
Linear Time Approximation Algorithm for Column
Subset Selection with Local Search

Yuanbin Zou1,2, Ziyun Huang3, Jinhui Xu4, Jianxin Wang1,2,5, Qilong Feng1,2,∗
1School of Computer Science and Engineering, Central South University,

Changsha 410083, China
2Xiangjiang Laboratory, Changsha 410205, China

3Department of Computer Science and Software Engineering, Penn State Erie,
The Behrend College

4Department of Computer Science and Engineering, State University of New York at Buffalo,
NY, USA

5The Hunan Provincial Key Lab of Bioinformatics, Central South University,
Changsha 410083, China

yuanbinzou@csu.edu.cn, csufeng@mail.csu.edu.cn,
zxh201@psu.edu, jinhui@buffalo.edu, jxwang@mail.csu.edu.cn

Abstract

The Column Subset Selection (CSS) problem has been widely studied in dimen-
sionality reduction and feature selection. The goal of the CSS problem is to output
a submatrix S, consisting of k columns from an n× d input matrix A that mini-
mizes the residual error ∥A− SS†A∥2F , where S† is the Moore-Penrose inverse
matrix of S. Many previous approximation algorithms have non-linear running
times in both n and d, while the existing linear-time algorithms have a relatively
larger approximation ratios. Additionally, the local search algorithms in existing
results for solving the CSS problem are heuristic. To achieve linear running time
while maintaining better approximation using a local search strategy, we propose
a local search-based approximation algorithm for the CSS problem with exactly
k columns selected. A key challenge in achieving linear running time with the
local search strategy is how to avoid exhaustive enumerations of candidate columns
for constructing swap pairs in each local search step. To address this issue, we
propose a two-step mixed sampling method that reduces the number of enumer-
ations for swap pair construction from O(dk) to k in linear time. Although the
two-step mixed sampling method reduces the search space of local search strat-
egy, bounding the residual error after swaps is a non-trivial task. To estimate the
changes in residual error after swaps, we propose a matched swap pair construction
method to bound the approximation loss, ensuring a constant probability of loss
reduction in each local search step. In expectation, these techniques enable us to
obtain the local search algorithm for the CSS problem with theoretical guarantees,
where a 53(k + 1)-approximate solution can be obtained in linear running time
O(ndk4 log k). Empirical experiments show that our proposed algorithm achieves
better quality and time compared to previous algorithms on both small and large
datasets. Moreover, it is at least 10 times faster than state-of-the-art algorithms
across all large-scale datasets.

∗Corresponding Author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

1 Introduction

In machine learning, handling high-dimensional datasets often requires the use of dimensionality re-
duction techniques, among which Singular Value Decomposition (SVD) is one of the most commonly
utilized techniques in practice. The goal of SVD is to minimize the Frobenius norm of the error,
aiming to achieve a low-rank approximation of a matrix with theoretical guarantees. An alternative
way is to select a small subset of columns from the matrix as representations to well approximate the
given matrix, which is known as the Column Subset Selection (CSS) problem. The CSS problem has
been widely studied in machine learning for dimensionality reduction with improved interpretability.
As pointed out in [4, 27, 17, 13, 20], the number of selected columns k is much smaller than both n
and d, i.e., k ≪ min{n, d}. We consider the following CSS problem.

Definition 1.1. Given a matrix A ∈ Rn×d and a positive integer k, the goal of CSS problem is to
select k columns of A forming a matrix S ∈ Rn×k that minimizes the residual error

∥A− SS†A∥2F ,

where S† represents the Moore-Penrose inverse matrix of S, and ∥A∥2F =
∑n

i=1

∑d
j=1 A

2
ij denotes

the square of Frobenius norm.

The CSS problem is known to be UG-hard [9]. For the CSS problem, several heuristic algorithms
[2, 22, 23] were proposed. However, a main concern for these heuristics is the lack of theoretical
guarantees on both the running time and approximation error. Several (1 + ϵ)-approximation bi-
criteria algorithms have been proposed for the CSS problem [19, 4, 13, 15]. Many of these algorithms
achieve running time of O(nd · poly(k)), which is referred to as linear in both n and d [26, 11].
Although these algorithms achieve (1+ϵ)-approximation, they require selecting more than k columns.
For the CSS problem with exactly k columns selected, Boutsidis et al. [5] proposed an O(k2 log k)-
approximation algorithm with O(min{n2d, nd2}) running time, using leverage score sampling
and QR decomposition methods. Deshpande and Rademacher [13] proposed a volume sampling
algorithm, which yields a (k + 1)-approximation in time O(kdn3 log n). Guruswami and Sinop [19]
gave an improved approximation algorithm with O(n2dk) running time using fast volume sampling
method, achieving the same (k+1)-approximation. The running time of these algorithms has at least
a quadratic dependence on n or d. Deshpande and Vempala [15] presented a linear-time algorithm
with (k + 1)!-approximation using adaptive sampling method.

Although the algorithm using the adaptive sampling method [15] achieves the linear running time, its
approximation ratio is considerably larger than other algorithms. Moreover, as shown in [23], local
search can improve the quality of the solution for the CSS problem. However, a potential limitation
of the local search algorithm proposed in [23] is the lack of theoretical guarantees on the number of
local search steps required for reaching a convergence.

To apply the local search strategy to handle the CSS problem, the running time of each iteration is
quadratically dependent on d, making it impractical for large-scale datasets. More specifically, the
single-swap strategy in local search enumerates O(kd) swaps to improve the current solution, where
the swap pair is constructed between the given matrix and the set of selected columns during the local
search step. This method results in an O(nd2k2) running time in each iteration, making it difficult
to maintain linear running time in both n and d. Secondly, to the best of our knowledge, there is no
available result that provides an approximation guarantee for solving the CSS problem using the local
search strategy.

1.1 Our Contribution

In this paper, we propose a local search algorithm for solving the CSS problem with running time
linear in both n and d. The key challenge for the local search algorithm is to avoid the O(nd2k2)
running time caused by enumerating all possible swap pairs. To overcome this challenge, we propose
a two-step mixed sampling method that selects a candidate column with a specific probability for
swapping, reducing the enumeration of swap pairs from O(dk) to k. By applying the two-step mixed
sampling method, the running time of each local search step is reduced from O(nd2k2) to O(ndk2).

Although the two-step mixed sampling method accelerates the local search process, bounding the
residual error of the solution after swaps is a non-trivial task. Specifically, it is challenging to
theoretically estimate the improvement in the approximation loss of the current solution after swaps.

2

To address this issue, we propose a matched swap-pair construction method. This method identifies
matched column pairs between the current solution and the optimal solution. Based on these matched
pairs, we guarantee that the two-step mixed sampling method can find a column. With constant
probability, this column reduces the residual error of the updated solution by a multiplicative factor
of 1−Θ(1/k) in each local search step. With this approach, the expected number of iterations can
be bounded by O(k2 log k). Therefore, we obtain a local search-based approximation algorithm with
O(ndk4 log k) running time. The main contributions of this paper are summarized as follows.

• For the CSS problem, we propose a new algorithm that uses local search with a two-step
mixed sampling method. This method avoids the quadratic dependence of d on running time
by reducing the number of swap pair enumerations during the local search process. Addi-
tionally, we propose a matched swap-pair construction method to bound the improvement of
residual error during swaps. With these techniques, we achieve a 53(k + 1)-approximation
with exactly k columns selected, where the running time of our proposed algorithm is
O(ndk4 log k).

• Numerical experiments show that our algorithm performs better in terms of quality on both
small and large datasets compared to previous algorithms that selects exactly k columns,
and is at least 10 times faster than the state-of-the-art algorithms on all large datasets.

Table 1: Comparison of existing results for the CSS Problem with exactly k columns selected, where
n is the number of rows in the given matrix, d is the number of columns, and k is the number of
selected columns.

References Approximation Ratio Method Running Time
[15] (k + 1)! adaptive sampling O(ndk2)
[5] O(k2 log k) leverage score sampling + QR decomposition O(min{n2d, nd2})

[13] k + 1 volume sampling O(kn3d log n)
[19] k + 1 fast volume sampling O(n2dk)

This paper 53(k + 1) local search + two-step mixed sampling O(ndk4 log k)

1.2 Related Work

Within the framework of rank-revealing QR factorization (RRQR) [6], several poly(k, d)-
approximation results [3, 7, 18] have been proposed. These results achieve running time of O(nd2)
while selecting exactly k columns to solve the CSS problem with Frobenius norm error. Deshpande
et al. [14] gave the lower bound of (k + 1)-approximation for the problem. Furthermore, Boutsidis
et al. [5] proposed a randomized algorithm with O(min{n2d, nd2}) running time and O(k2 log k)-
approximation. More precisely, Deshpande and Rademacher [13] provided a deterministic (k + 1)-
approximation with O(dn3 log nk) running time. To improve the running time, Guruswami and Sinop
[19] proposed an O(n2dk) time randomized algorithm with (k + 1)-approximation. Additionally,
there are many bi-criteria algorithms that relax the number of selected columns. Volume sampling
methods have been widely applied to the CSS problem. Deshpande and Vempala [15] utilized these
methods to achieve a PTAS, selecting O(k/ϵ2 + k2 log k) columns. Boutsidis et al. [4] proposed a
linear-time algorithm with a (1 + ϵ)-approximation, requiring O(k/ϵ) columns selected. Guruswami
and Sinop [19] developed a deterministic algorithm that also achieves a (1 + ϵ)-approximation with
O(k/ϵ) columns selected. Civril and Magdon-Ismail [10] gave improved bounds for obtaining a
PTAS using k-leverage score sampling and SVD, by selecting Õ(k log k/ϵ2) 2 columns. Altschuler
et al. [1] developed a distributed greedy algorithm for the objective ∥SS†A∥2F . Wang and Singh [28]
studied the CSS problem in the missing-data case. Several bi-criteria algorithms have been proposed
for the CSS problems with ℓ1 norm [12, 21, 25, 8]. In both offline and online settings, Woodruff and
Yasuda [29] provided several bi-criteria algorithms for the CSS problem with the ℓp norm.

2 Preliminaries

For any positive integer n, let [n] denote the set {1, 2, . . . , n}. Given a matrix A ∈ Rn×d, let Aij

be the element in the i-th row and the j-th column of A, and define the Frobenius norm of A as
2Õ(n) denotes the asymptotic complexity, ignoring polylogarithmic factors, i.e., terms of the form

poly(logn).

3

Algorithm 1 LSCSS
Input: a matrix A ∈ Rn×d, an integer k, and the number of iterations T
Output: a submatrix consisting of k columns from A

1: Initialize I = ∅, E = A,B = A.
2: for t = 1, 2 do
3: for j ← 1, 2, . . . , k do
4: Sample a column index i ∈ [d] with probability pi = ∥E:i∥22/∥E∥2F .
5: Update I = I ∪ {i} and E = A−AIA

†
IA.

6: end for
7: if t is equal to 1 then
8: Initialize an n× d zero matrix D, and set each diagonal entry Dii =

∥A−AIA
†
IA∥F

(52min{n,d}(k+1)!)1/2
.

9: Compute A← A+D and set I = ∅.
10: end if
11: end for
12: Compute A′ = B +D and set S = A′

I .
13: for i← 1, 2, . . . , T do
14: S ← LS(A′, k, S).
15: end for
16: Let I be the set of column indices of S.
17: return AI .

Algorithm 2 LS
Input: a matrix A′ ∈ Rn×d, an integer k, and a matrix S ∈ Rn×k

Output: a submatrix consisting of k columns from A′

1: Compute the residual matrix E = A′ − SS†A′.
2: Sample a set C of 10k column indices from A′, where each column index i is picked with

probability ∥E:i∥22/∥E∥2F .
3: Uniformly sample an index p ∈ C.
4: Let I be the set of the columns indices of S in A′.
5: if there exists an index q ∈ I such that f(A′, A′

I\{q}∪{p}) < f(A′, S) then
6: Find an index q ∈ I that minimizes f(A′, A′

I\{q}∪{p}).
7: I = I\{q} ∪ {p}.
8: end if
9: return A′

I .

∥A∥2F =
∑n

i=1

∑d
j=1 A

2
ij . Denote A:j as the j-th column of A, and Ai: as the i-th row of A. Let

A⊤ be the transpose of A and A† be the Moore-Penrose inverse of A. Given an n × d matrix A,
let I be the set of column indices from A, and let AI denote the n× |I| submatrix of A consisting
of the columns corresponding to the indices in I. For a matrix A, the linear span of its column
vectors is denoted as span (A). For any two n × d matrices A and B, ∥AB∥F ≤ ∥A∥F ∥B∥2 and
∥AB∥F ≤ ∥A∥2∥B∥F . Given any matrix A ∈ Rn×d, the singular value decomposition (SVD)
of A can be written as A =

∑n
i=1 σiuiv

⊤
i , where σ1 ≥ . . . ≥ σn ≥ 0 are the singular values,

{u1, . . . , un} ⊆ Rn are the left singular vectors, and {v1, . . . , vd} ⊆ Rd are the right singular
vectors. Denote rank(A) be the rank of a matrix A, which is the number of non-zero singular values
of A. Moreover, we denote Ak =

∑k
i=1 σiuiv

⊤
i as the best rank-k approximation to A under the

Frobenius norm. The spectral norm of A, denoted by ∥A∥2, is defined as the largest singular value
of A, i.e., ∥A∥2 = σmax(A). Given a solution S to the CSS problem on matrix A, we define the
residual error of S as f(A,S) = ∥A− SS†A∥2F .

3 Linear Time Local Search Algorithm for CSS Problem

In this section, we propose a local search approximation algorithm for solving the CSS problem,
called LSCSS, which maintains a running time linear in both n and d. Directly applying single-swap

4

local search to solve the CSS problem results in an O(nd2k2) running time by enumerating all
possible swap pairs. Thus, it is challenging to apply the local search method to solve the CSS problem
while maintaining a linear dependence on both n and d in the running time. To avoid O(nd2k2)
running time in each local search step, we propose a two-step mixed sampling method to reduce
the running time from O(nd2k2) to O(ndk2). Although the sampling method reduces the running
time by directly using the single-swap local search, analyzing the bound of improvement on the
residual error after swaps is a difficult task. To provide a theoretical analysis for the local search
step, we propose a matched swap pair construction method to bound the improvement on the residual
error during swaps. By carefully analyzing the improvement, we show that our proposed algorithm
achieves 53(k + 1)-approximation with O(ndk4 log k) running time. The detailed algorithm for the
CSS problem is given in Algorithm 1.

The LSCSS algorithm mainly comprises local search and two-stage mixed sampling components.
The high-level idea behind our proposed local search is to identify a swap pair that minimizes the
residual error in each iteration. The swap pair consists of a column from the input matrix to swap
in and a column from the current solution to swap out. By repeating this process, the algorithm
produces an updated solution with better quality. Moreover, the two-stage mixed sampling method
involves two steps for obtaining a candidate column from the input matrix. Firstly, a set of column
indices is constructed by sampling each column with probability proportional to its residual error for
the current solution. Then, a column is uniformly selected from the set of candidate indices as the
final column to swap in. To ensure that the input matrix for the local search process is full rank, we
construct a new matrix A′ by adding a small perturbation matrix D to the original matrix A during
the initialization, where D is full-rank and has non-zero values only on its diagonal. The full-rank
property of A′ is used in subsequent analysis.

The LSCSS algorithm begins by obtaining an initial solution S with exactly k columns and con-
structing a full-rank matrix A′ during the initialization (steps 1-12 of Algorithm 1), which achieves a
(k + 1)!-approximate solution on A′. We start by initializing an index set I and setting the matrix
E = A. A new column index is added to I by sampling each column index i from [d] with probability
proportional to pi = ∥E:i∥22/∥E∥2F . Then, E is updated as E = A−AIA

†
IA. Repeating this process

k times, we obtain an initial solution S = AI . To construct a full-rank matrix, we construct an n× d
zero matrix D and compute the parameter α = ∥A− SS†A∥F /(52min{n, d}(k + 1)!)−1/2 using
the initial solution S and A. Each diagonal entry Dii is set to α. Since rank(A+D) = rank(D), we
construct the full-rank matrix A′ by adding the full-rank matrix D to the input matrix A. To solve
the CSS problem on A′, we execute steps 3-6 of Algorithm 1 to obtain the solution S = A′

I . The
detailed process described in steps 1-12 of Algorithm 1 requires O(ndk2) time.

The local search performed in steps 13-15 of Algorithm 1 plays a crucial role in LSCSS, involving
two main steps. Firstly, we compute the matrix E = A′ − SS†A′ for the current solution S. Then, a
set C of 10k column indices is constructed by sampling each column index i from [d] with probability
pi = ∥E:i∥22/∥E∥2F . Next, a column index p is uniformly selected from C, referred to as the “swap-
in” column index. Let I denote the set of column indices of S in A′. Subsequently, if there exists an
index q ∈ I such that f(A′, A′

I\{q}∪{p}) < f(A′, S), we choose q as the “swap-out” column index
and update the set of indices to I = I\{q} ∪ {p}. Finally, Algorithm 2 returns the solution S = A′

I .
After repeating this process T = O(k2 log k) times, Algorithm 1 returns the final solution S for the
input matrix A.

In the following, we explain in more detail how our proposed local search algorithm achieves a
53(k + 1)-approximation for the original matrix A. Given an initial solution, the main idea for
analyzing the approximation ratio of our algorithm is to bound the improvement on residual error
during the swaps in the local search step. To achieve this bound, we propose a matched swap pair
construction method that guarantees an improvement in the current solution by swapping one column
(Lemma 3.6 and Lemma 3.7). By carefully analyzing the improvement, we show that with constant
probability the approximation loss of the current solution can be reduced by a multiplicative factor
of 1−Θ(1/k) in each iteration of the local search algorithm (Lemma 3.8). This implies that after
O(k2 log k) iterations, we have ∥A′ − SS†A′∥2F ≤ 26(k + 1)∥A′ −A′

k∥2F (Theorem 3.9). Finally,
by analyzing the change in the residual error caused by removing matrix D from A′, we obtain
∥A′ − SS†A′∥2F ≤ 53(k + 1)∥A−Ak∥2F in expectation (Lemma 3.10).

We assume that the matrix A has been normalized such that ∥A∥2F = 1/4. Otherwise, we can
normalize each element Aij in A as Aij =

Aij

2∥A∥F
. Next, we consider a single iteration of Algorithm

5

2. We assume that the current solution has a high residual error (larger than 25(k + 1)∥A′ −A′
k∥2F

before executing Algorithm 2 on A′. Otherwise, the initial solution S is a 25(k + 1)-approximation
for the input matrix A′.

Let S∗ = {s∗1, . . . , s∗k} be the optimal solution with exactly k selected for A′, and let S =
{s1, . . . , sk} be the current solution. We define ϕ(A′, S∗, S, s∗) = argmins∈S f(A′, S∗\{s∗}∪{s})
as a mapping function that finds s from S such that the residual error f(A′, S∗\{s∗} ∪ {s}) is mini-
mized. Thus, we say that s∗ is captured by ϕ(A′, S∗, S, s∗). Each column s∗ ∈ S∗ is captured by
exactly one column from S. Let I denote the set of column indices of S in matrix A′. We denote L
as the set of columns indices in S that do not capture any optimal columns. We denote H as the set
of indices where each column in S captures exactly one optimal column.

The main idea behind the matched swap pair construction method is to analyze the change in residual
error caused by swapping an index from set H (or L) with an index from a sampled column, using a
two-step mixed sampling approach for the current solution S. For the column sh (where h ∈ H) in
S, sh captures exactly the column s∗h of the optimal solution S∗, serving as the candidate column for
s∗h. If the residual error of swapping sh to replace s∗h is large, we prove that with constant probability,
sampling a new column can reduce the residual error and update sh. Similarly, for the column
sl (where l ∈ L) in S, sl does not match any optimal column. We also show that, with constant
probability, sampling a column from the input matrix A′ can reduce the residual error for columns in
set L. To analyze the improvement in residual error during swaps, we focus on a single swap process,
evaluating both the increase in residual error from removing a column s from S and the decrease in
residual error from inserting a new column. We give the following definition to measure the change
resulting from removing a column.
Definition 3.1. Let A′ ∈ Rn×d be a full-rank matrix, and let S be a solution on A′. Let I be the set
of column indices of S. The change in residual error by removing the column i from I is defined as

τ(A′, S, I\{i}) = f(A′, A′
I\{i})− f(A′, S).

To bound τ(A′, S, I\i) of solution S on the matrix A′, we provide the theoretical guarantee in the
following lemma. (Detailed proof of Lemma 3.2 is given in Appendix A.1)
Lemma 3.2. Let A′ ∈ Rn×d be a full-rank matrix, and let S be a solution on A′. Let I be the set of
the column indices in S. For i ∈ I, we have

τ(A′, S, I\{i}) ≤ ∥A′
IA

′†
IA

′∥2F .

To further analyze the bound on τ(A′, S, I\{i}), we decompose the projection matrix A′
IA

′†
IA

′ and
show that the expected upper bound of τ(A′, S, I\{i}) is proportional to ∥A′∥2F . (Detailed proof of
Lemma 3.3 is given in Appendix A.1)
Lemma 3.3. Let A′ ∈ Rn×d be a full-rank matrix, k be a positive integer, and let I be the set of
column indices of S for the CSS problem on A′. In expectation, the following inequality holds

∥A′
IA

′†
IA

′∥2F ≤
k2

d2
∥A′∥2F .

In the following, we theoretically bound the residual error resulting from adding a candidate column
index p to the set I of column indices in S, where p is chosen using the two-step mixed sampling
method. (Detailed proof of Lemma 3.4 is given in Appendix A.1)
Lemma 3.4. Let A′ ∈ Rn×d be a full-rank matrix, k be a positive integer, and let S be a solution
with the set I of column indices in S. Let E = A′ − SS†A′. The column index p is obtained by
executing steps 2-3 of Algorithm 2. In expectation, the following inequality holds

f(A′, A′
I∪{p}) ≤ fk(A

′, opt) +
1

10
f(A′, S),

where fk(A
′, opt) denotes the best rank-k solution.

According to the aforementioned mapping function ϕ(·), we obtain the subset H from the set I of
column indices and the set R = I\H . By using the matched swap pair construction method, there
are two cases for the residual error of the current solution:

6

1. For the set H , where
∑

h∈H f(A′, A′
I\{h}) >

21
50

∑
i∈I f(A′, A′

I\{i}).

2. For the set R = I\H , where
∑

r∈R f(A′, A′
I\{r}) ≥ 29

50

∑
i∈I f(A′, A′

I\{i}).

By Lemma 3.2 and Lemma 3.4, we define the good columns si for i ∈ I with respect to S as follows.
Definition 3.5. Let A′ ∈ Rn×d be a full-rank matrix, and let k be a positive integer. Let S∗ be the
optimal solution with exactly k columns selected, and let I∗ be the set of column indices in S∗. Let
S be any solution with exactly k columns selected, and let I be the set of column indices in S. A
column index i ∈ I is called good if

f(A′, A′
I\{i})− τ(A′, S, I \ {i})− τ(A′, A′

I∪{p}, (I ∪ {p})\{i})

− 11

10

(
f(A′, A′

I∗\{i∗}) +
1

10
f(A′, S)

)
>

1

100k
f(A′, S),

where i∗ ∈ I∗ is the column index mapped from i ∈ I by the function ϕ(·), and p is a column index
obtained by executing steps 2-3 of Algorithm 2.

Definition 3.5 estimates the gain from replacing the column sh with a new column obtained using the
two-step sampling method. Next, we argue that if case (1) happens, the sum of residual errors for the
good columns is large. (Detailed proof of Lemma 3.6 is given in Appendix A.1)
Lemma 3.6. Let A′ ∈ Rn×d be a full-rank matrix, k be a positive integer, and let S be the solution
to the CSS problem on A′. Let I be the set of column indices in S. If 50

∑
h∈H f(A′, A′

I\{h}) ≥
21
∑

i∈I f(A′, A′
I\{i}) and f(A′, S) ≥ 25(k + 1)fk(A

′, opt), we have∑
h∈H,h is good

f(A′, A′
I\{h}) ≥

1

125

∑
i∈I

f(A′, A′
I\{i}).

Since R = I\H , it holds that L ⊆ R. The index set R contains two subsets: L and R\L, where
the indices in L do not capture any optimal columns according to the mapping function ϕ(·) and the
indices in R\L capture at least two columns. Similar to case (1), we argue that if case (2) occurs,
the sum of residual errors for the good columns is large. (Detailed proof of Lemma 3.7 is given in
Appendix A.1)
Lemma 3.7. Let A′ ∈ Rn×d be a full-rank matrix, k be a positive integer, and let S be a solution for
the CSS problem on matrix A′. Let I be the set of column indices in S. If

∑
r∈R f(A′, A′

I\{r}) ≥
29/50

∑
i∈I f(A′, A′

I\{i}) and f(A′, S) ≥ 25(k + 1)fk(A
′, opt), we have∑

r∈R,r is good

f(A′, A′
I\{r}) ≥

1

125

∑
i∈I

f(A′, A′
I\{i}).

In the following, we prove that if the residual error of the current solution is larger than 25(k +
1)fk(A

′, opt), each local search step reduces the residual error by a factor of 1−Θ(1k) with constant
probability. (Detailed proof of Lemma 3.8 is given in Appendix A.1)
Lemma 3.8. Let A′ ∈ Rn×d and S ∈ Rk×d be the input matrices for Algorithm 2, where k
is a positive integer and S is the solution of the CSS problem on A′. Suppose that f(A′, S) ≥
25(k + 1) · fk(A′, opt). Then, with probability at least 1/1375, Algorithm 2 returns a new solution
S′ with

f(A′, S′) ≤ (1− 1/(100k))f(A′, S).

Subsequently, we prove that the LSCSS algorithm achieves a 26(k + 1)-approximation for A′ after
O(k2 log k) iterations.

Theorem 3.9. Let A′ ∈ Rn×d be the input matrix obtained in step 12 of Algorithm 1, let k be a
positive integer, and let S be the solution returned after executing Algorithm 2 T = O(k2 log k)
times. Then, it holds that

E[∥A′ − SS†A′∥2F] ≤ 26(k + 1)∥A′ −A′
k∥2F ,

where A′
k is the best rank-k approximation of A′ for the CSS problem. The running time of Algorithm

1 is O(ndk4 log k).

7

Proof. Let Ŝ denote the submatrix consisting of k columns obtained in step 12 of Algorithm 1.
For the initial solution Ŝ, Deshpande and Vempala [15] provide an approximation ratio of (k + 1)!.
Before executing steps 13-15 of Algorithm 1, the residual error of the initial solution Ŝ is larger
than 25(k + 1)∥A′ −A′

k∥2F . According to Lemma 3.8, with probability 1/1375, we can reduce the
residual error by a multiplicative factor of (1− 1/100k).

Let T = O(k2 log k). We define a random process P with initial residual error ∥A′ − ŜŜ†A′∥2F of
the solution Ŝ such that for T iterations of Algorithm 2, it reduces the value of ∥A′ − ŜŜ†A′∥2F by
at least (1− 1

100k) with probability 1/1375, and it increases the final value of ∥A′ − ŜŜ†A′∥2F by
25(k+ 1)∥A′ −A′

k∥2F . It is obvious that E[∥A′ − SS†A′∥2F] ≤ E[∥A′ − ŜŜ†A′∥2F]. Then, we have

E[P] =25(k + 1)∥A′ −A′
k∥2F + ∥A′ − ŜŜ†A′∥2F ·

T∑
i=0

(
T

i

)
i

1375

1374

1375

T−i(
1− 1

100k

)i

≤∥A′ − ŜŜ†A′∥2F ·
(
1− 1

137500k

)137500k log(k+1)!

+ 25(k + 1)∥A′ −A′
k∥2F

≤∥A
′ − ŜŜ†A′∥2F
(k + 1)!

+ 25(k + 1)∥A′ −A′
k∥2F .

This implies that E[∥A′ − SS†A′∥2F |Ŝ] ≤
∥A′−ŜŜ†A′∥2

F

(k+1)! + 25(k + 1)∥A′ −A′
k∥2F .

Thus, we obtain

E[∥A′ − SS†A′∥2F] =
∑
Ŝ

E[∥A′ − SS†A′∥2F |Ŝ]Pr(Ŝ)

≤
∑
Ŝ

Pr(Ŝ)

(
∥A′ − ŜŜ†A′∥2F

(k + 1)!
+ 25(k + 1)∥A′ −A′

k∥2F

)

≤ E[∥A′ − ŜŜ†A′∥2F]
(k + 1)!

+ 25(k + 1)∥A′ −A′
k∥2F .

Since ∥A′ − ŜŜ†A′∥2F ≤ (k + 1)!∥A′ − A′
k∥2F in expectation, we have E[∥A′ − SS†A′∥2F] ≤

26(k + 1)∥A′ −A′
k∥2F .

Running Time Analysis. In LSCSS algorithm, the process of constructing the initial solution in the
steps 2-11 of Algorithm 1 takes O(ndk2) time. In order to obtain an O(k + 1)-approximate solution,
Algorithm 2 requires O(k2 log k) iterations. In each iteration, computing the residual matrix requires
O(ndk) time. The steps 4-8 of Algorithm 2 require O(ndk2) time to recalculate the residual error.
Therefore, the overall running time of Algorithm 1 is O(ndk4 log k).

In the following, we analyze the change in residual error caused by replacing the input matrix A with
A′ = A+D, which leads to the final solution of Algorithm 1 achieving a 53(k + 1)-approximation.
(Detailed proof of Lemma 3.10 is given in Appendix A.1)

Lemma 3.10. Let A ∈ Rn×d be an input matrix, and let k be a positive integer. Define D as an
n× d matrix with elements

Dij =

{
∥A−S1S

†
1A∥F

(52min{n,d}(k+1)!)1/2
, if i = j

0, otherwise
,

where S1 is obtained by executing the first round of steps 3-6 in Algorithm 1. Let A′ = A+D. The
solution S2 returned by executing Algorithm 2 for T = O(k2 log k) iterations satisfies

E[∥A′ − S2S
†
2A

′∥2F] ≤ 53(k + 1)∥A−Ak∥2F ,

where Ak is the best rank-k approximation for A.

8

4 Experiments

In this section, we compare our algorithm for the CSS problem with the previous ones. For hardware,
all the experiments are conducted on a machine with 72 Intel Xeon Gold 6230 CPUs and 2TB
memory.

Datasets. In this paper, we evaluate the performance of our algorithms on a total of 22 real-world
datasets. In previous studies [23, 1], the CSS problem typically involves datasets with no more than
100,000 rows and 20,000 columns. We include the 14 smaller datasets listed in Table 5 (Appendix
A.2). To extend the evaluation to larger datasets, we include 8 additional datasets detailed in Table 2.
Six datasets contain between 40,000 and 480,000 columns, and two contain 400,000 and 8 million
rows, respectively. All datasets can be found on the website345.

Algorithms and parameters. In our experimental evaluation, we consider the following five
distinct algorithms:

• TwoStage. This is a two-stage algorithm from [5] that combines leverage score sampling
and rank-revealing QR factorization.

• Greedy. This is an algorithm in [16, 1], which uses greedy algorithm to generate solution.

• VolumeSampling. This is an algorithm in [13], which uses volume sampling method.

• ILS. This is an algorithm in [23], which uses heuristic local search method.

• LSCSS. This is our algorithm given in Algorithm 1, which uses the two-step mixed sampling
and local search methods.

Methodology We use the error ratio to evaluate the effectiveness of various algorithms, as defined
in [23]. The error ratio is given by the formula ∥A − SS†A∥2F /∥A − Ak∥2F , where it quantifies
the discrepancy between the selected columns and the optimal rank-k matrix approximation. A
smaller error ratio indicates better algorithm performance. Following [23], we test the TwoStage,
VolumeSampling, ILS, and LSCSS algorithms on each dataset 10 times to calculate the average error
ratio and running time. Since the Greedy algorithm is deterministic, it is tested only once per dataset.

Table 2: Summary of the datasets

Datasets Instances Features
Condition Monitoring of Hydraulic Systems(CMHS) 2205 43680

Farm Ads (FAds) 4143 54877
Electricity Load Diagrams (ELD) 370 140256

Gas 180 150000
YaleB 16380 307200

Twin Gas Sensor Arrays (TGas) 640 480000
Epsilon 400000 2000

Mnist8m 8000000 784

Experimental setup. For the CSS problem with the Frobenius norm, we run the TwoStage, Greedy,
ILS, and LSCSS algorithms on both the 8 large datasets and 14 small datasets, providing the average
results for each method. The ILS and our LSCSS algorithm are based on local search method. For fair
comparison, we set the number of iterations to be 2k for ILS and LSCSS. Since the VolumeSampling
requires O(dkn3 log n) runtime and O(n2 + d2) memory, it cannot handle the 8 large datasets
because the algorithm requires more than 48 hours of runtime and over 2TB of memory. However,
the other four algorithms generally produce a solution within 48 hours and with less than 2TB of
memory. Thus, we only include VolumeSampling in the comparison on the 14 smaller datasets and
exclude its results from Tables 3 and 4.

3https://archive.ics.uci.edu/datasets
4https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
5http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

9

https://archive.ics.uci.edu/datasets
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

Table 3: Comparison results on running time for varying k on datasets. If an algorithm fails to output
a solution within 48 hours, the running time is set as “>48h”. If its memory usage exceeds 2TB, the
running time is set as “OOM” (Out of Memory).

Dataset k TwoStage Greedy ILS LSCSS Dataset k TwoStage Greedy ILS LSCSS

CMHS

5 354.91 493.49 18.43 2.82

FAds

5 228.66 127.31 143.08 3.40
10 548.58 716.27 54.59 5.17 10 226.53 248.89 498.29 10.58
15 647.34 1045.83 122.49 13.39 15 219.35 369.95 1032.53 17.65
20 847.87 1362.44 219.43 30.45 20 221.97 495.09 1744.18 18.27
25 1150.13 1679.30 331.24 43.27 25 229.24 624.69 2659.60 22.29
30 1249.27 1955.13 476.28 52.82 30 232.34 749.99 3789.49 22.76
50 1364.90 2598.43 1321.73 62.36 50 291.93 1265.93 10363.85 36.04

100 1552.57 7263.06 4457.66 108.98 100 539.00 2738.69 44037.65 95.67

ELD

5 434.60 245.14 25.28 2.18

TGas

5 822.75 312.98 154.37 17.15
10 539.22 436.11 50.98 3.47 10 1205.25 617.40 539.61 30.28
15 740.71 621.19 97.00 5.36 15 1686.43 960.75 1202.76 36.99
20 940.42 1598.41 148.07 13.93 20 2295.88 1335.77 2095.39 49.90
25 1237.54 1710.38 236.48 22.98 25 2976.99 1767.18 3349.04 61.36
30 1536.68 2307.40 291.32 35.03 30 3818.48 2230.84 4760.69 77.93
50 1738.76 3649.70 727.45 66.27 50 7098.36 4419.23 6772.58 114.23

100 2384.16 5946.40 2696.24 89.94 100 9186.20 12439.81 9352.80 243.89

Gas

5 404.52 426.89 56.71 5.83

YaleB

5 OOM 17214.54 2190.74 175.24
10 597.72 785.37 148.36 11.67 10 OOM 21210.58 9855.42 501.67
15 858.04 1162.98 202.17 19.30 15 OOM >48h 12754.29 793.47
20 1312.71 1546.90 428.71 47.90 20 OOM >48h 23694.02 1082.21
25 1741.95 1977.13 1623.66 130.11 25 OOM >48h 35259.86 1756.18
30 2237.17 3317.12 4858.71 322.92 30 OOM >48h >48h 4108.82
50 4944.07 7852.03 7888.39 386.15 50 OOM >48h >48h 7127.35

100 20955.39 12703.14 12190.91 850.01 100 OOM >48h >48h 13865.08

Mnist8m

5 18122.53 5564.12 3255.38 483.02

Epsilon

5 8916.54 1067.48 283.22 24.85
10 22216.92 34765.28 21587.49 2991.29 10 9221.10 2111.57 979.81 38.71
15 >48h >48h 53973.46 3420.13 15 9426.96 3193.27 2093.51 69.00
20 >48h >48h >48h 6609.07 20 10330.94 4332.60 3645.36 102.46
25 >48h >48h >48h 8485.13 25 10928.29 5570.65 5564.13 163.25
30 >48h >48h >48h 9495.18 30 11371.33 6861.29 7727.87 352.39
50 >48h >48h >48h 13236.29 50 13839.09 12451.47 16939.53 562.20

100 >48h >48h >48h 16910.19 100 15334.64 29352.57 18239.98 1102.80

Results for the CSS problem. Table 3 shows the comparison of running time for varying values of
k, where the time is measured by seconds. LSCSS is at least 10 times faster than other algorithms
across all datasets and at least 15 times faster than the TwoStage and Greedy algorithms. Our
algorithm successfully outputs a feasible solution within 5 hours on all datasets, whereas other
algorithms fail to do so within 48 hours or need more than 2TB memory. The comparison of error
ratios, reported as mean±std with the best results highlighted in bold, is presented in Table 4 in the
Appendix A.2. The LSCSS algorithm achieves the best error ratios on almost all datasets.

Moreover, we compare the running time and error ratio of five algorithms with varying values of k on
14 small datasets (Appendix A.2). The experimental results show that the LSCSS algorithm outper-
forms other algorithms in terms of quality and is at least 2 times faster than Greedy, VolumeSampling
and ILS algorithms on all small datasets.

5 Conclusion

In this paper, we propose a linear-time approximation algorithm for the CSS problem using local
search and two-step mixed sampling methods. Experimental results demonstrate that our framework
outperforms previous algorithms for solving the CSS problem with exactly k columns selected. An
interesting future direction is how to design multi-swap local search approximation algorithms for
handling the CSS problem.

Acknowledgments

This work was supported by National Natural Science Foundation of China (62432016, 62172446),
Open Project of Xiangjiang Laboratory (22XJ02002), and Central South University Research Pro-
gramme of Advanced Interdisciplinary Studies (2023QYJC023). This work was also carried out
in part using computing resources at the High Performance Computing Center of Central South
University.

10

References
[1] Jason M. Altschuler, Aditya Bhaskara, Gang Fu, Vahab S. Mirrokni, Afshin Rostamizadeh,

and Morteza Zadimoghaddam. Greedy column subset selection: New bounds and distributed
algorithms. In Proceedings of the 33rd International Conference on Machine Learning, pages
2539–2548, 2016.

[2] Hiromasa Arai, Crystal Maung, and Haim Schweitzer. Optimal column subset selection by
A-star search. In Proceedings of the 29th AAAI Conference on Artificial Intelligence, pages
1079–1085, 2015.

[3] Christian H Bischof and Gregorio Quintana-Ortí. Computing rank-revealing QR factorizations
of dense matrices. ACM Transactions on Mathematical Software, 24(2):226–253, 1998.

[4] Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near optimal column-based
matrix reconstruction. In Proceedings of the 52nd IEEE Annual Symposium on Foundations of
Computer Science, pages 305–314, 2011.

[5] Christos Boutsidis, Michael W Mahoney, and Petros Drineas. An improved approximation
algorithm for the column subset selection problem. In Proceedings of the 20th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 968–977, 2009.

[6] Tony F Chan and Per Christian Hansen. Some applications of the rank revealing QR factorization.
SIAM Journal on Scientific and Statistical Computing, 13(3):727–741, 1992.

[7] Shivkumar Chandrasekaran and Ilse CF Ipsen. On rank-revealing factorisations. SIAM Journal
on Matrix Analysis and Applications, 15(2):592–622, 1994.

[8] Flavio Chierichetti, Sreenivas Gollapudi, Ravi Kumar, Silvio Lattanzi, Rina Panigrahy, and
David P Woodruff. Algorithms for ℓp low-rank approximation. In Proceedings of the 34th
International Conference on Machine Learning, pages 806–814, 2017.

[9] Ali Civril. Column subset selection problem is UG-Hard. Journal of Computer and System
Sciences, 80(4):849–859, 2014.

[10] Ali Civril and Malik Magdon-Ismail. Column subset selection via sparse approximation of
SVD. Theoretical Computer Science, 421:1–14, 2012.

[11] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in input
sparsity time. In Proceedings of the 45th Annual ACM SIGACT Symposium on Theory of
Computing, pages 81–90, 2013.

[12] Chen Dan, Hong Wang, Hongyang Zhang, Yuchen Zhou, and Pradeep Ravikumar. Optimal
analysis of subset-selection based ℓp low-rank approximation. In Proceedings of the 33rd
Conference on Neural Information Processing Systems, pages 2541–2552, 2019.

[13] Amit Deshpande and Luis Rademacher. Efficient volume sampling for row/column subset
selection. In Proceedings of the 51st IEEE Annual Symposium on Foundations of Computer
Science, pages 329–338, 2010.

[14] Amit Deshpande, Luis Rademacher, Santosh S Vempala, and Grant Wang. Matrix approximation
and projective clustering via volume sampling. Theory of Computing, 2(1):225–247, 2006.

[15] Amit Deshpande and Santosh Vempala. Adaptive sampling and fast low-rank matrix approxi-
mation. In Proceedings of the 9th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems, pages 292–303. 2006.

[16] Ahmed K Farahat, Ali Ghodsi, and Mohamed S Kamel. An efficient greedy method for
unsuperised feature selection. In Proceedings of the 11th IEEE International Conference on
Data Mining, pages 161–170, 2011.

[17] Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms for finding
low-rank approximations. Journal of the ACM, 51(6):1025–1041, 2004.

11

[18] Ming Gu and Stanley C Eisenstat. Efficient algorithms for computing a strong rank-revealing
QR factorization. SIAM Journal on Scientific Computing, 17(4):848–869, 1996.

[19] Venkatesan Guruswami and Ali Kemal Sinop. Optimal column-based low-rank matrix recon-
struction. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1207–1214, 2012.

[20] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review,
53(2):217–288, 2011.

[21] Arvind V Mahankali and David P Woodruff. Optimal ℓ1 column subset selection and a fast
PTAS for low rank approximation. In Proceedings of the 32nd Annual Symposium on Discrete
Algorithms, pages 560–578, 2021.

[22] Bruno Ordozgoiti, Sandra Gómez Canaval, and Alberto Mozo. A fast iterative algorithm
for improved unsupervised feature selection. In Proceedings of the 16th IEEE International
Conference on Data Mining, pages 390–399, 2016.

[23] Bruno Ordozgoiti, Sandra Gómez Canaval, and Alberto Mozo. Iterative column subset selection.
Knowledge and Information Systems, 54(1):65–94, 2018.

[24] Gregorio Quintana-Ortí, Xiaobai Sun, and Christian H Bischof. A blas-3 version of the QR
factorization with column pivoting. SIAM Journal on Scientific Computing, 19(5):1486–1494,
1998.

[25] Zhao Song, David P Woodruff, and Peilin Zhong. Low rank approximation with entrywise
ℓ1-norm error. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pages 688–701, 2017.

[26] Zhao Song, David P. Woodruff, and Peilin Zhong. Average case column subset selection for
entrywise ℓ1-norm loss. In Proceedings of the 33rd Annual Conference on Neural Information
Processing Systems, pages 10111–10121, 2019.

[27] Zhao Song, David P. Woodruff, and Peilin Zhong. Towards a zero-one law for column subset
selection. In Proceedings of the 33rd Annual Conference on Neural Information Processing
Systems, pages 6120–6131, 2019.

[28] Yining Wang and Aarti Singh. Column subset selection with missing data via active sampling.
In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics,
pages 1033–1041, 2015.

[29] David P. Woodruff and Taisuke Yasuda. New subset selection algorithms for low rank approxi-
mation: Offline and online. In Proceedings of the 55th Annual ACM Symposium on Theory of
Computing, pages 1802–1813, 2023.

12

A Appendix / supplemental material

A.1 Missing Proofs

Lemma 3.2. Let A′ ∈ Rn×d be a full-rank matrix, and let S be a solution on A′. Let I be the set of
column indices in S. For i ∈ I, we have

τ(A′, S, I\{i}) ≤ ∥A′
IA

′†
IA

′∥2F .

Proof. Given a solution S, we demonstrate an equivalent transformation to simplify the expression
of the residual error for S:

∥A′ − SS†A′∥2F = tr((A′ − SS†A′)⊤(A′ − SS†A′))

= tr(A′⊤A′ −A′⊤SS†A′ −A′⊤(SS†)⊤A′ +A′⊤(SS†)⊤SS†A′)

= tr(A′⊤A′ − 2A′⊤SS†A′ +A′⊤SS†A′)

= tr(A′⊤A′)− tr(A′⊤SS†A′)

= tr(A′⊤A′)− tr(A′⊤(SS†)⊤SS†A′)

= tr(A′⊤A′)− ∥SS†A′∥2F ,

where the third equality follows from S†SS† = S† and (SS†)⊤ = SS†.

By the above equality, we have

f(A′, S′)− f(A′, S) = ∥A′ − SI\{i}S
†
I\{i}A

′∥2F − ∥A′ − SIS
†
IA

′∥2F
= ∥SIS

†
IA

′∥2F − ∥SI\{i}S
†
I\{i}A

′∥2F
≤ ∥SIS

†
IA

′∥2F .

Lemma 3.3. Let A′ ∈ Rn×d be a full-rank matrix, k be a positive integer, and let I be the set of
column indices of S for the CSS problem on A′. In expectation, the following inequality holds:

∥A′
IA

′†
IA

′∥2F ≤
k2

d2
∥A′∥2F .

Proof. We begin by seeking to bound the Frobenius norm of the matrix product A′
IA

′†
IA

′. Using
the submultiplicative property of the Frobenius norm, we get

∥A′
IA

′†
IA

′∥2F ≤ ∥A′
IA

′†
I∥2F · ∥A′∥2F .

Next, by the norm inequality, we have

∥A′
IA

′†
I∥2F ≤ ∥A′†

I∥22 · ∥A′
I∥2F .

Since the matrix A is full rank, which is ensured by steps 7-10 of Algorithm 1. Therefore, ∥A′†
I∥22

can be reformulated as the maximum eigenvalue of A′⊤
I A

′
I . Specifically, we have

∥A′†
I∥22 =

1

λmin(A′⊤
I A

′I)
= λmax(A

′⊤
I A

′
I).

Substituting this into ∥A′
IA

′†
IA

′∥2F , we get

∥A′
IA

′†
IA

′∥2F ≤ λmax(A
′⊤
I A

′
I) · ∥A′

I∥2F · ∥A′∥2F .

Since the maximum eigenvalue λmax(A
′⊤
I A

′
I) is bounded above by ∥A′

I∥2F , we obtain

∥A′
IA

′†
IA

′∥2F ≤ ∥A′
I∥4F · ∥A′∥2F .

13

Finally, by the expectation E[∥A′
I∥2F] = k

d∥A
′∥2F and ∥A∥2F = 1

4 , we have

∥A′
I∥4F ≤

(
k

d

)2

∥A′∥4F

=
k2

d2
(∥A+D∥2F)2

≤ k2

d2
(2∥A∥2F + 2∥D∥2F)2

=
k2

d2
(2∥A∥2F + 2

min{n,d}∑
i=1

D2
ii)

2

=
k2

d2
(2∥A∥2F + 2min{n, d} ∥A− SS†A∥2F

52min{n, d}(k + 1)!
)2

≤ k2

d2
(2∥A∥2F + 2

∥A∥2F
52(k + 1)!

)2

≤ k2

d2
(4∥A∥2F)2

=
k2

d2
.

where the first equality results from A′ = A+D, and the second inequality follows from the property
∥A+B∥2F ≤ 2(∥A∥2F + ∥B∥2F) for any two matrices A,B ∈ Rn×d.

Combining the above inequalities, we conclude that

∥A′
IA

′†
IA

′∥2F ≤
k2

d2
∥A′∥2F .

Lemma 3.4. Let A′ ∈ Rn×d be a full-rank matrix, k be a positive integer, and let S be a solution
with the set I of column indices in S. Let E = A′ − SS†A′. The column index p is obtained by
executing steps 2-3 of Algorithm 2. In expectation, the following inequality holds

f(A′, A′
I∪{p}) ≤ fk(A

′, opt) +
1

10
f(A′, S),

where fk(A
′, opt) denotes the best rank-k solution.

Proof. Let pj =
∥E:j∥2

F

∥E∥2
F

be the probability that each column index j ∈ [d] is sampled. To bound

f(A,AT∪{p}), we define a random variable X l
i for i ∈ [r], j ∈ [d], and l ∈ [z] as follows:

X l
i =

vij
pj

E:j with probability pj .

We denote Xi as the random variable that is randomly picked from the set C = {X1
i , X

2
i , . . . , X

l
i}.

Therefore, the expected value of Xi is given by

E(Xi) =

z∑
l=1

Pr(l-th is picked) · E
(
X l

i

)
=

1

z

z∑
l=1

E(X l
i)

=
1

z

z∑
l=1

d∑
j=1

(
pj ·

vij
pj

E:j

)

14

=
1

z

z∑
l=1

d∑
j=1

vijE:j

=
1

z

z∑
l=1

Evi

= Evi,

where the second equality follows from the linearity of expectation, and the last second equality
results from the linear combination of vi and E.

Let wi = (SS†A)vi +Xi for i ∈ [r]. Therefore, we have E(wi) = σiui.

Thus, we have the equality wi − σivi = Xi − Evi. By calculating its second central moment, we
obtain

E(∥wi − σiui∥22) = E(∥Xi − Evi∥22)
= E(∥Xi∥22)− 2E(Xi) · Evi + ∥Evi∥22
= E(∥Xi∥22)− ∥Evi∥22.

Next, we seek to bound E(∥Xi∥22),

E(∥Xi∥22) = E

(
∥

z∑
l=1

Pr(l-th is picked) ·X l
i∥2
)

=

z∑
l=1

(Pr(l-th is picked))2E(∥X l
i∥22) +

∑
1≤l1<l2≤z

Pr(l1-th and l2-th are picked)E(X l1
i ·X

l2
i)

=
1

z2

z∑
l=1

E(∥X l
i∥22) +

2

z2

∑
1≤l1<l2≤z

E(X l1
i ·X

l2
i)

=
1

z2

z∑
l=1

E(∥X l
i∥22) +

z − 1

z
∥Evi∥22.

The term of 2
z2

∑
1≤l1<l2≤z E(X

l1
i ·X

l2
i) = z−1

z ∥Evi∥22 follows from the independence of X l1
i and

X l2
i . Therefore, we conclude that

E(∥wi − σiui∥22) =
1

z2

z∑
l=1

E(∥X l
i∥22)−

1

z
∥Evi∥22.

For the first term in the above equation, we have

E(∥X l
i∥22) =

d∑
j=1

pj
∥E:jvij∥22

p2j

=

d∑
j=1

∥E∥2F
∥E:j∥2F

∥E:jvij∥22

= ∥E∥2F ·
d∑

i=1

∥E:jvij∥2F
∥E:j∥22

≤ ∥E∥2F ·
∥Evi∥22
∥E∥2F

= ∥Evi∥22.

Combining the above inequality, we have

E(∥wi − σiui∥22) ≤
1

z
∥Evi∥22.

15

Let yi = wi/σi for i ∈ [k] and let matrix F = (
∑k

i=1 yiu
T
i)A

′. Therefore, we have
∥A′ − A′

I∪{p}A
′†
I∪{p}A

′∥2F ≤ ∥A′ − F∥2F . By decomposing F along the right singular vectors
{v1, . . . , vd}, we have:

E(∥A′ −A′
I∪{p}A

′†
I∪{p}A

′∥2F) ≤ E(∥A′ − F∥2F)

=

d∑
i=1

E(∥(A′ − F)vi∥22)

≤
k∑

i=1

E(∥σiui − wi∥22) +
d∑

i=k+1

σ2
i

≤ fk(A
′, opt) +

k

z
f(A′, A′

I),

where the last second inequality uses that fk(A′, opt) =
∑d

i=k+1 σ
2
i .

Setting the z = 10k, we obtain that

f(A′, A′
I∪{p}) ≤ fk(A

′, opt) +
1

10
f(A′, S).

Lemma 3.6. Let A′ ∈ Rn×d be a full-rank matrix, k be a positive integer, and let S be the solution
to the CSS problem on A′. Let I be the set of column indices in S. If 50

∑
h∈H f(A′, A′

I\{h}) ≥
21
∑

i∈I f(A′, A′
I\{i}) and f(A′, S) ≥ 25(k + 1)fk(A

′, opt), we have∑
h∈H,h is good

f(A′, A′
I\{h}) ≥

1

125

∑
i∈I

f(A′, A′
I\{i}).

Proof. First, we prove that the residual error is non-increasing. Let Sk be a subset of k columns from
A′. Let p ∈ A′ be a column not in Sk, and define Sk+1 = Sk ∪ {p}. The residual error function is
defined as:

f(A′, S) = ∥A′ − SS†A′∥2F = ∥A′∥2F − ∥SS†A′∥2F .
Our goal is to show that f(A′, Sk+1) ≤ f(A′, Sk), i.e., the residual error is non-increasing when a
column is added to Sk.

Since ∥A′∥2F is constant, we only need to prove that ∥Sk+1S
†
k+1A

′∥2F ≥ ∥SkS
†
kA

′∥2F . For any
column u of A′, denote

∆(u) = ∥Sk+1S
†
k+1u∥

2
2 − ∥SkS

†
ku∥

2
2.

If p ∈ span(Sk), then span(Sk+1) = span(Sk), and thus ∆(u) = 0. Otherwise, if p /∈ span(Sk),
define the orthogonal component of p with respect to span(Sk) as

p⊥ = p− SkS
†
kp,

and normalize it as p′ = p⊥
∥p⊥∥2

.

For any u, the projection onto span(Sk+1) is Sk+1S
†
k+1u = SkS

†
ku + ⟨u, p′⟩p′, where ⟨u, p′⟩

denotes the inner product. Therefore, ∥Sk+1S
†
k+1u∥22 = ∥SkS

†
ku∥22 + |⟨u, p′⟩|2 holds, implying

that ∆(u) = |⟨u, p′⟩|2 ≥ 0. Summing over all columns u of A′, we obtain ∥Sk+1S
†
k+1A

′∥2F −
∥SkS

†
kA

′∥2F =
∑

u ∆(u) ≥ 0. Thus, the residual error function satisfies

f(A′, Sk+1) = ∥A′∥2F − ∥Sk+1S
†
k+1A

′∥2F ≤ ∥A′∥2F − ∥SkS
†
kA

′∥2F = f(A′, Sk).

This proves that adding a column to Sk does not increase the residual error.

By Lemma 3.2, we have

τ(A′, A′
I∪{p}, I ∪ {p}\{h}) = f(A′, A′

I∪{p}\{h})− f(A′, A′
I∪{p}) ≤ ∥A′

I∪{p}A
′†
I∪{p}A

′∥2F .

16

Similarly, we have

τ(A′, S, I\{h}) = f(A′, A′
I\{h})− f(A′, S) ≤ ∥SS†A′∥2F .

Thus, by Lemma 3.3, we obtain τ(A′, A′
I∪{p}, I ∪ {p}\{h}) + τ(A′, S, I\{h}) ≤ (k+1)2

d2 ∥A∥2F +
k2

d2 ∥A∥2F ≤
2(k+1)2

d2 ∥A∥2F , where h ∈ H .

Next, we have
∑

h∈H f(A′, S\{h}) ≥ 21
50

∑
i∈I f(A′, A′

I\{i}). By Definition 3.5 and Lemma 3.2,
we have

∑
h∈H,h is not good

f(A′, A′
I\{h}) ≤

∑
h∈H

τ(A′, S, I\{h}) + τ(A′, A′
I∪{p}, I ∪ {p}\{h})

+
11k

10
(f(A′, A′

I∗\{h∗}) +
1

10
f(A′, S)) +

1

100
f(A′, S)

≤ 2k(k + 1)2

d2
∥A′∥2F +

11k

10
(
k2

d2
∥A′∥2F + f(A′, S∗))

+
11k + 1

100
f(A′, S)

≤ 31k3

10d2
∥A′∥2F +

11k

10
f(A′, S∗) +

11k + 1

100
f(A′, S)

≤ 31k3

10d2
∥A′∥2F +

11k(k + 1)

10
fk(A

′, opt) +
11k + 1

100
f(A′, S)

≤ 11k(k + 1)

10
fk(A

′, opt) +
11k + 1

100
f(A′, S)

+
31k3

10d2
∥A∥2F

f(A′, opt)
fk(A

′, opt)

≤ 11k(k + 1)

10
fk(A

′, opt) +
11k + 1

100
f(A′, S) +

31k3

5d2
fk(A

′, opt),

where the fourth inequality follows from the fact that S∗ is the optimal solution with exactly k
columns selected, and f(A′, S∗) ≤ (k + 1)fk(A

′, opt).

Using f(A′, S) ≥ 25(k + 1)fk(A
′, opt) and the non-increasing property of residual error, we obtain

that ∑
h∈H,his not good

f(A′, A′
I\{h}) ≤

103k

250
· f(A′, S).

By kf(A′, S) ≤
∑

i∈I f(A′, A′
I\{i}),∑

h∈H,his not good

f(A′, A′
I\{h}) ≤

103

250
·
∑
i∈I

f(A′, A′
I\{i}).

Thus, we have ∑
h∈H,h is good

f(A′, A′
I\{h}) ≥

1

125
·
∑
i∈I

f(A′, A′
I\{i}).

Lemma 3.7. Let A′ ∈ Rn×d be a full-rank matrix, k be a positive integer, and let S be a solution for
the CSS problem on matrix A′. Let I be the set of column indices in S. If

∑
r∈R f(A′, A′

I\{r}) ≥
29/50

∑
i∈I f(A′, A′

I\{i}) and f(A′, S) ≥ 25(k + 1)fk(A
′, opt), we have∑

r∈R,r is good

f(A′, A′
I\{r}) ≥

1

125

∑
i∈I

f(A′, A′
I\{i}).

17

Proof. By Lemma 3.3, we have τ(A′, A′
I∪{p}, I ∪ {p}\{l}) + τ(A′, S, I\{l}) ≤ (k+1)2

d2 ∥A∥2F +
k2

d2 ∥A∥2F ≤
2(k+1)2

d2 ∥A∥2F , where l ∈ L.

We have
∑

r∈R f(A′, A′
I\{r}) ≥ 29/50

∑
i∈I f(A′, A′

I\{i}). Note that |R| ≤ 2|L|. By Definition
3.5 and Lemma 3.2, we have∑
r∈R,r is not good

f(A′, A′
I\{r}) ≤ 2|L|min

l∈L
τ(A′, S, I\{l}) + τ(A′, A′

I∪{p}, I ∪ {p}\{l})

+
11k

10
(f(A′, A′

I∗\{l∗}) +
1

10
f(A′, S)) +

1

100
f(A′, S)

≤ 2
∑
l∈L

τ(A′, S, I\{l}) + τ(A′, A′
I∪{p}, I ∪ {p}\{l})

+
11k

10
(f(A′, A′

I∗\{l∗}) +
1

10
f(A′, S)) +

1

100
f(A′, S)

≤ 4k(k + 1)2

d2
∥A′∥2F +

11k

10
(
k2

d2
∥A′∥2F + f(A′, S∗))

+
11k + 1

100
f(A′, S)

≤ 51k(k + 1)2

10d2
∥A′∥2F

+
11k(k + 1)

10
fk(A

′, opt) +
11k + 1

100
f(A′, S)

≤ 51k3

10d2
∥A′∥2F

fk(A′, opt)
fk(A

′, opt)

+
11k(k + 1)

10
fk(A

′, opt) +
11k + 1

100
f(A′, S)

≤ 51k3

5d2
fk(A

′, opt) +
11k(k + 1)

10
fk(A

′, opt) +
11k + 1

100
f(A′, S).

Using f(A′, S) ≥ 25(k + 1)fk(A
′, opt) and the non-increasing property of the residual error (as in

the proof of Lemma 3.6), we obtain∑
r∈R,r is not good

f(A′, A′
I\{l}) ≤

143k

250
f(A′, S)

.

By kf(A′, S) ≤
∑

i∈I f(A′, A′
I\{i}), we have∑

r∈R,r is not good

f(A′, A′
I\{l}) ≤

143

250

∑
i∈I

f(A′, A′
I\{i}).

By combining the previous inequality with the bound
∑

r∈R f(A′, A′
I\{r}) ≥

29/50
∑

i∈I f(A′, A′
I\{i}), we have

∑
r∈R,r is good f(A

′, A′
I\{r}) ≥ 1

125

∑
i∈I f(A′, A′

I\{i}).

Lemma 3.8. Let A′ ∈ Rn×d and S ∈ Rk×d be the input matrices for Algorithm 2, where k
is a positive integer and S is the solution to the CSS problem on A′. Suppose that f(A′, S) ≥
25(k + 1) · fk(A′, opt). Then, with probability at least 1/1375, Algorithm 2 returns a new solution
S′ with f(A′, S′) ≤ (1− 1/(100k))f(A′, S).

Proof. Let I denote the set of column indices in S. Let S∗ be the optimal solution with exactly k
columns selected, and let I∗ be set of the columns indices in S∗. Let p denote the column index
obtained by the steps 2-3 of Algorithm 2. Let p∗ ∈ I∗ be the column corresponding to index p, as

18

determined by the mapping function ϕ(·). According to Lemma 3.6, the probability of sampling a
good column index is at least

(1/125)
∑

h∈H,h is good f(A
′, A′

I\{h})∑
i∈I f(A′, A′I\{i})

≥ 1

125
.

Let h represent an arbitrary good column index. By Lemma 3.4 and the non-increasing property of
residual error f(·) (as shown in the proof of Lemma 3.6), we have

E[f(A′, A′
I∪{p})] ≤ fk(A

′, opt) +
1

10
f(A′, S)

≤ f(A′, A′
I∗\{h∗}) +

1

10
f(A′, S).

Hence, by the Markov inequality, we obtain

Pr[f(A′, A′
I∪{p}) ≤

11

10
(f(A′, A′

I∗\{h∗}) +
1

10
f(A′, S))|h ∈ H] ≥ 1

11
.

Combining the above inequalities, the probability that the sampled column index p replaces some
good column index h is at least

1

125
· 1
11

>
1

1375
.

Similarly, according to Lemma 3.7, the probability of sampling a good column index is at least

(1/125)
∑

r∈R,r is good f(A
′, A′

I\{r})∑
i∈I f(A′, A′I\{i})

≥ 1

125
.

By Lemma 3.4 and the Markov inequality, we obtain

Pr[f(A′, A′
I∪{p}) ≤

11

10
(f(A′, A′

I∗\{r∗}) +
1

10
f(A′, S))|r ∈ R] ≥ 1

11
.

Thus, the probability that the sampled column index p for some good column index r is at least

1

125
· 1
11

>
1

1375
.

By Definition 3.1, we have τ(A′, A′
I∪{p}, I ∪ {p}\{q}) = f(A′, A′

I∪{p}\{q})− f(A′, A′
I∪{p}),

and τ(A′, S, I\{q}) = f(A′, A′
I\{q})− f(A′, S).

Now, for the column index q ∈ H ∪R, we can upper bound the updated residual error f(A′, S′) as
follows.

f(A′, S′) ≤ f(A′, A′
I\{q}∪{p})

= f(A′, S)−
(
f(A′, S)− f(A′, A′

I\{q}∪{p})
)

= f(A′, S)−
(
f(A′, S)− f(A′, A′

I∪{p}) + f(A′, A′
I∪{p})− f(A′, A′

(I∪{p})\{q})
)

= f(A′, S)−
(
f(A′, S)− τ(A′, A′

I∪{p}, (I ∪ {p})\{q})− f(A′, A′
I∪{p})

)
= f(A′, S)− (f(A′, I\{q})− τ(A′, S, I\{q})
− τ(A′, A′

I∪{p}, (I ∪ {p})\{q})− f(A′, A′
I∪{p}))

≤ f(A′, S)− (f(A′, I\{q})− τ(A′, S, I\{q})− τ(A′, A′
I∪{p}, (I ∪ {p})\{q})

− 11

10
(f(A′, A′

I∗\{q∗}) +
1

10
f(A′, S)))

≤ f(A′, S)− 1

100k
f(A′, S).

Thus, by combining the two cases, we obtain that with probability at least 1/1375,

f(A′, S′) ≤ (1− 1/(100k))f(A′, S).

19

Lemma 3.10. Let A ∈ Rn×d be an input matrix, and let k be a positive integer. Define D as an
n× d matrix with elements

Dij =

{
∥A−S1S

†
1A∥F

(52min{n,d}(k+1)!)1/2
, if i = j

0, otherwise
,

where S1 is obtained by executing the first round of steps 3-6 in Algorithm 1. Let A′ = A+D. The
solution S2 returned by executing Algorithm 2 for T = O(k2 log k) iterations satisfies

E[∥A′ − S2S
†
2A

′∥2F] ≤ 53(k + 1)∥A−Ak∥2F ,

where Ak is the best rank-k approximation for A.

Proof. Let A′
k be the best rank-k approximation of A′, and Ak be the best rank-k approximation

of A. For the initial solution S1, Deshpande and Vempala [15] provide an approximation ratio of
(k + 1)!. By Lemma 3.9, we obtain

E[∥A′ − S2S
†
2A

′∥2F] ≤ 26(k + 1)∥A′ −A′
k∥2F

≤ 26(k + 1)∥A′ −Ak∥2F
= 26(k + 1)∥A′ −A+A−Ak∥2F
≤ 52(k + 1)

(
∥A′ −A∥2F + ∥A−Ak∥2F

)
≤ 52(k + 1)

(
∥D∥2F + ∥A−Ak∥2F

)
= 52(k + 1)

∥A−Ak∥2F +

min{n,d}∑
i=1

D2
ii


≤ 52(k + 1)

(
∥A−Ak∥2F +min{n, d} ·

(
∥A− S1S

†
1A∥2F

52min{n, d} · (k + 1)!

))

= 52(k + 1)

(
∥A−Ak∥2F +

∥A− S1S
†
1A∥2F

52(k + 1)!

)

≤ 52(k + 1)

(
∥A−Ak∥2F +

∥A−Ak∥2F
52

)
= 53(k + 1)∥A−Ak∥2F ,

where the second inequality holds because ∥A′ − A′
k∥2F ≤ ∥A′ − B∥2F for any n × d matrix B

with rank(B) = k, and the third inequality results from the triangle inequality ∥A + B∥2F ≤
2(∥A∥2F + ∥B∥2F) for any two matrices A,B ∈ Rn×d.

A.2 Complementary Experiments

A.2.1 Experiments on Small Datasets

In this section, we compare our algorithm with four algorithms (TwoStage, Greedy, VolumeSampling,
and ILS) introduced in Section 4 using 14 small real-world datasets. Following [23, 1], these datasets
are listed in Table 5 and all datasets can be found on the website6.

We use the same experimental settings as in Section 4 to run these algorithms on 14 datasets. The
running time results are presented in Tables 6 and 7. LSCSS is at least 2 times faster than the Greedy,

6http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.,
http://www.sheffield.ac.uk/eee/research/iel/research/face.,
http://www.cs.nyu.edu/~roweis/data.html.,
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html.,
http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/PublicDatasets.,
https://archive.ics.uci.edu/datasets,
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/,
and http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

20

http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.
http://www.sheffield.ac.uk/eee/research/iel/research/face.
http://www.cs.nyu.edu/~roweis/data.html.
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html.
http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/PublicDatasets.
https://archive.ics.uci.edu/datasets
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

VolumeSampling, and ILS algorithms. The error ratio, reported as mean ± std, with the best results
highlighted in bold, is shown in Tables 8 and 9. LSCSS outperforms all other algorithms in terms of
quality across all datasets.

A.2.2 Experiments on QR with Column Pivoting and LSCSS Algorithms

In this section, we present experimental results comparing the performance of our proposed LSCSS
algorithm with the QR with Column Pivoting (QRP) algorithm [24] for varying k. The QRP algorithm
uses column pivoting to improve the traditional QR decomposition.

To compare our proposed algorithm with the QRP algorithm, we conducted experiments on five
datasets: CMHS, ELD, Gas, FAds, and TGas (listed in Table 2). Due to the memory requirement of
the QRP algorithm exceeding 2TB for the remaining datasets in Table 2, those datasets were excluded
from our comparison. For the QRP algorithm, we followed the procedure outlined in [24], first
obtaining the permutation matrix P that satisfies AP = QR. Then, we selected the top k elements
from the diagonal of P as the indices C of the k columns and computed the error ratio of solution
AC . The detailed results in Table 10 show that our algorithm achieves lower error ratios across all
datasets and is faster than the QRP algorithm.

21

Table 4: Comparison results on error ratio for varying k on datasets. If an algorithm fails to output a
solution within 48 hours, the error ratio is marked as “>48h”. If its memory usage exceeds 2TB, the
error ratio is marked as "OOM" (Out of Memory).

Dataset k TwoStage Greedy ILS LSCSS

CMHS

5 56.9579±1.4638 1.7446 1.2494±0.0492 1.1348±0.0202
10 254.7578±8.3753 1.9111 1.4803±0.0380 1.2237±0.0894
15 523.9830±28.9132 2.1692 1.6455±0.0106 1.6134±0.0177
20 655.8496±13.7001 1.9725 1.6582±0.0120 1.6489±0.0482
25 815.5154±12.7724 1.9762 1.7237±0.0251 1.6652±0.0628
30 955.9324±13.1531 1.9109 1.7012±0.0081 1.6377±0.0136
50 1408.5406±10.4335 1.7384 1.6851±0.0095 1.6250±0.0553
100 2009.6568±25.6895 1.5354 1.5681±0.0053 1.5042±0.0199

FAds

5 1.1791±0.0063 1.0807 1.0660±0.0165 1.0648±0.0194
10 1.2094±0.0172 1.1026 1.0719±0.0002 1.0748±0.0208
15 1.2007±0.0511 1.1217 1.0727±0.0083 1.0726±0.0114
20 1.2271±0.0082 1.1405 1.1174±0.0053 1.0815±0.0126
25 1.2598±0.0036 1.1477 1.1291±0.0431 1.1020±0.0090
30 1.2728±0.0053 1.1647 1.1011±0.0045 1.0898±0.0097
50 1.3320±0.0068 1.2205 1.2361±0.0341 1.2140±0.0112
100 1.4565±0.0118 1.3274 1.3516±0.0522 1.2628±0.0195

ELD

5 2.0909±0.0428 1.5557 1.1626±0.0108 1.1570±0.0347
10 2.4693±0.3801 1.6769 1.2228±0.0090 1.2197±0.0609
15 2.7804±0.1867 1.6912 1.2466±0.0157 1.2397±0.0384
20 3.4629±0.1021 1.9075 1.3616±0.0122 1.3580±0.0378
25 4.6062±0.1384 1.9911 1.4347±0.0095 1.4146±0.0023
30 5.6617±0.1601 2.1623 1.4855±0.0312 1.4671±0.0634
50 12.0868±0.1241 2.4405 1.5643±0.0353 1.5475±0.0604
100 42.7583±0.2457 2.9438 1.8116±0.0075 1.7935±0.0445

TGas

5 4.3402±0.0298 1.4203 1.2641±0.0115 1.1657±0.1101
10 10.3151±0.0233 1.9085 1.4812±0.0388 1.4858±0.0731
15 17.2847±0.0530 2.0486 1.6572±0.0162 1.6107±0.0547
20 25.3236±0.0474 2.2949 1.6480±0.0220 1.5986±0.0879
25 35.4978±0.0085 2.4922 1.7614±0.0361 1.7588±0.0850
30 47.0122±0.0811 2.4077 1.7814±0.0129 1.7680±0.1291
50 109.0546±0.0506 2.5511 1.7567±0.0185 1.7628±0.0938
100 425.7642±0.0372 2.4501 1.7955±0.0071 1.7873±0.0425

Gas

5 5.4063±0.0635 1.5689 1.4692±0.0102 1.4721±0.0765
10 12.1241±0.0542 1.7191 1.6262±0.0760 1.6315±0.0747
15 19.2035±0.0078 1.7675 1.7093±0.0500 1.6779±0.0448
20 26.1705±0.1036 1.7616 1.6635±0.0678 1.6263±0.0263
25 34.1813±0.1193 1.7907 1.6576±0.0365 1.6545±0.0031
30 41.0833±0.3698 1.8155 1.6540±0.0012 1.6346±0.0199
50 76.6821±1.8847 1.8207 1.6749±0.0403 1.6717±0.0082
100 209.5885±7.0179 2.0473 1.6823±0.0196 1.6676±0.0165

YaleB

5 OOM 1.6582 1.4791±0.0473 1.4253±0.0905
10 OOM 1.7959 1.5023±0.0315 1.5346±0.0448
15 OOM >48h 1.5861±0.0864 1.5809±0.0529
20 OOM >48h 1.6136±0.0163 1.6109±0.0417
25 OOM >48h 1.6422±0.0878 1.6341±0.0301
30 OOM >48h >48h 1.6745±0.0365
50 OOM >48h >48h 1.7484±0.0505
100 OOM >48h >48h 1.8616±0.0954

Mnist8m

5 2.3392±0.0009 1.7131 1.1239±0.0094 1.1277±0.0494
10 3.0365±0.0017 1.9146 1.2357±0.0158 1.1451±0.0188
15 >48h >48h 1.2627±0.0269 1.2380±0.0480
20 >48h >48h >48h 1.3350±0.0730
25 >48h >48h >48h 1.3659±0.0769
30 >48h >48h >48h 1.3697±0.0877
50 >48h >48h >48h 1.6109±0.0608
100 >48h >48h >48h 1.8554±0.0401

Epsilon

5 1.1391±0.0483 1.0203 1.0818±0.0413 1.0190±0.0105
10 1.0774±0.0082 1.0243 1.0921±0.0281 1.0241±0.0141
15 1.0805±0.0005 1.0227 1.0822±0.0229 1.0227±0.0080
20 1.0876±0.0051 1.0223 1.0814±0.0147 1.0220±0.0165
25 1.0884±0.0002 1.0223 1.0850±0.0094 1.0220±0.0011
30 1.0915±0.0079 1.0226 1.0742±0.0112 1.0224±0.0067
50 1.0829±0.0004 1.0246 1.0730±0.0093 1.0242±0.0125
100 1.0826±0.0019 1.0298 1.0674±0.0081 1.0554±0.0467

22

Table 5: Summary of 14 Small Datasets

Dataset Rows Columns Dataset Rows Columns
sonar 208 60 mediamill 30993 120

BinaryAlpha 1404 320 musk 7074 168
dna 2000 180 arrhythmia 452 279
CTs 53500 386 sEMG 1800 2500
ORL 400 10304 USPS 9298 256

COIL20 1440 1024 ISOLET 7797 617
mnist 10000 784 UMIST 575 12880

Table 6: Comparison results of running time for varying k on 6 small datasets. If an algorithm fails to
output a solution within 48 hours, the running time is set as “>48h”.

Dataset k TwoStage Greedy VolumeSampling ILS LSCSS

arrhythmia

5 1.14 1.70 71.75 0.32 0.02
10 1.13 1.53 146.81 1.10 0.05
15 1.16 2.37 217.47 2.77 0.07
20 1.18 3.32 241.11 5.72 0.14
25 1.19 4.15 282.61 8.47 0.22
30 1.17 5.02 294.37 10.96 0.28
50 1.23 8.38 482.52 39.51 0.67

100 1.45 18.44 963.81 190.94 1.02

binaryalpha

5 1.19 1.09 57.28 0.33 0.04
10 1.26 2.21 112.59 1.78 0.10
15 1.29 3.31 162.58 4.25 0.16
20 1.29 4.68 204.88 7.90 0.28
25 1.32 5.87 260.07 12.03 0.36
30 1.31 7.89 297.84 15.68 0.51
50 1.38 14.29 487.54 50.88 0.75

100 1.56 27.69 929.32 254.56 1.39

COIL20

5 1.57 3.84 1498.82 1.09 0.03
10 1.85 8.34 3050.59 4.26 0.16
15 2.03 13.56 4261.67 9.77 0.28
20 2.07 18.43 6147.76 17.20 0.44
25 2.02 24.72 7242.89 28.77 0.49
30 2.03 30.44 9834.91 38.89 0.76
50 2.18 50.90 17081.15 113.82 1.59

100 2.49 89.30 73120.66 502.32 2.37

CTS

5 13.18 20.79 5119.43 10.30 0.97
10 15.37 46.10 10639.06 37.18 2.63
15 15.59 72.65 14595.50 81.18 3.74
20 15.42 101.63 23074.20 149.07 6.11
25 15.45 133.56 26595.60 237.15 7.65
30 15.58 166.70 31913.35 351.73 8.28
50 15.71 317.13 51880.07 1120.75 14.36

100 17.76 841.74 104368.19 6138.42 38.39

dna

5 0.41 0.43 23.34 0.57 0.04
10 0.48 1.08 46.23 3.01 0.08
15 0.43 1.67 86.54 6.38 0.17
20 0.53 2.32 101.05 11.31 0.24
25 0.54 3.17 117.49 18.24 0.32
30 0.52 3.88 151.58 26.98 0.49
50 0.67 6.24 253.12 72.95 0.53

100 0.97 567.23 960.52 400.13 1.07

ISOLET

5 2.04 10.39 3617.83 3.79 0.35
10 2.29 22.89 5340.22 13.78 0.73
15 2.24 36.11 7067.92 29.61 1.04
20 2.25 49.81 8483.23 51.92 1.32
25 2.23 64.70 18531.69 82.38 1.81
30 2.24 79.76 21504.78 120.58 2.05
50 2.39 145.43 37048.08 343.95 2.28

100 2.62 333.87 52324.39 1512.94 3.92

23

Table 7: Comparison results on running time for varying k on 8 small datasets. If an algorithm fails
to output a solution within 48 hours, the running time is set as “>48h”.

Dataset k TwoStage Greedy VolumeSampling ILS LSCSS

mediamill

5 0.64 4.75 1739.68 4.93 0.52
10 4.63 10.11 2308.06 18.13 1.06
15 4.51 15.57 2739.37 40.99 1.86
20 6.55 21.39 3658.98 72.93 2.43
25 7.54 27.41 4576.99 104.55 3.53
30 10.62 33.53 5481.76 143.93 4.26
50 13.78 60.84 9143.62 467.94 8.85

100 21.23 114.71 17427.80 2727.86 15.41

sonar

5 0.19 0.05 0.71 0.02 0.01
10 0.16 0.10 1.06 0.07 0.02
15 0.16 0.14 1.86 0.15 0.03
20 0.17 0.18 2.55 0.26 0.04
25 0.15 0.22 2.97 0.41 0.07
30 0.16 0.25 3.43 0.63 0.11
50 0.29 0.34 5.39 1.90 0.18

musk

5 0.72 2.02 10.37 1.39 0.10
10 0.75 4.65 19.89 5.77 0.15
15 0.76 7.28 29.05 14.05 0.22
20 0.79 10.17 39.21 24.34 0.34
25 0.81 13.15 47.87 41.61 0.40
30 0.87 16.27 55.09 57.71 0.68
50 0.83 29.45 90.17 184.35 0.75

100 1.25 60.38 178.53 761.19 1.90

sEMG

5 4.99 40.26 6290.13 3.28 0.45
10 5.38 81.72 14800.67 10.92 1.04
15 5.98 124.24 31659.17 21.72 1.51
20 7.04 166.41 63172.23 38.54 2.02
25 7.29 208.73 >48h 57.43 2.47
30 7.71 253.16 >48h 79.04 3.28
50 8.26 446.44 >48h 221.22 4.52

100 10.83 1003.05 >48h 920.75 8.79

ORL

5 2.88 26.40 4670.13 3.37 0.21
10 3.64 53.72 8317.94 8.18 0.27
15 9.04 80.43 12421.25 14.23 0.56
20 23.67 108.34 16367.79 21.98 0.78
25 33.4 138.25 20450.05 31.43 1.13
30 35.64 168.26 24341.61 43.89 1.25
50 37.32 294.22 45980.34 107.87 2.54

100 47.36 716.27 96733.46 386.42 7.91

UMIST

5 2.47 69.85 10852.31 6.02 0.2
10 2.94 140.38 21398.78 14.37 0.53
15 7.52 212.42 31965.75 25.03 0.90
20 22.61 278.14 44963.09 38.73 1.13
25 31.67 328.22 53477.56 53.96 1.54
30 31.95 404.45 71528.05 69.63 1.80
50 33.31 732.53 >48h 168.18 4.11

100 39.54 1532.27 >48h 428.62 11.97

mnist

5 3.32 22.45 2834.30 4.73 0.38
10 3.36 47.99 5582.86 17.21 0.8
15 3.41 71.95 8039.87 37.67 1.33
20 3.49 96.56 10681.44 68.24 1.88
25 3.45 124.43 13936.23 104.85 2.43
30 3.52 153.30 19584.82 154.39 3.23
50 3.69 267.98 27634.12 435.65 4.71

100 4.16 572.09 58759.88 1907.21 7.84

USPS

5 0.91 1.15 303.02 2.24 0.12
10 1.14 2.25 628.31 8.11 0.25
15 1.13 3.35 947.55 18.84 0.33
20 1.12 4.60 1307.11 34.29 0.66
25 1.29 6.06 1584.26 54.62 0.82
30 1.25 7.59 1899.81 77.41 1.20
50 1.56 15.26 3327.07 241.06 2.37

100 2.21 41.90 6458.70 1088.98 6.79

24

Table 8: Comparison results on error ratio for varying k on 6 small datasets. If an algorithm fails to
output a solution within 48 hours, the running time is set as “>48h”.

Dataset k TwoStage Greedy VolumeSampling ILS LSCSS

CTS

5 17.3085±1.1164 1.1714 1.4125±0.0905 1.1805±0.0062 1.1682±0.0236
10 17.9368±1.3967 1.2812 1.5634±0.0785 1.3079±0.0013 1.2658±0.0208
15 16.9421±0.8017 1.3156 1.5160±0.0340 1.4088±0.0470 1.3688±0.0207
20 20.3040±0.4101 1.3452 1.5497±0.0613 1.4070±0.0320 1.3777±0.0225
25 18.3049±0.3146 1.3677 1.5951±0.0837 1.3853±0.0065 1.3648±0.0317
30 18.2682±5.9413 1.3834 1.6504±0.0167 1.3929±0.0009 1.3694±0.0182
50 1.4661±0.0712 1.4342 1.6428±0.0550 1.4568±0.0029 1.4175±0.0174

100 1.5302±0.0429 1.5070 1.7487±0.0286 1.7778±0.0996 1.5048±0.0064

musk

5 1.4280±0.0404 1.1746 1.5812±0.0328 1.2011±0.0015 1.1746±0.0855
10 1.4429±0.0841 1.2872 1.7471±0.0585 1.3196±0.0015 1.2803±0.0816
15 1.7174±0.0917 1.4085 1.8071±0.1319 1.4415±0.0081 1.3821±0.0546
20 1.7424±0.0380 1.5289 1.8776±0.1250 1.5703±0.0141 1.4754±0.0312
25 1.7630±0.0251 1.5935 1.9104±0.0782 1.6437±0.0075 1.5439±0.0456
30 1.8151±0.0754 1.6808 2.1968±0.1437 1.6559±0.0125 1.6111±0.0619
50 2.0740±0.0139 1.9803 2.4366±0.2390 1.8774±0.0172 1.8673±0.0401

100 2.0910±0.0254 2.1873 3.1927±0.1849 2.0254±0.0318 1.8991±0.0443

sonar

5 1.4215±0.0306 1.3729 1.5739±0.0107 1.3251±0.0000 1.3052±0.0524
10 1.4578±0.0508 1.4410 1.6541±0.0624 1.4535±0.0239 1.3909±0.0432
15 1.4792±0.0195 1.4766 1.7626±0.0298 1.4845±0.0204 1.4236±0.0664
20 1.7213±0.0801 1.5664 1.8673±0.0389 1.5285±0.0108 1.4738±0.0348
25 1.6245±0.0208 1.6982 1.9229±0.1503 1.6288±0.0245 1.5287±0.0421
30 1.7561±0.0430 1.8787 2.0996±0.0675 1.8004±0.0361 1.6237±0.0586
50 2.7735±0.0262 2.9159 2.4561±0.1478 2.7414±0.0215 2.3819±0.1598

ORL

5 2.8872±0.0261 1.2600 1.6455±0.0081 1.2904±0.0286 1.2547±0.0728
10 2.8216±0.0359 1.3135 1.6553±0.0115 1.3544±0.0182 1.3268±0.0392
15 1.8991±0.0170 1.3453 1.6232±0.0650 1.4237±0.0091 1.3438±0.0206
20 1.6448±0.0189 1.3808 1.6555±0.0405 1.4900±0.0080 1.3684±0.0175
25 1.5535±0.0085 1.4079 1.7271±0.0305 1.5004±0.0049 1.3942±0.0333
30 1.5677±0.0003 1.4263 1.7528±0.0836 1.5156±0.0066 1.4241±0.0355
50 1.5957±0.0513 1.5325 1.7890±0.0531 1.6214±0.0039 1.4807±0.0192

100 1.7535±0.0228 1.5818 1.8557±0.0127 1.6968±0.0052 1.5700±0.0189

USPS

5 1.3988±0.0167 1.2998 1.5575±0.0723 1.3183±0.0219 1.1928±0.0674
10 1.5953±0.0029 1.5151 1.7870±0.0417 1.5065±0.0214 1.4632±0.0558
15 1.6875±0.0521 1.6312 2.0675±0.0706 1.6489±0.0271 1.5790±0.0588
20 1.8765±0.0090 1.7242 2.0169±0.0802 1.6592±0.0152 1.6767±0.0328
25 1.8218±0.0618 1.7965 2.0815±0.0139 1.7480±0.0297 1.7356±0.0413
30 1.8698±0.0596 1.8310 2.7416±0.0405 1.7546±0.0197 1.7512±0.0245
50 1.8854±0.0029 2.0011 3.0553±0.0837 2.0407±0.0576 1.9515±0.0394

100 2.4488±0.0522 2.7733 3.4671±0.0813 2.6115±0.0457 2.4361±0.0307

arrhythmia

5 1.5736±0.0249 1.1986 1.5832±0.0261 1.1963±0.0005 1.1618±0.0812
10 1.9387±0.0235 1.2684 1.7408±0.0712 1.2638±0.0080 1.2101±0.0194
15 2.2904±0.0650 1.3649 1.7815±0.0451 1.3349±0.0043 1.3110±0.0678
20 3.1396±0.1686 1.3591 1.8522±0.0469 1.3600±0.0108 1.3415±0.0317
25 3.3725±0.2329 1.3759 1.9422±0.0903 1.4045±0.0222 1.3926±0.0365
30 4.0875±0.0361 1.4424 2.1703±0.1079 1.4506±0.0126 1.4012±0.0479
50 7.5292±0.5595 1.6928 2.5196±0.1648 1.6651±0.0255 1.5918±0.0283

100 49.6032±3.3052 1.4074 2.8522±0.7297 1.8034±0.2081 1.3346±0.0136

mnist

5 1.7082±0.0289 1.2929 1.5199±0.0485 1.2792±0.0064 1.2434±0.0305
10 1.7217±0.0175 1.3793 1.5594±0.0608 1.3565±0.0044 1.3465±0.0238
15 1.7193±0.0121 1.4167 1.5996±0.0304 1.4155±0.0043 1.3911±0.0187
20 1.9977±0.0173 1.4410 1.6817±0.0653 1.4360±0.0041 1.4172±0.0187
25 2.0708±0.0174 1.4677 1.7307±0.0529 1.4742±0.0068 1.4475±0.0107
30 2.3759±0.0348 1.4977 1.8702±0.0311 1.4957±0.0046 1.4768±0.0080
50 2.6145±0.0350 1.5554 1.8630±0.0184 1.5647±0.0053 1.5257±0.0106

100 3.0237±0.0655 1.6526 1.9803±0.0608 1.6579±0.0086 1.6263±0.0081

ISOLET

5 1.4971±0.0296 1.1589 1.5024±0.0115 1.2701±0.0004 1.1598±0.0398
10 1.4822±0.0256 1.2134 1.6256±0.0071 1.2612±0.0046 1.2126±0.0351
15 1.4773±0.0078 1.2693 1.5853±0.0192 1.3133±0.0434 1.2682±0.0327
20 1.5587±0.0131 1.3294 1.7625±0.0577 1.3691±0.0198 1.3169±0.0361
25 1.6296±0.0152 1.3549 1.8025±0.0915 1.3961±0.0236 1.3415±0.0486
30 1.5717±0.0092 1.3784 1.8406±0.0703 1.4217±0.0131 1.3648±0.0458
50 1.6364±0.0034 1.4751 1.9458±0.0450 1.4928±0.0159 1.4562±0.0135

100 1.6996±0.0274 1.6226 1.9489±0.0672 1.5936±0.0103 1.5788±0.0226

25

Table 9: Comparison results on error ratio for varying k on 8 small datasets. If an algorithm fails to
output a solution within 48 hours, the running time is set as “>48h”.

Dataset k TwoStage Greedy VolumeSampling ILS LSCSS

UMIST

5 1.4697±0.0177 1.3284 1.5403±0.0073 1.3222±0.0107 1.2960±0.0107
10 1.5501±0.0149 1.3169 1.4947±0.0091 1.3341±0.0032 1.3090±0.0206
15 1.5496±0.0126 1.3630 1.5128±0.0124 1.3833±0.0042 1.3587±0.0107
20 1.5371±0.0114 1.4275 1.5364±0.0025 1.4570±0.0052 1.4209±0.0125
25 1.5090±0.0089 1.4742 1.5883±0.0048 1.4927±0.0058 1.4615±0.0126
30 1.5997±0.0334 1.5160 1.6758±0.0083 1.5222±0.0092 1.5043±0.0076
50 1.7048±0.0232 1.6346 >48h 1.6780±0.0045 1.6344±0.0137
100 1.7600±0.0107 1.7321 >48h 1.7273±0.0056 1.7040±0.0084

binaryalpha

5 1.3510±0.0135 1.2534 1.3391±0.0097 1.2451±0.0184 1.2209±0.0205
10 1.3550±0.0081 1.3227 1.4320±0.0034 1.3067±0.0080 1.3036±0.0225
15 1.4281±0.0013 1.3898 1.5441±0.0067 1.3915±0.0020 1.3796±0.0131
20 1.4393±0.0063 1.4378 1.6791±0.0183 1.4366±0.0082 1.4336±0.0226
25 1.4929±0.0119 1.4817 1.7525±0.0609 1.4625±0.0043 1.4597±0.0106
30 1.5108±0.0224 1.5118 1.7725±0.0208 1.4895±0.0079 1.4840±0.0150
50 1.6041±0.0046 1.6082 1.8562±0.0257 1.5813±0.0088 1.5795±0.0140
100 1.6710±0.0142 1.6598 1.9473±0.0783 1.6474±0.0018 1.6379±0.0092

COIL20

5 3.9687±0.0615 1.4194 1.6815±0.1039 1.3428±0.0264 1.3396±0.0450
10 1.7657±0.0345 1.4854 1.7398±0.0727 1.4537±0.0218 1.4387±0.0287
15 1.7081±0.0139 1.5274 1.7455±0.0664 1.5532±0.0111 1.5147±0.0286
20 1.8870±0.0218 1.6024 1.8599±0.1043 1.5866±0.0196 1.5421±0.0208
25 1.9023±0.0104 1.6271 2.0515±0.0262 1.6066±0.0141 1.5638±0.0118
30 1.8841±0.0119 1.6389 2.0710±0.1581 1.6302±0.0130 1.5964±0.0167
50 2.0428±0.0202 1.6892 2.1290±0.0549 1.6747±0.0140 1.6506±0.0167
100 1.8368±0.0310 1.8014 3.5690±0.2833 1.7837±0.0126 1.7498±0.0110

dna

5 1.1438±0.0101 1.0818 1.1294±0.0011 1.0818±0.0000 1.0878±0.0166
10 1.1398±0.0965 1.1029 1.1443±0.0024 1.1060±0.0020 1.1025±0.0085
15 1.1445±0.0158 1.1235 1.1578±0.0138 1.1260±0.0009 1.1213±0.0043
20 1.1643±0.0971 1.1434 1.1738±0.0046 1.1453±0.0007 1.1386±0.0055
25 1.1801±0.0485 1.1645 1.1857±0.0092 1.1649±0.0016 1.1603±0.0038
30 1.2006±0.1036 1.1851 1.2179±0.0108 1.1834±0.0009 1.1776±0.0078
50 1.2839±0.0934 1.2766 1.3095±0.0055 1.2692±0.0005 1.2617±0.0034
100 1.6617±0.0656 1.6638 1.7365±0.0815 1.6383±0.0021 1.6066±0.0145

mediamill

5 2.0706±0.0479 1.6583 2.1393±0.1273 1.4696±0.0109 1.4173±0.1028
10 1.8658±0.0083 1.7480 2.4754±0.2760 1.6673±0.0309 1.5602±0.1459
15 2.0647±0.0198 1.8526 2.6652±0.2078 1.7285±0.0221 1.6312±0.1056
20 1.9377±0.0391 1.9888 2.7980±0.1245 1.8613±0.0602 1.7563±0.0987
25 2.0998±0.0527 2.0537 2.8292±0.0740 1.8453±0.0329 1.8944±0.1191
30 2.3301±0.0015 2.0571 2.9513±0.2368 1.8841±0.0350 1.8636±0.1155
50 2.2574±0.0269 2.1938 3.0384±0.1871 2.0635±0.0582 1.9441±0.0693
100 2.7410±0.0133 2.6013 3.3817±0.1265 2.3854±0.0423 2.0646±0.1056

sEMG

5 1.0291±0.0003 1.0231 1.0277±0.0006 1.0252±0.0010 1.0217±0.0058
10 1.0477±0.0002 1.0322 1.0452±0.0024 1.0358±0.0036 1.0343±0.0094
15 1.0680±0.0039 1.0411 1.0817±0.0053 1.0445±0.0031 1.0430±0.0022
20 1.0886±0.0001 1.0495 1.1043±0.0032 1.0502±0.0053 1.0494±0.0052
25 1.1079±0.0003 1.0572 >48h 1.0575±0.0075 1.0572±0.0049
30 1.1386±0.0001 1.0647 >48h 1.0691±0.0021 1.0657±0.0010
50 1.1117±0.0006 1.0922 >48h 1.0925±0.0016 1.0844±0.0004
100 1.1496±0.0011 1.1450 >48h 1.1360±0.0008 1.1332±0.0054

26

Table 10: Comparison results on error ratio and running time for QRP and LSCSS algorithms

Dataset k
QRP LSCSS

ratio time ratio time

CMHS

5 4.9384 1289.86 1.1348±0.0202 2.82
10 3.3580 1289.87 1.2237±0.0894 5.17
15 5.7633 1289.87 1.6134±0.0177 13.39
20 3.5838 1289.90 1.6489±0.0482 30.45
25 3.7979 1289.88 1.6652±0.0628 43.27
30 4.0852 1289.91 1.6377±0.0136 52.82
50 4.0925 1289.93 1.6250±0.0553 62.36

100 4.6109 1289.98 1.5042±0.0199 108.98

ELD

5 1.9681 124.93 1.1570±0.03478 2.18
10 2.5603 124.93 1.2197±0.0609 3.47
15 2.6873 124.94 1.2397±0.0384 5.36
20 2.8871 124.94 1.3580±0.0378 13.93
25 3.4399 124.94 1.4146±0.0023 22.98
30 3.5369 124.95 1.4671±0.0634 35.03
50 4.3966 124.97 1.5475±0.0604 66.27

100 4.8920 125.03 1.7935±0.0445 89.94

Gas

5 2.2778 913.83 1.4721±0.0765 5.83
10 2.1567 913.60 1.6315±0.0747 11.67
15 2.5804 913.60 1.6779±0.0448 19.3
20 2.4450 913.62 1.6263±0.0263 47.9
25 2.7521 913.60 1.6545±0.0031 130.11
30 2.8961 913.62 1.6346±0.0199 322.92
50 2.8465 913.63 1.6717±0.0082 386.15

100 3.6717 913.65 1.6676±0.0165 850.01

FAds

5 1.1361 6487.57 1.0648±0.0194 3.4
10 1.1805 6487.52 1.0748±0.0208 10.58
15 1.2055 6487.52 1.0726±0.0114 17.65
20 1.2224 6487.54 1.0815±0.0126 18.27
25 1.2383 6487.55 1.1020±0.0090 22.29
30 1.2531 6487.65 1.0898±0.0097 22.76
50 1.2886 6487.62 1.2140±0.0112 36.04

100 1.3430 6487.74 1.2628±0.0195 95.67

TGas

5 2.7632 1239.08 1.1657±0.1101 17.15
10 4.0830 1239.06 1.4858±0.0731 30.28
15 6.4080 1239.07 1.6107±0.0547 36.99
20 7.1182 1239.07 1.5986±0.0879 49.9
25 9.3027 1239.08 1.7588±0.0850 61.36
30 10.4892 1239.10 1.7680±0.1291 77.93
50 18.9009 1239.16 1.7628±0.0938 114.23

100 23.9558 1239.42 1.7873±0.0425 243.89

27

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract reflect the paper’s primary contributions
and scope. In this paper, an approximation algorithm with running time linear in both n and
d is proposed for the Column Subset Selection problem, which selects exactly k columns.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
Justification: This paper has no limitation.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

28

Answer: [Yes]

Justification: All the theorems, formulas, and proofs are clearly stated in the paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The information required to reproduce the main experimental results is pro-
vided in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

29

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets can be found via the link provided in the paper, and the codes are
available upon request via email.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental settings have been clearly stated in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In the experiment comparison results, each algorithm is executed 10 times on
each dataset, and the average results are reported as the final results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: For each experiment, the paper provides details on the computer resources
required to reproduce the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research presented in the paper complies with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We present a linear time local search algorithm for the CSS problem with ex-
actly k columns selected, which we expect to be beneficial for handling other dimensionality
reduction tasks. The primary purpose is to offer algorithmic insights for obtaining linear
time algorithm, where we do not foresee any societal consequences specifically related to
the proposed method.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

31

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks about safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper poses no such risks about safeguards.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

32

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve corwdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

33

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

34

	Introduction
	Our Contribution
	Related Work

	Preliminaries
	Linear Time Local Search Algorithm for CSS Problem
	Experiments
	Conclusion
	Appendix / supplemental material
	Missing Proofs
	Complementary Experiments
	Experiments on Small Datasets
	Experiments on QR with Column Pivoting and LSCSS Algorithms

