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How to Train Your LLM Web Agent:
A Statistical Diagnosis

Anonymous Authors1

Abstract

Large language model (LLM) agents for web in-
terfaces have advanced rapidly, yet open-source
systems still lag behind proprietary agents. Bridg-
ing this gap is key to enabling customizable, ef-
ficient, and privacy-preserving agents. Two chal-
lenges hinder progress: the reproducibility issues
in RL and LLM agent training, where results often
depend on sensitive factors like seeds and decod-
ing parameters, and the focus of prior work on
single-step tasks, overlooking the complexities of
web-based, multi-step decision-making.

We address these gaps by providing a statisti-
cally driven study of training LLM agents for
web tasks. Our two-stage pipeline combines imi-
tation learning from a Llama 3.3 70B teacher with
on-policy fine-tuning via Group Relative Policy
Optimization (GRPO) on a Llama 3.1 8B student.
Through 240 configuration sweeps and rigorous
bootstrapping, we chart the first compute alloca-
tion curve for open-source LLM web agents. Our
findings show that dedicating one-third of com-
pute to teacher traces and the rest to RL improves
MiniWoB++ success by 6 points and closes 60%
of the gap to GPT-4o on WorkArena, while cut-
ting GPU costs by 45%. We introduce a princi-
pled hyperparameter sensitivity analysis, offering
actionable guidelines for robust and cost-effective
agent training.

1. Introduction
Large-language-model (LLM) agents capable of driving
web interfaces have seen rapid progress, yet open-source
systems continue to trail proprietary agents by a significant
margin. Closing this gap is crucial: enabling organizations
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to train their own agents would allow them to customize
workflows, compress models for lower latency and cost, and
maintain full control over sensitive data, fostering user trust.

However, progress in this area is hindered by two compound-
ing challenges. First, reproducibility remains an ongoing
concern in reinforcement learning (RL) and LLM agent
training, with studies showing that reported gains can be
sensitive to factors such as random seeds, sampling param-
eters, and prompt formatting (Hochlehnert et al., 2025).
While large industry labs often have the resources to run
extensive multi-seed experiments (Abdin et al., 2025), such
large-scale evaluations remain challenging for smaller re-
search groups due to the high computational cost of LLM
training, making it harder to ensure reliable and generaliz-
able findings.

Second, most existing work on LLMs with RL has focused
on single-step tasks such as code generation or mathematical
reasoning (Yu et al., 2025; DeepSeek-AI et al., 2025; Roux
et al., 2025). While effective in constrained domains, these
approaches fail to capture the complexities of real-world
tasks requiring multi-step planning and sequential decision-
making. Recent benchmarks such as WebArena (Zhou et al.,
2023), WorkArena (Drouin et al., 2024), OSWorld (Xie
et al., 2024), and The Agent Company (Xu et al., 2024)
highlight these challenges, exposing the brittleness of cur-
rent methods when deployed in realistic, interactive envi-
ronments.

In this paper, we tackle these gaps by providing a statistically
driven diagnosis of training LLM agents for web-based,
multi-step tasks. Specifically, we study how to allocate
compute between expensive, high-quality off-policy demon-
strations from a large teacher model and cheaper on-policy
rollouts from a smaller student model. Too much reliance
on the former leads to brittle imitation, while too much of
the latter drowns learning in sparse web-task rewards.

We address this trade-off with a two-stage pipeline: a
LLaMA 3.3 70B teacher generates K successful episodes,
and a LLaMA 3.1 8B student first imitates these trajectories
before branching into Group Relative Policy Optimization
(GRPO) for on-policy fine-tuning.. By sweeping 240 con-
figurations across the SFT-to-RL ratio and key hyperparam-
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eters, and applying a bootstrapping protocol, we chart the
first data-driven compute allocation curve for open-source
LLM agents.

Our findings reveal clear patterns. On MiniWoB++, our
approach pushes the compute-performance frontier by bal-
ancing expert demonstrations with on-policy reinforcement
learning. This combination outperforms both pure imita-
tion learning and naive supervised fine-tuning, achieving
stronger generalization while making more efficient use
of compute. On the more challenging WorkArena bench-
mark, our method emerges as a promising approach in low-
compute regimes.

Beyond compute-performance analysis, we introduce a sta-
tistically disciplined method for hyperparameter diagnosis
and sensitivity analysis. This addresses key reproducibility
gaps by estimating the likelihood of hyperparameter configu-
rations being optimal, correcting for imbalanced exploration,
and providing actionable guidelines for practitioners (see
Section 6).

The study yields several actionable insights. First, branch-
ing into RL early—but not immediately—after SFT leads
to better outcomes. Second, curriculum learning and er-
ror log feedback help when agents start from scratch but
become counterproductive once SFT warmup is applied.
Third, in GRPO, applying zero-advantage filtering, avoid-
ing standard deviation normalization of the advantage, and
skipping importance ratio correction and trust region consis-
tently improve performance. Fourth, decoding temperature
is consistently critical, while learning rate and discount rate
must also be carefully tuned.

These findings are significant for two reasons. First, they
give smaller research groups a reproducible, budget-aware
playbook for pushing open LLM agents closer to state-of-
the-art without scaling model size. Second, they address
a slice of the broader reproducibility concerns recently
highlighted in the RL community (Agarwal et al., 2021;
Hochlehnert et al., 2025), offering a template for rigorous,
statistically-grounded hyperparameter tuning and compute
allocation in LLM agent training.

2. Background
This section consolidates the algorithmic ingredients used
throughout the paper: (i) the MDP formulation of web-based
language agents, (ii) supervised fine-tuning (SFT) on expert
traces, (iii) Grouped-Return Policy Optimisation (GRPO)
for reinforcement learning, and (iv) curriculum and normal-
isation techniques that stabilise training.

2.1. Language Agents as MDPs

We model each task as a Markov Decision Process (MDP)
M = ⟨S,A, P, r, ρ0, γ⟩. A state st ∈ S is represented as
text, while an action at ∈ A is also expressed as a high-
level textual command. The environment returns a scalar
reward rt ∈ [−1, 1] indicating task progress or completion.
The agent’s policy πθ(a | s) is parameterized by an LLM
with weights θ and is trained to maximize the expected
discounted return:

J(θ) = Eπθ

[∑
k≥0

γkrt+k

]
. (1)

Here, γ ∈ [0, 1] is the discount rate, which controls the
agent’s preference for immediate versus future rewards: a
lower γ encourages short-term behaviors, while a γ closer
to 1 incentivizes long-term planning.

In practice, the policy πθ(a | s) is instantiated as an au-
toregressive LLM that generates actions token by token by
sampling from a probability distribution over the vocabu-
lary. This introduces inherent stochasticity into the agent’s
behavior, which is modulated by a decoding temperature
parameter τ .

2.2. Off-policy boot-strapping via SFT

Generating high-reward web trajectories on a fresh model
is prohibitively slow. We therefore first imitate a stronger
expert policy πE by minimising the cross-entropy loss

LSFT(θ) = − 1

|Dexp|
∑

(s,a)∈Dexp

log πθ(a | s). (2)

where Dexp contains (s, a) pairs from successful expert
episodes, including chain-of-thought tokens. SFT offers
a high-quality, low-variance gradient but is inherently
off-policy: the distribution of states seen at evaluation time
drifts away from Dexp as soon as the student deviates from
the expert.

2.3. On-Policy Improvement with GRPO

After supervised fine-tuning (SFT), we apply Grouped-
Return Policy Optimisation (GRPO), a clipped policy gradi-
ent method that operates on sets of G output tokens grouped
by task, trajectory, or outcome. Let q denote a prompt
segment (or query), and let oi represent a sampled token
from the model’s response. Define the importance ratio
ri =

πθ(oi|q)
πθold (oi|q)

, and let Ai denote the advantage estimate,
computed using group-normalised returns.

The GRPO objective is:

2
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Figure 1: Comparison of our method with baselines from (de Chezelles et al., 2025) on the MiniWoB++(Liu et al., 2018)
benchmark. Our 8B Llama 3.1 model is on par with all the larger models such as Llama 3.1 405B, o1-mini and 3.5-sonnet.

JGRPO(θ) = Eq∼P (Q) E{oi}G
1∼πθold

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
ri,tÂi,t,

clip
(
ri,t, 1− ε, 1 + ε

)
Âi,t

)
− β DKL

(
πθ∥πref

)]
(3)

where the clipped importance ratio enforces conservative
updates akin to PPO (Schulman et al., 2017), and the KL
divergence against a reference policy πref (typically the SFT
model) acts as a trust-region regulariser weighted by β. The
objective recovers PPO in the special case G=1, β=0.

Group-Normalised Advantage. GRPO computes the ad-
vantage Ai using only the rewards associated with the G
outputs in the same group. Let ri denote the scalar reward
assigned to output oi, and let r = (r1, . . . , rG) be the vec-
tor of all rewards in the group. The normalised reward is
computed as r̃i =

ri−mean(r)
std(r) , and the advantage is set as

Ai = r̃i.

This normalisation encourages intra-group differentiation
while being invariant to the absolute reward scale. However,
Liu et al. (2025) argue that retaining the per-group stan-
dard deviation σg in the denominator introduces a variance-
inflating bias during training.

Zero-advantage filtering. Tokens with At,g = 0 con-
tribute no learning signal yet still consume memory. Drop-
ping them yields a constant effective batch size and modestly
accelerates training (Yu et al., 2025).

2.4. Curriculum through Variance-Aware Boltzmann
Sampling

To promote steady learning progress, we design a curricu-
lum that prioritizes challenging tasks, neither trivial nor too
difficult (Thakkar et al., 2023). Specifically, we select tasks
according to a Boltzmann distribution centered around a
target return µtarget which specifies the desired performance
threshold, encouraging focus on partially mastered tasks,

with a temperature parameter τ controlling the sharpness of
the distribution, with lower values concentrating probability
mass tightly around µtarget.

This sampling mechanism dynamically adapts the training
distribution, concentrating learning on tasks where the agent
is neither already proficient nor entirely unskilled. As a
result, the agent avoids premature convergence on easy tasks
and prevents wasted effort on tasks far beyond its current
capabilities.

3. Methodology
Our training recipe comprises two sequential stages—SFT
followed by RL—whose compute budgets we treat as a re-
source allocation problem. We also detail our hyperparame-
ter sweep and the statistical protocol that converts hundreds
of runs into reliable conclusions. We evaluate our recipe
along two axes: compute cost, measured in FLOPs (using
an adapted formula from (ben)), and model performance,
evaluated on both unseen training goals and testing tasks.

Stage 1 – Supervised Fine-Tuning (SFT). We gener-
ate NE expert episodes using a large/powerful model, fil-
ter for successful rollouts, and store (s, a) pairs including
chain-of-thought annotations. Optimizing Eq. (2.2) for TSFT
steps yields an initial policy πθ0 . Given tb ∈ [0, TSFT] steps
of SFT, we calculate the total compute cost FSFT(tb) as the
sum of FLOPs used during data generation by the teacher
model and the FLOPs used to train the student model.

Stage 2 – RL Fine-Tuning. From πθ0 , we branch B
checkpoints {tb} at different intervals. Each branch contin-
ues with GRPO (Eq. (3)) for TRL steps. Here the cost of
TRL steps FRL(TRL) is equivalent to the sum of FLOPs for
one data generation step and one training step of the student
model. The total compute for a given run is then calcu-
lated using FLOPs = FSFT(tb) +FRL(TRL), where the total
training FLOPs are dominated by matrix multiplications,
with costs scaling linearly with model parameters, sequence
length, and optimizer momentum buffers.

3
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Figure 2: Example tasks in MiniWoB++ (Liu et al., 2018)
(top) and WorkArena (Drouin et al., 2024) (bottom). Mini-
WoB consists of single-page simple tasks such as select-
ing a particular date and using a basic text editor, while
WorkArena comprises multi-page complex tasks like filling
forms and placing orders in an enterprise environment.

We vary the SFT-to-RL ratio by branching out of SFT at
different checkpoints. This exposes trade-offs between ex-
pensive but high-quality expert supervision and cheap but
noisy on-policy exploration.

3.1. Estimating the Uncertainty of the Hyperparameter
Selection Process

Across the different SFT checkpoints, we sample 240 dis-
tinct configurations with ten varying hyperparameters, (see
Section 6 for details).

Our objective is to study the effect of various hyperparam-
eters (HP) on the downstream success rate of our trained
agents. This comes with two important considerations. First,
if we change the value of, e.g., the batch size, and we want
to know if a bigger batch size is better, the learning rate and
other parameters need to be readjusted close to their optimal
configuration (under a fixed budget). Secondly, to account
for noise, we would need to restart the same experiment
several times to avoid spurious conclusions. In practice,
this is out of reach. For a more computationally friendly
approach, we resort to bootstrapping the collection of trials
over different hyperparameter configurations.

Bootstrapping the hyperparameter selection process.
From the full set of 240 runs, we resample trials (with re-
placement). For each value, we select the configuration with
the best validation score, and repeat this 1,000 times. We

also extract the fraction of times each HP value wins, which
serves as our estimated probability of it being part of the
global optimum. This also provides uncertainty estimates
for the validation and test metrics. For a more in-depth
analysis, we also study this selection process on subsets of
the complete trials by fixing the value of some parameters.
For example, in Figure 6, we study the behavior of HPs
in isolation for different starting checkpoints with varying
amounts of SFT.

Balancing unequal coverage. Due to random search,
some HP values were explored more than others, biasing
the winner toward the larger groups. To correct for this,
each trial is sampled with probability ∝ 1/group size, ap-
proximating an equal compute budget for every HP value.

4. Experimental Setup
We evaluate our approach using Llama 3.3 70B as the expert
model to generate demonstration traces, and Llama 3.1 8B
as the student model for fine-tuning. Both models operate
with a 16k token context window to handle the complexity
of web-based tasks.

Our experiments focus on two benchmarks. The first is Mini-
WoB++, a suite of 30 medium-horizon tasks designed for
web interaction, where an optimal policy typically requires
2 to 5 steps per task. The second is WorkArena (Drouin
et al., 2024), a more challenging benchmark comprising 33
enterprise knowledge-work tasks, where an optimal policy
typically requires 3 to 10 steps. These benchmarks provide a
representative spectrum of sequential decision-making chal-
lenges faced by interactive LLM agents. Both benchmarks
are depicted in Figure 2.

For the observation space, MiniWoB++ provides
raw HTML trees, while WorkArena leverages ac-
cessibility trees (AxTrees), which we truncate to
16k tokens to meet hardware constraints. The agent
operates in a discrete action space composed of high-
level UI primitives: noop, fill(node,text),
click(node), type(node,text),
select option(node,option), scroll(node),
and hover(node). This abstraction allows the agent to
interact effectively with diverse web interfaces. All agents
are using Chain-of-thought prompting (Wei et al., 2023).
We also experiment with error log feedback, allowing
the agent to receive explicit error messages when it takes
invalid actions.

To manage the training pipeline, we use BROWSERGYM
(de Chezelles et al., 2025) for orchestrating Chromium-
based web environments, structuring the agent’s action
space and we use AGENTLAB (de Chezelles et al., 2025) for
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Figure 3: MiniWoB++ compute analysis — Test task per-
formance w.r.t total FLOPs. Branching off early from SFT
to RL yields superior performance under budget constraints.
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Figure 4: WorkArena compute analysis — Despite task
difficulty, early RL branching remains valuable for efficient
compute usage. Two seeds for each runs are reported using
a ema filter with an alpha = 0.7 for smoothing.

agent design. Model fine-tuning is conducted with TORCH-
TUNE, utilizing Fully Sharded Data Parallelism (FSDP) to
enable scalable training across multiple GPUs. Given the
high memory demands of long-sequence processing, we
apply activation offloading and gradient checkpointing tech-
niques, achieving approximately 40% reduction in memory
usage.

Our computational infrastructure comprises 8 × H100-80GB
GPUs for expert data generation with the 70B model. For
student model training, we allocate 2 × H100 GPUs for Mini-
WoB++ experiments and 4 × H100 GPUs for WorkArena
experiments, reflecting the increased complexity of the lat-
ter.

The environments we use in this study are stochastic, hence
each task is initialized with a random seed. We define a
“goal” as a specific random seed for a given task. The eval-
uation protocol is designed to assess generalization at two
levels: (i) performance on held-out goals within the training
tasks, and (ii) performance on entirely new, unseen tasks.
The primary metric reported is the average task success rate,
which reflects the agent’s ability to generalize beyond its
training distribution.

To ensure a fair comparison of training strategies, we ac-
count for compute efficiency by estimating the total floating-
point operations (FLOPs) consumed during both super-
vised fine-tuning (SFT) and reinforcement learning (GRPO)
phases, described in Section 3 and defined in Appendix B.

5. Main Results and Compute Trade-Offs
In this section, we present our primary findings and analyze
the trade-offs between supervised fine-tuning (SFT) and
reinforcement learning (RL) in terms of both performance
and compute efficiency.

Performance overview Table 1 summarizes the headline
results across benchmarks. We selected the top-performing
runs based on the area under the curve (AUC) of success

rates on held-out training goals to mitigate overfitting risks.
For each method (SFT, RL, and SFT+RL), we report the
mean performance of the top two seeds at convergence.

For the MiniWoB++ benchmark, combining SFT with
RL consistently outperforms SFT-only runs, matching the
teacher model’s performance. Conversely, on the more chal-
lenging WorkArena benchmark, SFT-only approaches are
generally more effective. RL runs initiated without warm-
starting failed to achieve meaningful improvements, high-
lighting the difficulty of bootstrapping learning from low
initial success rates.

Further analysis of saturation behavior for both SFT and
SFT+RL is provided at the end of this section. Notably,
WorkArena’s test set can be easier than its training set for
certain agents, adding nuance to the observed performance
gaps.

Compute-Performance Trade-off Across Benchmarks
The inherent trade-off between high-quality but expensive
SFT data and cheaper, noisier on-policy RL samples under-
pins our analysis. To explore this balance, we conducted
a series of experiments where RL fine-tuning branches off
from SFT runs at regular intervals (every 1024 SFT training
samples).

Figure 3 illustrates this trade-off for both MiniWoB++ and
Figure 4 for WorkArena. For MiniWoB++, branching off
early into RL not only yields better performance for lower
compute budgets but can also surpass SFT-only results. In
particular, dedicating roughly one-third of the total FLOPs
to teacher traces and the remainder to RL lifts MiniWoB++’s
success by +6 percentage points over SFT-only training at
identical cost, matching teacher performance. This sug-
gests that self-generated rollouts are crucial for maximiz-
ing agent performance, with early branching pushing the
compute-performance Pareto front. The warm-started RL
runs converge to a performance ceiling unattainable by RL-
only approaches, underscoring the synergy between SFT
and RL.
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Table 1: Comparison of our method with baselines on the held-out train and test splits of WorkArena and MiniWoB++.
Baselines are run in the exact same setting as (de Chezelles et al., 2025).

Model WorkArena MiniWoB++

Train-held-out Test-held-out Train-held-out Test-held-out

Claude-3.5-Sonnet 48.1±3.1 87.1±4.0 70.5±2.0 70.4±4.3

GPT-4o 41.2±3.1 61.4±5.8 65.7±2.1 64.3±4.5

GPT-4o-Mini 23.1±2.6 41.4±5.9 56.2±2.2 66.1±4.4

Llama-3.1-70b-Instruct 25.0±2.7 38.6±5.8 57.0±2.2 65.2±4.4

o1-Mini 49.2±3.1 84.3±4.3 69.7±2.1 66.1±4.4

Llama-3.1-405b-Instruct 35.8±3.0 71.4±5.4 65.9±2.1 65.2±4.4

Llama-3.1-8B (Student) 9.0±2.9 5.0±2.2 29.5±3.2 36.4±3.4

Llama-3.1-8b-SFT (Ours) 25.0±4.4 39.0±4.8 53.3±2.5 57.8±2.5

Llama-3.1-8b-RL (Ours) 0.0±0.0 0.0±0.0 44.3±2.5 48.5±2.5

Llama-3.1-8b-SFT+RL (Ours) 24.0±4.2 32.0±4.6 63.8±2.4 63.4±2.4

Llama-3.3-70b (Teacher) 30.0±4.6 50.0±5.0 63.2±4.8 61.9±4.9

In contrast, WorkArena’s greater task complexity posed
significant challenges. RL trials struggled to produce a
Pareto front akin to MiniWoB++, limiting direct compute-
performance trade-off analysis. Nevertheless, early RL
branching from SFT still holds promise for lower compute
budgets, even if RL runs did not significantly surpass SFT-
only baselines. This outcome highlights the need for more
advanced RL strategies or alternative optimization methods
for high-complexity, sparse-reward tasks.

These insights emphasize the importance of balancing sam-
ple efficiency (quality of expert data) with compute effi-
ciency (on-policy exploration), and could inform future
research on scalable LLM agent training.

Task Performance Saturation and Analysis Despite ex-
tensive post-training, agent performance on the WorkArena
benchmark plateaus at around 40% after just 9–10 epochs.
This stagnation appears to stem from the intrinsic difficulty
of certain tasks—such as sorting and filtering—which even
the Llama 3.3 70B teacher model struggles to solve (see
Figure 5). A per-task breakdown shows that while both SFT
and RL agents gradually close the performance gap with
the teacher model, with RL achieving a slightly higher final
success rate, a significant portion of tasks (14 out of 33)
remain completely unsolved. These failures are attributed to
either the limitations of the teacher model or the sparsity of
reward signals, both of which hamper the learning process.
On-policy RL exploration proves ineffective in overcom-
ing these challenges due to the lack of foundational skills
and informative feedback. These findings underscore the
need for more effective methods to address complex tasks
under sparse reward settings. Additional per-task perfor-
mance results for WorkArena and Miniwob are provided in
Appendix A.

6. Ablation and Sensitivity Analysis
We simulate re-running hyperparameter configurations and
selecting the best-performing ones using the method de-
scribed in Section 3.1. This is done across three check-
points: the base LLaMA 3.1 8B Instruct model and two
warm-started variants with an additional 2.5 × 1018 and
7.6×1018 FLOPs of supervised fine-tuning, respectively, to
assess variations across compute budgets. We evaluate the
test and training performance of 10 hyper-parameters across
240 runs. We report final test performance to verify gener-
alization in Appendix D finding no significant deviations
between test and train parameters.

Figure 6 displays our findings, which we summarize as fol-
lows. Curriculum learning is beneficial when starting RL
from scratch but becomes detrimental after warm-starting,
likely because warm-started models already perform well
on easy tasks, and curriculum forces them to over-focus
on harder ones. Error log feedback helps when there’s
no SFT but hurts after pretraining—probably because pre-
trained models rarely make invalid moves and the extra
signals become overwhelming. A decoding temperature of
0.25 consistently yields the best results, striking a balance
between exploration and exploitation; lower values led to
under-exploration and were discarded. Grouped-relative
advantage helps only after SFT, while using raw rewards
works better when starting directly from the Instruct model,
possibly due to how advantage scaling interacts with the
initial weights. Zero-advantage filtering improves training
across all settings by ensuring batches focus on informa-
tive updates. Standard-deviation normalized advantage, as
noted by (Liu et al., 2025), consistently hurts performance,
especially when models receive less SFT budget. Impor-
tance ratio correction and trust region, though standard,
also hurt models with little or no SFT, likely because conser-
vative updates slow down learning. In contrast, for models
that start from a stronger SFT checkpoint, these mechanisms
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can help stabilize training and avoid catastrophic updates.
For the learning rate, larger values generally work better,
except on the test set for models trained without SFT, where
more conservative updates improve generalization. Effec-
tive batch size shows minimal impact across the board; a
batch size of 512 is a safe and robust choice in all our exper-
iments. Finally, regarding the discount rate, we find that 0.9
works well in most settings, except for heavily warm-started
models, where a lower rate of 0.5 appears beneficial—likely
because it encourages the model to optimize aggressively
on tasks it already performs well on.

7. Related Work
Best prectices in deep RL. Building on the recognition
of reproducibility challenges and unstable RL training of
LLM agents, recent studies have proposed best practices
for training LLM agents using RL methods. Dang and Ngo
(2025) recommend leveraging high quality data, balancing
easy and hard problems, and controlling length generation
with cosine reward. Yu et al. (2025) promote higher clipping
in the GRPO loss to promote diversity and avoid entropy col-
lapse, dynamic sampling to improve training efficiency and
stability, token level gradients for long CoT sequences, and
overlong reward shaping to reduce reward noise. Roux et al.
(2025) introduce tapered variant of importance sampling to
speed up learning while maintaining stable learning dynam-
ics. The proposed method (TOPR) allows the handling of
both positive and negative examples in a fully offline set-
ting. More generally, Hochlehnert et al. (2025) emphasizes
the need for greater methodological precision, particularly
concerning decoding parameters, random seeds, prompt for-
matting, as well as the hardware and software frameworks,
to guarantee transparent and thorough assessments of model
performance. These practices are essential for developing
robust and reproducible agents.

LLM Agents trained with RL on multi-step environ-
ments. Recent advancements have sought to bridge the
gap in training LLM agents for multi-step environments,
with approaches like WebRL (Qi et al., 2025) and SWEET-
RL (Zhou et al., 2025) demonstrating significant progress.
WebRL employs a self-evolving curriculum to address the
challenges of sparse feedback and task scarcity, successfully
enhancing the performance of open LLMs in web-based
tasks (Qi et al., 2025). Similarly, SWEET-RL introduces
a hierarchical structure that enables effective credit assign-
ment over multiple turns, improving policy learning and
generalization in collaborative reasoning tasks (Zhou et al.,
2025). These studies collectively illustrate the necessity of
adapting RL techniques to accommodate the complexities
of multi-step interactions, paving the way for more capa-
ble and versatile LLM agents. An extended version of the
related work is provided in Appendix C.

Figure 5: Per-task performance of SFT and SFT+RL agents
on WorkArena. The Llama 3.1 8B model is initially fine-
tuned for 4 epochs on trajectories from a teacher Llama 3.3
70B model. Training then continues either with additional
SFT or with GRPO fine-tuning up to epoch 20. The teacher
model’s success rate is also shown.

8. Discussion
Limitations. Our focus is on providing a comprehensive
perspective on training an LLM-based web agent, studying
compute trade-offs, hyperparameter selection, and analyzing
failure cases. With this in mind, our results are limited to
English-language web interfaces and Llama 3 models in the
8B–70B parameter range, where larger models may alter
trade-offs.

Regarding our statistical method, it does not account for the
lack of coverage from the random search. A more exhaustive
search could discover configurations that would change
the conclusions drawn in this study. We note also that
a significant portion of the reported uncertainty is due to
epistemic uncertainty that could be reduced by evaluating
more configurations.

Conclusion. Overall, our study provides a practical and
statistically grounded recipe for training open-source LLM
agents on complex web tasks, helping close the performance
gap with proprietary systems while promoting reproducibil-
ity and efficiency. By systematically analyzing compute
allocation strategies, hyperparameter sensitivities, and train-
ing dynamics, we offer actionable insights that can inform
future research and development of interactive agents. We
hope these findings will serve both as a reproducible base-
line and as a stepping stone for advancing reliable and cost-
effective LLM agent training in web-based and other com-
plex sequential environments.
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Figure 6: Bootstrap analysis (n = 1000 samples) of hyperparameter optimization across different SFT compute budgets on
training held out tasks. Each subplot examines a different hyperparameter, including increasing SFT compute: the base
instruct model (left), +2.5×1018 SFT FLOPs (middle), and +7.6e×1018 SFT FLOPs (right). For each hyperparameter-
compute combination, the top panel shows relative reward performance with error bars indicating 95% confidence intervals,
while the bottom panel displays win rates representing the percentage of bootstrap iterations where each parameter value
achieved maximum performance. Results demonstrate that optimal hyperparameter values shift as model pre-training
compute increases, suggesting that hyperparameter selection should be adapted to the computational budget allocated to
supervised fine-tuning.
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Broader Impact
Web-based LLM agents have the potential to revolutionize
markets by enabling more cost-efficient and effective work-
flows. Our work focuses on making these agents accessible
across a range of compute budgets, empowering not only
industrial labs but also smaller research groups and individ-
uals to train their own assistants. This approach promotes
data privacy and reduces reliance on costly infrastructure.

Despite their promise, web-based agents face significant
challenges that limit their broader adoption. Issues such as
reliability, vulnerability to adversarial attacks, and limited
access to proprietary data remain key obstacles to realizing
their full potential.

Impact Statement
Authors are required to include a statement of the potential
broader impact of their work, including its ethical aspects
and future societal consequences. This statement should be
in an unnumbered section at the end of the paper (co-located
with Acknowledgements – the two may appear in either
order, but both must be before References), and does not
count toward the paper page limit. In many cases, where
the ethical impacts and expected societal implications are
those that are well established when advancing the field of
Machine Learning, substantial discussion is not required,
and a simple statement such as the following will suffice:

“This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.”

The above statement can be used verbatim in such cases, but
we encourage authors to think about whether there is content
which does warrant further discussion, as this statement will
be apparent if the paper is later flagged for ethics review.
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A. You can have an appendix here.
You can have as much text here as you want. The main body must be at most 8 pages long. For the final version, one more
page can be added. If you want, you can use an appendix like this one.

The \onecolumn command above can be kept in place if you prefer a one-column appendix, or can be removed if you
prefer a two-column appendix. Apart from this possible change, the style (font size, spacing, margins, page numbering, etc.)
should be kept the same as the main body.

A. Extended Learning and Saturation Analysis
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Figure 7: Per task performance of SFT and SFT+RL agents on MiniWob++.

Challenges in Agent-Environment Interaction In this section we talk about the general challenges faced by the agent to
interact effectively with the environment.

• Observation/action space mismatch: One of the important thing to note specifically in our web environment is the
observation space which the agent uses is a bit different from the action space. Multiple times, the agent can see the
correct action in the AxTree but the action space, the icon is not visible and to make it visible, the agent needs to scroll
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Figure 8: Per task performance of SFT and SFT+RL agents on WorkArena.

down and do the action. This mismatch causes huge problems (Koh and et al., 2024)

• UI Misuse: The agent tries to interact with items in the environment in ways that it is not designed. For example, the
agent trying to fill in a checkbox with value True while it should just click on it. (Murty and et al., 2025)

• Repeating actions: A common issue we observed is the repetition of actions across multiple consecutive steps, often
accompanied by verbose and redundant chains of thought. The agent frequently restates similar thoughts or re-executes
the same actions unnecessarily, leading to inefficiencies and sometimes getting stuck in loops. (Murty and et al., 2025).

B. Deriving Compute Cost
FLOPs Estimation Methodology Flop calculations are based on model architecture, token counts, and average sequence
lengths observed during training and evaluation.

FLOPs per Token

We estimate FLOPs per token using the following formula, adapted from nvidia benchmarking(ben):

FLOPsper token = (FLOPsattn + FLOPsMLP + FLOPsembed)× (1 + backward multiplier) (4)

Where:

FLOPsattn = 12× (number of layers) × (hidden size)2

×
(
1 +

number of query groups
number of attention heads

+
sequence length

hidden size

)
(5)

FLOPsMLP = 18× (number of layers) × (hidden size) × FFN (6)
FLOPsembed = 6× vocabulary size × (hidden size) (7)

On-Policy FLOPs (LLaMA-8B)

We compute the total FLOPs for each on-policy epoch by summing the training and testing FLOPs:

FLOPstrain = Ntrain × FLOPs(backward=3)
per token (8)

FLOPstest = Ntest × FLOPs(backward=0)
per token (9)

FLOPsepoch = FLOPstrain + FLOPstest (10)
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Where Ntrain and Ntest are the number of tokens used for training and evaluation respectively. Sequence length S is measured
per epoch from logged metrics.

Offline FLOPs (Generation: LLaMA-70B, Training: LLaMA-8B)

Offline training includes two compute components:

• Data Generation (LLaMA-70B, forward-only):

FLOPsgen = Ngen × FLOPs(70B,backward=0)
per token (11)

where Ngen = avg seq len × samples per epoch (from dataset metadata).

• Training (LLaMA-8B, with backward pass):

FLOPstrain = Ngen × FLOPs(8B,backward=3)
per token (12)

The total FLOPs per offline epoch is:

FLOPsepoch = FLOPsgen + FLOPstrain (13)

All FLOPs values are reported in exaFLOPs by dividing the total FLOPs by 1018.

C. Extended Related Work
The Reproducibility Crisis in RL. The reproducibility crisis in large language models (LLMs) and reinforcement learning
(RL) has garnered increasing attention, particularly due to the reliance on single seed results that distort the perceived
performance of models. The reproducibility challenge1 organized every year is a positive step towards addressing this.
More concretely, Hochlehnert et al. (2025) provide a critical examination of how such practices undermine the reliability of
published findings, revealing that many reported gains are sensitive to implementation choices, such as random seeds and
prompt formatting (Hochlehnert et al., 2025).

Bandit-domain RLHF with LLMs. Previous work in RL for LLMs has predominantly focused on single-step tasks,
which have shown effectiveness in mathematical reasoning and code generation (Yu et al., 2025; DeepSeek-AI et al., 2025;
Roux et al., 2025). While these approaches exhibit promising results, they are limited in their applicability to real-world
scenarios, which often require multistep decision-making capabilities. The narrow focus on bandit-style problems fails to
address the complexities inherent in tasks that demand sequential interaction, highlighting a significant gap in the current
research landscape.

Interactive Agent Benchmarks. To assess the capabilities of LLM agents in more realistic environments, benchmarks
such as WebArena (Zhou et al., 2023), WorkArena (Drouin et al., 2024; Boisvert et al., 2024), the Agent Company (Xu et al.,
2024), and OSWorld (Xie et al., 2024) have been designed to evaluate agents on multi-step tasks across various domains.
These benchmarks expose the limitations of current LLM agents, revealing that while they may perform well in controlled
settings, their performance in practical applications remains subpar, underscoring the need for further advancements in agent
robustness and generalization to multi-step planning.

Best prectices in deep RL. Building on the recognition of reproducibility challenges and unstable RL training of LLM
agents, recent studies have proposed best practices for training LLM agents using RL methods. Dang and Ngo (2025)
recommend leveraging high quality data, balancing easy and hard problems, and controlling length generation with cosine
reward. Yu et al. (2025) promote higher clipping in the GRPO loss to promote diversity and avoid entropy collapse, dynamic
sampling to improve training efficiency and stability, token level gradients for long CoT sequences, and overlong reward
shaping to reduce reward noise. Roux et al. (2025) introduce tapered variant of importance sampling to speed up learning
while maintaining stable learning dynamics. The proposed method (TOPR) allows the handling of both positive and negative
examples in a fully offline setting. More generally, Hochlehnert et al. (2025) emphasizes the need for greater methodological
precision, particularly concerning decoding parameters, random seeds, prompt formatting, as well as the hardware and
software frameworks, to guarantee transparent and thorough assessments of model performance.

1https://reproml.org/
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LLM Agents trained with RL on multi-step environments. Recent advancements have sought to bridge the gap in
training LLM agents for multi-step environments, with approaches like WebRL (Qi et al., 2025) and SWEET-RL (Zhou
et al., 2025) demonstrating significant progress. WebRL employs a self-evolving curriculum to address the challenges of
sparse feedback and task scarcity, successfully enhancing the performance of open LLMs in web-based tasks (Qi et al.,
2025). Similarly, SWEET-RL introduces a hierarchical structure that enables effective credit assignment over multiple turns,
improving policy learning and generalization in collaborative reasoning tasks (Zhou et al., 2025). These studies collectively
illustrate the necessity of adapting RL techniques to accommodate the complexities of multi-step interactions, paving the
way for more capable and versatile LLM agents.

D. Test Set Hyper-Parameter Bootstrap Analysis
We overall find similar results between the held-out train and test tasks with respect to optimal hyper-parameters. While we
see no large deviations, we find that some parameters such as curriculum learning from the instruct model and using error
logs can have a larger beneficial effect on the held-out testing tasks.
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Figure 9: Bootstrap analysis (n = 1000 samples) of hyperparameter optimization across different SFT compute budgets
on test held out tasks. Each subplot examines a different hyperparameter, including increasing SFT compute: the base
instruct model (left), +2.5e+18 SFT FLOPs (middle), and +7.6e+18 SFT FLOPs (right). For each hyperparameter-compute
combination, the top panel shows relative reward performance with error bars indicating 95% confidence intervals, while the
bottom panel displays win rates representing the percentage of bootstrap iterations where each parameter value achieved
maximum performance. Results demonstrate that optimal hyperparameter values often shift as model pre-training compute
increases, suggesting that hyperparameter selection should be adapted based on the computational budget allocated to SFT.
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