a low resolution photo of a <label> NegLabel 51.39 90.35 69.74 88.23 75.01 84.37 88.58 72.28 71.18 83.81
DualCnst 38.07 93.23 66.37 88.76 70.13 85.36 71.83 80.07 61.60 86.86

<label> NegLabel 52.77 91.15 41.93 92.40 49.13 89.45 68.65 82.61 53.12 88.90
DualCnst 28.35 94.66 42.36 91.58 50.67 88.37 52.34 87.78 43.43 90.60

the nice <label> NegLabel 1.91 99.49 20.53 95.49 35.59 91.64 43.56 90.22 25.40 94.21
DualCnst 0.98 99.70 18.13 95.66 31.77 91.81 34.91 91.73 21.45 94.72

Table 24: Prompt ensembling for text input using different backbones. The ID dataset is ImageNet-1K.
The black bold indicates the best performance.

Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Energy (ViT-B/16) 79.75 83.75 79.81 83.21 70.28 83.95 88.23 71.51 79.52 80.60
MaxLogit (ViT-B/16) 67.24 87.31 66.14 86.36 61.09 85.96 80.83 76.01 68.83 83.91

MCM (ViT-B/16) 40.33 92.75 35.43 92.78 44.08 89.60 54.41 87.10 43.56 90.56
NegLabel (ViT-B/16) 1.91 99.49 20.53 95.49 35.59 91.64 43.56 90.22 25.40 94.21
DualCnst (ViT-B/16) 1.29 99.65 17.60 95.89 31.91 92.13 42.15 90.51 23.24 94.55

Energy (ViT-B/32) 89.22 79.15 81.01 81.62 61.22 87.20 87.64 71.36 79.77 79.83
MaxLogit (ViT-B/32) 79.45 83.75 68.89 84.85 52.30 88.60 79.88 75.29 70.13 83.12

MCM (ViT-B/32) 49.81 91.37 40.31 91.80 42.94 90.08 59.33 85.32 48.10 89.64
NegLabel (ViT-B/32) 3.73 99.11 22.48 95.27 34.94 91.72 50.51 88.57 27.92 93.67
DualCnst (ViT-B/32) 3.10 99.27 18.93 95.87 32.43 92.13 53.56 88.10 27.01 93.84

Energy (ViT-L/14) 79.20 85.29 76.83 84.68 65.62 87.59 87.23 70.14 77.22 81.93
MaxLogit (ViT-L/14) 63.06 89.02 60.26 88.29 52.51 89.65 80.66 73.96 64.12 85.23

MCM (ViT-L/14) 31.63 94.43 23.64 94.99 30.99 92.79 57.77 85.19 36.01 91.85
NegLabel (ViT-L/14) 1.77 99.53 22.33 95.63 32.22 93.01 42.92 89.71 24.81 94.47
DualCnst (ViT-L/14) 1.33 99.70 19.54 96.06 26.55 93.72 42.48 89.87 22.48 94.84

Energy (RN50) 94.75 75.56 86.24 81.39 86.42 78.68 92.98 69.87 90.10 76.38
MaxLogit (RN50) 86.45 81.21 74.56 84.31 78.15 81.10 86.45 74.61 81.40 80.31

MCM (RN50) 45.42 91.50 43.33 91.40 55.92 86.73 55.92 86.68 50.15 89.08
NegLabel (RN50) 2.88 99.24 26.51 94.54 42.60 89.72 50.80 88.40 30.70 92.97
DualCnst (RN50) 1.81 99.51 20.75 95.39 35.10 91.13 51.19 88.90 27.21 93.73

Energy (RN50x4) 85.55 81.25 80.13 84.81 68.84 85.40 92.09 69.28 81.65 80.19
MaxLogit (RN50x4) 74.51 85.14 65.51 87.61 58.86 87.26 84.47 74.81 70.84 83.70

MCM (RN50x4) 48.00 90.86 33.81 93.14 42.90 89.93 52.16 87.44 44.22 90.34
NegLabel (RN50x4) 2.14 99.49 17.61 96.25 30.67 92.59 50.71 88.72 25.28 94.26
DualCnst (RN50x4) 1.58 99.62 16.89 96.27 29.04 92.63 47.29 89.60 23.70 94.53

Energy (RN50x16) 73.44 86.95 65.15 88.97 73.74 83.97 84.43 76.11 74.19 84.00
MaxLogit (RN50x16) 62.10 89.05 52.35 90.45 64.74 85.69 75.66 79.37 63.71 86.14

MCM (RN50x16) 43.02 91.69 34.24 93.27 46.96 89.27 51.93 87.94 44.04 90.54
NegLabel (RN50x16) 2.00 99.48 29.11 94.18 48.14 88.85 38.74 91.23 29.50 93.43
DualCnst (RN50x16) 1.22 99.66 19.42 95.80 34.51 91.73 39.34 91.17 23.62 94.59

Energy (RN101) 97.82 71.11 87.81 81.10 85.43 77.92 95.96 62.32 91.75 73.11
MaxLogit (RN101) 92.65 77.38 74.77 84.67 75.96 81.30 90.90 68.66 83.57 78.00

MCM (RN101) 60.90 88.14 39.37 91.96 48.62 88.08 59.49 85.34 52.09 88.38
NegLabel (RN101) 2.35 99.42 21.84 95.45 41.98 90.08 53.95 87.68 30.03 93.16
DualCnst (RN101) 2.56 99.36 18.93 95.88 37.52 90.89 56.03 86.88 28.76 93.26
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G.4 Generative Models

To evaluate the effectiveness of DualCnst, different generative models are employed. Table 25
compares the performance of Stable Diffusion v1.54 and v2.15 and Hunyuan-DiT6 and sdxl-turbo7

using ImageNet-1k as the ID dataset. The performance improvements vary depending on the quality of
generated synthetic images. Notably, sdxl-turbo achieves the highest synthetic image quality, leading
to the most significant performance gain, whereas Stable Diffusion v1.5 yields the lowest-quality
generations with minimal improvement compared to other models. Nevertheless, both still surpass
our baseline. In terms of computational efficiency, Hunyuan-DiT exhibits the longest generation
time, while sdxl-turbo demonstrates the fastest inference speed. Stable Diffusion v1.5 and v2.1 show
comparable computational latency.

Table 25: The impact of randomness under different random seeds is examined, with ImageNet-1k as
the ID dataset. The black bold indicates the best performance.

Generative Models
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

stable diffusion v1.5 1.27 99.65 17.30 95.94 31.61 92.15 42.91 90.32 23.27 94.51
stable diffusion v2.1 1.42 99.63 17.93 95.86 32.22 92.13 39.11 90.97 22.67 94.65

Hunyuan-DiT 1.51 99.62 17.55 95.95 31.24 92.18 42.46 90.37 23.19 94.53
stable diffusion XL-Turbo 1.25 99.66 16.91 95.94 30.73 92.17 39.20 90.98 22.02 94.69

G.5 Encoder Layer

An ablation study was conducted to evaluate the effectiveness of DualCnst using different layers of
CLIP’s ViT-B/16 encoder. As demonstrated in Table 26, we present the results of SDXL-Turbo under
various layer combinations: (1st, 2nd, 3rd), (4th, 5th, 6th), (7th, 8th, 9th), (9th, 10th, 11th), (3rd,
6th, 9th), and all layers. For each combination, multiple weighting coefficients w (0.05, 0.1, 0.15,
0.25) were systematically investigated to identify the optimal balance between pixel-level fidelity and
semantic consistency.

The results indicate that an equal weight distribution is not necessarily optimal across different layers.
For instance, when using the (1st, 2nd, 3rd) layers, setting w = 0.05 yields the best performance, as
the lower layers primarily capture edge-related features, requiring stronger semantic guidance. In
contrast, for the (9th, 10th, 11th) layers, which encode more localized details—such as the fur and
ears of a wolf or the stripes of a zebra—assigning a higher weight to visual features leads to improved
performance within the DualCnst framework.

G.6 Fusion Parameter α of Dual Consistency

This section presents a comprehensive ablation study on the fusion parameter α in the dual consistency
method. Experiments are conducted using ImageNet-1k, CIFAR-10, and CIFAR-100 as ID datasets,
with iNaturalist, SUN, Places, and Textures serving as OOD datasets. Additionally, experiments are
performed by alternately designating ImageNet-10 and ImageNet-20 as ID and OOD datasets.

All experiments utilize the ViT-B/16 visual encoder with selected layers (7th, 8th, 9th) and a fixed
weight parameter of w = 0.15. As shown in Table 29, the optimal α value varies across different
OOD datasets for ImageNet-1k. Specifically, the best results are obtained with α = 0.1 for SUN
and Places, and α = 0.2 for iNaturalist and Textures. In the main results, we select α = 0.2 for our
presented results. Notably, when α = 0, DualCnst reduces to NegLabel.

Table 27 and Table 28 present the results for the CIFAR datasets, where DualCnst consistently
outperforms NegLabel. Furthermore, as shown in Table 30, when the ID and OOD datasets exhibit
semantic similarities, integrating DualCnst leads to notable performance improvements.

4https://github.com/CompVis/stable-diffusion
5https://huggingface.co/stabilityai/stable-diffusion-2-1
6https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.2-Diffusers
7https://huggingface.co/stabilityai/sdxl-turbo
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Table 26: Using SDXL-Turbo different encoder layers and weights. The ID class labels are the same
as ImageNet-1k. The black bold indicates the best performance.

Layer w
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

(1st, 2nd, 3rd)

0.05 1.29 99.67 17.49 95.86 31.36 92.05 40.82 90.83 22.74 94.60
0.10 1.29 99.67 17.46 95.82 31.51 92.01 41.52 90.74 22.95 94.56
0.15 1.28 99.67 17.59 95.76 31.86 91.94 41.76 90.63 23.12 94.50
0.25 1.30 99.65 18.44 95.56 33.26 91.67 43.42 90.25 24.11 94.28

(4th, 5th, 6th)

0.05 1.24 99.67 17.49 95.90 31.23 92.11 39.75 90.96 22.43 94.66
0.10 1.21 99.68 17.42 95.89 31.09 92.13 39.38 90.98 22.27 94.67
0.15 1.13 99.68 17.40 95.85 31.16 92.10 39.11 90.93 22.20 94.64
0.25 1.17 99.65 18.33 95.67 32.68 91.89 39.73 90.65 22.98 94.46

(7th, 8th, 9th)

0.05 1.25 99.67 17.23 95.91 30.86 92.11 39.29 91.02 22.16 94.68
0.10 1.23 99.67 17.33 95.92 30.91 92.14 38.94 91.14 22.10 94.72
0.15 0.98 99.70 18.13 95.66 31.77 91.81 34.91 91.73 21.45 94.72

(9th, 10th, 11th)

0.05 1.27 99.66 17.03 95.92 30.76 92.12 39.61 90.94 22.17 94.66
0.10 1.25 99.66 16.91 95.94 30.73 92.17 39.20 90.98 22.02 94.69
0.15 1.23 99.66 16.79 95.96 30.74 92.20 39.13 91.00 21.97 94.70
0.25 1.24 99.65 16.88 95.93 31.36 92.19 39.33 90.95 22.20 94.68

(3rd, 6th, 9th)

0.05 1.24 99.67 17.35 95.90 31.10 92.11 39.80 90.94 22.37 94.65
0.10 1.23 99.67 17.26 95.92 31.06 92.14 39.77 90.97 22.33 94.68
0.15 1.22 99.67 17.01 95.91 31.12 92.15 39.36 90.97 22.18 94.68
0.25 1.15 99.67 17.27 95.85 31.76 92.10 39.80 90.87 22.50 94.62

all layer

0.01 1.25 99.67 17.36 95.89 31.07 92.09 39.80 90.93 22.37 94.64
0.02 1.24 99.67 17.43 95.90 31.16 92.11 39.91 90.96 22.44 94.66
0.05 1.19 99.68 17.05 95.88 31.13 92.11 39.54 90.95 22.23 94.66
0.08 1.13 99.66 17.62 95.76 32.32 91.97 39.91 90.76 22.75 94.54

Table 27: An ablation study on the fusion parameter α for cifar10. The black bold indicates the best
performance.

α
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

0 0.55 99.84 23.31 95.5 38.7 91.53 19.33 96.65 20.47 95.88
0.1 0.35 99.85 17.57 96.46 30.33 93.10 12.75 97.59 15.25 96.75
0.2 0.33 99.85 15.38 96.88 26.43 93.82 10.80 97.93 13.23 97.12
0.3 0.42 99.83 15.23 97.07 25.46 94.17 10.55 98.00 12.91 97.27
0.4 0.52 99.80 15.30 97.12 25.33 94.30 10.53 97.94 12.92 97.29
0.5 0.67 99.75 15.75 97.10 25.55 94.31 11.01 97.84 13.25 97.25
0.6 0.89 99.67 16.18 97.04 26.17 94.24 11.49 97.71 13.68 97.17
0.7 1.39 99.55 16.74 96.95 26.89 94.14 11.95 97.59 14.24 97.06
0.8 1.97 99.38 17.14 96.86 27.49 94.03 12.27 97.47 14.72 96.94
0.9 3.13 99.16 17.71 96.76 27.87 93.91 12.68 97.37 15.35 96.80
1 4.74 98.88 18.27 96.66 28.26 93.79 13.14 97.26 16.10 96.65

Table 28: An ablation study on the fusion parameter α for cifar100. The black bold indicates the
best performance.

α
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

0 13.95 96.47 86.61 69.04 91.5 62.08 70.6 80.26 65.66 76.96
0.1 11.63 97.18 83.36 70.68 89.27 64.39 61.79 83.27 61.51 78.88
0.2 9.55 97.72 80.42 72.56 87.11 66.52 57.20 84.67 58.57 80.37
0.3 7.51 98.11 75.99 74.40 83.68 68.46 54.77 85.01 55.49 81.50
0.4 6.40 98.42 72.84 76.14 79.90 70.26 55.48 84.72 53.65 82.39
0.5 5.29 98.66 67.84 77.83 75.92 72.01 55.62 84.22 51.17 83.18
0.6 4.40 98.85 63.12 79.45 72.40 73.70 55.12 83.74 48.76 83.94
0.7 3.80 99.00 58.51 80.94 68.65 75.30 54.96 83.38 46.48 84.66
0.8 3.33 99.11 54.69 82.25 65.38 76.75 54.73 83.10 44.53 85.30
0.9 2.97 99.18 51.49 83.35 62.70 78.00 55.12 82.86 43.07 85.85
1 2.88 99.23 49.35 84.25 60.68 79.06 55.35 82.65 42.07 86.30
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Table 29: An ablation study on the fusion parameter α for ImageNet-1k. The black bold indicates
the best performance.

α
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

0 1.91 99.49 20.53 95.49 35.59 91.64 43.56 90.22 25.40 94.21
0.1 1.23 99.66 16.79 95.96 30.74 92.20 39.13 91.00 21.97 94.70
0.2 0.98 99.70 18.13 95.66 31.77 91.81 34.91 91.73 21.45 94.72
0.3 1.00 99.68 21.01 95.13 33.80 91.17 34.06 91.80 22.47 94.45
0.4 1.27 99.63 24.70 94.42 36.79 90.39 34.31 91.64 24.27 94.02
0.5 1.65 99.55 28.39 93.61 39.76 89.54 35.76 91.34 26.39 93.51
0.6 2.12 99.45 31.79 92.75 42.59 88.68 37.82 90.95 28.58 92.96
0.7 2.80 99.32 35.10 91.87 44.95 87.82 39.27 90.50 30.53 92.38
0.8 3.63 99.18 38.41 90.98 46.84 86.98 41.03 89.99 32.48 91.78
0.9 4.33 99.02 40.90 90.13 48.76 86.16 42.23 89.44 34.06 91.19
1 5.12 98.85 43.32 89.32 50.37 85.38 43.63 88.86 35.61 90.60

Table 30: An ablation study on the parameter α, alternating ImageNet10 and ImageNet20 as ID and
OOD datasets. The black bold indicates the best performance.

α
ID ImageNet-10 ImageNet-20 AverageOOD ImageNet-20 ImageNet-10

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

0.0 5.10 98.86 17.60 97.04 11.35 97.95
0.1 2.20 98.77 13.60 97.61 8.15 98.31
0.2 3.10 98.98 12.20 97.44 7.65 98.21
0.3 4.00 98.89 18.60 97.06 11.30 97.98
0.4 4.90 98.72 18.40 97.09 11.65 97.91
0.5 5.30 98.54 18.00 97.12 11.65 97.83
0.6 6.40 98.33 17.80 97.16 12.10 97.75
0.7 8.60 98.07 16.80 97.21 12.70 97.64
0.8 10.30 97.78 15.40 97.41 12.85 97.60
0.9 12.60 97.47 13.60 97.65 13.10 97.56
1 13.10 97.14 48.00 97.65 30.55 97.40

G.7 Impact of Noise and Distribution Shifts in Synthetic Images on OOD Detection
Performance

While synthetic images may contain noise, style variations, or artifacts that could potentially mislead
OOD detection models, our score function incorporates multi-level features from pixel to semantic
levels. Thus, even when pixel-level features are affected by such deviations, language-level features
remain effective. To validate this, we generated oil painting-style images to simulate style shifts. As
shown in Table 31, our method maintains robust performance despite this variation.

Table 31: Experimental comparison under generated image style shifts. ID dataset: ImageNet-1k.
The black bold indicates the best performance.

Image Style (Method)
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Natural Images (DualCnst) 1.29 99.65 17.60 95.89 31.91 92.13 42.15 90.50 23.24 94.55
Oil Painting Images (DualCnst) 1.31 99.65 17.73 95.79 32.18 92.00 44.10 90.04 23.83 94.37

NegLabel 1.91 99.49 20.53 95.49 35.59 91.64 43.56 90.22 25.40 94.21

G.8 The Randomness of Stable Diffusion

An ablation study is conducted to assess the impact of Stable Diffusion’s randomness on the effec-
tiveness of DualCnst in generating synthetic images. Specifically, synthetic images are generated
using three distinct random seeds with SD1.5 and SDXL-Turbo, followed by performance evaluation
on ImageNet-1k. The experimental configuration employs the ViT-B/16 visual encoder with the (9th,
10th, 11th) layer combination, alongside fixed hyperparameters w = 0.1 and α = 0.1.
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As demonstrated in Tables 32 (SDXL-Turbo) and 33 (SD1.5), the detection performance exhibits
remarkable consistency across varying random seeds, demonstrating that the generative randomness
inherent in Stable Diffusion exerts negligible influence on the operational efficacy of DualCnst.

Table 32: Evaluate SDXL-Turbo’s performance variations under different random seeds using
ImageNet-1k as the ID dataset. The black bold indicates the best performance.

Random
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

random 1 0.98 99.70 18.13 95.66 31.77 91.81 34.91 91.73 21.45 94.72
random 2 1.25 99.66 16.62 95.96 30.84 92.19 39.29 91.02 22.00 94.71
random 3 1.26 99.66 16.74 96.00 30.82 92.23 39.70 90.89 22.13 94.69

Table 33: Evaluate Stable Diffusion v1.5’s performance variations under different random seeds using
ImageNet-1k as the ID dataset. The black bold indicates the best performance.

Random
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

random 1 1.27 99.65 17.30 95.94 31.61 92.15 42.91 90.32 23.27 94.51
random 2 1.29 99.65 17.60 95.89 31.91 92.13 42.15 90.51 23.24 94.55
random 3 1.26 99.66 18.16 95.64 32.26 91.90 41.90 90.33 23.39 94.38

Table 34: Additional ablation studies on score functions. The bold indicates the best performance on
each dataset.

Score Funtion
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

SMAX 100.00 83.00 100.00 82.16 100.00 80.62 100.00 80.28 100.00 81.51
SEnergy 1.98 99.42 20.26 95.52 35.54 91.49 45.69 89.96 25.87 94.10
SMaxLogit 6.26 98.58 29.54 93.79 43.18 89.55 50.78 87.95 32.44 92.47
SDualCnst 0.98 99.70 18.13 95.66 31.77 91.81 34.91 91.73 21.45 94.72

G.9 Open-Vocabulary Scaling via OOD Label Clustering

We simulate open-vocabulary conditions by clustering 10,145 fine-grained OOD categories into
136 coarse clusters and compare performance with the unclustered (10,000-label) setting. Heavy
clustering reduces label granularity, which is expected to weaken the representational diversity of
negative exemplars.

As shown in Table 35, clustering (coarsening) the OOD label vocabulary leads to a pronounced
degradation across all benchmarks: the average FPR95 nearly doubles (from 21.45 to 41.78), while
AUROC drops by more than 4 points on average. The decline is especially severe on SUN and Places,
where visual and semantic diversity among categories is high and coarse labels (e.g., “indoor scenes”)
fail to capture subtle inter-class distinctions.

Table 35: Effect of clustering OOD labels (FPR95↓ / AUROC↑). The black bold highlights the best
performance in each column.

Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

DualCnst (10,000 labels) 0.98 99.70 18.13 95.66 31.77 91.81 34.91 91.73 21.45 94.72
DualCnst (clustered: 136 clusters) 12.13 97.58 54.02 88.48 57.06 87.02 43.92 89.40 41.78 90.62

These results empirically validate that fine-grained negative labels are critical for robust open-
vocabulary OOD detection. Each specific label contributes a localized semantic anchor and a distinct
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visual prototype, enriching the negative space used for comparison. When label granularity is
reduced, semantic coverage shrinks, increasing the chance that semantically adjacent OOD samples
are misclassified as ID. This observation aligns with our weak-dependence analysis in Section C.2,
where diverse yet weakly correlated signals jointly reduce detection variance. Practically, this
motivates maintaining a sufficiently large and fine-grained OOD label bank for synthetic-exemplar-
based zero-shot detection.

G.10 Comparison with LMD on CIFAR

We further compare DualCnst (training-free) with LMD, a training-based diffusion reconstruction
approach, on CIFAR benchmarks using ROC-AUC as the evaluation metric. Results are summarized
in Table 36.

Table 36: ROC-AUC on CIFAR datasets. Bold indicates the higher ROC-AUC for each ID/OOD
configuration.

Method ID OOD ROC-AUC↑
LMD CIFAR10 CIFAR100 0.607
DualCnst (ours) CIFAR10 CIFAR100 0.900
LMD CIFAR100 CIFAR10 0.568
DualCnst (ours) CIFAR100 CIFAR10 0.661

DualCnst substantially outperforms LMD on these CIFAR OOD settings, with a particularly large
gain of +29.3 percentage points when CIFAR10 is ID and CIFAR100 is OOD (Table 36). This
suggests that DualCnst’s explicit multimodal consistency—linking text-derived semantics and vi-
sual exemplars—produces stronger discriminative cues than the implicit generative reconstruction
objective used in LMD. Moreover, since DualCnst requires no training or fine-tuning, its superior
performance demonstrates the effectiveness of leveraging pre-trained multimodal models for zero-
shot OOD detection. In contrast, LMD’s diffusion reconstruction tends to blur semantic boundaries
and overfit to ID image priors, reducing generalization to unseen categories.

G.11 Controlled Semantic Mixing: Dog–House Hybrids

To stress-test the visual branch, we synthesize controlled hybrids that mix ID semantics (dog) and
OOD semantics (house). Table 37 reports average text and image similarities to the canonical ID dog
exemplar.

Table 37: Similarity statistics under dog–house composition. Values are average cosine similarities to
the ID “dog” exemplar.

Setting Text Sim (ID dog) Image Sim (ID dog)
ID dog 0.245 0.575
OOD house 0.178 0.461
house with a dog 0.235 0.493

Interpretation. The hybrid “house with a dog” shows an intermediate behaviour: its text similarity
to the ‘dog’ label (0.235) is close to the pure ID ‘dog’ (0.245), reflecting semantic overlap, while
its image similarity (0.493) is substantially lower than the ID dog (0.575) but higher than the pure
house (0.461). This separation—higher text similarity but reduced visual similarity—illustrates why
multimodal fusion helps: text-only scoring risks classifying hybrids as ID (semantic match), whereas
adding image-space constraints lowers their aggregated score and allows the detector to flag them
as OOD. In other words, fusing weakly dependent cues recovers robustness to semantic mixing and
reduces false-positive acceptance of visually atypical but semantically related inputs.

39



G.12 Score Function

We present the specific form of the score function designed in the ablation study. They are SMAX,
SEnergy and SMaxLogit. Firstly, we review the definition of the fused visual-text cosine similarity s̃ as:

s̃i(x) = α · si,img(x) + (1− α) · si,text(x) (9)

where

si,img(x) =

L∑
l=1

wl · s(l)i,img(x)

with

s
(l)
i,img(x) =

I(l)(x) · I(l)(x̄i)

∥I(l)(x)∥ · ∥I(l)(x̄i)∥
, x̄i ∈ X̄ (10)

and

si,text(x) =
I(x) · T (ti)

∥I(x)∥ · ∥T (ti)∥
(11)

The specific form of SMAX is as follows:

SMAX(x;Y id ∪ Yood, X̄ , T , I) =


1
K , max

i∈[1,K]
s̃i < max

j∈[K+1,K+M ]
s̃j ,

max
i∈[1,K]

es̃i(x)∑K
j=1 es̃j(x) , max

i∈[1,K]
s̃i ≥ max

j∈[K+1,K+M ]
s̃j .

(12)

SMAX indicates that if the s̃j (j ∈ [K+1,K+M ]) of an input sample is larger than the s̃i (i ∈ [1,K]),
this sample is recognized to be an OOD sample. This implies that the maximum similarity observed
between the input sample and any OOD visual-text similarity exceeds the similarity between the
input sample and any ID visual-text similarity. Otherwise, the input sample is evaluated based on the
maximum softmax probability.

Similarly, SEnergy and SMaxLogit are modifications of the Energy and MaxLogit metrics, respectively,
incorporating visual-text similarity into their secondary components.

SEnergy(x;Y id ∪ Yood, X̄ , T , I) = −T

log

K∑
i=1

ef̃i(x)/T − log

K+M∑
j=K+1

ef̃j(x)/T

 , (13)

SMaxLogit(x;Y id ∪ Yood, X̄ , T , I) = max
i∈[1,K]

s̃i(x)− max
j∈[K+1,K+M]

s̃j(x). (14)

Table 34 presents the detailed experimental results on ImageNet-1k (ID).
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