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ABSTRACT

Large language model (LLM) agents typically receive two kinds of context: (i)
environment-level manuals that define interaction interfaces and global rules, and
(ii) task-level guidance or demonstrations tied to specific goals. In this work, we
identify a crucial but overlooked third type of context, instance-level context,
which consists of verifiable and reusable facts tied to a specific environment in-
stance, such as object locations, crafting recipes, and local rules. We argue that the
absence of instance-level context is a common source of failure for LLM agents in
complex tasks, as success often depends not only on reasoning over global rules or
task prompts but also on making decisions based on precise and persistent facts.
Acquiring such context requires more than memorization: the challenge lies in
efficiently exploring, validating, and formatting these facts under tight interaction
budgets. We formalize this problem as Instance-Level Context Learning (ILCL)
and introduce AutoContext, our task-agnostic method to solve it. AutoContext
performs a guided exploration, using a compact TODO forest to intelligently prior-
itize its next actions and a lightweight plan–act–extract loop to execute them. This
process automatically produces a high-precision context document that is reusable
across many downstream tasks and agents, thereby amortizing the initial explo-
ration cost. Experiments across TEXTWORLD, ALFWORLD, and CRAFTER
demonstrate consistent gains in both success and efficiency: for instance, ReAct’s
mean success rate in TEXTWORLD rises from 37% to 95%, while IGE improves
from 81% to 95%. By transforming one-off exploration into persistent, reusable
knowledge, AutoContext complements existing contexts to enable more reliable
and efficient LLM agents. Our code is available at https://anonymous.
4open.science/r/context_learning_anonymized-3043

1 INTRODUCTION

Large language model (LLM) agents are increasingly deployed in interactive, partially observable
environments where they must act, observe, and adapt over extended horizons. As the full state is
never directly accessible, an agent must construct beliefs from streaming observations, and continu-
ally revise its plan to reach to achieve the intended objective. For example, in a household domain,
an agent may need to navigate through rooms, collect ingredients, and finally, use the proper tools to
cook a meal. To support such decision making process, existing approaches (e.g., Chen et al., 2024;
Wang et al., 2024a; Fu et al., 2024; Zhu et al., 2025) provide two primary forms of auxiliary context,
illustrated in Figure 1. The first is environment-level context, which specifies global mechanisms
and action interfaces common to all environment instances of a domain. The second is task-level
context, which provides guidance specific to a target objective, including demonstrations, hints, or
curricula.

However, this two-way split leaves a critical gap at deployment. When confronted with a concrete
environment instance, failure often arises not from a lack of domain manuals or task instructions, but
from a lack of instance-level context: concrete, validated facts that hold only in the current instance
and cannot be deduced from manuals or task specifications (Figure 1, bottom). This includes the
positions of objects, the recipes admissible in the current instance, or local rules that differ subtly
across instances. Without this instance-dependent knowledge, the agent must discover basic facts
before addressing the actual task, incurring unnecessary exploration cost and lowering reliability.
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The inefficiencies are particularly severe in multi-task and multi-agent settings. First, every agent
must independently develop exploration strategies before solving tasks. Given the diversity of agent
architectures, designing effective exploration procedures for each is both costly and brittle. Second,
even when the same agent returns to the same instance, it often repeats the same discovery process.
Instance-dependent findings are rarely recorded in a durable form that other runs can reuse. The
result is wasted interaction budget, longer trajectories, and diminished success rates.

I can open door, go east, look, etc

I need to find all the ingredients, 
and cook a meal to win the game.

But where are the ingredients?

Environment-Level

Task-Level

Instance-Level

Figure 1: Three types of context.
Instance-level context is usually ne-
glected in existing methods.

To address this problem, we introduce instance-level con-
text learning: given a previously unseen environment in-
stance, the goal is to perform a compact, one-off exploration
and distill the findings into a durable, agent-readable doc-
ument De. This document records reusable, task-agnostic
facts that are specific to the instance, providing a general
foundation that complements both environment- and task-
level context while benefiting downstream agents across di-
verse tasks. This new paradigm raises three intertwined
challenges. Coverage: the document must capture general-
purpose facts relevant to many future tasks. This is chal-
lenging because those facts are often hidden behind specific
preconditions that require strategic exploration to uncover.
Efficiency: exploration should be compact and avoid expo-
nential blowup from naively enumerating trajectories, which
not only wastes computation but also quickly exhausts the
limited context window, leaving the extracted context unus-
able in practice. Reliability: extracted context should be validated and maintained as a durable
document, minimizing hallucinations and brittleness when the context is later reused.

We present AutoContext, a task-agnostic method for instance-level context learning. It consists of
three components: a Planner that identifies knowledge gaps and generates new TODOs, an Actor that
executes these TODOs through targeted exploration, and an Extractor that validates new facts against
trajectory evidence. The entire process is organized by a novel TODO forest, which structures the
exploration and systematically exposes knowledge gaps. With this design, AutoContext achieves
coverage by driving exploration toward informative states, ensures efficiency through knowledge-
gap–guided exploration organized by the TODO forest, and guarantees reliability by validating
knowledge before committing it to a durable document. Experiments across TEXTWORLD, ALF-
WORLD, and CRAFTER demonstrate consistent gains: in TEXTWORLD, for example, the success
rate of a ReAct agent rises from 37% to 95%, while the state-of-the-art IGE improves from 81% to
95%.

Contributions. Our work makes three contributions:

• We formalize the problem of Instance-Level Context Learning (ILCL), establishing the objective
of constructing reusable documents De for previously unseen environment instances.

• We propose AutoContext, a task-agnostic method that employs a structured TODO forest with a
plan–act–extract exploration loop to automatically produce validated instance-level context.

• We demonstrate through extensive experiments on TEXTWORLD, ALFWORLD, and CRAFTER
that AutoContext substantially improves downstream agents: even a simple ReAct agent equipped
with De achieves performance on par with state-of-the-art methods, while stronger baselines attain
further gains in both efficiency and success rates.

2 RELATED WORK

Task-level Knowledge Learning. A substantial line of research (Wang et al., 2024a; Zhang et al.;
Guan et al., 2024; Zhu et al., 2025; Qiao et al., 2024; Chen et al., 2024; Zhao et al., 2024a; Fu
et al., 2024; Basavatia et al., 2024; Kirk et al., 2024; Shinn et al., 2023; Chen et al., 2025; Xia
et al., 2025; Wu et al., 2023) investigates how agents acquire task-specific rules. AutoManual (Chen
et al., 2024) allows agents to autonomously induce environment action rules for predefined tasks via
interactive trial-and-error, while ExpeL (Zhao et al., 2024a) distills both successful and failed expe-
riences into reusable natural-language insights. Unlike these methods, which either capture global
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environment mechanics or task-specific heuristics, our approach learns a persistent document of
instance-dependent facts not entailed by the environment manual. This complementary knowledge
can be reused by any agent across multiple tasks within the same instance.

LLM-based Exploration. Another line of work (Lu et al., 2025; Golchha et al., 2024; Song et al.,
2024; Fang et al., 2025; Du et al., 2023) studies how LLM agents can improve exploration to uncover
useful information or behaviors. Intelligent Go-Explore (IGE) (Lu et al., 2025) leverages the LLM’s
internalized knowledge to archive promising states and resume exploration from them. Language
Guided Exploration (LGE) (Golchha et al., 2024) uses LLMs to propose promising next actions.
These methods enhance task performance through improved exploration strategies, but they do not
yield lasting knowledge about the environment instance.

Instance Memory. Other approaches (Gao et al., 2025; Holt et al.; Kagaya et al., 2024; Huang
et al., 2024; Ammanabrolu & Hausknecht, 2020) augment agents with a memory or knowledge base
that records useful information gathered during task execution. For example, RAP (Kagaya et al.,
2024) enables LLM agents to capture and retrieve past observations via a knowledge graph, while
LWM-Planner (Holt et al.) incrementally accumulates atomic facts and exploits them for improved
planning through lookahead search. These approaches retain instance-dependent facts, but their
exploration remains task-driven: the acquired knowledge is partial and biased toward specific tasks,
limiting comprehensive coverage of the underlying instance. In contrast, our work constructs a
reusable and comprehensive instance-level context that transcends individual tasks.

Due to space constraints, additional related work is provided in Appendix E.

3 PROBLEM FORMULATION

Let E denote an environment class. Each instance e ∈ E is modeled as a partially observable Markov
decision process (POMDP)

e = ⟨S,A,O, T ⟩,
where S is the state space, A the action space, O the observation space (rendered to text for LLMs),
and T : S ×A → S the transition dynamics. While a standard POMDP specifies a reward function,
here we deliberately decouple exploration from downstream evaluation: rather than committing to
a single reward, we assume a set Te of downstream tasks that may later be issued on instance e.
Each task t ∈ Te is drawn from a task distribution Pe and paired with an LLM-based solving policy
πt. We write Ut(·) for the task-specific utility (e.g., success indicator, cumulative reward, etc.),
evaluated on the same instance.

We formalize Instance-Level Context Learning (ILCL) as choosing a reusable text string De via
a one-time exploration on instance e to improve future task performance. Let πt|De

denote running
the same LLM-based solver πt with access to De (e.g., by conditioning its prompt on the document).
The ILCL objective is

max
De

Et∼Pe

[
Ut

(
πt|De

)]
. (1)

This objective captures amortization: a single instance-level context document De, constructed once
before downstream use, should raise expected utility across many future tasks and agents on the same
instance. For brevity, we also refer to De as the instance context.

Directly optimizing equation 1 requires access to the full distribution of tasks and solvers, which is
intractable in practice. To address this, we introduce a document schema S that prescribes the struc-
ture of the instance context. Formally, S is an attributed entity–relation schema that abstracts the
environment class, specifying the entity types, relations, and attributes to be recorded (e.g., objects,
locations, preconditions). The objective of ILCL is thus to populate De under S, maximizing the
coverage of instance-dependent information. We describe schema design in detail in Section 4.1.

4 METHOD

We introduce AutoContext, a task-agnostic framework for ILCL. Before any downstream task is
issued, AutoContext performs a compact, one-off exploration on a previously unseen environment

3
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  - Supermarket
      - objects: metallic showcase
      ...

Diagnose
Knowledge Gaps

Propose TODOs

TODO

Restore State

Execute TODO

Planner

Actor

Extractor

  - Street:
      - objects: commercial glass door
      - north: Unknown
      - east: entrance to Supermarket
      ...

Instance-level Context

init_state
in Livingroom

look
see a sofa

go north
in Street

in_street
in Street

go east
TODO

TODO forest

Promote States

 [observation]: Agent is in Street.

 [action]: go east

 [observation]: Agent is in Supermarket.
 There exists a metallic showcase.

 ....

Extract Context

state

action/subtask

key result

 - [location]:
     - objects: [object], [object], ... / Nothing
     - north: [anything] to [location]
     - east: [anything] to [location]
     ...

 Trajectory

 Instance Context Schema

End

Figure 2: Overview of AutoContext. The Planner uses the current Instance-level Context and
TODO forest to propose targeted actions (TODOs). The Actor executes these actions, generating a
trajectory of its experience. Finally, the Extractor validates the information in the trajectory against
a schema to update and expand the context document. This cycle iteratively builds a comprehensive
and reliable summary of the environment instance.

instance e to construct a reusable, agent-readable instance context De. This document captures
extracted facts such as objects, locations, preconditions, and effective actions that hold in e. By
conditioning on De, heterogeneous agents can improve both success rates and efficiency across
tasks, and thus amortize the upfront exploration cost.

As illustrated in Figure 2, AutoContext is composed of two main components. The TODO forest
provides a compact exploration representation, organizing states and subtasks into shallow trees that
encourage reuse and maintain readability. The plan–act–extract loop iteratively propose and execute
TODO nodes to perform exploration, and populate the instance context based on the trajectories,
while adhering to the document schema S. The loop continues until the instance context is fully
constructed or the exploration budget is exhausted. This produces a compact instance context De

that complements environment-level manuals and task-level guidance. We next elaborate on each
component in detail.

4.1 INSTANCE CONTEXT SCHEMA

LLM-based agents often depend on brittle, ad-hoc prompt engineering that requires significant hu-
man effort and fails to generalize across agent architectures. To address this, we propose a prin-
cipled, schema-based representation of the environment. This approach defines the structure of
knowledge once from the environment’s perspective, creating a durable foundation that is reusable
across all tasks and agents.

Formally, we define a schema S as an attributed entity-relation structure. For any instance e, Auto-
Context constructs an instance document De conforming to S. Each De functions as a lightweight
knowledge graph where nodes are typed entities (e.g., rooms, objects), attributes capture their prop-
erties, and edges encode relations (see Figure 3).

A key feature of our schema is the explicit use of Unknown markers for attributes that have not
yet been observed. This transforms the document from a static record into a dynamic blueprint for
exploration. These markers create explicit knowledge gaps (e.g., Street: east: Unknown)
that the Planner can target. As AutoContext runs, it iteratively replaces these markers with validated
facts, turning ignorance into knowledge. This design yields a reusable, agent-readable document,
amortizing the one-time schema design cost across all future interactions.

4
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  - Street:
      - objects: commercial glass door
      - north: Unknown
      - east: entrance to Supermarket
      ...

- [location]:
    - objects: [object], [object], ... / Nothing
    - north: [anything] to [location]
    - east: [anything] to [location]
    ...

Schema Document Entries

- [object]:
    - has_in_or_on: [object], [object], ... / Nothing

- action: [action_name]
    - requirements: [conditions that must be met]
    - key_result: [expected outcome]
    - note: [additional remarks]

- cabinet_2
    - has_in_or_on: fork_3, plate_1, saltshaker_1

- action: Make Stone Pickaxe
    - requirements: Has at least 1 wood and 1 stone 
      and faces table
    - key_result: Crafts stone_pickaxe ....
    - note: None.

Figure 3: Example schema and document entries.

4.2 TODO FOREST

To structure and guide exploration, we introduce the TODO forest, a novel data structure illustrated
in Figure 2. The forest consists of multiple shallow TODO trees, each rooted at a state annotated
with a succinct state summary. The forest is a collection of shallow TODO trees, each rooted in a
key environment state and annotated with a succinct summary. A state corresponds to a snapshot
of the environment. By promoting important nodes encountered during exploration to become new
state roots, we keep the trees shallow, manage complexity, and enable informed planning by an LLM
agent. The forest adapts to environmental complexity through two operational modes:

Action Mode. In simpler environments, each non-node represents a primitive action paired with
a key result. The key result is a compact abstraction of the observation induced by executing the
action. Unexplored nodes are marked TODO. This mode captures both successful outcomes and
negative feedback (e.g., unsatisfied preconditions, syntax errors), providing a fine-grained map of
the local action space.

Agent Mode. Agent mode is designed for complex environments with long horizons and exten-
sive observations, where naively storing all trajectories for direct LLM inspection is infeasible.
In this mode, non-root nodes correspond to higher-level subtasks, represented as agent("task
description"). Control is delegated to a sub-agent (e.g., a ReAct-style agent) to execute the
subtask. The sub-agent’s full trajectory is stored, but its outcome is summarized via an LLM into a
concise key result. This provides a hierarchical abstraction, avoiding the infeasibility of processing
long, raw trajectories.

Exploration representation and In-Context Examples. The TODO forest compactly records the
entirety of exploration. AutoContext uses this structure to resume exploration from any TODO node
by replaying the trajectory from the initial state to that node, thus enabling the discovery of facts that
rely on preconditions. Moreover, since the forest records both successful and failed trajectories, it
simultaneously serves as a collection of in-context examples: failed attempts guide the agent away
from unproductive branches, while successful ones provide reusable execution patterns.

4.3 PLAN-ACT-EXTRACT LOOP

AutoContext builds the instance context through a plan–act–extract loop driven by the TODO forest.
Each iteration includes three LLM-driven pipelines: (1) the Planner, which expands the forest by
proposing new TODOs and promoting states; (2) the Actor, which executes TODOs either directly
(action mode) or via a delegated ReAct agent (agent mode); and (3) the Extractor, which updates the
instance context based on the trajectories and the instance context schema. The loop continues until
the instance context achieves sufficient coverage, or the exploration budget is exhausted. Prompt
templates are provided in Appendix D.

5
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Planner: Proposing TODOs. The Planner is prompted to identify knowledge gaps by scanning
attributes marked as Unknown and analyzing the TODO forest to find opportunities where contin-
ued exploration can uncover new information. For example, if the instance context indicates that
the north of Street is Unknown and the forest shows that the destination remains unexplored,
both signals the need to resolve this knowledge gap. The Planner then proposes candidate TODOs,
which are validated against the forest. If a proposed TODO path is redundant or originates from a
non-existent state, feedback is provided for regeneration. This ensures that only valid TODOs are
admitted.

Actor: Completing TODOs. The Actor executes the proposed TODOs and returns the resulting
trajectories. Specifically, it first resumes the snapshot of the explored part of the TODO paths by
replaying stored trajectories, and then executes the remaining new actions (action mode), or invokes
a ReAct agent to complete the subtask (agent mode). When the environment supports save and
restore, we can also store a checkpoint at the node to enable direct resumption.

Extractor: Update Document. The Extractor updates the instance context based on the instance
context schema and the trajectories returned by the Actor. First, it is prompted to propose a list of
candidate edits with three modification types: add, update, or remove. Second, those edits for the
instance context will be checked one by one, each against the trajectories and the schema. Each
edit can be accepted, revised, or rejected. Finally, the Extractor is prompted to apply the accepted
and revised edits to the instance context. This separation of proposing, verifying, and applying edits
allows the LLM to reason about each modification in isolation, and thus ensures that the resulting
instance context is both schema-compliant and of high precision.

Planner: Proposing States. After updating the instance context, the Planner revisits the forest
to promote selected TODO nodes into new states. Similar to proposing TODOs, the promotion is
guided by the principle of resolving knowledge gaps: nodes that can uncover novel information
are prioritized. The promoted states are also required to be fundamentally distinct from all existing
ones, to encourage wide coverage of the instance context and avoid redundant exploration.

Loop Control. At the end of each iteration, the Planner is prompted to analyze both the TODO
forest and the instance context. The loop continues if knowledge gaps remain and the iteration
budget is not exhausted. Otherwise exploration terminates and the finalized instance context is
provided to downstream tasks as an input.

5 EXPERIMENTAL EVALUATION

Our experiments aim to answer the following main research questions. More experiments on con-
tributions of different instance context schema are deferred to Appendix B.

• RQ1: How much performance gain can be achieved by AutoContext?

• RQ2: How efficient are AutoContext and the baselines with the instance context?

• RQ3: What is the contribution of each component of AutoContext?

5.1 EXPERIMENT SETUP

Benchmarks. Following Lu et al. (2025), we use the TextWorld cooking benchmark with 25 ran-
domly generated environment instances. This benchmark is deliberately challenging: agents must
navigate up to 12 rooms, identify recipes, tools, and ingredients, execute multi-step preparation, and
finally consume the meal to succeed. ALFWorld (Chen et al., 2024) provides 134 unseen test house-
hold environments for embodied task completion. Crafter (Hafner, 2022) is a 64 × 64 open-ended
survival world with a technology tree, where the agent must gather resources, satisfy preconditions,
and unlock advanced actions such as crafting stone tools and mining iron. For TextWorld and ALF-
World, we apply AutoContext in action mode, while for Crafter we adopt agent mode to better
handle its long horizons and rich observations.

6
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Table 1: Success rates (%) on TEXTWORLD under increasing step budgets.

Model Method 50 100 400 1600 unlimited

DeepSeek-V3

ReAct 16 ± 7 35 ± 7 37 ± 5 37 ± 5 37 ± 5
ReAct + AutoContext 78 ± 6 95 ± 2 95 ± 2 95 ± 2 95 ± 2
Reflexion 16 ± 11 31 ± 3 45 ± 4 45 ± 4 45 ± 4
Reflexion + AutoContext 73 ± 5 96 ± 3 99 ± 2 99 ± 2 99 ± 2
IGE 0 ± 0 0 ± 0 36 ± 6 79 ± 7 81 ± 8
IGE + AutoContext 0 ± 0 0 ± 0 72 ± 3 95 ± 2 95 ± 2

GPT4.1

ReAct 33 ± 7 81 ± 2 91 ± 8 93 ± 7 93 ± 7
ReAct + AutoContext 83 ± 5 100 ± 0 100 ± 0 100 ± 0 100 ± 0
Reflexion 35 ± 5 77 ± 3 100 ± 0 100 ± 0 100 ± 0
Reflexion + AutoContext 83 ± 2 100 ± 0 100 ± 0 100 ± 0 100 ± 0
IGE 0 ± 0 0 ± 0 43 ± 12 69 ± 8 72 ± 7
IGE + AutoContext 0 ± 0 0 ± 0 81 ± 2 100 ± 0 100 ± 0

Table 2: Success rates (%) on ALFWORLD under increasing step budgets.

Method 5 10 40 160 unlimited
ReAct 13.1 ± 1.1 48.3 ± 3.6 76.5 ± 1.0 77.5 ± 0.8 77.5 ± 0.8
ReAct + AutoContext 26.7 ± 1.5 97.3 ± 1.7 98.0 ± 1.1 98.0 ± 1.1 98.0 ± 1.1
IGE 10.4 ± 0.0 10.6 ± 0.4 54.6 ± 1.1 86.9 ± 1.9 94.3 ± 1.1
IGE + AutoContext 26.9 ± 0.4 27.2 ± 0.4 96.8 ± 1.1 98.8 ± 0.9 99.3 ± 0.0
AutoManual 3.4 ± 0.4 28.8 ± 0.7 94.8 ± 0.5 97.9 ± 0.5 97.9 ± 0.5
AutoManual + AutoContext 17.6 ± 1.1 83.2 ± 1.2 99.7 ± 0.4 99.7 ± 0.4 99.7 ± 0.4

Baselines. We use the current SOTA methods as baselines and augment them with AutoContext.
By construction, the instance context produced by AutoContext is both task-agnostic and agent-
agnostic, and is simply appended to the prompts of baselines without any customization. The base-
lines are: (1) Intelligent-Go-Explore (IGE) (Lu et al., 2025): a LLM-driven go-explore methods,
which search the whole environments by archiving interesting states and continue exploration from
those states. (2) ReAct (Yao et al., 2023b): A classic Chain-of-Thought method, which prompts
LLM to generate reasoning process. (3) AutoManual (Chen et al., 2024): A task-level context gen-
eration method, with advanced architecture for completing tasks by LLM-generated code. (4) Re-
flexion (Shinn et al., 2023): A method that generates self-reflections from previous trials to improve
future decisions. We limit Reflexion to a maximum of three trials.

LLMs Unless noted, all methods are driven by DeepSeek-V3 (i.e., DeepSeek-V3-0324 (Liu
et al., 2024)), except that for CRAFTER we employ DeepSeek-R1-0528 with AutoContext to
construct instance contexts. While R1 and V3 are contemporaneous, R1 uses inference-time scaling
to improve reasoning reliability. This setup allows us to investigate how lightweight models can
be leveraged for downstream evaluation tasks, while more computationally intensive models are
reserved for generating high-quality instance contexts. We also employ GPT-4.1 (OpenAI, 2025a)
to assess the robustness of our methods across different LLMs.

5.2 EXPERIMENTAL RESULTS

RQ1: How much performance gain can be achieved by AutoContext? We first examine
whether augmenting existing baselines with AutoContext yields significant improvements across
benchmarks. For TextWorld and ALFWorld, we report the success rates of all methods under vary-
ing environment step limits (including the unlimited-step setting, where no constraints are imposed).
For Crafter, we follow the benchmark’s official evaluation protocol, reporting scores computed as
the geometric mean of achievement completion rates across all runs.

TEXTWORLD. Table 1 reports the mean success rates under varying step budgets over three runs.
ReAct struggles even with unlimited steps, achieving only 37% success due to frequent navigation

7
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errors. When augmented with the instance context from AutoContext, its success rate under a 50-
step budget improves from 16% to 78%, and further reaches 95% under unlimited budget. A similar
performance gain can be observed for IGE. While IGE, as a search-oriented method, generally out-
performs ReAct under large step budgets, its performance remains constrained by limited memory.
It must discard states during exploration, leading to information loss, redundant revisits, and ulti-
mately incomplete coverage. AutoContext resolves this by maintaining a compact TODO forest of
all explored trajectories and marking unknowns to highlight knowledge gaps. Consequently, IGE
improves from 36% to 72% under a 400-step budget, and from 81% to 95% with unlimited steps.
These results show that the instance context is not merely an efficiency booster, but a structural
solution to the inherent context limitations of LLMs, enabling exhaustive exploration where naive
reasoning is insufficient.

ALFWORLD. Consistent with TextWorld, AutoContext delivers substantial improvements across
all baselines (Table 2). ReAct’s success rate rises from 48.3% to 97.3% and AutoManual rises from
28.8% to 83.2% under 10 steps. IGE rises from 54.6% to 96.8% under 40 steps. The largest improve-
ment for ReAct appears at very small budgets (10 steps), where ReAct + AutoContext achieves a
nearly optimal success rate of 97.3%. This demonstrates that once instance context is resolved into a
structured, compact form, agents can execute complex embodied tasks with near-optimal efficiency.

ReAct Reflexion
0

10

20

30

Sc
or

e 
(%

)

Base Method
+ AutoContext

Figure 4: Scores on Crafter

CRAFTER. The official scores over two runs of all methods
are presented in Figure 4. AutoContext yields marked im-
provements for both ReAct and Reflexion, demonstrating its
generality and effectiveness in open-ended survival environ-
ments. The gain arises because AutoContext can explicitly
capture preconditions and action dependencies, enabling the
agent to reason about complex achievements and rules. ReAct
and Reflexion then leverage this structured context to plan and
execute longer-horizon strategies that naive exploration can-
not sustain. Additional details on the Crafter experiments are
deferred to Appendix B, due to space limitations.

RQ2: How efficient are AutoContext and the baselines with
the instance context? We investigate the efficiency of Au-
toContext in constructing high-quality instance contexts, measured in terms of environment steps.
Specifically, we quantify the coverage of locations and objects captured in the instance context. As
shown in Figure 5, AutoContext rapidly attains over 95% coverage in TextWorld within 200 steps.
For comparison, IGE achieves only about 15% success rate at the same step budget, indicating that
our approach can extract nearly complete contextual information while state-of-the-art baselines
remain far from effective. A similar trend is observed in ALFWorld. AutoContext requires approxi-
mately 120 steps to cover more than 95% of the objects, whereas IGE typically needs over 160 steps
before its success rate stabilizes. These results consistently demonstrate the superior efficiency of
AutoContext across distinct environments. Nevertheless, in both environments, IGE augmented with
AutoContext also converges faster than IGE, as the instance context provides effective guidance.

To further show the efficiency of baselines augmented with AutoContext, we report the average
number of steps required for successful runs in Table 3. AutoContext reduces step requirements
by a significant margin and improves the efficiency of all baselines. Beyond efficiency gains, Au-
toContext also improves overall success rates, as established in RQ1. Taken together, these results
indicate that AutoContext not only accelerates convergence but also enhances the effectiveness of
the baselines.

RQ3: What is the contribution of each component of AutoContext? We conduct ablation stud-
ies to assess the contribution of each component in AutoContext by systematically removing or
replacing them, and measuring the resulting performance when combined with ReAct. The results
are reported in Table 4. Specifically, we consider three variants: (i) w/o TODO Forest, where the
Planner generates TODO paths based only on the current instance context and recent trajectory,
without access to prior successful or failed attempts. (ii) w/o Planner, where the Planner is replaced
with random actions, removing targeted exploration. and (iii) w/o Extractor, where the Extractor is
replaced with a naive LLM prompt that updates the instance context without adhering to the schema.
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(b) Coverage rates vs. steps in ALFWorld

Figure 5: Converge rates and success rates across different environments. With AutoContext, cov-
erage and success rates rise rapidly as the number of steps increases.

Table 3: Average steps of successful runs of all methods.

Method TextWorld ALFWorld
Baseline + AutoContext Baseline + AutoContext

ReAct 60.7 42.7 11.4 6.6
Reflexion 87.2 48.5 - -
IGE 594.5 320.5 60.6 13.4
AutoManual - - 17.4 8.4

Table 4: Ablation study of AutoContext components.

Method TextWorld ALFWorld
ReAct + AutoContext (Ours) 95 ± 2 98.5 ± 0.7
Ours w/o TODO forest 51 ± 5 94.7 ± 3.1
Ours w/o Planner 40 ± 3 89.3 ± 2.3
Ours w/o Extractor 81 ± 4 81.8 ± 1.5
ReAct 37 ± 5 77.5 ± 0.8

The ablations expose distinct failure modes. Removing the TODO Forest leads to pronounced degra-
dation in TextWorld, as it requires more in-context examples to navigate such a long-horizon envi-
ronment effectively. Without the Planner, exploration becomes unguided, and the agent fails to
identify informative trajectories, resulting in a sharp performance collapse. Finally, replacing the
Extractor has a strong impact in ALFWorld. Since this environment generates a large volume of
irrelevant observations, the absence of schema guidance causes the Extractor to record verbose and
uninformative content, making it harder to capture important information and hindering task com-
pletion.

6 CONCLUSION AND LIMITATIONS

This paper introduces AutoContext, a principled framework for instance context learning that con-
verts systematic exploration into reusable knowledge. We demonstrate that constructing a high-
precision, compact, and exhaustive instance context substantially enhances the performance of
downstream LLM agents, enabling more robust reasoning and efficient planning. This result high-
lights that future general-purpose agents may increasingly rely on structured, per-instance context
as a foundational component of intelligence.

Nonetheless, our approach has limitations. Its effectiveness decreases when the number of ob-
servations exceeds the LLM’s context capacity (e.g., large e-commerce catalogs), where retrieval-
augmented generation remains essential. In such cases, instance context should emphasize opera-
tional structures (e.g., interface logic, navigation schema) rather than exhaustive details. In addition,
the instance-context schema currently requires manual design. A promising direction for future
work is to automatically induce such schemas from the environment.

9
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A LLM USAGE STATEMENT

We used GPT-5 (OpenAI, 2025b) to polish the writing of this paper, including grammar correction,
sentence reorganization, and generating code for plotting experimental results as figures and tables.
All ideas and methods were developed by the authors, and all content and conclusions presented in
this paper have been thoroughly verified by the authors.

B ADDITIONAL EXPERIMENTAL DETAILS

This section presents extended details complementing the main experimental results. We first intro-
duce the schema of the instance context and illustrate its structural design with concrete examples.
We then analyze the effectiveness of different schema components through controlled ablation ex-
periments. Finally, we provide additional details for the exploration cost of AutoContext.

B.1 INSTANCE CONTEXT SCHEMA

Our instance context is represented in a structured markdown format. The schema consists of two
major components: Observations and Action Rules. Each component contains multiple
entries. The Action Rules schema is identical across environments, which highlights its gener-
ality. The Observations section is environment-specific but remains intuitive and can be manu-
ally crafted with minimal customization for each domain. The Observations component enables
AutoContext to capture factual information such as locations, objects, and their properties, while the
Action Rules component provides the operational rules necessary for interacting with a given
environment instance. We detail the concrete schemas for TextWorld, ALFWorld, and Crafter below.

Schema for TextWorld

#### Observations
- [location]:

- objects: [object], [object], ... / Nothing
- west: [anything] to [location]/Unknown

13
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- east: [anything] to [location]/Unknown
- north: [anything] to [location]/Unknown
- south: [anything] to [location]/Unknown

...

#### Action Rules
- action: [action_name]

- requirements: [conditions that must be met]
- key_result: [expected outcome]
- note: [additional remarks]

...

Schema for ALFWorld

#### Observations
- [object]

- has_in_or_on: [object], [object], ... / Unknown / Nothing

...

#### Action Rules
- action: [action_name]

- requirements: [conditions that must be met]
- key_result: [expected outcome]
- note: [additional remarks]

...

Schema for Crafter

#### Observations
- Position [x, y]: can see [object], [object], ... / Nothing
- Position [x, y]: can see [object], [object], ... / Nothing
...

#### Action Rules
- action: [action_name]

- requirements: [conditions that must be met]
- key_result: [expected outcome]
- note: [additional remarks]

...

B.2 INSTANCE CONTEXT EXAMPLE

We present an example instance context learned by AutoContext. The example demonstrates how
AutoContext systematically records both resource information and precise action rules. For obser-
vations, AutoContext explores the environment to gather resource information. For action rules, it
first establishes preconditioning nodes, then conducts additional exploration with retries to identify
feasible strategies to complete the actions, and ultimately derives the correct Action Rules.

Example Instance Context on Crafter

#### Observations

- Position [42, 36]: can see
- Position [42, 39]: can see cow, grass

14
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- Position [44, 35]: can see tree
- Position [44, 36]: can see grass, tree
- Position [44, 37]: can see grass, path
- Position [44, 38]: can see grass, stone, path
- Position [45, 38]: can see stone, path, diamond
- Position [45, 39]: can see path, stone, diamond
- Position [44, 39]: can see path, stone, grass
- Position [44, 40]: can see stone, diamond, grass

#### Action Rules

- action: Do
- requirements:

- The front adjacent cell is an interactable object (grass, tree,
stone) or a mob.

- If the object is stone, the agent must have a pickaxe (
wood_pickaxe, stone_pickaxe, or iron_pickaxe) in inventory.

- key_result:
- Collects resources from the front adjacent natural objects (

sapling from grass, wood from tree, stone from stone). Tree/
stone are removed. Grass remains.

- Attacks the front adjacent mob, dealing damage. If killed after
sufficient attacks, mob is removed and provides status benefits
(e.g., killing a cow restores food).

- note: Weapons optional for attacking. Mobs cause passive damage
when nearby (e.g., zombies reduce health). Killing requires
consecutive attacks (e.g., cow needs 3 hits). Combat may cause
health loss near hostile mobs even without attacking. Collecting
resources from grass may require multiple attempts.

- action: Make Stone Pickaxe
- requirements: Agent has >= 1 wood and >= 1 stone in inventory;

adjacent to a table
- key_result: Consumes 1 wood and 1 stone; adds 1 stone_pickaxe to

inventory
- note: Crafting requires adjacency to a table in any direction (not

necessarily front).

- action: Make Stone Sword
- requirements: Agent has >= 1 wood and >= 1 stone in inventory;

adjacent to a table
- key_result: Consumes 1 wood and 1 stone; adds 1 stone_sword to

inventory
- note: Crafting requires adjacency to a table.

- action: Make Wood Pickaxe
- requirements: Agent has at least one wood in inventory; agent is

adjacent to a table
- key_result: Consumes one wood; adds one wood_pickaxe to inventory
- note: Crafting requires only adjacency to a table.

- action: Make Wood Sword
- requirements: Agent has at least one wood in inventory; agent is

adjacent to a table
- key_result: Consumes one wood; adds one wood_sword to inventory
- note: Crafting requires only adjacency to a table.

- action: Move East
- requirements: The adjacent east cell is grass or path and contains

no obstacles (e.g., stone or table).
- key_result: Agent moves one cell east
- note: Fails if blocked by obstacles (e.g., stone, table).
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- action: Move North
- requirements: The adjacent north cell is grass or path and contains

no obstacles (e.g., stone or table).
- key_result: Agent moves one cell north
- note: Fails if blocked by obstacles (e.g., stone, table).

- action: Move South
- requirements: The adjacent south cell is grass or path and contains

no obstacles (e.g., stone or table).
- key_result: Agent moves one cell south
- note: Fails if blocked by obstacles (e.g., stone, table).

- action: Move To [x, y]
- requirements: Agent knows the exact coordinates of the target

position, is not currently at [x, y], and the direct path to [x,
y] is clear (no obstacles blocking movement).

- key_result: Agent moves toward the specified position. If the path
is blocked, movement stops at the last valid position.

- note: Use for distant coordinates with known positions. For nearby
objects (within a few steps), use directional moves (e.g., Move
East).

- action: Move West
- requirements: The adjacent west cell is grass or path and contains

no obstacles (e.g., stone or table).
- key_result: Agent moves one cell west
- note: Fails if blocked by obstacles (e.g., stone, table).

- action: Place Plant
- requirements:

- Agent has at least one sapling in inventory
- The adjacent cell in the front direction is grass

- key_result: Places a plant at the front adjacent cell (replacing
terrain), consuming one sapling

- note: Similar to Place Table/Stone; requires front adjacent grass

- action: Place Stone
- requirements: Agent has at least one stone in inventory; the

adjacent cell in the front direction is grass
- key_result: Places a stone block at the front adjacent cell,

replacing the terrain, and consumes one stone. The placed stone
becomes a collectible object (e.g., via "Do" with pickaxe).

- note: Similar to Place Table; requires front adjacent grass terrain
. The placed stone becomes a permanent obstacle and interactable
resource.

- action: Place Table
- requirements: Agent has at least 2 wood in inventory; the adjacent

cell in the front direction is grass.
- key_result: A table is placed at the front adjacent cell replacing

the grass, consuming 2 wood from inventory.
- note: The table blocks movement but enables crafting of tools when

adjacent.

B.3 EXPERIMENTS ON DIFFERENT COMPONENTS OF INSTANCE CONTEXT

Setup. We evaluate the impact of different components of the instance context on two benchmarks,
TextWorld and Crafter, by augmenting ReAct with varying sections of the context. Unlike our
main experiments, in this evaluation no action illustrations or usage instructions are provided; both
AutoContext and ReAct are given only the action list and must infer the correct application of each
action. We examine four configurations: (i) ReAct, which operates without the generated instance
context; (ii) ReAct + Observations, where the agent is provided only the observation component
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Table 5: Performance on Crafter (score) and TextWorld (success) under minimal prompting. We
compare ReAct augmented with different components of the instance context.

Method Crafter (Score) TextWorld (Success)
ReAct 15.6 22.7
ReAct + Observations 18.0 82.7
ReAct + Action Rules 22.2 25.3
ReAct + AutoContext 23.7 84.0

generated by AutoContext; (iii) ReAct + Action Rules, where the agent is provided only the action
rules; (iv) ReAct + AutoContext, our default setting, in which both observations and action rules are
included.

Results on Context Components. The results are shown in Table 5. In Crafter, observations
only increase the score from 15.6 to 18.0, while Action Rules lead to a larger improvement to
22.2. In TextWorld, the dominant factor is Observations: the success rate rises from 22.7% to
82.7%, whereas action rules alone provide only a small gain (25.3%). This is because TextWorld
relies heavily on accurate navigation, while Crafter benefits more from procedural rules that capture
long-horizon dependencies. Combining both components achieves the best performance in both
environments, reaching 23.7 in Crafter and 84.0% in TextWorld. This indicates that observations
and action rules contribute complementary forms of knowledge, and leveraging both is crucial for
robust performance across diverse domains.

Per-Achievement Results on Crafter. To better understand the contribution of contextual infor-
mation, we report the completion rates of all achievements and compare the effects of AutoContext
with observations and action rules only. As shown in Table 6, ReAct + AutoContext improves
most achievements over vanilla ReAct, especially more challenging ones such as Collect Iron, Col-
lect Stone, Defeat Skeleton, Defeat Zombie, Make Stone Pickaxe, Make Stone Sword, and Place
Furnace. AutoContext successfully discovers the rules underlying these achievements, and ReAct
leverages them to achieve higher scores. However, we also observe two simple achievements, Col-
lect Sapling and Wake Up, where ReAct + AutoContext underperforms ReAct. These tasks are non-
emergent and can be easily solved by the native ReAct agent through simple trial, whereas ReAct
+ AutoContext tends to prioritize advanced survival-oriented activities, exhibiting longer planning
horizons and more structured strategies. Moreover, several highly challenging achievements, in-
cluding Collect Diamond, Eat Plant, and Make Iron Sword, remain unsolved. These tasks involve
numerous preconditions and demand very long survival times under specific conditions, which we
leave for future exploration.

B.4 EXPLORATION COST OF AUTOCONTEXT

Finally, we report the ... Table 7 reports the average number of environment steps required by
AutoContext to construct instance context. This process corresponds to a one-time preprocessing
cost per environment instance. Once generated, the instance context can be reused across multiple
downstream agents and tasks, making the amortized cost negligible in practice.

C CASE STUDY

We illustrate how AutoContext generates instance context using an example from TextWorld. We
then compare two trajectories: (1) a ReAct agent that fails due to missing crucial ingredients; (2) a
ReAct agent that leverages the instance context to successfully complete the task.

C.1 INSTANCE CONTEXT GENERATION

We present example snippets from the AutoContext log. The TODO forest is represented by in-
dented text, with child nodes shown at deeper indentation levels. Within each node, the action and
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Table 6: CRAFTER achievement success (%) under different settings

Achievement ReAct ReAct + Observations ReAct + Action Rules ReAct + AutoContext
Collect Coal 22.5% 45.0% 37.5% 52.5%
Collect Diamond 0.0% 0.0% 0.0% 0.0%
Collect Drink 75.0% 72.5% 80.0% 70.0%
Collect Iron 2.5% 15.0% 15.0% 27.5%
Collect Sapling 30.0% 20.0% 12.5% 15.0%
Collect Stone 35.0% 60.0% 57.5% 80.0%
Collect Wood 100.0% 97.5% 100.0% 100.0%
Defeat Skeleton 5.0% 10.0% 20.0% 12.5%
Defeat Zombie 42.5% 27.5% 70.0% 70.0%
Eat Cow 75.0% 75.0% 57.5% 67.5%
Eat Plant 0.0% 0.0% 0.0% 0.0%
Make Iron Pickaxe 0.0% 0.0% 2.5% 2.5%
Make Iron Sword 0.0% 0.0% 0.0% 0.0%
Make Stone Pickaxe 17.5% 30.0% 52.5% 60.0%
Make Stone Sword 15.0% 20.0% 35.0% 47.5%
Make Wood Pickaxe 72.5% 67.5% 92.5% 95.0%
Make Wood Sword 55.0% 40.0% 72.5% 57.5%
Place Furnace 17.5% 20.0% 35.0% 32.5%
Place Plant 20.0% 12.5% 10.0% 15.0%
Place Stone 22.5% 40.0% 35.0% 42.5%
Place Table 85.0% 67.5% 100.0% 95.0%
Wake Up 52.5% 57.5% 45.0% 35.0%

Table 7: Average environment steps required for instance context construction

TextWorld ALFWorld Crafter
Average Steps 418.0 177.9 724.8

key result (or the state and its summary) are separated by a colon. Below are example snippets taken
from the middle of the AutoContext log; parts of the log are omitted for brevity and clarity.

AutoContext diagnoses two knowledge gaps: the east and north of the Corridor are unknown, based
on the current TODO forest and the instance context.

Current TODO Forest

- init_state: Agent’s location: Livingroom. The livingroom contains an
empty sofa. The livingroom has a closed fiberglass door leading
south, an exit to the east without a door, and an exit to the north
. Agent is hungry and needs to cook a meal.

- examine sofa: The sofa is reliable.
- inventory: You are carrying nothing.

- go east: Agent’s location: Bedroom. The bedroom contains a large
empty bed. The bedroom has an entranceway to the north without a
door and an exit to the west without a door.

- go north: Agent’s location: Kitchen. The kitchen contains a fridge,
an oven, a table with a cookbook, a counter with a raw purple

potato, a red apple, a raw yellow potato and a knife, and an
empty stove. The kitchen has a closed frosted-glass door leading
north, an exit to the east without a door, and an entranceway to
the south without a door. [reach in_kitchen]

- look: Agent’s location: Livingroom. The livingroom contains an
empty sofa. The livingroom has a closed fiberglass door leading
south, an exit to the east without a door, and an exit to the
north.

- examine sofa: The sofa is reliable.
- inventory: You are carrying nothing.

- open fiberglass door: You open fiberglass door.
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- go south: Agent’s location: Driveway. The driveway has an open
fiberglass door leading north and an exit to the east without a
door.

- in_kitchen: Agent is in the Kitchen. The kitchen contains a fridge,
an oven, a table with a cookbook, a counter with a raw purple
potato, a red apple, a raw yellow potato and a knife, and an empty
stove. The kitchen has a closed frosted-glass door leading north,
an exit to the east without a door, and an entranceway to the south
without a door.

- examine cookbook: Recipe requires: orange bell pepper, pork chop,
purple potato, red onion, white onion. Preparation steps: dice
orange bell pepper and white onion, slice pork chop and purple
potato and red onion, grill orange bell pepper/pork chop/purple
potato/white onion, roast red onion, then prepare meal.

- examine fridge: The fridge looks durable and is closed.
- go east: Agent’s location: Corridor. The corridor has a closed

sliding patio door leading north, an exit to the east without a
door, an entranceway to the south without a door, and an
entranceway to the west without a door.

- open frosted-glass door: You open frosted-glass door.
- go north: Agent’s location: Pantry. The pantry contains a wooden

shelf. The pantry has an open frosted-glass door leading south.
- take knife from counter: You take the knife from the counter.
- take raw purple potato from counter: You take the purple potato

from the counter.

- in_street: Agent is in the Street. The street has a closed sliding
door leading east and an exit to the west without a door.

Instance Context

...

- Corridor:
- objects: Nothing
- west: entranceway (without door) to Kitchen
- east: exit (without door) to Unknown
- north: closed sliding patio door to Unknown
- south: entranceway (without door) to Bedroom

...

AutoContext then proposes two TODO paths to navigate the environment to find out the east and
the north of Corridor. The TODO forest shows that it can arrive in Corridor first by going east from
the state in kitchen. So the two paths start with in kitchen -> go east and then explore
the east and the north.

Proposed TODO

Knowledge gaps:
- east exit from Corridor (leads to Unknown)
- north sliding patio door from Corridor (leads to Unknown)
- east sliding door from Street (leads to Unknown)

TODO:
in_kitchen -> go east -> open sliding patio door -> go north
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Proposed TODO

Knowledge gaps:
- east exit from Corridor (leads to Unknown)

TODO:
in_kitchen -> go east -> go east

After the exploration, the TODO forest is updated with the results.

Current TODO Forest

- init_state: Agent’s location: Livingroom. The livingroom contains an
empty sofa. The livingroom has a closed fiberglass door leading
south, an exit to the east without a door, and an exit to the north
. Agent is hungry and needs to cook a meal.

...

- in_kitchen: Agent is in the Kitchen. The kitchen contains a fridge,
an oven, a table with a cookbook, a counter with a raw purple
potato, a red apple, a raw yellow potato and a knife, and an empty
stove. The kitchen has a closed frosted-glass door leading north,
an exit to the east without a door, and an entranceway to the south
without a door.

- go east: Agent’s location: Corridor. The corridor has a closed
sliding patio door leading north, an exit to the east without a
door, an entranceway to the south without a door, and an
entranceway to the west without a door.

- go east: Agent’s location:
Bathroom. The bathroom contains an empty toilet. The bathroom
has an exit to the west without a door.

- open sliding patio door: You open sliding patio door.
- go north: Agent’s location:

Backyard. The backyard contains a patio chair, a patio table,
and a BBQ. The backyard has a closed wooden door leading

east, an open sliding patio door leading south, and an
entranceway to the north without a door.

...

- in_driveway: Agent is in the Driveway. The driveway has an open
fiberglass door leading north and an exit to the east without a
door.

- go east: Agent’s location: Street. The street has a closed sliding
door leading east and an exit to the west without a door. [reach
in_street]

- in_street: Agent is in the Street. The street has a closed sliding
door leading east and an exit to the west without a door.

- open sliding door: You open sliding door.
- go east: Agent’s location: Supermarket. The supermarket contains

an empty showcase. The supermarket has an open sliding door
leading west.

The Extractor then adds the two new locations to the instance context. These locations also reveal
additional Unknowns to explore, which AutoContext may continue to pursue.

Instance Context

...

- Corridor:
- objects: Nothing
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- west: entranceway (without door) to Kitchen
- east: exit (without door) to Bathroom
- north: closed sliding patio door to Backyard
- south: entranceway (without door) to Bedroom

...

- Bathroom:
- objects: empty toilet
- west: exit (without door) to Corridor
- east: None
- north: None
- south: None

- Backyard:
- objects: patio chair, patio table, BBQ
- west: None
- east: closed wooden door to Unknown
- north: entranceway (without door) to Unknown
- south: open sliding patio door to Corridor

C.2 A TRAJECTORY OF REACT WITH INSTANCE CONTEXT

In this trajectory, the ReAct agent uses the instance context provided by AutoContext to successfully
navigate to the kitchen, where it locates the recipe and gathers the available ingredients. It then
proceeds to the garden to collect the remaining ingredients. Afterwards, the agent processes all
ingredients, prepares the meal, and eats it to win the game. Outputs of the LLM that reflect its use
of the instance context are highlighted with a red background. Part of the observations and steps are
omitted for brevity and clarity.

A Trajectory of ReAct with the Instance Context

Step 1:
[Observation]: You are hungry! Let’s cook a delicious meal. Check the

cookbook in the kitchen for the recipe. Once done, enjoy your meal!
-= Livingroom =- You are in a livingroom...

[Thought]: I need to find the cookbook in the kitchen to check the
recipe for the meal. First, I should move from the livingroom to
the kitchen. According to the instance context, the kitchen is
north of the livingroom. I’ll go north to reach the kitchen.

[Action]: go north

Step 2:
[Observation]: -= Kitchen =- You arrive in a kitchen. A normal kind of

place. The room seems oddly familiar, as though it were only
superficially different from the other rooms in the building...

[Thought]: Now that I’m in the kitchen, I need to check the cookbook on
the table to see the recipe for the meal. The cookbook is visible
on the table, so I’ll examine it to understand what ingredients and
cooking methods are required.

[Action]: examine cookbook

Step 3:
[Observation]: You open the copy of "Cooking: A Modern Approach (3rd Ed

.)" and start reading:
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Recipe #1
---------
Gather all following ingredients and follow the directions to prepare

this tasty meal.

Ingredients:
orange bell pepper
pork chop
purple potato
red onion
white onion

Directions:
dice the orange bell pepper
grill the orange bell pepper
slice the pork chop
grill the pork chop
slice the purple potato
grill the purple potato
slice the red onion
roast the red onion
dice the white onion
grill the white onion
prepare meal

[Thought]: Based on the recipe, I need to gather and prepare the
following ingredients:

1. orange bell pepper (needs dicing and grilling)
2. pork chop (needs slicing and grilling)
3. purple potato (needs slicing and grilling)
4. red onion (needs slicing and roasting)
5. white onion (needs dicing and grilling)

First, I should check my inventory to see what I already have. Then I’
ll need to collect any missing ingredients from the fridge or
garden. The knife is already on the counter, which I’ll need for
slicing/dicing.

[Action]: inventory

Step 4:
[Observation]: You are carrying nothing.

[Thought]: Since my inventory is empty, I need to collect all the
required ingredients. Let’s start by gathering what’s available in
the kitchen:

1. The fridge contains white onion, red onion, and raw pork chop
2. The counter has raw purple potato
3. The orange bell pepper is in the garden (according to instance

context)

I’ll first take the knife from the counter since I’ll need it for
slicing/dicing, then collect ingredients from the fridge.

[Action]: take knife from counter

Step 5:
[Observation]: You take the knife from the counter.
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[Thought]: Now that I have the knife, I should collect the ingredients
from the fridge. According to the recipe, I need:

- white onion
- red onion
- pork chop

These are all in the closed fridge in the kitchen. I’ll open the fridge
first to access them.

[Action]: open fridge

Step 6:
[Observation]: You open the fridge, revealing a white onion, a red

onion, a raw pork chop, a yellow bell pepper, a block of cheese, a
red hot pepper, a raw white tuna and a yellow onion.

[Thought]: Now that the fridge is open, I can take the required
ingredients:

1. white onion
2. red onion
3. raw pork chop

I’ll take these three items first since they’re needed for the recipe.
The other items (yellow bell pepper, cheese, etc.) aren’t part of
the recipe so I can ignore them for now.

[Action]: take white onion from fridge

Step 7:
[Observation]: You take the white onion from the fridge.

Your score has just gone up by one point.

[Thought]: Successfully got the white onion. Next I need to take the
red onion from the fridge, which is another required ingredient for
the recipe. After that, I’ll take the pork chop.

[Action]: take red onion from fridge

Step 8:
[Observation]: You take the red onion from the fridge.

Your score has just gone up by one point.

[Thought]: Now I have both onions. Next I need to take the pork chop
from the fridge, which is the third required ingredient currently
available here. After this, I’ll need to get the purple potato from
the counter and the orange bell pepper from the garden.

[Action]: take raw pork chop from fridge

Step 9:
[Observation]: You take the pork chop from the fridge.
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Your score has just gone up by one point.

[Thought]: Now I have the pork chop. Next, I should take the purple
potato from the counter since it’s another required ingredient that
’s available in the kitchen. After that, I’ll need to go to the
garden to get the orange bell pepper.

[Action]: take raw purple potato from counter

Step 10:
[Observation]: You take the purple potato from the counter.

Your score has just gone up by one point.

[Thought]: Now I have the purple potato. The only remaining ingredient
is the orange bell pepper, which according to the instance context
is in the garden. To get there, I need to: 1. Go south to
livingroom 2. Go north to kitchen (already here). 3. Go east to
corridor. 4. Go north to backyard. 5. Go north to garden. Let’s
start moving towards the garden to collect the orange bell pepper.

[Action]: go east

Step 11:
[Observation]: -= Corridor =- You arrive in a corridor. An ordinary one

. There is a closed sliding patio door leading north...

[Thought]: Now in the corridor. Next step is to go north through the
sliding patio door to reach the backyard, which leads to the garden
where the orange bell pepper is located. I’ll open the sliding
patio door first.

[Action]: open sliding patio door

Step 12:
[Observation]: You open sliding patio door.

[Thought]: Now that the sliding patio door is open, I can proceed north
to the backyard. From there, I can access the garden to collect
the orange bell pepper.

[Action]: go north

Step 13:
[Observation]: -= Backyard =- You’ve just sauntered into a backyard.

You scan the room, seeing a patio chair. The patio chair is stylish
...

[Thought]: Now in the backyard. According to the instance context, the
garden is north of here, and that’s where the orange bell pepper is
located. I’ll proceed north to the garden to collect it.

[Action]: go north

Step 14:
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[Observation]: -= Garden =- You are in a garden. There is an exit to
the south. Don’t worry, there is no door...

[Thought]: Finally in the garden where I can see the orange bell pepper
on the floor. This is the last ingredient needed for the recipe. I
’ll take it now to complete my ingredient collection.

[Action]: take orange bell pepper

Step 15:
[Observation]: You pick up the orange bell pepper from the ground.

Your score has just gone up by one point.

[Thought]: Now I have all the required ingredients in my inventory:
1. white onion
2. red onion
3. pork chop
4. purple potato
5. orange bell pepper

Next, I need to return to the kitchen to begin food preparation
according to the recipe directions. The quickest way back is south
to backyard, then south to corridor, then west to kitchen.

[Action]: go south

Step 16:
[Observation]: -= Backyard =- You’ve just sauntered into a backyard.

You scan the room, seeing a patio chair. The patio chair is stylish
...

[Thought]: Now in the backyard. Next step is to go south through the
open sliding patio door to return to the corridor, then west to the
kitchen where I can start preparing the ingredients.

[Action]: go south

Step 17:
[Observation]: -= Corridor =- You arrive in a corridor. An ordinary one

. There is an open sliding patio door leading north...

[Thought]: Now in the corridor. The kitchen is to the west through an
entranceway without a door. I’ll go west to return to the kitchen
where I can begin food preparation using the knife and cooking
tools available there.

[Action]: go west

Step 18:
[Observation]: -= Kitchen =- You arrive in a kitchen. A normal kind of

place. The room seems oddly familiar, as though it were only
superficially different from the other rooms in the building...

[Thought]: Now back in the kitchen with all ingredients. According to
the recipe, I need to:

1. dice orange bell pepper then grill it

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

2. slice pork chop then grill it
3. slice purple potato then grill it
4. slice red onion then roast it
5. dice white onion then grill it

First, I’ll dice the orange bell pepper using the knife I already have.

[Action]: dice orange bell pepper with knife

Step 19:
[Observation]: You dice the orange bell pepper.

Your score has just gone up by one point.

[Thought]: Successfully diced the orange bell pepper. Next step is to
grill it using the BBQ in the backyard. I’ll need to:

1. Go east to corridor
2. Go north through sliding patio door to backyard
3. Use the BBQ there

Let’s start moving towards the backyard.

[Action]: go east

Step 20:
[Observation]: -= Corridor =- You arrive in a corridor. An ordinary one

. There is an open sliding patio door leading north...

[Thought]: Now in the corridor. Next step is to go north through the
open sliding patio door to reach the backyard where the BBQ is
located.

[Action]: go north

Step 21:
[Observation]: -= Backyard =- You’ve just sauntered into a backyard.

You scan the room, seeing a patio chair. The patio chair is stylish
...

[Thought]: Now in the backyard with access to the BBQ. According to the
recipe, I need to grill the diced orange bell pepper. I’ll use the
BBQ here to cook it.

[Action]: cook orange bell pepper with BBQ

Step 22:
[Observation]: You grilled the orange bell pepper.

Your score has just gone up by one point.

[Thought]: Successfully grilled the orange bell pepper. Now I need to
return to the kitchen to continue preparing the other ingredients:

1. slice pork chop then grill it
2. slice purple potato then grill it
3. slice red onion then roast it
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4. dice white onion then grill it

First, I’ll return to the kitchen by going south to corridor, then west
to kitchen.

[Action]: go south

...

Step 42:
[Observation]: You grilled the white onion.

Your score has just gone up by one point.

[Thought]: Successfully grilled the white onion. Now all ingredients
have been prepared according to the recipe:

1. orange bell pepper - diced and grilled
2. pork chop - sliced and grilled
3. purple potato - sliced and grilled
4. red onion - sliced and roasted
5. white onion - diced and grilled

Now I need to return to the kitchen to prepare the meal. I’ll go south
to corridor, then west to kitchen.

[Action]: go south

Step 43:
[Observation]: -= Corridor =- You arrive in a corridor. An ordinary one

. There is an open sliding patio door leading north...

[Thought]: Now in the corridor. Final step is to go west to return to
the kitchen where I can prepare the meal using all the prepared
ingredients.

[Action]: go west

Step 44:
[Observation]: -= Kitchen =- You arrive in a kitchen. A normal kind of

place. The room seems oddly familiar, as though it were only
superficially different from the other rooms in the building...

[Thought]: Now back in the kitchen with all ingredients prepared
according to the recipe. The final step is to prepare the meal
using all these ingredients in the kitchen.

[Action]: prepare meal

Step 45:
[Observation]: Adding the meal to your inventory.

[Thought]: Successfully prepared the meal! Now I can eat it to complete
the task and win the game. The meal is in my inventory, so I’ll
eat it now.

[Action]: eat meal

[Observation]: You eat the meal. Not bad.
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C.3 A TRAJECTORY OF REACT WITHOUT INSTANCE CONTEXT

We present a trajectory in which the ReAct agent is not provided with the instance context. In
this case, lacking contextual guidance, the agent first spends several steps attempting to locate the
kitchen. By contrast, in the trajectory with instance context, the agent navigates directly to the
kitchen. It then examines the cookbook and begins searching for the necessary ingredients to prepare
a meal. However, it leaves the north of the corridor unexplored, which prevents it from finding
the orange bell pepper and ultimately causes the task to fail. This episode shows the fragility of
reasoning without systematic exploration. Key outputs of the LLM are highlighted with a red back-
ground. Part of the observations and steps are omitted for brevity and clarity.

A Trajectory of ReAct without Instance Context

Step 1:
[Observation]: You are hungry! Let’s cook a delicious meal. Check the

cookbook in the kitchen for the recipe...

[Thought]: I need to get to the kitchen to check the cookbook for the
recipe. The living room has exits to the south (through a
fiberglass door), east, and north. Since the kitchen is likely
connected to one of these exits, I’ll try going east first as it’s
mentioned as an exit without a door, which might lead to the
kitchen or closer to it.

[Action]: go east

...

Step 8:
[Observation]: -= Kitchen =- You arrive in a kitchen. A normal kind of

place...

[Thought]: Finally found the kitchen! Now I need to check the cookbook
on the table to see the recipe. After examining the recipe, I’ll
gather the necessary ingredients and tools (like the knife and
potatoes/apple on the counter) to prepare the meal.

[Action]: look cookbook

Step 9:
[Observation]: You open the copy of "Cooking: A Modern Approach (3rd Ed

.)" and start reading:

Recipe #1
---------
Gather all following ingredients and follow the directions to prepare

this tasty meal.

Ingredients:
orange bell pepper
pork chop
purple potato
red onion
white onion

Directions:
dice the orange bell pepper
grill the orange bell pepper
slice the pork chop
grill the pork chop
slice the purple potato
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grill the purple potato
slice the red onion
roast the red onion
dice the white onion
grill the white onion
prepare meal

[Thought]: The recipe requires several ingredients and specific
preparation methods. Looking around the kitchen, I see a raw purple
potato and a knife on the counter, which are both needed for the
recipe. I should first take these items into my inventory before
proceeding with the preparation steps.

[Action]: take purple potato from counter

...

Step 25:
[Observation]: You take the pork chop from the fridge.

Your score has just gone up by one point.

[Thought]: Now I have the pork chop, red onion, and white onion. The
only missing ingredient is the orange bell pepper. Since it’s not
in the fridge or on the counter, I’ll check the inventory to see
what I have and then look around other rooms for the orange bell
pepper.

[Action]: inventory

Step 26:
[Observation]: You are carrying: a raw pork chop, a red onion, a white

onion, a knife and a sliced grilled purple potato.

[Thought]: I have all ingredients except the orange bell pepper. Since
it’s not in the kitchen, I’ll need to explore other rooms. I recall
seeing a bedroom and bathroom earlier. I’ll check the bedroom (go
south from kitchen) first for the orange bell pepper.

[Action]: go south

Step 27:
[Observation]: -= Livingroom =- You are in a livingroom. A standard

kind of place...

[Thought]: This is the living room, not the bedroom. I must have taken
a wrong turn. I’ll go back north to the kitchen and then try going
east to reach the bedroom where I might find the orange bell pepper
.

[Action]: go north

Step 28:
[Observation]: -= Kitchen =- You arrive in a kitchen. A normal kind of

place...

[Thought]: Back in the kitchen, I’ll try going east this time to reach
the bedroom. The orange bell pepper might be there or in another
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room. Since it’s not in the kitchen, I need to search other
locations systematically.

[Action]: go east

Step 29:
[Observation]: -= Corridor =- You arrive in a corridor. An ordinary one

...

[Thought]: Now in the corridor, I’ll try going east to check the
bathroom (though unlikely to have food) and then south to check the
bedroom if needed. The orange bell pepper might be in one of these
rooms.

[Action]: go east

Step 30:
[Observation]: -= Bathroom =- You arrive in a bathroom. A typical kind

of place...

[Thought]: The bathroom doesn’t have any ingredients. I’ll return to
the corridor (go west) and then try going south to check the
bedroom for the orange bell pepper. If it’s not there, I might need
to check other locations or consider that the yellow bell pepper
in the fridge might be acceptable (though the recipe specifies
orange).

[Action]: go west

Step 31:
[Observation]: -= Corridor =- You arrive in a corridor. An ordinary one

...

[Thought]: Now back in the corridor, I’ll go south to check the bedroom
for the orange bell pepper. If it’s not there, I might need to
reconsider the recipe requirements or check if the yellow bell
pepper can substitute for orange (though the guidelines say colors
must match exactly).

[Action]: go south

Step 32:
[Observation]: -= Bedroom =- You’ve entered a bedroom. You can make

out a bed...

[Thought]: The bedroom doesn’t have the orange bell pepper either.
Since I’ve checked all accessible rooms (kitchen, fridge, bathroom,
bedroom) and only found a yellow bell pepper, I might need to
proceed with the recipe steps I can complete while keeping an eye
out for the orange bell pepper. I’ll return to the kitchen (go
north then west) to start processing the ingredients I have.

[Action]: go north

Step 33:
[Observation]: -= Corridor =- You arrive in a corridor. An ordinary one

...
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[Thought]: Now in the corridor, I’ll head west to return to the kitchen
. There, I can start processing the ingredients I have (pork chop,
red onion, white onion) according to the recipe steps while
continuing to look for the orange bell pepper in other areas if
needed.

[Action]: go west

Step 34:
[Observation]: -= Kitchen =- You arrive in a kitchen. A normal kind of

place...

[Thought]: Back in the kitchen, I’ll proceed with processing the
ingredients I have. According to the recipe, I need to:

1. Slice the pork chop (I have knife and pork chop)
2. Slice the red onion
3. Dice the white onion
I’ll start with slicing the pork chop since that’s a main ingredient.

[Action]: slice pork chop with knife

...

Step 46:
[Observation]: You grilled the white onion.

Your score has just gone up by one point.

[Thought]: The white onion has been successfully grilled. Now all that
remains missing is the orange bell pepper to complete the recipe.
Since I couldn’t find it earlier, I’ll check the fridge again in
case I missed it (go south to corridor, then west to kitchen).

[Action]: go south

Step 47:
[Observation]: -= Corridor =- You arrive in a corridor. An ordinary one

...

[Thought]: Now in the corridor, I’ll go west to return to the kitchen
and check the fridge again for the orange bell pepper. If it’s
still not there, I might need to explore other rooms more
thoroughly or consider that the yellow bell pepper might be
acceptable despite the recipe specifying orange.

[Action]: go west

Step 48:
[Observation]: -= Kitchen =- You arrive in a kitchen. A normal kind of

place...

[Thought]: The fridge still only has a yellow bell pepper, not orange.
According to the guidelines, ingredients must exactly match the
color in the recipe. Since I can’t find an orange bell pepper, I’ll
check the cookbook again to confirm the requirements and see if
there might be another location for it.
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[Action]: look cookbook

Step 49:
[Observation]: You open the copy of "Cooking: A Modern Approach (3rd Ed

.)" and start reading:

Recipe #1
---------
Gather all following ingredients and follow the directions to prepare

this tasty meal.

Ingredients:
orange bell pepper
pork chop
purple potato
red onion
white onion

Directions:
dice the orange bell pepper
grill the orange bell pepper
slice the pork chop
grill the pork chop
slice the purple potato
grill the purple potato
slice the red onion
roast the red onion
dice the white onion
grill the white onion
prepare meal

[Thought]: The recipe clearly specifies an orange bell pepper, and the
fridge only has a yellow one. Since I’ve searched all accessible
rooms (kitchen, fridge, bathroom, bedroom, backyard) without
finding an orange bell pepper, I might need to check the closed
frosted-glass door leading north in the kitchen as a last resort
before concluding the orange bell pepper is unavailable.

[Action]: open frosted-glass door

Step 50:
[Observation]: You open frosted-glass door.

[Thought]: The frosted-glass door is now open. I’ll go north through it
to check if there’s another room that might contain the orange
bell pepper. This is my last hope to find the missing ingredient.

[Action]: go north

Step 51:
[Observation]: -= Pantry =- You find yourself in a pantry. A typical

kind of place...

[Thought]: The pantry is empty and doesn’t contain the orange bell
pepper. Since I’ve now searched every accessible location without
finding it, I’ll have to conclude that the orange bell pepper isn’t
available in this game version. I’ll return to the kitchen (go
south) and consider preparing the meal with the ingredients I have,
though it might not be complete according to the recipe.
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[Action]: go south

Step 52:
[Observation]: -= Kitchen =- You arrive in a kitchen. A normal kind of

place...

[Thought]: Since I can’t find the orange bell pepper anywhere, I’ll
attempt to use the yellow bell pepper from the fridge as a
substitute, despite the recipe specifying orange. I’ll take it from
the fridge and proceed with the preparation steps (dicing and
grilling) to see if the game accepts it.

[Action]: take yellow bell pepper from fridge

Step 53:
[Observation]: You take the yellow bell pepper from the fridge.

[Thought]: Now that I have the yellow bell pepper, I’ll proceed to dice
it as the first step in its preparation according to the recipe (
though it specifies orange bell pepper). I have the knife in my
inventory to perform this action.

[Action]: dice yellow bell pepper with knife

...

Step 59:
[Observation]: -= Kitchen =- You arrive in a kitchen. A normal kind of

place...

[Thought]: Now back in the kitchen, I’ll attempt to prepare the meal
with all the processed ingredients I have: grilled purple potato,
grilled pork chop, roasted red onion, grilled white onion, and
grilled yellow bell pepper. Even though the bell pepper color doesn
’t match exactly, it’s worth trying to see if the game accepts it.

[Action]: prepare meal

Step 60:
[Observation]: You still miss something.

[Thought]: The game indicates I’m still missing something, likely
because the yellow bell pepper doesn’t match the required orange
one in the recipe. Since I’ve thoroughly searched all locations and
can’t find an orange bell pepper, I’ll check my inventory to see
what processed ingredients I have and verify against the recipe
requirements.

[Action]: inventory

Step 61:
[Observation]: You are carrying: a diced grilled yellow bell pepper, a

sliced grilled pork chop, a sliced roasted red onion, a diced
grilled white onion, a knife and a sliced grilled purple potato.

[Thought]: I have all required ingredients processed according to the
recipe, except the bell pepper color is yellow instead of orange.
Since I can’t find an orange bell pepper anywhere, I’ll try one
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last time to check if there’s any hidden location I might have
missed by examining the kitchen more thoroughly.

[Action]: look counter

Step 62:
[Observation]: The counter is solidly built.

On the counter are a red apple and a raw yellow potato.

[Thought]: The counter only has a red apple and raw yellow potato -
nothing useful for the recipe. Since I’ve exhausted all possible
locations and the game won’t accept the meal with the yellow bell
pepper, I’ll conclude that this version of the game might be
unwinnable due to the missing orange bell pepper. I’ll end the game
here.

[Action]: quit

D PROMPTS

We provide the prompt templates for the TextWorld environment here. Other environments use the
same template, with only minor modifications to the examples and background information specific
to each environment.

D.1 PROMPTS FOR THE PLANNER

Planner: Propose TODO for Observations

## Objective

You are assisting an agent that operates in an interactive
environment to gather observations. Your task is to propose a new
TODO for the agent to gather more observations for the knowledge
document.

## Guidelines

- Provide the new TODO by proposing an action sequence. The action
sequence can start from any available state in the TODO forest.

- All actions should be immediately executable without placeholders
or undefined variables.

- If the ‘Observation‘ section in the knowledge document seems
complete, i.e., no missing entries or unknown information, you
output ‘None‘ for the action sequence.

- Ensure your new TODO is different from the existing TODOs in the
forest.

- The length of your action sequence should not exceed {{ max_length
}}.

## Your workflow

1. Analyze the current knowledge document to list unknown
observations and missing entries in the ‘Observations‘ section.

2. Analyze the current TODO forest to find new action sequences that
can gather the unknown observations and missing entries.

## Background
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{{ background }}

{% if trajectory %}
## Recent trajectory

This is the recent trajectory of the agent in the environment for
your reference.

{{ trajectory }}

{% endif %}
## Definition of TODO forest

{{ todo_def }}

## Current TODO forest

{{ todo_forest }}

## Format of knowledge document

{{ knowledge_format }}

## Knowledge document

{{ knowledge }}

## Output format

First, analyze step by step.

Then provide your new TODO by strictly following the format below.

<thought>
You analyze step by step here.
</thought>
<missing_observations>
List of missing observations or unknown entries in the ‘Observations‘

section here.
</missing_observations>
<todo>
state_name -> action -> ... -> action
</todo>

## Example output

<thought>
The knowledge document requires location information in the ‘

Observations‘ section. It contains some missing locations,
including:

- go east and go north from the location of the init_state.
- west of the kitchen.
None of them is present in the ‘Observations‘ section and the TODO

forest. I can choose any of them to propose a new TODO.
</thought>
<missing_observations>
- go east and go north from the location of the init_state.
- west of the kitchen.
</missing_observations>
<todo>
init_state -> go east -> go north
</todo>
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## Example output

<thought>
The knowledge document requires object information in the ‘

Observations‘ section. It seems that the knowledge document is
already completed, i.e., all objects have been explored. I will
not propose any new TODOs.

</thought>
<missing_observations>
Nothing is missing.
</missing_observations>
<todo>
None
</todo>

Planner: Propose TODO for Action Rules

## Objective

You are assisting an agent that operates in an interactive
environment to gather action rules. Your task is to propose
additional TODOs for the agent based on an existing TODO forest,
by outputting a list of new TODOs.

## Guidelines

- You propose TODOs to discover the correct syntax and requirements
for available actions.

- Ensure all proposed actions are immediately executable without
placeholders or undefined variables.

- Some actions have preconditions. You may create a sequence of
actions to satisfy the preconditions before the final action.

- Be creative, if an action failed,
- Try to use it with a different preconditioning action sequence.
- Try to use other actions that have not been tried yet.
- Try to use different syntax or names for the objects.
- For example, "take red carrot", "take carrot", "take red carrot

from table", ...
- For example, "open door", "open front door", ...

- The length of each action sequence should not exceed {{ max_length
}}.

## Your workflow

- Find actions that have not been tried yet in the current TODO
forest or all the results are ‘action failed‘.

- Analyze step by step to find why the action failed, and find a
different action sequence that could make the action succeed.

- Propose the action sequence as a new TODO.
- Propose at most {{ num_todo }} new TODOs.

{% if trajectory %}
## Recent trajectory

This is the recent trajectory of the agent in the environment for
your reference.

{{ trajectory }}

{% endif %}
## Definition of TODO forest
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{{ todo_def }}

## Background

{{ background }}

## Current TODO forest

{{ todo_forest }}

## Output format

First, analyze step by step.

Then provide your new TODOs by providing paths from any available
state to the new TODOs, in the format below. All key results
should be omitted for brevity. One path for each new TODO.

‘‘‘json
[
"state -> action -> action -> ... -> action",
"state -> action -> action -> ... -> action",
...

]
‘‘‘

## Example output

All nodes in the current TODO forest are ‘action failed‘, but ‘go to‘
is not tried yet. I would like to try ‘go to‘ to see if it can

succeed.

‘‘‘json
[
"init_state -> go to door",
"init_state -> go to light switch"

]
‘‘‘

## Example output

Previous ‘examine‘ actions all failed, but maybe I can try ‘examine‘
after going to the door. This is worth trying and sounds
promising. Also, since ‘drive car‘ does not work, maybe I can try
‘use car‘.

‘‘‘json
[

"init_state -> go to door -> examine door",
"init_state -> use car"

]
‘‘‘

## Example output

The current TODO forest shows that ‘add oil‘ is a precondition for ‘
drive car‘. As I want to try ‘drive car‘, I will start with the
state ‘added_oil‘.

‘‘‘json
[
"added_oil -> drive car",
"added_oil -> use car"
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]
‘‘‘

Planner: Promote Nodes to States

## Objective

You create a new state for the TODO forest.

## Your workflow

1. Analyze the knowledge document to list all missing entries and
unknown observations.

2. Find a TODO tree and one of its nodes that can help gather more
knowledge for the knowledge document.

3. Output the new state by outputting the path from the root of the
TODO tree to the selected node.

## Guidelines

- Prioritize new states that can help address ‘Unknown‘ entries in
the knowledge document, i.e., the agent can take only a few
actions from the new state to gather the missing observations.

- The key result of the selected node should not be ‘action failed‘.
- The agent should be able to gather more knowledge by continuing

exploration from the new state.
- The new state should be significantly different to all existing

states.
- You may choose any existing state in the TODO forest as the

starting point for your path. The ending node of the path will
create a new state for the TODO forest.

- Do not add additional actions to the path. Your path should be
already in the TODO forest.

## Background

{{ background }}

## Definition of TODO forest

{{ todo_def }}

## Current TODO forest

{{ todo_forest }}

## Knowledge document format

{{ knowledge_format }}

## Knowledge document

{{ knowledge }}

## Output format

First, analyze step by step.

Then, provide your response by strictly following the format below.

‘‘‘json
{
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"target_missing_observation": "the missing observation or unknown
entry in the knowledge document that you want to address",

"selected_path": "existing_state -> action -> action -> ... ->
action",

"new_state_name": "descriptive name for the new state",
"state_summary": "self-contained and brief summary of what

characterizes this new state. Focus on facts. No assumptions or
plans here."

}
‘‘‘

## Example output

Looking at the knowledge document format, it needs location
information. The kitchen is explored in the TODO forest and has
some exits. The agent can continue exploring more locations from
the kitchen. Also, currently there is no state for the kitchen.
So I can add this state.

Looking carefully at the TODO forest, the agent enters the kitchen by
starting from the ‘woke_up‘ state. So I will use this path to

create the new state.

‘‘‘json
{
"target_missing_observation": "kitchen’s neighboring locations",
"selected_path": "woke_up -> open door -> enter room",
"new_state_name": "in_kitchen",
"state_summary": "in kitchen."

}
‘‘‘

## Example output

Looking at the knowledge document format, it needs location
information and object information. The TODO forest shows that
arriving in a place will directly reveal the objects in that
place. So I just need to find a place that has not been explored
yet. The living room seems to be a good candidate, as many of its
exits are marked as unknown in the knowledge document.

Looking carefully at the TODO forest, the agent arrives in the living
room by starting from the ‘in_kitchen‘ state. So I will use this
path to create the new state.

‘‘‘json
{

"target_missing_observation": "living room’s neighboring locations,
and the objects in those locations",

"selected_path": "in_kitchen -> take a rest -> go east",
"new_state_name": "in_living_room",
"state_summary": "in living room."

}
‘‘‘

D.2 PROMPTS FOR THE ACTOR

Below is the prompt for the subagent in the agent mode of AutoContext.
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Actor: Subagent

## Objective

You control an agent in an interactive environment. The agent can
perform various actions in the environment. Each action will
return a result as a string.

## Guidelines

- Strategic Planning: Plan your actions strategically to efficiently
complete the task, but remain flexible to pivot when new
information emerges.

- Adaptive Learning: Pay attention to your recent action results and
adapt your strategy accordingly.

## Background

{{ background }}

## Output format

Provide your response by strictly following the format below. Note
that you can output only one action.

<thought>
Analyze step by step here.
</thought>
<action>
Your action here
</action>

D.3 PROMPTS FOR THE EXTRACTOR

Extractor: Propose Edits for Observations

## Objective

You are an expert in analyzing LLM agent’s trajectory.

An agent is operating in an interactive environment. You will be
given the trajectory of the agent, and a knowledge document about
the environment.

Your task is to analyze the trajectory step by step, and modify the ‘
Observation‘ section in the knowledge document accordingly.

If no modification is needed, output ‘None‘ for your modification.

## Background

{{ background }}

## Guidelines

- Find objects that are observed in the trajectory. Add them to the
knowledge document if they are not already there.

- Only write the required properties in the knowledge document.
- Output your knowledge modification items
- add
- update: from ... to ...
- remove
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- Correct the errors in the knowledge document with ‘update‘ if you
find any.

- The knowledge document was built by previous trajectories. Use the
current trajectory to add knowledge and correct errors, but do
not remove any existing knowledge.

## Trajectory

{{ trajectory }}

## Definition of knowledge

{{ knowledge_definition }}

## Current knowledge

{{ knowledge }}

## Output format

First, analyze step by step.

Then, output your decision by strictly following the format below.

<thought>
Your analysis here.
</thought>
<modification1>
Introduce how the knowledge should be modified here. / None
</modification1>
<modification2>
Introduce how the knowledge should be modified here. / None
</modification2>
...

Extractor: Propose Edits for Action Rules

## Objective

You are an expert in analyzing LLM agent’s trajectory.

An agent is operating in an interactive environment. You will be
given the agent’s trajectory and a knowledge document about the
environment.

Your task is to analyze the agent’s trajectory step by step, and
modify the ‘Action Rules‘ section in the current knowledge
document accordingly.

If no modification is needed, output <modification1>None</
modification1>.

## Background

{{ background }}

## Definition of knowledge

{{ knowledge_definition }}

## Guidelines

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

- List all successful actions taken by the agent in the trajectory.
- Check if the successful actions are already in the knowledge

document. If not, add them to the knowledge document.
- Analyze the observations before and after the action carefully to

identify the requirements, the key results, and the key
observations.

- Double check the requirements to make sure they are sufficient to
achieve the key results.

- Output your knowledge modification items
- add
- update: from ... to ...
- remove

- The knowledge document was built by previous trajectories. Use the
current trajectory to add knowledge and correct errors. Do not
remove any knowledge unless you have enough evidence to show that
the existing knowledge is incorrect.

- Do not modify the ‘Observations‘ section. Only modify the ‘Action
Rules‘ section.

## Agent’s trajectory

Below is the recent trajectory of the agent’s actions in the
environment. Earlier actions have been omitted for brevity.

{{ trajectory }}

## Current knowledge

{{ knowledge }}

## Output format

First, analyze step by step.

Then, provide your response by strictly following the format below.

<thought>
Your analysis here.
</thought>
<modification1>
Introduce how the knowledge should be modified here.
</modification1>
<modification2>
Introduce how the knowledge should be modified here.
</modification2>
...

## Example modifications

<modification1>
Add:
- Action: Make Paper Box
- Requirements: 1 scissor, 1 paper
- Key Result: obtain paper box.
- Note: None

</modification1>

## Example modifications

<modification1>
None
</modification1>
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Extractor: Check Edits

## Objective

You are an expert in analyzing LLM agent’s trajectory and knowledge.

You will be given
- a trajectory of an agent in an interactive environment.
- current knowledge about the environment
- a modification that someone wants to make to the current knowledge

Your task is to check if the modification is correct, and if not,
provide the correct modifications.

## Background

{{ background }}

## Definition of knowledge

{{ knowledge_definition }}

## Guidelines

- Check if the modification is correct based on the trajectory.
- If the modification is correct, output ‘Accept‘. (No need to be

very strict. As long as the modification seems to be reasonable
and is consistent with the trajectory, you accept it or revise it
)

- If the modification has some errors and you have enough information
to correct it, output ‘Revise‘, and correct it based on the

trajectory.
- If the modification is incorrect and cannot be corrected, output ‘

Reject‘.
- Revise knowledge that indicates something cannot be interacted with

. Simply remove all information that indicates something cannot
be interacted with. For example,

- "door (cannot be opened)" should be "door"
- "The ‘take‘ action cannot take the carrot" should be removed
- "The door cannot be opened" should be removed

- Make sure the knowledge is well-supported.

## Current knowledge

{{ knowledge }}

## Trajectory

{{ trajectory }}

## Modification

{{ modification }}

## Output format

First, analyze step by step.

Then, output your decision by strictly following the format below.

<thought>
Your analysis here.
</thought>
<decision>

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Accept/Revise/Reject
</decision>
<content>
If the decision is ‘Revise‘, provide the corrected modification here.

If the decision is ‘Reject‘ or ‘Accept‘, provide ‘None‘.
</content>

Extractor: Apply Edits

## Objective

You will be given
- a knowledge document about an interactive environment.
- a list of modifications that should be made to the knowledge

document.

Your task is to apply the modifications to the knowledge document.

You output the modified knowledge document, which should preserve all
important details and be well-organized.

## Definition of knowledge

{{ knowledge_definition }}

## Guidelines

- Remove duplicate or repetitive knowledge that conveys the same
meaning.

- Write knowledge strictly following the format in ‘Definition of
knowledge‘.

- Remove anything that doesn’t follow the format in ‘Definition of
Knowledge‘.

## Knowledge

{{ knowledge }}

## Modification

{{ modification_list }}

## Output format

Provide your response by strictly following the format below.
<thought>
You analyze step by step here.
</thought>
<knowledge>
Your organized and structured knowledge here. Make sure to preserve

all important details. Do not use complex formatting. For example
, do not use ** to emphasize words. Avoid redundancy.

</knowledge>

D.4 PROMPTS FOR ENVIRONMENTS

Below are the prompts provided in the background field of the prompt templates for our main ex-
periments.
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Background of TextWorld

#### Available Actions

Available actions include but are not limited to:
- look: describe the current room
- look ...: describe a specific object in the room
- inventory: print player’s inventory
- go ...: move the player north, east, south or west
- examine ...: examine something more closely
- eat ...: eat edible food
- open ...: open a door or a container
- close ...: close a door or a container
- drop ...: drop an object on the floor
- take ...: take an object that is on the floor
- put ... on ...: place an object on a supporter
- take ... from ...: take an object from a container or a supporter
- insert ... into ...: place an object into a container
- lock ... with ...: lock a door or a container with a key
- unlock ... with ...: unlock a door or a container with a key
- prepare meal: prepare a meal using ingredients in the inventory.

You can only prepare meals in the Kitchen.

#### Tips
- No door is locked. All doors can be opened, even if it appears to

be obstructed. For example, "open front door".
- You can examine the cookbook to see the recipe when it is visible.
- The BBQ is for grilling things, the stove is for frying things, and

the oven is for roasting things. Cooking ingredients in the
wrong way will lead to a failure of the game.

- Once you have processed ingredients and the appropriate cooking
tool ready, cook all of them according to the recipe.

- There are two conditions to correctly cook something (grill/fry/
roast): a) the ingredient you want to cook is in your inventory
and b) there is a suitable cooking tool in the room, and then use
‘cook ... with ...‘ command.

- When you need to chop/slice/dice ingredients, you need to take the
knife and the ingredient in your inventory and then ‘slice/chop/
dice ... with knife‘

- Make sure to first process the food (chop/slice/dice) before you
try to cook it.

- When you have all the ingredients (that got processed or cooked
according to the recipe), you can ‘prepare meal‘ in the kitchen
and then ‘eat meal‘ to win the game.

- The ingredients should EXACTLY match the color in the recipe, but
if the recipe doesn’t specify color, any color would be fine.
When you ‘take ... with ...‘, use the EXACT name you see.

- You don’t need to examine the container/supporter (e.g. toolbox)
when it says something like "there isn’t a thing on it"/"has
nothing on it"

Background of ALFWorld

If an action failed, the observation will be ‘Nothing happens‘.

#### Available Actions

- go to [object]
- open [object]
- close [object]
- take [object] from [object]
- put [object] in_on [object]
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- heat [object] with [object]
- cool [object] with [object]
- clean [object] with [object]
- inventory
- look
- use [object]
- examine [object]

#### Tips

- First, use ‘go to‘ to reach the object. Then you can interact with
it.

Background of Crafter

The agent is in a 2D grid world, where it can move around, interact
with objects, and perform various actions. Each position is
represented as [x, y], where x increases eastward, y increases
southward. All distances are measured by Manhattan distance, i.e.
the summation of x distance and y distance.

#### Available Actions

- Move To [x, y]
- Move West
- Move East
- Move North
- Move South
- Do
- Sleep
- Noop
- Place Stone
- Place Table
- Place Furnace
- Place Plant
- Make Wood Pickaxe
- Make Wood Sword
- Make Stone Pickaxe
- Make Stone Sword
- Make Iron Pickaxe
- Make Iron Sword

#### Tips

- Some actions may need to do multiple times to obtain the final
effect.

- Some items may need multiple materials to craft.
- Achievements will be unlocked when they are completed for the first

time.
- Check if resources appear in your recent observation, if you see

them and need them, try to collect them.

E MORE RELATED WORK

World Models for LLM Agents. Integrating world models into the reasoning loop of LLM-based
agents is an emerging direction. DreamerV2 (Hafner et al.) learns a discrete latent dynamics model
and achieves human-level Atari performance by planning in its learned state space. Hao et al. (2023)
argue that effective chain-of-thought reasoning in an LLM agent can be viewed as implicit world-
model planning, and propose techniques to align the LLM’s reasoning with a latent world dynamics
model. Chae et al. (2025) take a more direct approach by training a separate world-model module
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that simulates the outcome of the agent’s actions in a web navigation task. These world-model
methods emphasize predicting environment dynamics or outcomes, whereas our work focuses on
extracting static but critical instance facts.

LLM Agent Frameworks. Various agent frameworks and techniques introduce architectural im-
provements to better coordinate an LLM’s reasoning and acting (Yao et al., 2023b;a; Lin et al.,
2023; Prasad et al., 2024; Yang et al., 2024; Xiong et al., 2024; Zhu & Simmons, 2024; Wang et al.,
2024b; Schick et al., 2023; Brohan et al., 2023; Zhao et al., 2024b). ReAct (Yao et al., 2023b)
uses chain-of-thought reasoning steps with actions to enable more coherent and informed decisions.
SwiftSage (Lin et al., 2023) expands on this idea by combining fast reactive thinking for straight-
forward steps with slow deliberative planning for more complex decisions. ADaPT (Prasad et al.,
2024) proposes an on-demand task decomposition planner. It attempts high-level plans but if the
agent gets stuck on a subtask, the method recursively breaks that subtask down further, dynamically
adjusting the plan hierarchy to the LLM’s capabilities and the task complexity. Our AutoContext
approach is orthogonal to these agent architectures. Rather than altering how an agent plans or exe-
cutes, we provide a plug-in knowledge document that any of these agents can leverage to boost their
performance in a new instance.

Open-ended World Agent. There exists a line of work (Wang et al., 2024a; Zhu et al., 2023; Wang
et al., 2024c) on developing capable agents in open-ended environments such as Minecraft. Ghost
in the Minecraft (GITM) (Zhu et al., 2023) introduces a hierarchical framework that integrates large
language models with text-based knowledge and memory to decompose long-horizon goals into
structured actions. JARVIS-1 (Wang et al., 2024c) couples a multimodal language model with a
memory mechanism, enabling self-improvement through lifelong learning.
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