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Abstract

Large vision–language models (LVLMs) suffer001
from hallucination, resulting in misalignment002
between the output textual response and the003
input visual content. Recent research indicates004
that the over-reliance on the Large Language005
Model (LLM) backbone, as one cause of the006
LVLM hallucination, inherently introduces bias007
from language priors, leading to insufficient008
context attention to the visual inputs.009

We tackle this issue of hallucination by mitigat-010
ing such over-reliance through preference learn-011
ing. We propose Vision-guided Direct Prefer-012
ence Optimization (V-DPO) to enhance visual013
context learning at training time. To interpret014
the effectiveness and generalizability of V-DPO015
on different types of training data, we construct016
a synthetic dataset containing both response-017
and image-contrast preference pairs, compared018
against existing human-annotated hallucination019
samples. Our approach achieves significant020
improvements compared with baseline meth-021
ods across various hallucination benchmarks.022
Our analysis indicates that V-DPO excels in023
learning from image-contrast preference data,024
demonstrating its superior ability to elicit and025
understand nuances of visual context.026

1 Introduction027

Recent advancements in Large Language Models028

(LLMs) (Brown et al., 2020; Chowdhery et al.,029

2023; Touvron et al., 2023; Chiang et al., 2023;030

OpenAI, 2023) have catalyzed the evolution of031

Large Vision–Language Models (LVLMs) (Liu032

et al., 2023c,b; Dai et al., 2023; Anil et al., 2023)033

in understanding and reasoning across visual and034

textual modalities. Despite their impressive perfor-035

mance on various vision–language tasks, existing036

LVLMs still struggle with the issue of hallucina-037

tion, where the model outputs are not factually038

grounded in the input visual contents (Rohrbach039

et al., 2018; Li et al., 2023; Gunjal et al., 2024; Liu040
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Figure 1: (a) Hallucination examples in visual question
answering and region descriptions and (b) the model
discriminative ability on the accurate and hallucinatory
samples represented by difference in log-likelihoods.

et al., 2024). Hallucination in LVLMs refers to non- 041

existing or erroneous descriptions of visual con- 042

tents, such as objects, attributes, and relationships, 043

which is especially challenging to understanding 044

unconventional images, as shown in Figure 1a. 045

The phenomenon of hallucination in LVLMs can 046

be attributed to the integration of pre-trained LLMs 047

in the architecture. Recent works reveal that this 048

issue is closely tied to insufficient context attention, 049

where the model prioritizes language patterns and 050

focuses on partial tokens rather than fully ground- 051

ing the generated content in both visual and textual 052

context (Lee et al., 2023; Wang et al., 2024). To 053

mitigate the over-reliance on language priors, many 054

efforts have been devoted to decoding optimiza- 055

tion with penalties on over-trust candidates (Huang 056

et al., 2023) or a focus on visual uncertainty (Chen 057

et al., 2024). However, these methods require in- 058

creased inference time and specific infrastructure 059

designs (Lee et al., 2023), obstructing their general- 060

izability and scalability across diverse data domains 061

1



and sizes. In contrast, our study explores training062

strategies to alleviate the over-reliance on language063

priors via preference learning, enhancing visual064

understanding to mitigate hallucination in LVLMs.065

Given the difference in the likelihoods between066

accurate and hallucinatory samples on vision-067

conditioned p(response | image, query) and068

textual-only p(response | query) distributions,069

Figure 1b illustrates the shifts of this difference070

after aligning the model with hallucination-free071

data via preference learning. Before alignment,072

the textual-only distributions dominate the model073

decision on determining accurate samples as pre-074

ferred compared to hallucinatory ones, reflected075

by the distributions (in green) of the same shape076

for both probabilities. This dominance in pairwise077

preference illustrates the over-reliance on language078

priors in LVLMs, which is especially crucial for079

unseen images in training (e.g., Figure 1a), limit-080

ing the model generalizability across different data.081

Motivated by this challenge, we propose Vision-082

guided Direct Preference Optimization (V-DPO),083

a vision-specific variant of Direct Preference Op-084

timization (DPO) (Rafailov et al., 2023), to em-085

ploy visual guidance during preference learning086

for hallucination mitigation in LVLMs. We adapt087

Classifier-Free Guidance (CFG) (Ho and Salimans,088

2022) to integrate the visual guidance into the op-089

timization target, inspired by its effectiveness in090

improving the specificity of model generations tai-091

lored for specific contents (Sanchez et al., 2023;092

Kornblith et al., 2023). To assess the generaliz-093

ability of V-DPO, especially on unconventional094

contents, we construct a synthetic dataset contain-095

ing both response-contrast and image-contrast pref-096

erence pairs, compared against existing human-097

annotated preferences such as RLHF-V (Yu et al.,098

2023). Our approach exhibits significant and sta-099

ble performance improvements through extensive100

experiments on various hallucination benchmarks.101

Further analysis of the distribution shifts from train-102

ing demonstrates the effectiveness of V-DPO in103

mitigating the over-reliance on language priors on104

both image- and response-contrast data.105

2 Related Work106

Hallucination has emerged as a significant chal-107

lenge to model reliability and generalizability in108

LVLM development. To alleviate hallucinated con-109

tent, existing works can be divided as following110

two directions. The first focuses on post-processing111

approaches, including post-hoc corrections (Zhou 112

et al., 2023; Yin et al., 2023; Lee et al., 2023) and 113

specialized decoding (Huang et al., 2023; Chen 114

et al., 2024). However, these methods often re- 115

quire increased inference time, obstructing their 116

generalizability and scalability across diverse data 117

domains and sizes (Bai et al., 2024). 118

The second line of work attempts to collect 119

hallucination-aware data to mitigate hallucination 120

in LVLMs through preference optimization leaning 121

toward hallucination-free outputs. For example, 122

Sun et al. (2023) and Yu et al. (2023) adapt the 123

Reinforcement Learning from Human Feedback 124

(RLHF) and Direct Preference Optimization (DPO) 125

paradigms in LLMs, respectively, to align LVLMs 126

with hallucination-aware human preferences. Zhao 127

et al. (2023) and Sarkar et al. (2024) propose data 128

augmentation pipelines to construct (accurate, hal- 129

lucinatory) preference pairs for contrastive tuning. 130

Our work mitigates hallucination in the context of 131

preference optimization with not only augmented 132

data including both response- and image-contrast 133

preference pairs, but also a vision-specific opti- 134

mization target to enhance visual understanding. 135

3 Background and Motivations 136

We explore strategies to enhance visual understand- 137

ing in LVLM preference optimization. Our frame- 138

work starts from a supervised fine-tuned (SFT) 139

model, obtained by jointly training a visual en- 140

coder and a pre-trained LLM via visual instruction 141

tuning (Liu et al., 2023c). Specifically, we incorpo- 142

rate visual guidance by integrating Classifier-Free 143

Guidance (CFG) into vanilla DPO. 144

3.1 Preference Optimization for LVLMs 145

We consider a policy LVLM πθ parameterized by 146

θ. For a vision-conditioned text generation task, 147

given an input image v ∼ I and a textual query 148

x ∼ P , we optimize for the KL-constrained reward 149

maximization objective: 150

max
π

E(v,x)∼I×P,y∼π

[
r(v, x, y)

−βDKL [π(y | v, x) ∥ πref(y | v, x)]
] (1) 151

under reward function r(v, x, y) and reference 152

model πref . DPO solves the optimal policy as: 153

πr(y | v, x) =
πsft(y | v, x) exp

(
1
β r(v, x, y)

)
Z(v, x)

(2) 154
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for all image–query pairs (v, x) ∼ I × P , where155

Z(v, x) =
∑

y πsft(y | v, x) exp
(

1
β r(v, x, y)

)
is156

the partition function.157

Rearranging Eq. 2, we get the ground-truth re-158

ward model with the corresponding optimal policy.159

Given a response-contrast preference dataset Dy =160

{v(k), x(k), y(k)w , y
(k)
l }Nk=1 where yw is preferred161

over yl, DPO uses Bradley–Terry model (Bradley162

and Terry, 1952) to derive the objective as:163

Ly
DPO(πθ;πref) = −E(v,x,yw,yl)∼Dy

log σ(βuyw,yl
πθ

)

(3)164

where uyw,yl
πθ = log πθ(yw|v,x)

πref(yw|v,x)
− log πθ(yl|v,x)

πref(yl|v,x)
in-165

dicates the implicit reward corresponding to πθ.166

Enlightened by contrast sets (Gardner et al.,167

2020; Shen et al., 2023), we construct an image-168

constrast dataset Dv = {v(k)w , v
(k)
l , x(k), y(k)}Mk=1169

to enhance visual understanding. With uvw,vl
πθ =170

log πθ(y|vw,x)
πref(y|vw,x) − log πθ(y|vl,x)

πref(y|vl,x) , we have:171

Lv
DPO(πθ;πref) = −E(vw,vl,x,y)∼Dv

log σ(βuvw,vl
πθ

)

(4)172

3.2 Classifier-Free Guidance in LLMs173

CFG was originally proposed in the context of con-174

ditioned diffusion models (Dhariwal and Nichol,175

2021). Given a noisy image y and a class condi-176

tion c, the model predicts probability likelihood p̂177

for the conditioned step-wise sample π̂θ(y | c) ∝178

πθ(y) · πϕ(c | y)γ , where γ > 0 controls the guid-179

ance strength from the classifier πϕ. Ho and Sali-180

mans (2022) observe that the guidance can be of-181

fered without a classifier:182

π̂θ(y | c) ∝ πθ(y) · πθ(c | y)γ ∝
πθ(y | c)γ

πθ(y)γ−1
(5)183

Given a textual completion y = {yi}Ni=1 and184

a conditional prompt or image c, we can ex-185

tend CFG to autoregressive models as π̂θ(y |186

c) ∝ πθ(y|c)γ
πθ(y)γ−1 ∝

∏N
i=1

πθ(yi|y<i,c)
γ

πθ(yi|y<i)γ−1 . Previous187

works show that CFG increases the specificity of188

the generation to be more pertinent toward the189

prompt (Sanchez et al., 2023) or image (Kornblith190

et al., 2023). Enlightened by this insight, we apply191

CFG in LVLM preference optimization to enhance192

the importance of visual context. This employment193

is non-trivial considering the dynamics in the train-194

ing process, which we will detail next.195

4 Vision-Guided Preference Learning196

In this work, we focus on mitigating hallucina-197

tions in LVLMs caused by insufficient context at-198

tention to visual information. We propose Vision- 199

guided Direct Preference Optimization (V-DPO) 200

to enhance visual understanding on both response- 201

and image-contrast preference data. 202

4.1 Vision-Guided DPO 203

Our V-DPO approach builds on the insight 204

that CFG-modified distribution produces more 205

condition-specific generation than vanilla decod- 206

ing. As we will detail next, our core contribution 207

originates from a vision-specific term in the reward 208

maximization objective of DPO. 209

V-DPO Objective. We start with the definition 210

of visual guidance in the context of LVLMs. Fol- 211

lowing Eq. 5, we apply CFG to vision-conditioned 212

text generation: 213

π̂θ(y | v, x) ∝ πθ(y | x)
(
πθ(y | v, x)
πθ(y | x)

)γ

(6) 214

where πθ(y|v,x)
πθ(y|x) is the guidance from the visual con- 215

text v to increase the specificity of the response 216

y toward the image, given the input query x. We 217

integrate this term as an additional target to opti- 218

mize in Eq. 1. Our result vision-enhanced reward 219

maximization objective is then: 220

max
π

E(v,x)∼I×P,y∼π

[
r(v, x, y)

−βDKL [π(y | v, x) ∥ πref(y | v, x)]

+αDKL [π(y | v, x) ∥ π(y | x)]
] (7) 221

where α > 0 controls the weight of the visual 222

guidance to optimize. Solving the optimal solution 223

πr to the above objective, we have: 224

πr(y | v, x)γ/πr(y | x)γ−1

=πr(y | v, x)
(
πr(y | v, x)
πr(y | x)

)γ−1

∝
1

Z(v, x)
πsft(y | v, x) exp

( 1

β
r(v, x, y)

) (8) 225

where γ = 1 − α
β . Unlike inference-time CFG, 226

we decrease γ < 1; i.e., increasing α > 0, to 227

strengthen the guidance of visual context during 228

training. We detail the complete derivations in 229

Appendix A. Although only a proportional relation- 230

ship holds here (as πr(y | v, x)γ/πr(y | x)γ−1 is 231

an unnormalized probability distribution), we can 232

still obtain the reward difference of a preference 233

pair using the Bradley–Terry model. Similar to 234

Eqs. 3 and 4, we derive our policy objective as: 235

LVDPO(πθ;πref) = −E(w,l)∼D log σ(βuw,l
πθ

) (9) 236
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Synthetic Data Augmentation

A man[0.186,0.044,0.408,0.718] and a woman[0.404,0.060,0.720,0.672] are cutting a 
cake[0.404,0.664,0.776,0.844] using the kitchen knife[0.532,0.560,0.693,0.690].

Replace cake[0.404,0.664,0.776,0.844] to be a pile of rocks.

A man and a woman are cutting a pile of rocks using a kitchen knife.

v 
w v 
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Direct Preference Optimization
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Figure 2: Outline of our preference data construction and vision-guided preference learning framework. In the
stage of Synthetic Data Augmentation, we utilize LVLMs, LLMs, and Stable Diffusion to manipulate images
automatically. We formulate the generated samples into image- and response-contrast pairs for preference learning
via our Vision-guided DPO approach.

where D = Dy ∪ Dv and uw,l
πθ = fw

θ − f l
θ, using237

the shorthand fθ(v, x, y) = log πθ(y|v,x)φ̂θ(v,x,y)
πref(y|v.x)

238

with φθ(v, x, y) =
(
πθ(y|v,x)
πθ(y|x)

)γ−1
controlling the239

strength of visual guidance.240

Implementation of Visual Guidance. In Eq. 9,241

we disable gradient backpropagation on φθ(v, x, y)242

to maintain a stable textual-only distribution πθ(· |243

x) during training. This aims to provide a reliable244

reference value to calculate the visual guidance.245

We further discuss the choice of π̂(· | x) in Sec-246

tion 5.3. Following the implementation of Liu et al.247

(2023c), we pass zeroes in place of the conditioning248

visual context to get the textual-only distribution:249

π̂θ(· | x) = π̂θ(· | 0, x) (10)250

With the integration of visual guidance, we251

modify πθ(y | v, x) in vanilla DPO to be a252

non-normalized probability distribution, πθ(y |253

v, x)φ̂θ(v, x, y). Empirically, this can progres-254

sively decrease the effect of visual guidance as255

the visual-conditioned and unconditioned distribu-256

tions diverge from each other through training. To257

mitigate this problem, we follow Kornblith et al.258

(2023) to normalize it as:259

πθ(· | v, x)φ̂θ(v, x, ·)

∝ϕ
(
hθ(v, x) + (γ − 1)

(
ĥθ(v, x)− ĥθ(0, x)

))
(11)260

where hθ are the generated logits and ϕ(·) is the 261

softmax function for normalization. Note that since 262

the increase of divergence between the distribution 263

πθ(· | v, x) and πθ(· | x) can lead to a larger ex- 264

ponential sum in softmax, the normalization thus 265

gradually inflates the effect of visual guidance dur- 266

ing training. We analyze the potential impacts of 267

the guidance inflation in Section 5.4. 268

4.2 Constructing Contrast Images 269

As discussed in Section 3.1, we augment the pref- 270

erence data with image-contrast pairs to enhance 271

visual understanding via preference learning. The 272

construction of contrastive image pairs aims to bol- 273

ster the visual understanding ability to discern nu- 274

anced visual differences between similar images. 275

Specifically, we manipulate images by replacing 276

conventional items with unconventional ones, con- 277

sidering the limited capability of LVLMs to un- 278

derstand weird images (Guetta et al., 2023). This 279

section details the automatic construction process 280

we use to collect image-contrast preference data. 281

Proposing Replacement Elements. Given an 282

image from an existing dataset, we extract object- 283

level information using LVLMs and generate de- 284

tailed captions with objects grounded in respec- 285

tive positions in the image. Based on the layout- 286

grounded descriptions, we employ LLMs to pro- 287

pose replacements for visual elements, thereby 288
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creating unexpected scenarios by leveraging their289

imaginative capability (Gómez-Rodríguez and290

Williams, 2023). Figure 2 shows an example el-291

ement replacement proposed by ChatGPT. To en-292

hance the interpretability of this automatic process,293

we require LLMs to supply a reasonable explana-294

tion of the replacement’s unexpectedness (cf. Ap-295

pendix C.1 for prompts and examples). We collect296

multiple replacements for each image, which are297

used to guide image generation next.298

Image Editing and Filtering. Given a desig-299

nated region in a source image, we use a generative300

model to edit via image inpainting (Lugmayr et al.,301

2022). Particularly, we utilize Denoising Diffusion302

Probabilistic Models (DDPMs) as the image in-303

painter, considering their superior generation qual-304

ity (Dhariwal and Nichol, 2021). Empirically, the305

imperfections of the LLM and the generative model306

can result in a significant distribution gap between307

the generated images and the original real ones, in-308

troducing noise and bias into the synthetic data. To309

address this issue, we use CLIPScore (Hessel et al.,310

2021) to refine our data by filtering out edits that do311

not align well with the corresponding replacement312

prompts. Specifically, we approve an edited image313

vi only if it achieves the highest CLIPScore with314

the intended textual prompt ci in comparison with315

similar text–image pairs generated in our pipeline:316

ci =argmax
c

CLIPScore(c, vi)

vi =argmax
v

CLIPScore(ci, v)
(12)317

Finally, we combine our image-contrast pairs318

with conventional response-contrast ones to con-319

struct our preference data for V-DPO. See Ap-320

pendix C for a full construction pipeline for dif-321

ferent types of preference data.322

5 Experiments323

We now assess V-DPO across various multimodal324

hallucination benchmarks. To interpret how V-325

DPO improves visual understanding, we compare326

performance using various preference data.327

5.1 Setup328

We choose LLAVA-V1.5-7B (Liu et al., 2023b)329

as our initial SFT model and conduct preference330

learning with full fine-tuning. Our synthetic aug-331

mented data contains 5K response- and image-332

contrast preference pairs, compared against the333

human-annotated response-contrast data RLHF-V334

(5K) (Yu et al., 2023) of equal size.335

Benchmarks. We evaluate our approach on four 336

hallucination benchmarks: (1) POPE (Li et al., 337

2023) on object hallucination with discriminative 338

tasks; (2) AMBER (Wang et al., 2023) containing 339

both generative and discriminative tasks on object, 340

attribute, and relation hallucination; (3) Hallusion- 341

Bench (Liu et al., 2023a) assessing visual illusion 342

and knowledge hallucination with systematically 343

structured discriminative tasks; and (4) MMHal- 344

Bench (Sun et al., 2023) covering different question 345

types and object topics. We also conduct general- 346

purpose evaluation on MMBench (Xu et al., 2023) 347

across various multimodal tasks in Appendix D. 348

Baselines. We compare our method against the 349

initial SFT model and vanilla DPO as the funda- 350

mental and strengthened baselines, respectively. 351

We also consider Hallucination-Aware Direct Pref- 352

erence Optimization (HA-DPO) (Zhao et al., 2023) 353

as a variant of DPO baseline trained on 16K style- 354

consistent hallucination sample pairs. 355

5.2 Main Results 356

We compare V-DPO with vanilla DPO methods 357

across various hallucination benchmarks to show 358

the effectiveness and stability of our approach. 359

POPE. Table 1 compares model performance (F1 360

score) and tendency to answer “yes” (Yes Ratio) 361

on POPE. V-DPO outperforms the SFT and vanilla 362

DPO baselines on random sets and more challeng- 363

ing tasks such as the adversarial scenario. Further- 364

more, V-DPO significantly increases the F1 scores 365

from 85.98 to 86.92 and 87.22 trained on synthetic 366

and human-annotated data, respectively, with miti- 367

gated bias in yes ratios 47.43% and 48.66%, com- 368

pared to 44.22% and 47.88% of vanilla DPO. This 369

suggests that V-DPO achieves better hallucination 370

performance while mitigating the over-reliance on 371

language priors with visual guidance. 372

AMBER. In Table 3, our approach achieves sig- 373

nificant improvements on both AMBER’s gen- 374

erative and discriminative tasks. For CHAIR 375

scores, we observe an absolute improvement of 376

2.2 from 7.8 to 5.6 when applying V-DPO to 377

the human-annotated data RLHF-V. Compared to 378

vanilla DPO, we observe further improvements due 379

to our method on most metrics in both synthetic 380

and human-annotated scenarios. Notably, with only 381

5K preference pairs collected via synthetic genera- 382

tion, V-DPO outperforms HA-DPO trained on 16K 383

preference pairs , with an absolute increase of 3.7 384

5



Approach F1 Score Yes
RatioF1R ↑ F1P ↑ F1A ↑ F1↑

SFT 89.69 86.83 81.80 85.98 54.20
HA-DPO 90.25 87.81 82.54 86.87 51.03

Synthetic Augmented Data
DPO 88.34 87.05 83.96 86.42 44.22
V-DPO 89.57 87.62 83.77 86.92↑0.94 47.43

RLHF-V
DPO 89.69 87.81 84.03 87.12 47.88
V-DPO 89.90 87.91 84.05 87.22↑1.24 48.66

Table 1: Result comparison (F1 score) on POPE including splits of
random (R), popular (P), and adversarial (A) scenarios. We report
Yes Ratio (%) to compare the biased tendency of different models.

Approach Accuracy

qAcc↑ fAcc↑ aAcc↑
SFT 13.19 20.23 48.16

Synthetic Augmented Data
DPO 21.97 20.52 55.52
V-DPO 22.20↑9.01 21.10 55.31

RLHF-V
DPO 16.70 20.81 51.31
V-DPO 17.36↑4.17 19.94 51.63

Table 2: Results on HallusionBench. qAcc and
fAcc assess the accuracy of answering a ques-
tion and understanding a figure, paired with
different images and questions, respectively.

Approach Generative Discriminative AMBER
Score↑CHAIR↓ Cover↑ Hal↓ Cog↓ F1E↑ F1A↑ F1R↑ F1↑

SFT 7.8 51.0 36.4 4.2 64.6 65.6 62.4 74.7 83.5
HA-DPO 6.7 49.8 30.9 3.3 88.1 66.1 68.8 78.1 85.7

Synthetic Augmented Data
DPO 7.3 50.2 33.6 3.7 95.2 75.1 60.9 83.1 87.9
V-DPO (Ours) 6.6↓1.2 49.1↓1.9 30.8↓5.6 3.1↓1.1 95.1 76.1 61.1 83.5↑8.8 88.4↑4.9

RLHF-V
DPO 5.7 49.7 27.3 2.6 90.7 72.6 64.6 80.9 87.6
V-DPO (Ours) 5.6↓2.2 49.7↓1.3 27.3↓9.1 2.7↓1.5 91.5 73.7 64.1 81.6↑5.9 88.0↑4.5

Table 3: Result comparison on AMBER. For generative tasks, we use CHAIR (Rohrbach et al., 2018), Cover
(coverage of ground-truth objects), Hal (hallucination rate), and Cog (Cognition) as evaluation metrics. We report
the performance of discriminative tasks using F1 scores, including splits of existence (E), attribute (A), and relation
(R). The holistic AMBER Score (Wang et al., 2023) is calculated by (100− CHAIR + F1)/2. We compare with
HA-DPO (Zhao et al., 2023) backboned with the same SFT model, LLaVA-v1.5-7B (Liu et al., 2023b).

in AMBER score. This indicates the effect of vi-385

sual guidance in enhancing visual understanding386

for hallucination mitigation.387

HallusionBench. In Table 2, we use qAcc, fAcc,388

and aAcc to assess performance on the question-,389

figure-, and individual-level tasks, respectively1.390

We observe a significant improvement in qAcc of391

V-DPO trained on the synthetic data, with an abso-392

lute increase of 9.01% in the accuracy, compared to393

4.17% when using RLHF-V for training. One pos-394

sible explanation for this gap is that the synthetic395

data mitigates reliance on language priors more396

efficiently via image-contrast preference learning.397

MMHal-Bench. We conduct GPT-42 evaluation398

on MMHal-Bench. Table 4 presents the hallucina-399

tion rates and overall scores of the outputs from400

different models. We observe substantial perfor-401

mance improvements in both synthetic and human-402

annotated preference data scenarios. Furthermore,403

we perform meso-analysis on splits of different404

question types in Figure 3. Compared to vanilla405

DPO, V-DPO is especially effective in answering406

1The GPT-4 evaluation was performed in June 2024.
2We obtained these results (gpt-4-0613) also in June 2024.

comparison and environment questions. Different 407

types of preference data also contribute to the per- 408

formance gains differently, where our synthetic 409

data shows a superior effect in tackling challenging 410

tasks such as adversarial and relation questions. 411

5.3 Ablation Study 412

We conduct analyses to investigate the effect of 413

visual guidance in V-DPO. We consider ablations 414

on the γ-controlled strength of visual guidance, the 415

calculation of vision-unconditioned distribution, 416

and guidance inflation from normalization. 417

Strength of Visual Guidance. Figure 4 illus- 418

trates the performance changes on AMBER with 419

different values of the visual guidance weight γ. 420

Specifically, we maintain the same β = 0.1 as in 421

DPO (Rafailov et al., 2023) to avoid substantial 422

divergence from the initial model during training 423

and increase α > 0 to enhance the strength of vi- 424

sual guidance. When γ = 1, it becomes vanilla 425

DPO without additional enhancement on visual 426

guidance. As γ decreases (i.e., α increases), the 427

performance first increases in both training scenar- 428

ios. However, V-DPO is more sensitive to the guid- 429
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Approach Hal↓ Score↑
SFT 0.62 1.97

Synthetic Augmented Data
DPO 0.59 2.12
V-DPO 0.53↓0.09 2.36↑0.39

RLHF-V
DPO 0.60 2.08
V-DPO 0.56↓0.06 2.16↑0.19

Table 4: MMHal-Bench results on
hallucination rate (Hal) and overall
GPT-4 score.
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Figure 3: Meso-analysis on MMHal-Bench results comparing performance in
different splits of question types.
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Figure 4: Performance curves (CHAIR↓ and F1↑) on AMBER with the
change of the visual guidance weight γ.

Approach CHAIR↓ F1↑
Synthetic Augmented Data

V-DPO 6.6 83.5
w/ static-lm 6.3↓0.3 83.7↑0.2
w/ normalization 6.2↓0.4 83.1↓0.4

RLHF-V
V-DPO 5.6 81.6
w/ static-lm 5.2↓0.4 82.4↑0.8
w/ normalization 5.5↓0.1 80.4↓1.2

Table 5: Ablation study on the choice of
vision-unconditioned distribution and nor-
malization for V-DPO.

ance control on synthetic preference data, where430

a small γ such as γ = 0.03 can lead to substan-431

tial divergence from the initial model, resulting432

in performance degradation in hallucination tasks.433

One possible cause of this degradation is the inte-434

gration of image-contrast data, which may deviate435

greatly from the initial SFT model generation distri-436

butions, increasing the instability of V-DPO given437

a higher guidance weight. Empirically, we sug-438

gest employing data-specific visual guidance con-439

trol with γ = (0.75, 0.00) for (synthetic-, human-440

annotated) scenarios, respectively.441

Vision-Unconditioned Distribution Calculation.442

In Eq. 10, we estimate the vision-unconditioned443

distribution by replacing the visual representations444

with zeroes. However, as we only utilize vision-445

conditioned data for preference learning, the vision-446

unconditioned distribution can become unreliable447

due to distribution shifts during training (Figure 1b).448

To interpret the potential influence of the distribu-449

tion shifts, we use the initial SFT model to calcu-450

late the vision-unconditioned distribution instead451

(i.e., “w/ static-lm” in Table 5). The static textual-452

only probabilities improve the model performance453

across both generative and discriminative tasks.454

This indicates the importance of maintaining reli-455

3γ − 1 = −1 in Eq. 8

able vision-unconditioned distribution to integrate 456

appropriate visual guidance during training, shed- 457

ding light on incorporating textual-only preference 458

data to refine the vision-unconditioned distribution. 459

Guidance Inflation with Normalization. As dis- 460

cussed in Section 4.1, we can normalize the vision- 461

enhanced distribution to inflate the guidance ef- 462

fect. Table 5 shows the model performance after 463

this normalization. Notably, the guidance infla- 464

tion further mitigates hallucination in generative 465

tasks, achieving lower CHAIR scores (e.g., 6.2 and 466

5.5 compared to 6.6 and 5.6) in both data scenar- 467

ios. However, it may lead to performance drops 468

in discriminative tasks where the result generation 469

distribution is more sensitive to the modified target 470

in preference optimization. 471

5.4 Further Analysis 472

We now investigate the distribution shifts in V- 473

DPO and analyze the qualitative results on MMHal- 474

Bench. Finally, we use the non-hallucination 475

benchmark MMBench to assess the stability of our 476

approach in general tasks in Appendix D. 477

Shifts of Distribution Gaps in V-DPO. Our ab- 478

lation study (§ 5.3) shows that preference learn- 479

ing can also shift the distribution gaps between 480
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Figure 5: Comparison between V-DPO and vanilla DPO on the shifts of distribution gaps. Rows from top to bottom
illustrate the distributions of vision-conditioned generation, textual-only-conditioned generation, and the difference
between the two generations, respectively. Note that the shifts equal to 0 in the textual-only case on image-contrast
data, as the samples within a preference pair have the same textual context with each other.

How many people are eating in this kitchen?

There are no people eating in this kitchen. It is a clean 
and empty kitchen with a dining table and chairs.

There are four people eating in this kitchen.

What color are these books?

These books are red and white.

These books are red and yellow.

Is this a Macbook or Windows laptop?

This is a Macbook, as indicated by the 
presence of the Apple logo on the keyboard.

This is a Macbook, which is a laptop 
computer designed by Apple.B

O

B

O

B

O
✔ ✔ ✔

✗ ✗ ✔

Figure 6: Qualitative examples of different predictions of the SFT baseline (B) and our V-DPO approach (O). We
bolded keywords indicating the accuracy and informativeness of visual understanding.

accurate and hallucinatory samples in the vision-481

unconditioned case. In Figure 5, we show how482

V-DPO shifts the distributions across different pref-483

erence data. Our V-DPO approach is more effec-484

tive than vanilla DPO in enhancing the ability to485

determine image-contrast hallucination samples,486

with a shift of 11.01, compared with 9.37 in DPO,487

as measured by the log-likelihood pairwise pref-488

erence data differences. For the response-contrast489

scenario, V-DPO also increases the discriminabil-490

ity with a shift of 19.17. Furthermore, we observe491

a smaller shift of 6.35 in V-DPO in the textual-492

only distributions compared with that of 7.58 in493

DPO, indicating the effectiveness of our approach494

to mitigate the over-reliance on language priors495

with visual guidance.496

Qualitative Analysis on MMHal-Bench. We497

conduct qualitative analysis to investigate how V-498

DPO eliminates hallucination in the generated re-499

sponses. Figure 6 compares the different genera-500

tions of V-DPO and the baseline on three exam-501

ples from MMHal-Bench. The first example, from502

the adversarial split, shows the significant efficacy 503

of our approach in mitigating the language priors, 504

which may provide a plausible but incorrect answer 505

to the question; i.e. “four people eating”. In the 506

third example, the model learns to justify its answer 507

“Macbook” according to the specific visual clue 508

of the “Apple logo” in the image. This indicates 509

that our approach enhances visual understanding to 510

elicit related details in the images, improving the 511

informativeness of the generations. 512

6 Conclusion 513

We propose V-DPO, utilizing Classifier-Free Guid- 514

ance (CFG) to integrate visual guidance in LVLM 515

preference learning. Integrating visual guidance 516

into the training process enhances visual context 517

understanding via preference optimization, improv- 518

ing the accuracy and specificity of model genera- 519

tions. Extensive experiments on various preference 520

data demonstrate the generalizability of V-DPO. 521

We hope our work sheds light on visual guidance 522

for more general tasks in LVLM alignment. 523
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Limitations524

The main limitations of our work come from two525

parts. The first one, regarding the V-DPO approach,526

is the unexplored domains where the language pri-527

ors are important to guide LVLMs to provide cor-528

rect answers. For example, preference pairs that529

prioritize the fluency of the generated text are not530

considered in our data construction. Future work531

may explore more general scenarios where both532

visual and textual modalities are important to elicit533

the preferred responses. The second one, related534

to the construction of our synthetic dataset, is the535

noise and bias introduced by the automatic genera-536

tion pipeline which may cause performance degra-537

dation during preference optimization. For future538

work, we may consider a more reliable and scal-539

able way to conduct data filtering and reweighting540

to refine the quality of synthetic augmented data.541

Ethics Statement542

This work mainly focuses on enhancing visual un-543

derstanding via preference optimization to mitigate544

hallucination in LVLMs. One potential ethical con-545

cern may come from the data collection process for546

our synthetic preference pair construction. As the547

image manipulation process is conducted collabora-548

tively among LVLMs, LLMs, and Stable Diffusion549

models, systematic bias may be introduced into550

the generated data. In this case, usage of our syn-551

thetic augmented data should be constrained within552

research-only targets. We leave it to future work to553

mitigate the bias in model-generated data to further554

improve the quality of our preference data.555
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A Deriving V-DPO Objective851

Given the maximization objective to optimize in Eq. 7, we have:852

max
π

E(v,x)∼I×P,y∼π

[
r(v, x, y)− βDKL [π(y | v, x) ∥ πref(y | v, x)] + αDKL [π(y | v, x) ∥ π(y | x)]

]
=max

π
E(v,x)∼I×PEy∼π(y|v,x)

[
r(v, x, y)− β log

π(y | v, x)
πref(y | v, x)

+ α log
π(y | v, x)
π(y | x)

]
=min

π
E(v,x)∼I×PEy∼π(y|v,x)

[
log

π(y | v, x)
πref(y | v, x)

− α

β
log

π(y | v, x)
π(y | x)

− 1

β
r(v, x, y)

]

=min
π

E(v,x)∼I×PEy∼π(y|v,x)

log π(y | v, x)1−
α
β /π(y | x)−

α
β

1
Z(v,x)πref(y | v, x) exp

(
1
β r(v, x, y)

) − logZ(v, x)



=min
π

E(v,x)∼I×PEy∼π(y|v,x)

log π(y | v, x)
(
π(y|v,x)
π(y|x)

)−α
β

1
Z(v,x)πref(y | v, x) exp

(
1
β r(v, x, y)

) − logZ(v, x)


=min

π
E(v,x)∼I×PEy∼π(y|v,x)

log π(y | v, x)
(
π(y|v,x)
π(y|x)

)γ−1

1
Z(v,x)πref(y | v, x) exp

(
1
β r(v, x, y)

) − logZ(v, x)


(13)853

where we set γ = 1− α
β and the partition function is:

Z(v, x) =
∑
y

πsft(y | v, x) exp
( 1

β
r(v, x, y)

)
.

Following Rafailov et al. (2023), we define:

π∗(y | v, x) = 1

Z(v, x)
πref(y | v, x) exp

(
1

β
r(v, x, y)

)
as a valid normalized probability distribution. Different from vanilla DPO, we have the non-normalized854

term π(y | v, x)
(
π(y|v,x)
π(y|x)

)γ−1
in our V-DPO objective, which cannot be directly optimized to be855

π∗(y | v, x). Rearranging Eq. 13 with normalization, we have:856

min
π

E(v,x)∼I×PEy∼π(y|v,x)

log 1
Wπ(v,x)

π(y | v, x)
(
π(y|v,x)
π(y|x)

)γ−1

1
Z(v,x)πref(y | v, x) exp

(
1
β r(v, x, y)

) − logZ(v, x) + logWπ(v, x)


(14)857

where the partition function:

Wπ(v, x) =
∑

y∼π(y|v,x)

π(y | v, x)
(
π(y | v, x)
π(y | x)

)γ−1

depends on the policy π. Therefore, we cannot directly solve the normalized vision-enhanced probability858

distribution using π∗(y | v, x). As γ < 1, Wπ(v, x) decreases when the vision-conditioned distribution859

diverges from the textual-only one. As the LVLM is aligned with the LLM backbone, we can make the860

following proposition:861

Proposition 1. ∃M < ∞, for any y ∼ π(y | v, x), the ratio of π(y|x)
π(y|v,x) is bounded by M862

Proposition 1 holds, according to the practical observation that the LVLM mainly fits well on the seen863

image data during training while maintaining a similar distribution with the textual-only generation when864
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What are the men wearing 
while leading the elephants?

A man in a white shirt and a man in a superhero cape.

A man in a white shirt and a man in a black jacket.

What is the person holding near the 
computer keyboard and mouse?

y 
w

y 
l

A flamingo with sprinkles.

A pink doughnut with sprinkles.

y 
w

y 
l

(a) response-contrast vqa

Who or what is playing the video game?

A giraffe in a purple hat.

Where are the ducks standing?

On a floating raft.

v 
w v 

l

v 
w v 

l

(b) image-contrast vqa

Please provide a short description for 
this region: [0.72, 0.17, 0.81, 0.37].

Bananas on a fruit stand behind the man.

v 
w v 

l

Please provide a short description for 
this region: [0.52, 0.22, 0.98, 0.86].

A stack of pancakes on a countertop.

A freshly baked loaf of bread on a cutting board.

y 
w

y 
l

(c) region description

Figure 7: Examples of generated preference data.

given unseen images. Based on proposition 1, we take minπ E logWπ(v, x) as a secondary target and 865

focus on minimizing the first term in Eq. 13 and 14 to elicit an approximation of the optimal solution. 866

For Eq. 13, one straightforward but probably sub-optimal solution is to solve the vision-enhanced 867

distribution with a proportional constraint with π∗(y | v, x): 868

π(y | v, x)
(
π(y | v, x)
π(y | x)

)γ−1

∝ π∗(y | v, x) (15) 869

For Eq. 14, we can solve the normalized probability distribution directly using π∗(y | v, x): 870

1

Wπ(v, x)
π(y | v, x)

(
π(y | v, x)
π(y | x)

)γ−1

= π∗(y | v, x) (16) 871

Hence, we complete the derivations for Eq. 7 and 8. 872

B Implementation Details 873

We tune the initial SFT model, LLaVA-v1.5-7B, using our V-DPO and the vanilla DPO approaches with 874

the highest learning rate 1e-6 through 4 epochs on both synthetic and human-annotated data scenarios. 875

We adopt a batch size of 64 and set β = 0.1, following the DPO paper (Rafailov et al., 2023). We employ 876

different weights of visual guidance on the synthetic (γ = 0.75) and human-annotated (γ = 0.0) data 877

according to their sensitivity to the control strength. All experiments are conducted with a maximum of 878

4× 40GB GPUs (NVIDIA A100). 879

C More Details in Preference Data Construction 880

We choose the images from COCO (Lin et al., 2014), Visual-Genome (Krishna et al., 2017), Visual 881

Commonsense Reaosning (VCR) (Zellers et al., 2018) as the seed set for our synthetic data augmentation 882

pipeline, covering various types of visual content including daily-life scenes and drama-event or human- 883

involved scenarios. Our result synthetic augmented data contains preference pairs, including image- 884

contrast and response-contrast samples on visual instruction following, visual question answering, and 885

region description tasks. 886
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« Element Replacement »
System: You are a good assistant to help me do academic research.
User: I have an image with the caption: “A train is passing by a church.”. Substitute each of the following objects with
something unexpected to create a sense of discordance: train, church in the format: [what] -> [what]. Provide a brief
sentence explaining each substitution.
Assistant:

« Captioning for Manipulated Images »
System: You are a good assistant to generate new captions.
User: I have an original caption and a substitution operation. Return the new caption after conducting the substitution.
The original caption is: A train is passing by a church. The substitution involves changing the train to an elephant.
Return the updated caption.
Assistant:

« Question Generation »
System: You are a good assistant to generate questions.
User: I have a pair of descriptions. Could you help me generate a question that will lead to different answers based on
the two descriptions? Ensure that the question is suitable for both descriptions.
The first description is: A woman is cleaning her dining room.
The second description is: A robot is cleaning her dining room.
Return a question and the corresponding answers according to the two descriptions.
Assistant:

« Distractor (Answer Candidate) Generation »
System: You are a good assistant to generate possible answers.
User: Given a question, please help me to generate some reasonable answers that are common in the real life.
The question is: Where is the bear sitting?
A reasonable answer can be: In a grassy area.
An unreasonable answer can be: In a floating jelly beans. Please help me to generate several reasonable answers,
and seperate each answer with “|”.
Assistant:

Table 6: Prompt Templates to utilize LLMs to guide the image manipulation process.

C.1 Prompts for Image Manipulation887

We show the designed prompts to elicit element replacement ideas from LLMs such as ChatGPT4 (OpenAI,888

2023) in Table 6 and examples of generated preference pairs in Figures 7a to 7c.889

C.2 Filtering via CLIPScore890

Figure 8 shows the distributions regarding the difference in CLIPScore between positive and negative891

samples before filtering. We set a threshold r = CLIPScorew

CLIPScorel
≥ t = 1.5 to approve the synthetic samples892

as a valid preference pair.893

(a) response-contrast (b) image-contrast

Figure 8: Distributions of CLIPScore ratios of unfiltered generated preference pairs.

4We used gpt-3.5-turbo-1106.
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D General Evaluation on MMBench 894

One drawback of alignment methods is the enlarged divergence from the initial SFT model through 895

training, potentially resulting in model performance degradation on general multimodal tasks. Table 7 896

assesses V-DPO on the general evaluation benchmark MMBench. While V-DPO still causes a slight drop 897

in overall accuracy, we observe a relatively improved performance compared to the vanilla DPO on both 898

synthetic and human-annotated data scenarios. We leave it to future work to further enhance the stability 899

and generalizability of V-DPO across more general tasks in LVLMs. 900

Approach Level-2 Capability Accuracy
Overall

Accuracy↑AR↑ CP↑ FP-C↑ FP-S↑ LR↑ RR↑
SFT 73.37 77.70 57.34 68.94 32.20 53.04 65.21

Synthetic Augmented Data
DPO 74.37 76.35 56.64 68.94 32.20 53.91 65.03
V-DPO 74.37 76.01 58.04 68.94 31.36 54.78 65.12

RLHF-V
DPO 74.37 76.01 57.34 68.60 31.36 53.04 64.78
V-DPO 73.87 76.69 57.34 68.60 32.20 53.04 64.95

Table 7: MMBench results
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