
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

How to Train Your LLM Web Agent:
A Statistical Diagnosis

Anonymous Authors1

Abstract

Large language model (LLM) agents for web in-
terfaces have advanced rapidly, yet open-source
systems still lag behind proprietary agents. Bridg-
ing this gap is key to enabling customizable, ef-
ficient, and privacy-preserving agents. Two chal-
lenges hinder progress: the reproducibility issues
in RL and LLM agent training, where results often
depend on sensitive factors like seeds and decod-
ing parameters, and the focus of prior work on
single-step tasks, overlooking the complexities of
web-based, multi-step decision-making.

We address these gaps by providing a statisti-
cally driven study of training LLM agents for
web tasks. Our two-stage pipeline combines imi-
tation learning from a Llama 3.3 70B teacher with
on-policy fine-tuning via Group Relative Policy
Optimization (GRPO) on a Llama 3.1 8B student.
Through 240 configuration sweeps and rigorous
bootstrapping, we chart the first compute alloca-
tion curve for open-source LLM web agents. Our
findings show that dedicating one-third of com-
pute to teacher traces and the rest to RL improves
MiniWoB++ success by 6 points and closes 60%
of the gap to GPT-4o on WorkArena, while cut-
ting GPU costs by 45%. We introduce a princi-
pled hyperparameter sensitivity analysis, offering
actionable guidelines for robust and cost-effective
agent training.

1. Introduction
Large-language-model (LLM) agents capable of driving
web interfaces have seen rapid progress, yet open-source
systems continue to trail proprietary agents by a significant
margin. Closing this gap is crucial: enabling organizations

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

to train their own agents would allow them to customize
workflows, compress models for lower latency and cost, and
maintain full control over sensitive data, fostering user trust.

However, progress in this area is hindered by two compound-
ing challenges. First, reproducibility remains an ongoing
concern in reinforcement learning (RL) and LLM agent
training, with studies showing that reported gains can be
sensitive to factors such as random seeds, sampling param-
eters, and prompt formatting (Hochlehnert et al., 2025).
While large industry labs often have the resources to run
extensive multi-seed experiments (Abdin et al., 2025), such
large-scale evaluations remain challenging for smaller re-
search groups due to the high computational cost of LLM
training, making it harder to ensure reliable and generaliz-
able findings.

Second, most existing work on LLMs with RL has focused
on single-step tasks such as code generation or mathematical
reasoning (Yu et al., 2025; DeepSeek-AI et al., 2025; Roux
et al., 2025). While effective in constrained domains, these
approaches fail to capture the complexities of real-world
tasks requiring multi-step planning and sequential decision-
making. Recent benchmarks such as WebArena (Zhou et al.,
2023), WorkArena (Drouin et al., 2024), OSWorld (Xie
et al., 2024), and The Agent Company (Xu et al., 2024)
highlight these challenges, exposing the brittleness of cur-
rent methods when deployed in realistic, interactive envi-
ronments.

In this paper, we tackle these gaps by providing a statistically
driven diagnosis of training LLM agents for web-based,
multi-step tasks. Specifically, we study how to allocate
compute between expensive, high-quality off-policy demon-
strations from a large teacher model and cheaper on-policy
rollouts from a smaller student model. Too much reliance
on the former leads to brittle imitation, while too much of
the latter drowns learning in sparse web-task rewards.

We address this trade-off with a two-stage pipeline: a
LLaMA 3.3 70B teacher generates K successful episodes,
and a LLaMA 3.1 8B student first imitates these trajectories
before branching into Group Relative Policy Optimization
(GRPO) for on-policy fine-tuning.. By sweeping 240 con-
figurations across the SFT-to-RL ratio and key hyperparam-

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2025

eters, and applying a bootstrapping protocol, we chart the
first data-driven compute allocation curve for open-source
LLM agents.

Our findings reveal clear patterns. On MiniWoB++, our
approach pushes the compute-performance frontier by bal-
ancing expert demonstrations with on-policy reinforcement
learning. This combination outperforms both pure imita-
tion learning and naive supervised fine-tuning, achieving
stronger generalization while making more efficient use
of compute. On the more challenging WorkArena bench-
mark, our method emerges as a promising approach in low-
compute regimes.

Beyond compute-performance analysis, we introduce a sta-
tistically disciplined method for hyperparameter diagnosis
and sensitivity analysis. This addresses key reproducibility
gaps by estimating the likelihood of hyperparameter configu-
rations being optimal, correcting for imbalanced exploration,
and providing actionable guidelines for practitioners (see
Section 6).

The study yields several actionable insights. First, branch-
ing into RL early—but not immediately—after SFT leads
to better outcomes. Second, curriculum learning and er-
ror log feedback help when agents start from scratch but
become counterproductive once SFT warmup is applied.
Third, in GRPO, applying zero-advantage filtering, avoid-
ing standard deviation normalization of the advantage, and
skipping importance ratio correction and trust region consis-
tently improve performance. Fourth, decoding temperature
is consistently critical, while learning rate and discount rate
must also be carefully tuned.

These findings are significant for two reasons. First, they
give smaller research groups a reproducible, budget-aware
playbook for pushing open LLM agents closer to state-of-
the-art without scaling model size. Second, they address
a slice of the broader reproducibility concerns recently
highlighted in the RL community (Agarwal et al., 2021;
Hochlehnert et al., 2025), offering a template for rigorous,
statistically-grounded hyperparameter tuning and compute
allocation in LLM agent training.

2. Background
This section consolidates the algorithmic ingredients used
throughout the paper: (i) the MDP formulation of web-based
language agents, (ii) supervised fine-tuning (SFT) on expert
traces, (iii) Grouped-Return Policy Optimisation (GRPO)
for reinforcement learning, and (iv) curriculum and normal-
isation techniques that stabilise training.

2.1. Language Agents as MDPs

We model each task as a Markov Decision Process (MDP)
M = ⟨S,A, P, r, ρ0, γ⟩. A state st ∈ S is represented as
text, while an action at ∈ A is also expressed as a high-
level textual command. The environment returns a scalar
reward rt ∈ [−1, 1] indicating task progress or completion.
The agent’s policy πθ(a | s) is parameterized by an LLM
with weights θ and is trained to maximize the expected
discounted return:

J(θ) = Eπθ

[∑
k≥0

γkrt+k

]
. (1)

Here, γ ∈ [0, 1] is the discount rate, which controls the
agent’s preference for immediate versus future rewards: a
lower γ encourages short-term behaviors, while a γ closer
to 1 incentivizes long-term planning.

In practice, the policy πθ(a | s) is instantiated as an au-
toregressive LLM that generates actions token by token by
sampling from a probability distribution over the vocabu-
lary. This introduces inherent stochasticity into the agent’s
behavior, which is modulated by a decoding temperature
parameter τ .

2.2. Off-policy boot-strapping via SFT

Generating high-reward web trajectories on a fresh model
is prohibitively slow. We therefore first imitate a stronger
expert policy πE by minimising the cross-entropy loss

LSFT(θ) = − 1

|Dexp|
∑

(s,a)∈Dexp

log πθ(a | s). (2)

where Dexp contains (s, a) pairs from successful expert
episodes, including chain-of-thought tokens. SFT offers
a high-quality, low-variance gradient but is inherently
off-policy: the distribution of states seen at evaluation time
drifts away from Dexp as soon as the student deviates from
the expert.

2.3. On-Policy Improvement with GRPO

After supervised fine-tuning (SFT), we apply Grouped-
Return Policy Optimisation (GRPO), a clipped policy gradi-
ent method that operates on sets of G output tokens grouped
by task, trajectory, or outcome. Let q denote a prompt
segment (or query), and let oi represent a sampled token
from the model’s response. Define the importance ratio
ri =

πθ(oi|q)
πθold (oi|q)

, and let Ai denote the advantage estimate,
computed using group-normalised returns.

The GRPO objective is:

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2025

Figure 1: Comparison of our method with baselines from (de Chezelles et al., 2025) on the MiniWoB++(Liu et al., 2018)
benchmark. Our 8B Llama 3.1 model is on par with all the larger models such as Llama 3.1 405B, o1-mini and 3.5-sonnet.

JGRPO(θ) = Eq∼P (Q) E{oi}G
1∼πθold

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
ri,tÂi,t,

clip
(
ri,t, 1− ε, 1 + ε

)
Âi,t

)
− β DKL

(
πθ∥πref

)]
(3)

where the clipped importance ratio enforces conservative
updates akin to PPO (Schulman et al., 2017), and the KL
divergence against a reference policy πref (typically the SFT
model) acts as a trust-region regulariser weighted by β. The
objective recovers PPO in the special case G=1, β=0.

Group-Normalised Advantage. GRPO computes the ad-
vantage Ai using only the rewards associated with the G
outputs in the same group. Let ri denote the scalar reward
assigned to output oi, and let r = (r1, . . . , rG) be the vec-
tor of all rewards in the group. The normalised reward is
computed as r̃i =

ri−mean(r)
std(r) , and the advantage is set as

Ai = r̃i.

This normalisation encourages intra-group differentiation
while being invariant to the absolute reward scale. However,
Liu et al. (2025) argue that retaining the per-group stan-
dard deviation σg in the denominator introduces a variance-
inflating bias during training.

Zero-advantage filtering. Tokens with At,g = 0 con-
tribute no learning signal yet still consume memory. Drop-
ping them yields a constant effective batch size and modestly
accelerates training (Yu et al., 2025).

2.4. Curriculum through Variance-Aware Boltzmann
Sampling

To promote steady learning progress, we design a curricu-
lum that prioritizes challenging tasks, neither trivial nor too
difficult (Thakkar et al., 2023). Specifically, we select tasks
according to a Boltzmann distribution centered around a
target return µtarget which specifies the desired performance
threshold, encouraging focus on partially mastered tasks,

with a temperature parameter τ controlling the sharpness of
the distribution, with lower values concentrating probability
mass tightly around µtarget.

This sampling mechanism dynamically adapts the training
distribution, concentrating learning on tasks where the agent
is neither already proficient nor entirely unskilled. As a
result, the agent avoids premature convergence on easy tasks
and prevents wasted effort on tasks far beyond its current
capabilities.

3. Methodology
Our training recipe comprises two sequential stages—SFT
followed by RL—whose compute budgets we treat as a re-
source allocation problem. We also detail our hyperparame-
ter sweep and the statistical protocol that converts hundreds
of runs into reliable conclusions. We evaluate our recipe
along two axes: compute cost, measured in FLOPs (using
an adapted formula from (ben)), and model performance,
evaluated on both unseen training goals and testing tasks.

Stage 1 – Supervised Fine-Tuning (SFT). We gener-
ate NE expert episodes using a large/powerful model, fil-
ter for successful rollouts, and store (s, a) pairs including
chain-of-thought annotations. Optimizing Eq. (2.2) for TSFT
steps yields an initial policy πθ0 . Given tb ∈ [0, TSFT] steps
of SFT, we calculate the total compute cost FSFT(tb) as the
sum of FLOPs used during data generation by the teacher
model and the FLOPs used to train the student model.

Stage 2 – RL Fine-Tuning. From πθ0 , we branch B
checkpoints {tb} at different intervals. Each branch contin-
ues with GRPO (Eq. (3)) for TRL steps. Here the cost of
TRL steps FRL(TRL) is equivalent to the sum of FLOPs for
one data generation step and one training step of the student
model. The total compute for a given run is then calcu-
lated using FLOPs = FSFT(tb) +FRL(TRL), where the total
training FLOPs are dominated by matrix multiplications,
with costs scaling linearly with model parameters, sequence
length, and optimizer momentum buffers.

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2025

Figure 2: Example tasks in MiniWoB++ (Liu et al., 2018)
(top) and WorkArena (Drouin et al., 2024) (bottom). Mini-
WoB consists of single-page simple tasks such as select-
ing a particular date and using a basic text editor, while
WorkArena comprises multi-page complex tasks like filling
forms and placing orders in an enterprise environment.

We vary the SFT-to-RL ratio by branching out of SFT at
different checkpoints. This exposes trade-offs between ex-
pensive but high-quality expert supervision and cheap but
noisy on-policy exploration.

3.1. Estimating the Uncertainty of the Hyperparameter
Selection Process

Across the different SFT checkpoints, we sample 240 dis-
tinct configurations with ten varying hyperparameters, (see
Section 6 for details).

Our objective is to study the effect of various hyperparam-
eters (HP) on the downstream success rate of our trained
agents. This comes with two important considerations. First,
if we change the value of, e.g., the batch size, and we want
to know if a bigger batch size is better, the learning rate and
other parameters need to be readjusted close to their optimal
configuration (under a fixed budget). Secondly, to account
for noise, we would need to restart the same experiment
several times to avoid spurious conclusions. In practice,
this is out of reach. For a more computationally friendly
approach, we resort to bootstrapping the collection of trials
over different hyperparameter configurations.

Bootstrapping the hyperparameter selection process.
From the full set of 240 runs, we resample trials (with re-
placement). For each value, we select the configuration with
the best validation score, and repeat this 1,000 times. We

also extract the fraction of times each HP value wins, which
serves as our estimated probability of it being part of the
global optimum. This also provides uncertainty estimates
for the validation and test metrics. For a more in-depth
analysis, we also study this selection process on subsets of
the complete trials by fixing the value of some parameters.
For example, in Figure 6, we study the behavior of HPs
in isolation for different starting checkpoints with varying
amounts of SFT.

Balancing unequal coverage. Due to random search,
some HP values were explored more than others, biasing
the winner toward the larger groups. To correct for this,
each trial is sampled with probability ∝ 1/group size, ap-
proximating an equal compute budget for every HP value.

4. Experimental Setup
We evaluate our approach using Llama 3.3 70B as the expert
model to generate demonstration traces, and Llama 3.1 8B
as the student model for fine-tuning. Both models operate
with a 16k token context window to handle the complexity
of web-based tasks.

Our experiments focus on two benchmarks. The first is Mini-
WoB++, a suite of 30 medium-horizon tasks designed for
web interaction, where an optimal policy typically requires
2 to 5 steps per task. The second is WorkArena (Drouin
et al., 2024), a more challenging benchmark comprising 33
enterprise knowledge-work tasks, where an optimal policy
typically requires 3 to 10 steps. These benchmarks provide a
representative spectrum of sequential decision-making chal-
lenges faced by interactive LLM agents. Both benchmarks
are depicted in Figure 2.

For the observation space, MiniWoB++ provides
raw HTML trees, while WorkArena leverages ac-
cessibility trees (AxTrees), which we truncate to
16k tokens to meet hardware constraints. The agent
operates in a discrete action space composed of high-
level UI primitives: noop, fill(node,text),
click(node), type(node,text),
select option(node,option), scroll(node),
and hover(node). This abstraction allows the agent to
interact effectively with diverse web interfaces. All agents
are using Chain-of-thought prompting (Wei et al., 2023).
We also experiment with error log feedback, allowing
the agent to receive explicit error messages when it takes
invalid actions.

To manage the training pipeline, we use BROWSERGYM
(de Chezelles et al., 2025) for orchestrating Chromium-
based web environments, structuring the agent’s action
space and we use AGENTLAB (de Chezelles et al., 2025) for

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2025

Figure 3: MiniWoB++ compute analysis — Test task per-
formance w.r.t total FLOPs. Branching off early from SFT
to RL yields superior performance under budget constraints.

0 5 10 15 20 25 30
EXA-FLOPS

0.0

0.1

0.2

0.3

0.4

0.5

Su
cc

es
s R

at
e

Train Success Rate vs Compute
SFT warm-up
SFT
On-policy RL

Figure 4: WorkArena compute analysis — Despite task
difficulty, early RL branching remains valuable for efficient
compute usage. Two seeds for each runs are reported using
a ema filter with an alpha = 0.7 for smoothing.

agent design. Model fine-tuning is conducted with TORCH-
TUNE, utilizing Fully Sharded Data Parallelism (FSDP) to
enable scalable training across multiple GPUs. Given the
high memory demands of long-sequence processing, we
apply activation offloading and gradient checkpointing tech-
niques, achieving approximately 40% reduction in memory
usage.

Our computational infrastructure comprises 8 × H100-80GB
GPUs for expert data generation with the 70B model. For
student model training, we allocate 2 × H100 GPUs for Mini-
WoB++ experiments and 4 × H100 GPUs for WorkArena
experiments, reflecting the increased complexity of the lat-
ter.

The environments we use in this study are stochastic, hence
each task is initialized with a random seed. We define a
“goal” as a specific random seed for a given task. The eval-
uation protocol is designed to assess generalization at two
levels: (i) performance on held-out goals within the training
tasks, and (ii) performance on entirely new, unseen tasks.
The primary metric reported is the average task success rate,
which reflects the agent’s ability to generalize beyond its
training distribution.

To ensure a fair comparison of training strategies, we ac-
count for compute efficiency by estimating the total floating-
point operations (FLOPs) consumed during both super-
vised fine-tuning (SFT) and reinforcement learning (GRPO)
phases, described in Section 3 and defined in Appendix B.

5. Main Results and Compute Trade-Offs
In this section, we present our primary findings and analyze
the trade-offs between supervised fine-tuning (SFT) and
reinforcement learning (RL) in terms of both performance
and compute efficiency.

Performance overview Table 1 summarizes the headline
results across benchmarks. We selected the top-performing
runs based on the area under the curve (AUC) of success

rates on held-out training goals to mitigate overfitting risks.
For each method (SFT, RL, and SFT+RL), we report the
mean performance of the top two seeds at convergence.

For the MiniWoB++ benchmark, combining SFT with
RL consistently outperforms SFT-only runs, matching the
teacher model’s performance. Conversely, on the more chal-
lenging WorkArena benchmark, SFT-only approaches are
generally more effective. RL runs initiated without warm-
starting failed to achieve meaningful improvements, high-
lighting the difficulty of bootstrapping learning from low
initial success rates.

Further analysis of saturation behavior for both SFT and
SFT+RL is provided at the end of this section. Notably,
WorkArena’s test set can be easier than its training set for
certain agents, adding nuance to the observed performance
gaps.

Compute-Performance Trade-off Across Benchmarks
The inherent trade-off between high-quality but expensive
SFT data and cheaper, noisier on-policy RL samples under-
pins our analysis. To explore this balance, we conducted
a series of experiments where RL fine-tuning branches off
from SFT runs at regular intervals (every 1024 SFT training
samples).

Figure 3 illustrates this trade-off for both MiniWoB++ and
Figure 4 for WorkArena. For MiniWoB++, branching off
early into RL not only yields better performance for lower
compute budgets but can also surpass SFT-only results. In
particular, dedicating roughly one-third of the total FLOPs
to teacher traces and the remainder to RL lifts MiniWoB++’s
success by +6 percentage points over SFT-only training at
identical cost, matching teacher performance. This sug-
gests that self-generated rollouts are crucial for maximiz-
ing agent performance, with early branching pushing the
compute-performance Pareto front. The warm-started RL
runs converge to a performance ceiling unattainable by RL-
only approaches, underscoring the synergy between SFT
and RL.

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2025

Table 1: Comparison of our method with baselines on the held-out train and test splits of WorkArena and MiniWoB++.
Baselines are run in the exact same setting as (de Chezelles et al., 2025).

Model WorkArena MiniWoB++

Train-held-out Test-held-out Train-held-out Test-held-out

Claude-3.5-Sonnet 48.1±3.1 87.1±4.0 70.5±2.0 70.4±4.3

GPT-4o 41.2±3.1 61.4±5.8 65.7±2.1 64.3±4.5

GPT-4o-Mini 23.1±2.6 41.4±5.9 56.2±2.2 66.1±4.4

Llama-3.1-70b-Instruct 25.0±2.7 38.6±5.8 57.0±2.2 65.2±4.4

o1-Mini 49.2±3.1 84.3±4.3 69.7±2.1 66.1±4.4

Llama-3.1-405b-Instruct 35.8±3.0 71.4±5.4 65.9±2.1 65.2±4.4

Llama-3.1-8B (Student) 9.0±2.9 5.0±2.2 29.5±3.2 36.4±3.4

Llama-3.1-8b-SFT (Ours) 25.0±4.4 39.0±4.8 53.3±2.5 57.8±2.5

Llama-3.1-8b-RL (Ours) 0.0±0.0 0.0±0.0 44.3±2.5 48.5±2.5

Llama-3.1-8b-SFT+RL (Ours) 24.0±4.2 32.0±4.6 63.8±2.4 63.4±2.4

Llama-3.3-70b (Teacher) 30.0±4.6 50.0±5.0 63.2±4.8 61.9±4.9

In contrast, WorkArena’s greater task complexity posed
significant challenges. RL trials struggled to produce a
Pareto front akin to MiniWoB++, limiting direct compute-
performance trade-off analysis. Nevertheless, early RL
branching from SFT still holds promise for lower compute
budgets, even if RL runs did not significantly surpass SFT-
only baselines. This outcome highlights the need for more
advanced RL strategies or alternative optimization methods
for high-complexity, sparse-reward tasks.

These insights emphasize the importance of balancing sam-
ple efficiency (quality of expert data) with compute effi-
ciency (on-policy exploration), and could inform future
research on scalable LLM agent training.

Task Performance Saturation and Analysis Despite ex-
tensive post-training, agent performance on the WorkArena
benchmark plateaus at around 40% after just 9–10 epochs.
This stagnation appears to stem from the intrinsic difficulty
of certain tasks—such as sorting and filtering—which even
the Llama 3.3 70B teacher model struggles to solve (see
Figure 5). A per-task breakdown shows that while both SFT
and RL agents gradually close the performance gap with
the teacher model, with RL achieving a slightly higher final
success rate, a significant portion of tasks (14 out of 33)
remain completely unsolved. These failures are attributed to
either the limitations of the teacher model or the sparsity of
reward signals, both of which hamper the learning process.
On-policy RL exploration proves ineffective in overcom-
ing these challenges due to the lack of foundational skills
and informative feedback. These findings underscore the
need for more effective methods to address complex tasks
under sparse reward settings. Additional per-task perfor-
mance results for WorkArena and Miniwob are provided in
Appendix A.

6. Ablation and Sensitivity Analysis
We simulate re-running hyperparameter configurations and
selecting the best-performing ones using the method de-
scribed in Section 3.1. This is done across three check-
points: the base LLaMA 3.1 8B Instruct model and two
warm-started variants with an additional 2.5 × 1018 and
7.6×1018 FLOPs of supervised fine-tuning, respectively, to
assess variations across compute budgets. We evaluate the
test and training performance of 10 hyper-parameters across
240 runs. We report final test performance to verify gener-
alization in Appendix D finding no significant deviations
between test and train parameters.

Figure 6 displays our findings, which we summarize as fol-
lows. Curriculum learning is beneficial when starting RL
from scratch but becomes detrimental after warm-starting,
likely because warm-started models already perform well
on easy tasks, and curriculum forces them to over-focus
on harder ones. Error log feedback helps when there’s
no SFT but hurts after pretraining—probably because pre-
trained models rarely make invalid moves and the extra
signals become overwhelming. A decoding temperature of
0.25 consistently yields the best results, striking a balance
between exploration and exploitation; lower values led to
under-exploration and were discarded. Grouped-relative
advantage helps only after SFT, while using raw rewards
works better when starting directly from the Instruct model,
possibly due to how advantage scaling interacts with the
initial weights. Zero-advantage filtering improves training
across all settings by ensuring batches focus on informa-
tive updates. Standard-deviation normalized advantage, as
noted by (Liu et al., 2025), consistently hurts performance,
especially when models receive less SFT budget. Impor-
tance ratio correction and trust region, though standard,
also hurt models with little or no SFT, likely because conser-
vative updates slow down learning. In contrast, for models
that start from a stronger SFT checkpoint, these mechanisms

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2025

can help stabilize training and avoid catastrophic updates.
For the learning rate, larger values generally work better,
except on the test set for models trained without SFT, where
more conservative updates improve generalization. Effec-
tive batch size shows minimal impact across the board; a
batch size of 512 is a safe and robust choice in all our exper-
iments. Finally, regarding the discount rate, we find that 0.9
works well in most settings, except for heavily warm-started
models, where a lower rate of 0.5 appears beneficial—likely
because it encourages the model to optimize aggressively
on tasks it already performs well on.

7. Related Work
Best prectices in deep RL. Building on the recognition
of reproducibility challenges and unstable RL training of
LLM agents, recent studies have proposed best practices
for training LLM agents using RL methods. Dang and Ngo
(2025) recommend leveraging high quality data, balancing
easy and hard problems, and controlling length generation
with cosine reward. Yu et al. (2025) promote higher clipping
in the GRPO loss to promote diversity and avoid entropy col-
lapse, dynamic sampling to improve training efficiency and
stability, token level gradients for long CoT sequences, and
overlong reward shaping to reduce reward noise. Roux et al.
(2025) introduce tapered variant of importance sampling to
speed up learning while maintaining stable learning dynam-
ics. The proposed method (TOPR) allows the handling of
both positive and negative examples in a fully offline set-
ting. More generally, Hochlehnert et al. (2025) emphasizes
the need for greater methodological precision, particularly
concerning decoding parameters, random seeds, prompt for-
matting, as well as the hardware and software frameworks,
to guarantee transparent and thorough assessments of model
performance. These practices are essential for developing
robust and reproducible agents.

LLM Agents trained with RL on multi-step environ-
ments. Recent advancements have sought to bridge the
gap in training LLM agents for multi-step environments,
with approaches like WebRL (Qi et al., 2025) and SWEET-
RL (Zhou et al., 2025) demonstrating significant progress.
WebRL employs a self-evolving curriculum to address the
challenges of sparse feedback and task scarcity, successfully
enhancing the performance of open LLMs in web-based
tasks (Qi et al., 2025). Similarly, SWEET-RL introduces
a hierarchical structure that enables effective credit assign-
ment over multiple turns, improving policy learning and
generalization in collaborative reasoning tasks (Zhou et al.,
2025). These studies collectively illustrate the necessity of
adapting RL techniques to accommodate the complexities
of multi-step interactions, paving the way for more capa-
ble and versatile LLM agents. An extended version of the
related work is provided in Appendix C.

Figure 5: Per-task performance of SFT and SFT+RL agents
on WorkArena. The Llama 3.1 8B model is initially fine-
tuned for 4 epochs on trajectories from a teacher Llama 3.3
70B model. Training then continues either with additional
SFT or with GRPO fine-tuning up to epoch 20. The teacher
model’s success rate is also shown.

8. Discussion
Limitations. Our focus is on providing a comprehensive
perspective on training an LLM-based web agent, studying
compute trade-offs, hyperparameter selection, and analyzing
failure cases. With this in mind, our results are limited to
English-language web interfaces and Llama 3 models in the
8B–70B parameter range, where larger models may alter
trade-offs.

Regarding our statistical method, it does not account for the
lack of coverage from the random search. A more exhaustive
search could discover configurations that would change
the conclusions drawn in this study. We note also that
a significant portion of the reported uncertainty is due to
epistemic uncertainty that could be reduced by evaluating
more configurations.

Conclusion. Overall, our study provides a practical and
statistically grounded recipe for training open-source LLM
agents on complex web tasks, helping close the performance
gap with proprietary systems while promoting reproducibil-
ity and efficiency. By systematically analyzing compute
allocation strategies, hyperparameter sensitivities, and train-
ing dynamics, we offer actionable insights that can inform
future research and development of interactive agents. We
hope these findings will serve both as a reproducible base-
line and as a stepping stone for advancing reliable and cost-
effective LLM agent training in web-based and other com-
plex sequential environments.

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2025

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Re
la

tiv
e 

Re
wa

rd
0.18

0.12

Instruct

False True

0.17

0.13

+ 2.5e+18 SFT FLOPs

0.13
0.14

+ 7.6e+18 SFT FLOPs

False True
0

50
100

W
in

 R
at

e 
(%

)

98%

False True

95%

False True

31%
69%

0.08

0.10

0.12

0.15

0.17

0.20

0.23

0.25

Re
la

tiv
e 

Re
wa

rd 0.18
0.17

Instruct

1e-06 5e-07

0.17

0.13

+ 2.5e+18 SFT FLOPs

0.14

0.09

+ 7.6e+18 SFT FLOPs

1e-06 5e-07
0

50
100

W
in

 R
at

e 
(%

)

73%
27%

1e-06 5e-07

94%

6%
1e-06 5e-07

100%

0.08

0.10

0.12

0.15

0.17

0.20

0.23

0.25

Re
la

tiv
e 

Re
wa

rd

0.12

0.19

0.12 0.12

Instruct

0.5
0.9

0.95
0.98

0.14

0.17

0.14
0.16

+ 2.5e+18 SFT FLOPs

0.14
0.13

0.11
0.13

+ 7.6e+18 SFT FLOPs

0.5 0.9 0.95 0.98
0

50
100

W
in

 R
at

e 
(%

)

99%

0.5 0.9 0.95 0.98

57%
9%

34%

0.5 0.9 0.95 0.98

85%

15%

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Re
la

tiv
e 

Re
wa

rd 0.19

0.12

Instruct

False True

0.17

0.13

+ 2.5e+18 SFT FLOPs

0.14 0.13

+ 7.6e+18 SFT FLOPs

False True
0

50
100

W
in

 R
at

e 
(%

)

100%

False True

96%

False True

83%

17%

0.05
0.08
0.10
0.12
0.15
0.18
0.20
0.23
0.25

Re
la

tiv
e 

Re
wa

rd

0.16

0.13
0.11

0.06

Instruct

0.25
0.5

0.75
1.0

0.17

0.14 0.14
0.13

+ 2.5e+18 SFT FLOPs

0.13 0.12 0.11

0.08

+ 7.6e+18 SFT FLOPs

0.25 0.5 0.75 1.0
0

50
100

W
in

 R
at

e 
(%

)

67%
29%

0.25 0.5 0.75 1.0

87%

6% 8%

0.25 0.5 0.75 1.0

77%

19%

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Re
la

tiv
e 

Re
wa

rd
0.11

0.12

Instruct

False True

0.13

0.17

+ 2.5e+18 SFT FLOPs

0.14
0.13

+ 7.6e+18 SFT FLOPs

False True
0

50
100

W
in

 R
at

e 
(%

)

32%
68%

False True

100%

False True

80%

20%

0.08

0.10

0.12

0.15

0.17

0.20

0.23

0.25

Re
la

tiv
e 

Re
wa

rd

0.11

0.19

Instruct

False True

0.15
0.17

+ 2.5e+18 SFT FLOPs

0.14

0.11

+ 7.6e+18 SFT FLOPs

False True
0

50
100

W
in

 R
at

e 
(%

)

100%

False True

20%

80%

False True

100%

0.08

0.10

0.12

0.15

0.17

0.20

0.23

0.25

Re
la

tiv
e 

Re
wa

rd

0.12

0.19

Instruct

False True

0.17

0.13

+ 2.5e+18 SFT FLOPs

0.14

0.12

+ 7.6e+18 SFT FLOPs

False True
0

50
100

W
in

 R
at

e 
(%

)

100%

False True

100%

False True

100%

0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

Re
la

tiv
e 

Re
wa

rd

0.19

0.13

Instruct

False True

0.13

0.17

+ 2.5e+18 SFT FLOPs

0.06

0.14

+ 7.6e+18 SFT FLOPs

False True
0

50
100

W
in

 R
at

e 
(%

)

100%

False True

99%

False True

100%

0.05
0.08
0.10
0.12
0.15
0.18
0.20
0.23
0.25

Re
la

tiv
e 

Re
wa

rd

0.12 0.12

0.16

0.11

Instruct

1024
256

512
64

0.13
0.12

0.15 0.15

+ 2.5e+18 SFT FLOPs

0.11

0.05

0.13 0.12

+ 7.6e+18 SFT FLOPs

1024 256 512 64
0

50
100

W
in

 R
at

e 
(%

)

6% 6%

87%

1024 256 512 64

58% 41%

1024 256 512 64

6%

79%

16%

Im
po

rt
an

ce
 R

at
io

/T
ru

st
 R

eg
io

n

Le
ar

ni
ng

 R
at

e

D
is

co
un

t 
Ra

te

St
an

da
rd

-D
ev

ia
ti

on
 N

or
m

al
iz

ed
 A

dv
an

ta
ge

D
ec

od
in

g 
Te

m
pe

ra
tu

re

Ze
ro

-A
dv

an
ta

ge
 F

ilt
er

in
g

Cu
rr

ic
ul

um
 L

ea
rn

in
g

Er
ro

r 
Lo

g 
U

sa
ge

Ad
va

nt
ag

e 
Ap

pl
ic

at
io

n

Ef
fe

ct
iv

e 
Ba

tc
h 

Si
ze

Figure 6: Bootstrap analysis (n = 1000 samples) of hyperparameter optimization across different SFT compute budgets on
training held out tasks. Each subplot examines a different hyperparameter, including increasing SFT compute: the base
instruct model (left), +2.5×1018 SFT FLOPs (middle), and +7.6e×1018 SFT FLOPs (right). For each hyperparameter-
compute combination, the top panel shows relative reward performance with error bars indicating 95% confidence intervals,
while the bottom panel displays win rates representing the percentage of bootstrap iterations where each parameter value
achieved maximum performance. Results demonstrate that optimal hyperparameter values shift as model pre-training
compute increases, suggesting that hyperparameter selection should be adapted to the computational budget allocated to
supervised fine-tuning.

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for ICML 2025

References
Dgxc benchmarking. URL https://catalog.
ngc.nvidia.com/orgs/nvidia/teams/
dgxc-benchmarking/resources/
llama31-8b-dgxc-benchmarking-a.

M. Abdin, S. Agarwal, A. Awadallah, V. Balachandran,
H. Behl, L. Chen, G. de Rosa, S. Gunasekar, M. Java-
heripi, N. Joshi, P. Kauffmann, Y. Lara, C. C. T. Mendes,
A. Mitra, B. Nushi, D. Papailiopoulos, O. Saarikivi,
S. Shah, V. Shrivastava, V. Vineet, Y. Wu, S. Yousefi,
and G. Zheng. Phi-4-reasoning technical report, 2025.
URL https://arxiv.org/abs/2504.21318.

R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and
M. Bellemare. Deep reinforcement learning at the edge of
the statistical precipice. Advances in neural information
processing systems, 34:29304–29320, 2021.

L. Boisvert, M. Thakkar, M. Gasse, M. Caccia, T. L.
S. D. Chezelles, Q. Cappart, N. Chapados, A. La-
coste, and A. Drouin. Workarena++: Towards composi-
tional planning and reasoning-based common knowledge
work tasks, 2024. URL https://arxiv.org/abs/
2407.05291.

Q.-A. Dang and C. Ngo. Reinforcement learning for rea-
soning in small llms: What works and what doesn’t.
arXiv preprint arXiv:2503.16219, 2025. URL https:
//arxiv.org/abs/2503.16219.

T. L. S. de Chezelles, M. Gasse, A. Lacoste, M. Caccia,
A. Drouin, L. Boisvert, M. Thakkar, T. Marty, R. Assouel,
S. O. Shayegan, L. K. Jang, X. H. Lù, O. Yoran, D. Kong,
F. F. Xu, S. Reddy, G. Neubig, Q. Cappart, R. Salakhut-
dinov, and N. Chapados. The browsergym ecosystem
for web agent research. Transactions on Machine Learn-
ing Research, 2025. ISSN 2835-8856. URL https://
openreview.net/forum?id=5298fKGmv3. Ex-
pert Certification.

DeepSeek-AI, D. Guo, D. Yang, H. Zhang, J. Song,
R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi,
X. Zhang, X. Yu, Y. Wu, Z. F. Wu, Z. Gou, Z. Shao,
Z. Li, Z. Gao, A. Liu, B. Xue, B. Wang, B. Wu, B. Feng,
C. Lu, C. Zhao, C. Deng, C. Zhang, C. Ruan, D. Dai,
D. Chen, D. Ji, E. Li, F. Lin, F. Dai, F. Luo, G. Hao,
G. Chen, G. Li, H. Zhang, H. Bao, H. Xu, H. Wang,
H. Ding, H. Xin, H. Gao, H. Qu, H. Li, J. Guo, J. Li,
J. Wang, J. Chen, J. Yuan, J. Qiu, J. Li, J. L. Cai, J. Ni,
J. Liang, J. Chen, K. Dong, K. Hu, K. Gao, K. Guan,
K. Huang, K. Yu, L. Wang, L. Zhang, L. Zhao, L. Wang,
L. Zhang, L. Xu, L. Xia, M. Zhang, M. Zhang, M. Tang,
M. Li, M. Wang, M. Li, N. Tian, P. Huang, P. Zhang,
Q. Wang, Q. Chen, Q. Du, R. Ge, R. Zhang, R. Pan,
R. Wang, R. J. Chen, R. L. Jin, R. Chen, S. Lu, S. Zhou,

S. Chen, S. Ye, S. Wang, S. Yu, S. Zhou, S. Pan, S. S. Li,
S. Zhou, S. Wu, S. Ye, T. Yun, T. Pei, T. Sun, T. Wang,
W. Zeng, W. Zhao, W. Liu, W. Liang, W. Gao, W. Yu,
W. Zhang, W. L. Xiao, W. An, X. Liu, X. Wang, X. Chen,
X. Nie, X. Cheng, X. Liu, X. Xie, X. Liu, X. Yang, X. Li,
X. Su, X. Lin, X. Q. Li, X. Jin, X. Shen, X. Chen, X. Sun,
X. Wang, X. Song, X. Zhou, X. Wang, X. Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Y. Zhang, Y. Xu, Y. Li, Y. Zhao,
Y. Sun, Y. Wang, Y. Yu, Y. Zhang, Y. Shi, Y. Xiong,
Y. He, Y. Piao, Y. Wang, Y. Tan, Y. Ma, Y. Liu, Y. Guo,
Y. Ou, Y. Wang, Y. Gong, Y. Zou, Y. He, Y. Xiong,
Y. Luo, Y. You, Y. Liu, Y. Zhou, Y. X. Zhu, Y. Xu,
Y. Huang, Y. Li, Y. Zheng, Y. Zhu, Y. Ma, Y. Tang,
Y. Zha, Y. Yan, Z. Z. Ren, Z. Ren, Z. Sha, Z. Fu, Z. Xu,
Z. Xie, Z. Zhang, Z. Hao, Z. Ma, Z. Yan, Z. Wu, Z. Gu,
Z. Zhu, Z. Liu, Z. Li, Z. Xie, Z. Song, Z. Pan, Z. Huang,
Z. Xu, Z. Zhang, and Z. Zhang. Deepseek-r1: Incen-
tivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025. URL
https://arxiv.org/abs/2501.12948.

A. Drouin, M. Gasse, M. Caccia, I. H. Laradji, M. D.
Verme, T. Marty, L. Boisvert, M. Thakkar, Q. Cappart,
D. Vazquez, N. Chapados, and A. Lacoste. Workarena:
How capable are web agents at solving common knowl-
edge work tasks?, 2024.

A. Hochlehnert, H. Bhatnagar, V. Udandarao, S. Albanie,
A. Prabhu, and M. Bethge. A sober look at progress in
language model reasoning: Pitfalls and paths to repro-
ducibility, 2025. URL https://arxiv.org/abs/
2504.07086.

J. Y. Koh and et al. Visualwebarena: Evaluating multimodal
agents on realistic visually grounded web tasks. In ACL
2024, 2024. URL https://aclanthology.org/
2024.acl-long.50.

E. Z. Liu, K. Guu, P. Pasupat, T. Shi, and P. Liang. Rein-
forcement learning on web interfaces using workflow-
guided exploration. In International Conference on
Learning Representations (ICLR), 2018. URL https:
//arxiv.org/abs/1802.08802.

Z. Liu, C. Chen, W. Li, P. Qi, T. Pang, C. Du, W. S. Lee,
and M. Lin. Understanding r1-zero-like training: A crit-
ical perspective, 2025. URL https://arxiv.org/
abs/2503.20783.

S. Murty and et al. Nnetnav: Unsupervised learning of
browser agents through environment interaction in the
wild. arXiv preprint arXiv:2410.02907, 2025. URL
https://arxiv.org/abs/2410.02907.

Z. Qi, X. Liu, I. L. Iong, H. Lai, X. Sun, J. Sun, X. Yang,
Y. Yang, S. Yao, W. Xu, J. Tang, and Y. Dong. We-
bRL: Training LLM web agents via self-evolving online

9

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/dgxc-benchmarking/resources/llama31-8b-dgxc-benchmarking-a
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/dgxc-benchmarking/resources/llama31-8b-dgxc-benchmarking-a
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/dgxc-benchmarking/resources/llama31-8b-dgxc-benchmarking-a
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/dgxc-benchmarking/resources/llama31-8b-dgxc-benchmarking-a
https://arxiv.org/abs/2504.21318
https://arxiv.org/abs/2407.05291
https://arxiv.org/abs/2407.05291
https://arxiv.org/abs/2503.16219
https://arxiv.org/abs/2503.16219
https://openreview.net/forum?id=5298fKGmv3
https://openreview.net/forum?id=5298fKGmv3
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2504.07086
https://arxiv.org/abs/2504.07086
https://aclanthology.org/2024.acl-long.50
https://aclanthology.org/2024.acl-long.50
https://arxiv.org/abs/1802.08802
https://arxiv.org/abs/1802.08802
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2410.02907


495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Submission and Formatting Instructions for ICML 2025

curriculum reinforcement learning. In The Thirteenth
International Conference on Learning Representations,
2025. URL https://openreview.net/forum?
id=oVKEAFjEqv.

N. L. Roux, M. G. Bellemare, J. Lebensold, A. Bergeron,
J. Greaves, A. Fréchette, C. Pelletier, E. Thibodeau-
Laufer, S. Toth, and S. Work. Tapered off-policy re-
inforce: Stable and efficient reinforcement learning for
llms. arXiv preprint arXiv:2503.14286, 2025. URL
https://arxiv.org/abs/2503.14286.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017. URL http://arxiv.
org/abs/1707.06347.

M. Thakkar, T. Bolukbasi, S. Ganapathy, S. Vashishth,
S. Chandar, and P. Talukdar. Self-influence guided
data reweighting for language model pre-training. In
The 2023 Conference on Empirical Methods in Nat-
ural Language Processing, 2023. URL https://
openreview.net/forum?id=rXn9WO4M2p.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter,
F. Xia, E. Chi, Q. Le, and D. Zhou. Chain-of-thought
prompting elicits reasoning in large language mod-
els, 2023. URL https://arxiv.org/abs/2201.
11903.

T. Xie, D. Zhang, J. Chen, X. Li, S. Zhao, R. Cao, T. J.
Hua, Z. Cheng, D. Shin, F. Lei, Y. Liu, Y. Xu, S. Zhou,
S. Savarese, C. Xiong, V. Zhong, and T. Yu. Osworld:
Benchmarking multimodal agents for open-ended tasks
in real computer environments, 2024.

F. F. Xu, Y. Song, B. Li, Y. Tang, K. Jain, M. Bao,
Z. Z. Wang, X. Zhou, Z. Guo, M. Cao, M. Yang, H. Y.
Lu, A. Martin, Z. Su, L. Maben, R. Mehta, W. Chi,
L. Jang, Y. Xie, S. Zhou, and G. Neubig. Theagent-
company: Benchmarking llm agents on consequential
real world tasks, 2024. URL https://arxiv.org/
abs/2412.14161.

Q. Yu, Z. Zhang, R. Zhu, Y. Yuan, X. Zuo, Y. Yue,
T. Fan, G. Liu, L. Liu, X. Liu, H. Lin, Z. Lin, B. Ma,
G. Sheng, Y. Tong, C. Zhang, M. Zhang, W. Zhang,
H. Zhu, J. Zhu, J. Chen, J. Chen, C. Wang, H. Yu,
W. Dai, Y. Song, X. Wei, H. Zhou, J. Liu, W.-Y. Ma,
Y.-Q. Zhang, L. Yan, M. Qiao, Y. Wu, and M. Wang.
Dapo: An open-source llm reinforcement learning sys-
tem at scale. arXiv preprint arXiv:2503.14476, 2025.
URL https://arxiv.org/abs/2503.14476.

S. Zhou, F. F. Xu, H. Zhu, X. Zhou, R. Lo, A. Srid-
har, X. Cheng, T. Ou, Y. Bisk, D. Fried, U. Alon,

and G. Neubig. Webarena: A realistic web environ-
ment for building autonomous agents. arXiv preprint
arXiv:2307.13854, 2023. URL https://arxiv.
org/abs/2307.13854.

Y. Zhou, S. Jiang, Y. Tian, J. Weston, S. Levine,
S. Sukhbaatar, and X. Li. Sweet-rl: Training multi-turn
llm agents on collaborative reasoning tasks, 2025. URL
https://arxiv.org/abs/2503.15478.

Broader Impact
Web-based LLM agents have the potential to revolutionize
markets by enabling more cost-efficient and effective work-
flows. Our work focuses on making these agents accessible
across a range of compute budgets, empowering not only
industrial labs but also smaller research groups and individ-
uals to train their own assistants. This approach promotes
data privacy and reduces reliance on costly infrastructure.

Despite their promise, web-based agents face significant
challenges that limit their broader adoption. Issues such as
reliability, vulnerability to adversarial attacks, and limited
access to proprietary data remain key obstacles to realizing
their full potential.

Impact Statement
Authors are required to include a statement of the potential
broader impact of their work, including its ethical aspects
and future societal consequences. This statement should be
in an unnumbered section at the end of the paper (co-located
with Acknowledgements – the two may appear in either
order, but both must be before References), and does not
count toward the paper page limit. In many cases, where
the ethical impacts and expected societal implications are
those that are well established when advancing the field of
Machine Learning, substantial discussion is not required,
and a simple statement such as the following will suffice:

“This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.”

The above statement can be used verbatim in such cases, but
we encourage authors to think about whether there is content
which does warrant further discussion, as this statement will
be apparent if the paper is later flagged for ethics review.

References
Dgxc benchmarking. URL https://catalog.
ngc.nvidia.com/orgs/nvidia/teams/
dgxc-benchmarking/resources/
llama31-8b-dgxc-benchmarking-a.

10

https://openreview.net/forum?id=oVKEAFjEqv
https://openreview.net/forum?id=oVKEAFjEqv
https://arxiv.org/abs/2503.14286
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://openreview.net/forum?id=rXn9WO4M2p
https://openreview.net/forum?id=rXn9WO4M2p
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2412.14161
https://arxiv.org/abs/2412.14161
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2503.15478
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/dgxc-benchmarking/resources/llama31-8b-dgxc-benchmarking-a
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/dgxc-benchmarking/resources/llama31-8b-dgxc-benchmarking-a
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/dgxc-benchmarking/resources/llama31-8b-dgxc-benchmarking-a
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/dgxc-benchmarking/resources/llama31-8b-dgxc-benchmarking-a


550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Submission and Formatting Instructions for ICML 2025

M. Abdin, S. Agarwal, A. Awadallah, V. Balachandran,
H. Behl, L. Chen, G. de Rosa, S. Gunasekar, M. Java-
heripi, N. Joshi, P. Kauffmann, Y. Lara, C. C. T. Mendes,
A. Mitra, B. Nushi, D. Papailiopoulos, O. Saarikivi,
S. Shah, V. Shrivastava, V. Vineet, Y. Wu, S. Yousefi,
and G. Zheng. Phi-4-reasoning technical report, 2025.
URL https://arxiv.org/abs/2504.21318.

R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and
M. Bellemare. Deep reinforcement learning at the edge of
the statistical precipice. Advances in neural information
processing systems, 34:29304–29320, 2021.

L. Boisvert, M. Thakkar, M. Gasse, M. Caccia, T. L.
S. D. Chezelles, Q. Cappart, N. Chapados, A. La-
coste, and A. Drouin. Workarena++: Towards composi-
tional planning and reasoning-based common knowledge
work tasks, 2024. URL https://arxiv.org/abs/
2407.05291.

Q.-A. Dang and C. Ngo. Reinforcement learning for rea-
soning in small llms: What works and what doesn’t.
arXiv preprint arXiv:2503.16219, 2025. URL https:
//arxiv.org/abs/2503.16219.

T. L. S. de Chezelles, M. Gasse, A. Lacoste, M. Caccia,
A. Drouin, L. Boisvert, M. Thakkar, T. Marty, R. Assouel,
S. O. Shayegan, L. K. Jang, X. H. Lù, O. Yoran, D. Kong,
F. F. Xu, S. Reddy, G. Neubig, Q. Cappart, R. Salakhut-
dinov, and N. Chapados. The browsergym ecosystem
for web agent research. Transactions on Machine Learn-
ing Research, 2025. ISSN 2835-8856. URL https://
openreview.net/forum?id=5298fKGmv3. Ex-
pert Certification.

DeepSeek-AI, D. Guo, D. Yang, H. Zhang, J. Song,
R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi,
X. Zhang, X. Yu, Y. Wu, Z. F. Wu, Z. Gou, Z. Shao,
Z. Li, Z. Gao, A. Liu, B. Xue, B. Wang, B. Wu, B. Feng,
C. Lu, C. Zhao, C. Deng, C. Zhang, C. Ruan, D. Dai,
D. Chen, D. Ji, E. Li, F. Lin, F. Dai, F. Luo, G. Hao,
G. Chen, G. Li, H. Zhang, H. Bao, H. Xu, H. Wang,
H. Ding, H. Xin, H. Gao, H. Qu, H. Li, J. Guo, J. Li,
J. Wang, J. Chen, J. Yuan, J. Qiu, J. Li, J. L. Cai, J. Ni,
J. Liang, J. Chen, K. Dong, K. Hu, K. Gao, K. Guan,
K. Huang, K. Yu, L. Wang, L. Zhang, L. Zhao, L. Wang,
L. Zhang, L. Xu, L. Xia, M. Zhang, M. Zhang, M. Tang,
M. Li, M. Wang, M. Li, N. Tian, P. Huang, P. Zhang,
Q. Wang, Q. Chen, Q. Du, R. Ge, R. Zhang, R. Pan,
R. Wang, R. J. Chen, R. L. Jin, R. Chen, S. Lu, S. Zhou,
S. Chen, S. Ye, S. Wang, S. Yu, S. Zhou, S. Pan, S. S. Li,
S. Zhou, S. Wu, S. Ye, T. Yun, T. Pei, T. Sun, T. Wang,
W. Zeng, W. Zhao, W. Liu, W. Liang, W. Gao, W. Yu,
W. Zhang, W. L. Xiao, W. An, X. Liu, X. Wang, X. Chen,
X. Nie, X. Cheng, X. Liu, X. Xie, X. Liu, X. Yang, X. Li,
X. Su, X. Lin, X. Q. Li, X. Jin, X. Shen, X. Chen, X. Sun,

X. Wang, X. Song, X. Zhou, X. Wang, X. Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Y. Zhang, Y. Xu, Y. Li, Y. Zhao,
Y. Sun, Y. Wang, Y. Yu, Y. Zhang, Y. Shi, Y. Xiong,
Y. He, Y. Piao, Y. Wang, Y. Tan, Y. Ma, Y. Liu, Y. Guo,
Y. Ou, Y. Wang, Y. Gong, Y. Zou, Y. He, Y. Xiong,
Y. Luo, Y. You, Y. Liu, Y. Zhou, Y. X. Zhu, Y. Xu,
Y. Huang, Y. Li, Y. Zheng, Y. Zhu, Y. Ma, Y. Tang,
Y. Zha, Y. Yan, Z. Z. Ren, Z. Ren, Z. Sha, Z. Fu, Z. Xu,
Z. Xie, Z. Zhang, Z. Hao, Z. Ma, Z. Yan, Z. Wu, Z. Gu,
Z. Zhu, Z. Liu, Z. Li, Z. Xie, Z. Song, Z. Pan, Z. Huang,
Z. Xu, Z. Zhang, and Z. Zhang. Deepseek-r1: Incen-
tivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025. URL
https://arxiv.org/abs/2501.12948.

A. Drouin, M. Gasse, M. Caccia, I. H. Laradji, M. D.
Verme, T. Marty, L. Boisvert, M. Thakkar, Q. Cappart,
D. Vazquez, N. Chapados, and A. Lacoste. Workarena:
How capable are web agents at solving common knowl-
edge work tasks?, 2024.

A. Hochlehnert, H. Bhatnagar, V. Udandarao, S. Albanie,
A. Prabhu, and M. Bethge. A sober look at progress in
language model reasoning: Pitfalls and paths to repro-
ducibility, 2025. URL https://arxiv.org/abs/
2504.07086.

J. Y. Koh and et al. Visualwebarena: Evaluating multimodal
agents on realistic visually grounded web tasks. In ACL
2024, 2024. URL https://aclanthology.org/
2024.acl-long.50.

E. Z. Liu, K. Guu, P. Pasupat, T. Shi, and P. Liang. Rein-
forcement learning on web interfaces using workflow-
guided exploration. In International Conference on
Learning Representations (ICLR), 2018. URL https:
//arxiv.org/abs/1802.08802.

Z. Liu, C. Chen, W. Li, P. Qi, T. Pang, C. Du, W. S. Lee,
and M. Lin. Understanding r1-zero-like training: A crit-
ical perspective, 2025. URL https://arxiv.org/
abs/2503.20783.

S. Murty and et al. Nnetnav: Unsupervised learning of
browser agents through environment interaction in the
wild. arXiv preprint arXiv:2410.02907, 2025. URL
https://arxiv.org/abs/2410.02907.

Z. Qi, X. Liu, I. L. Iong, H. Lai, X. Sun, J. Sun, X. Yang,
Y. Yang, S. Yao, W. Xu, J. Tang, and Y. Dong. We-
bRL: Training LLM web agents via self-evolving online
curriculum reinforcement learning. In The Thirteenth
International Conference on Learning Representations,
2025. URL https://openreview.net/forum?
id=oVKEAFjEqv.

11

https://arxiv.org/abs/2504.21318
https://arxiv.org/abs/2407.05291
https://arxiv.org/abs/2407.05291
https://arxiv.org/abs/2503.16219
https://arxiv.org/abs/2503.16219
https://openreview.net/forum?id=5298fKGmv3
https://openreview.net/forum?id=5298fKGmv3
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2504.07086
https://arxiv.org/abs/2504.07086
https://aclanthology.org/2024.acl-long.50
https://aclanthology.org/2024.acl-long.50
https://arxiv.org/abs/1802.08802
https://arxiv.org/abs/1802.08802
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2410.02907
https://openreview.net/forum?id=oVKEAFjEqv
https://openreview.net/forum?id=oVKEAFjEqv


605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Submission and Formatting Instructions for ICML 2025

N. L. Roux, M. G. Bellemare, J. Lebensold, A. Bergeron,
J. Greaves, A. Fréchette, C. Pelletier, E. Thibodeau-
Laufer, S. Toth, and S. Work. Tapered off-policy re-
inforce: Stable and efficient reinforcement learning for
llms. arXiv preprint arXiv:2503.14286, 2025. URL
https://arxiv.org/abs/2503.14286.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017. URL http://arxiv.
org/abs/1707.06347.

M. Thakkar, T. Bolukbasi, S. Ganapathy, S. Vashishth,
S. Chandar, and P. Talukdar. Self-influence guided
data reweighting for language model pre-training. In
The 2023 Conference on Empirical Methods in Nat-
ural Language Processing, 2023. URL https://
openreview.net/forum?id=rXn9WO4M2p.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter,
F. Xia, E. Chi, Q. Le, and D. Zhou. Chain-of-thought
prompting elicits reasoning in large language mod-
els, 2023. URL https://arxiv.org/abs/2201.
11903.

T. Xie, D. Zhang, J. Chen, X. Li, S. Zhao, R. Cao, T. J.
Hua, Z. Cheng, D. Shin, F. Lei, Y. Liu, Y. Xu, S. Zhou,
S. Savarese, C. Xiong, V. Zhong, and T. Yu. Osworld:
Benchmarking multimodal agents for open-ended tasks
in real computer environments, 2024.

F. F. Xu, Y. Song, B. Li, Y. Tang, K. Jain, M. Bao,
Z. Z. Wang, X. Zhou, Z. Guo, M. Cao, M. Yang, H. Y.
Lu, A. Martin, Z. Su, L. Maben, R. Mehta, W. Chi,
L. Jang, Y. Xie, S. Zhou, and G. Neubig. Theagent-
company: Benchmarking llm agents on consequential
real world tasks, 2024. URL https://arxiv.org/
abs/2412.14161.

Q. Yu, Z. Zhang, R. Zhu, Y. Yuan, X. Zuo, Y. Yue,
T. Fan, G. Liu, L. Liu, X. Liu, H. Lin, Z. Lin, B. Ma,
G. Sheng, Y. Tong, C. Zhang, M. Zhang, W. Zhang,
H. Zhu, J. Zhu, J. Chen, J. Chen, C. Wang, H. Yu,
W. Dai, Y. Song, X. Wei, H. Zhou, J. Liu, W.-Y. Ma,
Y.-Q. Zhang, L. Yan, M. Qiao, Y. Wu, and M. Wang.
Dapo: An open-source llm reinforcement learning sys-
tem at scale. arXiv preprint arXiv:2503.14476, 2025.
URL https://arxiv.org/abs/2503.14476.

S. Zhou, F. F. Xu, H. Zhu, X. Zhou, R. Lo, A. Srid-
har, X. Cheng, T. Ou, Y. Bisk, D. Fried, U. Alon,
and G. Neubig. Webarena: A realistic web environ-
ment for building autonomous agents. arXiv preprint
arXiv:2307.13854, 2023. URL https://arxiv.
org/abs/2307.13854.

Y. Zhou, S. Jiang, Y. Tian, J. Weston, S. Levine,
S. Sukhbaatar, and X. Li. Sweet-rl: Training multi-turn
llm agents on collaborative reasoning tasks, 2025. URL
https://arxiv.org/abs/2503.15478.

12

https://arxiv.org/abs/2503.14286
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://openreview.net/forum?id=rXn9WO4M2p
https://openreview.net/forum?id=rXn9WO4M2p
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2412.14161
https://arxiv.org/abs/2412.14161
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2503.15478


660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Submission and Formatting Instructions for ICML 2025

A. You can have an appendix here.
You can have as much text here as you want. The main body must be at most 8 pages long. For the final version, one more
page can be added. If you want, you can use an appendix like this one.

The \onecolumn command above can be kept in place if you prefer a one-column appendix, or can be removed if you
prefer a two-column appendix. Apart from this possible change, the style (font size, spacing, margins, page numbering, etc.)
should be kept the same as the main body.

A. Extended Learning and Saturation Analysis

0 2
Epoch

choose-listclick-checkboxes-softclick-button-sequencecopy-paste-2count-shapeclick-widgetclick-colorclick-collapsible-nodelayclick-collapsible-2-nodelayclick-collapsible-2click-checkboxes-transferclick-dialog-2click-dialogclick-linkclick-tab-2-mediumclick-tabclick-tab-2click-tab-2-hardclick-menu-2click-test-2click-test-transferclick-testemail-inbox-star-replyenter-dateenter-textenter-text-dynamicenter-timedrag-sort-numbersdraw-circledraw-lineemail-inboxemail-inbox-deleteemail-inbox-forwardemail-inbox-forward-nlemail-inbox-forward-nl-turkuse-spinnersocial-media-allvisual-additiontext-transformsocial-media-somesimple-algebrasign-agreementscroll-text-2social-mediaorder-foodnavigate-treemulti-orderingslogin-user-popupemail-inbox-replyemail-inbox-noscrollemail-inbox-importantfind-greatestfind-wordfocus-text-2generate-numberread-tablephone-bookscroll-textread-table-2odd-or-evenmulti-layoutsidentify-shapelogin-userascending-numberscircle-centerbisect-anglebook-flightcount-sidescopy-pasteclick-menuclick-scroll-listclick-shapechoose-date-easychoose-date-mediumchoose-date-nodelaychoose-datedrag-shapesdrag-items-griddrag-itemsdrag-shapes-2drag-circledrag-boxdaily-calendarguess-numbergrid-coordinateform-sequence-2form-sequencedrag-cuberesize-textareahighlight-texthot-coldright-anglesearch-enginetext-editortic-tac-toeuse-autocomplete-nodelayuse-autocompleteuse-colorwheel-2use-colorwheelbuy-ticketclick-buttonclick-checkboxesclick-collapsibleclick-optionclick-tab-2-easyclick-shadesunicode-testsimple-arithmeticenter-passwordfocus-textform-sequence-3email-inbox-nl-turkenter-text-2click-checkboxes-largeclick-piefind-midpointclick-pie-nodelaydrag-single-shapehighlight-text-2stock-marketuse-slideruse-slider-2Average TrainAverage Test

Ta
sk

SFT

5 10 20
Epoch

Approach 0: Continued SFT

10 15 20
Epoch

Approach 1: On-Policy RL LLaMA 70B

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Per task performance of SFT and SFT+RL agents on MiniWob++.

Challenges in Agent-Environment Interaction In this section we talk about the general challenges faced by the agent to
interact effectively with the environment.

• Observation/action space mismatch: One of the important thing to note specifically in our web environment is the
observation space which the agent uses is a bit different from the action space. Multiple times, the agent can see the
correct action in the AxTree but the action space, the icon is not visible and to make it visible, the agent needs to scroll

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Submission and Formatting Instructions for ICML 2025

0 4
Epoch

knowledge-base-search
order-apple-mac-book-pro15

order-ipad-mini
order-ipad-pro

order-apple-watch
order-development-laptop-p-c

multi-chart-value-retrieval
single-chart-value-retrieval

create-incident
all-menu

sort-incident-list
sort-hardware-list
order-sales-laptop
filter-incident-list

filter-asset-list
filter-change-request-list

create-hardware-asset
filter-hardware-list

filter-user-list
filter-service-catalog-item-list

order-developer-laptop
single-chart-min-max-retrieval

sort-change-request-list
sort-asset-list

sort-service-catalog-item-list
sort-user-list

order-loaner-laptop
create-user

create-change-request
multi-chart-min-max-retrieval

order-standard-laptop
create-problem
impersonation

Average Train
Average Test

Ta
sk

0.00 0.35
0.25 0.47
0.00 0.22
0.00 0.26
0.50 0.48
0.00 0.48
0.00 0.05
0.00 0.00
0.00 0.08
0.00 0.06
0.25 0.25
0.25 0.23
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.17
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.31
0.07 0.21
0.00 0.00
0.29 0.29
0.00 0.05
0.00 0.11
0.00 0.02
0.03 0.08
0.05 0.14

SFT

10 15 20
Epoch

0.38 0.37 0.24
0.81 0.78 0.72
0.51 0.67 0.44
0.61 0.51 0.57
0.73 0.80 0.82
0.67 0.67 0.71
0.00 0.00 0.05
0.00 0.00 0.00
0.16 0.05 0.18
0.13 0.18 0.19
0.25 0.25 0.25
0.25 0.25 0.25
0.16 0.44 0.19
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.27 0.22 0.28
0.07 0.06 0.06
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.02 0.00 0.00
0.52 0.57 0.47
0.14 0.17 0.17
0.01 0.04 0.02
0.41 0.45 0.44
0.35 0.55 0.48
0.40 0.62 0.58
0.00 0.00 0.00
0.13 0.13 0.12
0.26 0.34 0.31

Approach 0: Continued SFT

10 15 20
Epoch

0.77 0.55 0.48
1.00 0.86 0.85
0.75 0.71 0.45
0.55 0.65 0.73
0.98 0.92 0.79
0.65 0.62 0.81
0.00 0.00 0.00
0.00 0.00 0.00
0.03 0.02 0.12
0.10 0.01 0.00
0.25 0.25 0.26
0.25 0.25 0.25
0.26 0.14 0.20
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.12 0.23 0.25
0.12 0.16 0.14
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.07 0.06
0.69 0.57 0.51
0.30 0.38 0.39
0.04 0.04 0.08
0.32 0.39 0.31
0.37 0.41 0.38
0.33 0.42 0.50
0.00 0.00 0.00
0.15 0.14 0.13
0.29 0.31 0.31

Approach 1: On-Policy RL
1.00
1.00
1.00
1.00
1.00
0.75
0.33
0.33
0.25
0.25
0.25
0.25
0.25
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.80
0.71
0.60
0.57
0.43
0.36
0.00
0.19
0.50

LLaMA 70B

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8: Per task performance of SFT and SFT+RL agents on WorkArena.

down and do the action. This mismatch causes huge problems (Koh and et al., 2024)

• UI Misuse: The agent tries to interact with items in the environment in ways that it is not designed. For example, the
agent trying to fill in a checkbox with value True while it should just click on it. (Murty and et al., 2025)

• Repeating actions: A common issue we observed is the repetition of actions across multiple consecutive steps, often
accompanied by verbose and redundant chains of thought. The agent frequently restates similar thoughts or re-executes
the same actions unnecessarily, leading to inefficiencies and sometimes getting stuck in loops. (Murty and et al., 2025).

B. Deriving Compute Cost
FLOPs Estimation Methodology Flop calculations are based on model architecture, token counts, and average sequence
lengths observed during training and evaluation.

FLOPs per Token

We estimate FLOPs per token using the following formula, adapted from nvidia benchmarking(ben):

FLOPsper token = (FLOPsattn + FLOPsMLP + FLOPsembed)× (1 + backward multiplier) (4)

Where:

FLOPsattn = 12× (number of layers) × (hidden size)2

×
(
1 +

number of query groups
number of attention heads

+
sequence length

hidden size

)
(5)

FLOPsMLP = 18× (number of layers) × (hidden size) × FFN (6)
FLOPsembed = 6× vocabulary size × (hidden size) (7)

On-Policy FLOPs (LLaMA-8B)

We compute the total FLOPs for each on-policy epoch by summing the training and testing FLOPs:

FLOPstrain = Ntrain × FLOPs(backward=3)
per token (8)

FLOPstest = Ntest × FLOPs(backward=0)
per token (9)

FLOPsepoch = FLOPstrain + FLOPstest (10)

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Submission and Formatting Instructions for ICML 2025

Where Ntrain and Ntest are the number of tokens used for training and evaluation respectively. Sequence length S is measured
per epoch from logged metrics.

Offline FLOPs (Generation: LLaMA-70B, Training: LLaMA-8B)

Offline training includes two compute components:

• Data Generation (LLaMA-70B, forward-only):

FLOPsgen = Ngen × FLOPs(70B,backward=0)
per token (11)

where Ngen = avg seq len × samples per epoch (from dataset metadata).

• Training (LLaMA-8B, with backward pass):

FLOPstrain = Ngen × FLOPs(8B,backward=3)
per token (12)

The total FLOPs per offline epoch is:

FLOPsepoch = FLOPsgen + FLOPstrain (13)

All FLOPs values are reported in exaFLOPs by dividing the total FLOPs by 1018.

C. Extended Related Work
The Reproducibility Crisis in RL. The reproducibility crisis in large language models (LLMs) and reinforcement learning
(RL) has garnered increasing attention, particularly due to the reliance on single seed results that distort the perceived
performance of models. The reproducibility challenge1 organized every year is a positive step towards addressing this.
More concretely, Hochlehnert et al. (2025) provide a critical examination of how such practices undermine the reliability of
published findings, revealing that many reported gains are sensitive to implementation choices, such as random seeds and
prompt formatting (Hochlehnert et al., 2025).

Bandit-domain RLHF with LLMs. Previous work in RL for LLMs has predominantly focused on single-step tasks,
which have shown effectiveness in mathematical reasoning and code generation (Yu et al., 2025; DeepSeek-AI et al., 2025;
Roux et al., 2025). While these approaches exhibit promising results, they are limited in their applicability to real-world
scenarios, which often require multistep decision-making capabilities. The narrow focus on bandit-style problems fails to
address the complexities inherent in tasks that demand sequential interaction, highlighting a significant gap in the current
research landscape.

Interactive Agent Benchmarks. To assess the capabilities of LLM agents in more realistic environments, benchmarks
such as WebArena (Zhou et al., 2023), WorkArena (Drouin et al., 2024; Boisvert et al., 2024), the Agent Company (Xu et al.,
2024), and OSWorld (Xie et al., 2024) have been designed to evaluate agents on multi-step tasks across various domains.
These benchmarks expose the limitations of current LLM agents, revealing that while they may perform well in controlled
settings, their performance in practical applications remains subpar, underscoring the need for further advancements in agent
robustness and generalization to multi-step planning.

Best prectices in deep RL. Building on the recognition of reproducibility challenges and unstable RL training of LLM
agents, recent studies have proposed best practices for training LLM agents using RL methods. Dang and Ngo (2025)
recommend leveraging high quality data, balancing easy and hard problems, and controlling length generation with cosine
reward. Yu et al. (2025) promote higher clipping in the GRPO loss to promote diversity and avoid entropy collapse, dynamic
sampling to improve training efficiency and stability, token level gradients for long CoT sequences, and overlong reward
shaping to reduce reward noise. Roux et al. (2025) introduce tapered variant of importance sampling to speed up learning
while maintaining stable learning dynamics. The proposed method (TOPR) allows the handling of both positive and negative
examples in a fully offline setting. More generally, Hochlehnert et al. (2025) emphasizes the need for greater methodological
precision, particularly concerning decoding parameters, random seeds, prompt formatting, as well as the hardware and
software frameworks, to guarantee transparent and thorough assessments of model performance.

1https://reproml.org/

15

https://reproml.org/


825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Submission and Formatting Instructions for ICML 2025

LLM Agents trained with RL on multi-step environments. Recent advancements have sought to bridge the gap in
training LLM agents for multi-step environments, with approaches like WebRL (Qi et al., 2025) and SWEET-RL (Zhou
et al., 2025) demonstrating significant progress. WebRL employs a self-evolving curriculum to address the challenges of
sparse feedback and task scarcity, successfully enhancing the performance of open LLMs in web-based tasks (Qi et al.,
2025). Similarly, SWEET-RL introduces a hierarchical structure that enables effective credit assignment over multiple turns,
improving policy learning and generalization in collaborative reasoning tasks (Zhou et al., 2025). These studies collectively
illustrate the necessity of adapting RL techniques to accommodate the complexities of multi-step interactions, paving the
way for more capable and versatile LLM agents.

D. Test Set Hyper-Parameter Bootstrap Analysis
We overall find similar results between the held-out train and test tasks with respect to optimal hyper-parameters. While we
see no large deviations, we find that some parameters such as curriculum learning from the instruct model and using error
logs can have a larger beneficial effect on the held-out testing tasks.

16



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Submission and Formatting Instructions for ICML 2025

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Re
la

tiv
e 

Re
wa

rd 0.15

0.09

Instruct

False True

0.13

0.11

+ 2.5e+18 SFT FLOPs

0.07 0.06

+ 7.6e+18 SFT FLOPs

False True
0

50
100

W
in

 R
at

e 
(%

)

100%

False True

87%

13%

False True

82%

18%

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Re
la

tiv
e 

Re
wa

rd

0.11

0.14

Instruct

1e-06 5e-07

0.14 0.13

+ 2.5e+18 SFT FLOPs

0.06 0.06

+ 7.6e+18 SFT FLOPs

1e-06 5e-07
0

50
100

W
in

 R
at

e 
(%

)

95%

1e-06 5e-07

55% 45%

1e-06 5e-07

72%
28%

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Re
la

tiv
e 

Re
wa

rd 0.13
0.15

0.07

0.10

Instruct

0.5
0.9

0.95
0.98

0.09

0.12 0.13 0.13

+ 2.5e+18 SFT FLOPs

0.05 0.05 0.05
0.06

+ 7.6e+18 SFT FLOPs

0.5 0.9 0.95 0.98
0

50
100

W
in

 R
at

e 
(%

)

10%

87%

0.5 0.9 0.95 0.98

24% 33% 43%

0.5 0.9 0.95 0.98

10% 18% 8%
63%

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Re
la

tiv
e 

Re
wa

rd 0.14

0.10

Instruct

False True

0.14

0.11

+ 2.5e+18 SFT FLOPs

0.06 0.06

+ 7.6e+18 SFT FLOPs

False True
0

50
100

W
in

 R
at

e 
(%

)

99%

False True

98%

False True

48% 52%

0.00

0.03

0.05

0.08

0.10

0.13

0.15

Re
la

tiv
e 

Re
wa

rd 0.11 0.11

0.08
0.07

Instruct

0.25
0.5

0.75
1.0

0.13
0.12 0.12

0.11

+ 2.5e+18 SFT FLOPs

0.06 0.06 0.06
0.05

+ 7.6e+18 SFT FLOPs

0.25 0.5 0.75 1.0
0

50
100

W
in

 R
at

e 
(%

)

52% 46%

0.25 0.5 0.75 1.0

57%
20% 20%

0.25 0.5 0.75 1.0

37% 23% 40%

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
Re

la
tiv

e 
Re

wa
rd

0.09
0.11

Instruct

False True

0.11

0.14

+ 2.5e+18 SFT FLOPs

0.06 0.07

+ 7.6e+18 SFT FLOPs

False True
0

50
100

W
in

 R
at

e 
(%

)

30%
70%

False True

6%

94%

False True

47% 53%

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Re
la

tiv
e 

Re
wa

rd 0.13
0.15

Instruct

False True

0.12
0.13

+ 2.5e+18 SFT FLOPs

0.07 0.06

+ 7.6e+18 SFT FLOPs

False True
0

50
100

W
in

 R
at

e 
(%

)

16%

84%

False True

28%
72%

False True

78%
22%

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Re
la

tiv
e 

Re
wa

rd

0.11

0.14

Instruct

False True

0.14

0.11

+ 2.5e+18 SFT FLOPs

0.05
0.07

+ 7.6e+18 SFT FLOPs

False True
0

50
100

W
in

 R
at

e 
(%

)

9%

91%

False True

92%

8%

False True

95%

0.00

0.03

0.05

0.08

0.10

0.13

0.15

0.18

Re
la

tiv
e 

Re
wa

rd

0.13
0.11

Instruct

False True

0.12
0.14

+ 2.5e+18 SFT FLOPs

0.05
0.07

+ 7.6e+18 SFT FLOPs

False True
0

50
100

W
in

 R
at

e 
(%

)

82%

18%

False True

15%

85%

False True

10%

90%
0.00

0.03

0.05

0.08

0.10

0.12

0.15

0.18

Re
la

tiv
e 

Re
wa

rd

0.10

0.13 0.13

0.09

Instruct

1024
256

512
64

0.10
0.12

0.13 0.13

+ 2.5e+18 SFT FLOPs

0.06

0.02

0.05 0.05

+ 7.6e+18 SFT FLOPs

1024 256 512 64
0

50
100

W
in

 R
at

e 
(%

)

6%
40% 55%

1024 256 512 64

46% 53%

1024 256 512 64

76%
21%

Im
po

rt
an

ce
 R

at
io

/T
ru

st
 R

eg
io

n

Le
ar

ni
ng

 R
at

e

D
is

co
un

t 
Ra

te

St
an

da
rd

-D
ev

ia
ti

on
 N

or
m

al
iz

ed
 A

dv
an

ta
ge

D
ec

od
in

g 
Te

m
pe

ra
tu

re

Ze
ro

-A
dv

an
ta

ge
 F

ilt
er

in
g

Cu
rr

ic
ul

um
 L

ea
rn

in
g

Er
ro

r 
Lo

g 
U

sa
ge

Ad
va

nt
ag

e 
Ap

pl
ic

at
io

n

Ef
fe

ct
iv

e 
Ba

tc
h 

Si
ze

Figure 9: Bootstrap analysis (n = 1000 samples) of hyperparameter optimization across different SFT compute budgets
on test held out tasks. Each subplot examines a different hyperparameter, including increasing SFT compute: the base
instruct model (left), +2.5e+18 SFT FLOPs (middle), and +7.6e+18 SFT FLOPs (right). For each hyperparameter-compute
combination, the top panel shows relative reward performance with error bars indicating 95% confidence intervals, while the
bottom panel displays win rates representing the percentage of bootstrap iterations where each parameter value achieved
maximum performance. Results demonstrate that optimal hyperparameter values often shift as model pre-training compute
increases, suggesting that hyperparameter selection should be adapted based on the computational budget allocated to SFT.

17


