
Diffusion Generative Models meet Differential Privacy:
A Theoretical Insight

Ziyu Huang, Wenpin Tang ∗

Department of Industrial Engineering and Operations Research
Columbia University
New York, NY 10027

{zh2532, wt2319}@columbia.edu

Abstract

Score-based diffusion models have emerged as popular generative models trained
on increasingly large datasets, yet they are often susceptible to attacks that can dis-
close sensitive information. To offer Differential Privacy (DP) guarantees, training
these models for score-matching with DP-SGD has become a common solution.
In this work, we study Differentially Private Diffusion Models (DPDM) both the-
oretically and empirically. We provide a quantitative L2 rate of DP-SGD to its
global optimum, leading to the first error analysis of diffusion models trained with
DP-SGD. Our theoretical framework contributes to uncertainty quantification in
generative AI systems, providing essential convergence guarantees for trustworthy
decision-making applications that require both privacy preservation and reliability.

1 Introduction

Diffusion models have emerged as a powerful class of generative models, demonstrating remarkable
success in generating high-quality synthetic data across various domains including images, text, and
time series data [8, 11]. However, as these models are increasingly trained on large-scale datasets
that often contain sensitive information, privacy concerns have become paramount. The ability of
generative models to memorize and potentially leak training data has been well-documented [2,
3], raising fundamental questions about the privacy guarantees of diffusion models in practical
applications.

To address these privacy vulnerabilities, differentially private training has emerged as the gold
standard for providing formal privacy guarantees. Differential Privacy (DP) offers a mathematically
rigorous framework that quantifies the maximum information leakage about any individual training
example [5]. The canonical approach for training machine learning models with DP guarantees is DP-
SGD [1], which adds calibrated noise to gradients during training. While empirical studies have shown
the feasibility of training differentially private diffusion models [4, 6], theoretical understanding of
the convergence properties and privacy-utility tradeoffs remains limited.

This paper provides theoretical analysis of diffusion models trained with differential privacy. We
focus on the score-matching objective central to denoising diffusion probabilistic models (DDPMs)
and analyze the convergence properties of DP-SGD applied to this objective. Our analysis reveals
fundamental tradeoffs between privacy, accuracy, and computational complexity, providing theoretical
insights that complement existing empirical studies and inform the design of privacy-preserving
generative models.
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39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MLxOR: Mathematical
Foundations and Operational Integration of Machine Learning for Uncertainty-Aware Decision-Making.



1.1 Our Contributions

We provide the first rigorous convergence analysis of DP-SGD applied to the score-matching objective
used in diffusion models. Specifically, we establish upper bounds on the Wasserstein-2 distance
between the output of DP-SGD and the global optimum, revealing how the convergence rate depends
on the privacy parameters (ϵ, δ), dimensionality d, and step size η. Our analysis shows that the
convergence rate scales as O(1+η1/2d1/2+η3/4d3/4+ηd+η3/2d3/2+η2d2+η3d9/4+η4d3+η6d4),
when η is small and d is large. When η = O(d−θ), the phase transition of the convergence rate is
described in Table 1. We observe that in order to achieve less than constant convergence rate, the step
size needs to be at most O(d−1). This demonstrates the fundamental privacy-utility-dimensionality
tradeoff in differentially private diffusion models. See Appendix A for the comparison of our work
with the related works.

range of θ θ ≥ 1 1
2 ≤ θ < 1 0 < θ < 1

2

convergence rate O(1) O(d2−2θ) O(d4−6θ)

Table 1: Convergence rates in terms of η = O(d−θ).

2 Preliminaries

2.1 Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPMs) are latent variable models of the form pθ(x0) :=∫
pθ(x0:T ) dx1:T , where x1, . . . , xT are latents of the same dimensionality as the data x0 ∼ q(x0).

The model consists of two complementary Markov processes: a fixed forward process that gradually
corrupts data by adding Gaussian noise, and a learned reverse process that generates data by iteratively
denoising. The forward process q(x1:T |x0) is defined as a Markov chain that adds Gaussian noise
according to a variance schedule β1, . . . , βT :

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI). (1)

The reverse process pθ(x0:T ) is parameterized as a Markov chain with learned Gaussian transitions
where p(xT ) = N (xT ; 0, I) is the prior distribution. Training is performed by optimizing the
variational bound on negative log likelihood. However, [8] showed that superior empirical results are
obtained using the simplified training objective:

Lsimple(θ) := Et,x0,ϵ

[
||ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)||2

]
, (2)

where t ∼ Uniform(1, . . . , T ) and ϵ ∼ N (0, I). In this parameterization, the neural network ϵθ(xt, t)
is trained to predict the noise ϵ that was added to the original data x0 to obtain the noisy observation
xt.

2.2 Differential Privacy and Algorithms

Differential privacy (DP) provides a rigorous mathematical framework for quantifying privacy
guarantees in machine learning algorithms [1]. Formally, a randomized mechanism M : D → R
satisfies (ϵ, δ)-differential privacy if for any two adjacent datasets D,D′ ∈ D differing by a single
record and any subset of outputs S ⊆ R:

Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S] + δ,

where ϵ controls the privacy budget and δ accounts for the probability of privacy failure.

In our analysis, we compare standard Stochastic Gradient Descent (SGD) with Differentially Private
SGD with Normalization (DP-NSGD) in the empirical risk minimization setting.
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Definition 1 (SGD with singleton batch). Starting with an arbitrary initial point x0, for a fixed step
size η > 0, the Stochastic Gradient Descent algorithm (SGD) iteratively updates

xt+1 = xt − η∇xgt(xt), (3)

where gt is sampled uniformly from {f1, . . . , fn} independently.

To provide differential privacy guarantees, we use DP-NSGD [14], which normalizes gradients
instead of clipping them:

Definition 2 (DP-NSGD with singleton batch). Starting with an arbitrary initial point x0, for a fixed
step size η > 0, a normalization parameter r ≥ 1, and a noise parameter σ > 0, the Differentially
Private SGD with Normalization (DP-NSGD) algorithm iteratively updates

x̃t+1 = x̃t − η

(
∇g̃t(x̃t)

r + ||∇g̃t(x̃t)||
+ zt

)
(4)

where g̃t is sampled uniformly from {f1, . . . , fn} independently and zt ∼ N (0, σ2Id).

The privacy guarantee for DP-NSGD is established by the following result:

Lemma 3 (Privacy Guarantee [1]). If the noise parameter σ ≥
√

2 log(1.25/δ)

ϵ , then DP-NSGD is

(O(
√
Tϵ

|X| ), δ)-differentially private, where |X| is the size of the training set and T is the number of
iterations.

A key advantage of DP-NSGD over traditional DP-SGD (which uses gradient clipping) is the ease of
parameter tuning: the regularizer r provides a more robust and intuitive hyperparameter that can be
tuned without extensive knowledge of gradient magnitudes, unlike clipping thresholds which require
careful dataset-specific calibration.

3 Main Result

Our theoretical analysis focuses on the optimization of the simplified diffusion objective introduced
in Section 2.1. Since the objective function samples clean data from the training set, we consider the
empirical risk minimization (ERM) formulation for optimization purposes. Given a training dataset
I = {ξi}ni=1 where each ξi represents a training sample (which could be a noisy data point and
timestep pair), we formulate the ERM problem as:

min
x∈Rd

1

n

n∑
i=1

fi(x) = min
x∈Rd

f(x),

where x is the parameter to be optimized. The individual loss functions fi(x) correspond to the
samples of the simplified objective function from the training set. This formulation allows us to
analyze the convergence properties of DP-NSGD applied to diffusion model training while working
with the mathematically tractable objective that underlies the simplified diffusion loss.

Let f∗ := infx f(x). We measure how close the output of DP-NSGD is to f∗ using the Wasserstein-2
distance W2(X,Y ) = infγ∈Coup(X,Y )

√
Eγ [||X − Y ||2], where Coup(X,Y ) is the collection of all

couplings between the distributions of X and Y .

Our goal is to give an upper bound for the minimal W2 distance between f(x̃t) and f∗ as t goes to
infinity:

lim sup
t→∞

W2(f(x̃t), f
∗).

We need several assumptions on the class of functions {fi}ni=1.

Assumption 4 (Lipschitz continuity). There exists a constant C1 such that for any i ∈ [n], x, y ∈ Rn,
||∇fi(x)−∇fi(y)|| ≤ C1||x− y||.

This assumption ensures that gradients don’t change too rapidly, which is crucial for controlling the
accumulation of errors introduced by privacy noise.
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Assumption 5 (Bounded gradient variance). There exists a constant C2 such that for any i ∈ [n], x ∈
Rn, when g is uniformly sampled from {fi}ni=1, E[||∇g(x)||2] = C2.

This controls the inherent stochasticity in gradient estimates.
Assumption 6 (Dissipation). There exists a constant C3 such that for any i ∈ [n], x, y ∈ Rn,
(x− y)T (∇fi(x)−∇fi(y)) ≥ C3||x− y||2.

This is a strong convexity-like condition that ensures the optimization landscape is well-conditioned. It
guarantees that the algorithm makes consistent progress toward the optimum and prevents oscillatory
behavior.
Assumption 7 (Bounded gradient fourth moment). There exists a constant C6 such that for any
i ∈ [n], x ∈ Rn, when g is uniformly sampled from {fi}ni=1, E[||∇g(x)||4] = C6.

This higher-order moment condition is needed to control the variance of our coupling analysis. It
ensures that extreme gradient values don’t dominate the convergence analysis.
Assumption 8 (Polyak-Lojasiewicz (PL) Condition). There exists a constant µ such that, for any x
in the domain of f, ||∇f(x)||2 ≥ 2C8(f(x)− f∗), where f∗ is the global infinimum of f .

This condition ensures that whenever we are far from the optimum (large f(x)−f∗), the gradients are
sufficiently large to make progress. This is weaker than strong convexity but still ensures convergence.
Assumption 9 (Expected Residual). Each fi satisfies the expected residual condition. That is, there
exists C7 > 0 such that

E[||fi(x)− fi(x
∗)− (∇f(x)−∇f(x∗))||2] ≤ 2C7(f(x)− f(x∗)), ∀x ∈ Rn

This technical condition bounds the variance between individual functions fi and the population
function f . It ensures that the finite-sample approximation doesn’t deviate too much from the
population objective.

To give an upper bound for lim supt→∞ W2(f(x̃t), f
∗), we separate W2(f(x̃t), f

∗) into two terms
W2(f(x̃t), f(xt)) and W2(f(xt), f

∗) and give an upper bound on each of them. See Appendix B
for the complete proof and methodology.
Lemma 10 (Main Coupling Lemma). Let x̃t, xt be the t-iterate of DP-NSGD, SGD out of T iterations
respectively. Assume each fi satisfies Assumptions 4–7. Let πt−1 be a coupling of xt, x̃t such that
gl = g̃l for any 1 ≤ l ≤ t− 1. Under appropriate step size conditions,

lim sup
t→∞

W2(f(x̃t), f(xt)) = O(1+η1/2d1/2+η3/4d3/4+ηd+η3/2d3/2+η2d2+η3d9/4+η4d3+η6d4).

Combining this lemma with an upper bound on W2(f(xt), f
∗) [7], we have our main theorem.

Theorem 11 (Main Result). Let {fi} satisfy Assumptions 4–9. Under appropriate step size condi-
tions:

lim sup
t→∞

W2(f(x̃t), f
∗) = O(1+η1/2d1/2+η3/4d3/4+ηd+η3/2d3/2+η2d2+η3d9/4+η4d3+η6d4).

(5)

This theorem establishes the fundamental privacy-utility-dimensionality tradeoffs in differentially
private diffusion models, showing how the convergence rate degrades with increasing dimensionality
and privacy constraints.

4 Conclusion

In this work, we provided a theoretical analysis of diffusion models trained with differential privacy,
establishing rigorous convergence bounds for DP-SGD applied to score-matching objectives and
revealing fundamental privacy-utility-dimensionality tradeoffs. Our analysis demonstrates that
convergence rates scale polynomially with dimensionality, highlighting the curse of dimensionality
in privacy-preserving generative modeling, while providing theoretical foundations that complement
empirical studies. Future work includes extending analysis to sophisticated diffusion variants,
investigating alternative privacy mechanisms, and experiments on financial time series, and supply
chain logistics data.
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A Literature Review

The intersection of differential privacy and diffusion models emerged as a critical research area
following demonstrated privacy vulnerabilities in generative systems. [3] first demonstrated that large
language models leak training data, while [2] extended this to production model extraction attacks,
and [15] revealed multimodal vulnerabilities specific to diffusion models. In response to these privacy
threats, [4] introduced the first comprehensive framework for differentially private diffusion models
(DPDM), establishing the theoretical and practical foundations for privacy-preserving generative
modeling. Building on this pioneering work, [6] provided empirical validation that DPDM can gener-
ate high-utility synthetic images with formal privacy guarantees, while [10] improved computational
efficiency through latent space operations. Recent advances have focused on practical deployment
with [13] presenting comprehensive production-scale evaluation and efficient fine-tuning approaches
developed by [9] and [12], collectively establishing differentially private training as the primary
defense against privacy attacks on diffusion models. Despite these empirical successes, theoretical
understanding of convergence properties and privacy-utility tradeoffs in DPDM remains limited,
motivating the need for rigorous analysis of DP-SGD applied to score-based generative models.

B Detailed Proofs

B.1 Proof of Lemma 10

We denote at := Eπt−1
[||xt − x̃t||2] for any 0 ≤ t ≤ T .

Lemma 12. Assume Assumption 5 and Assumption 6, for any t ≥ 0,

at+1 ≤ (1− 2C3η + 2C1η
2)at + (2C2η)

√
at + η2(σ2d+ 2C2

2 ).

Proof. First, we observe that

Eπt
[||xt+1 − x̃t+1||2] = Eπt

[||(xt − η∇gt(xt))− (x̃t − η(
∇g̃t(x̃t)

r + ||∇g̃t(x̃t)||
+ zt))||2]

= Eπt
[||(xt − x̃t)− η(∇gt(xt)−

∇g̃t(x̃t)

r + ||∇g̃t(x̃t)||
) + ηzt||2]

= Eπt−1 [||x− x̃t||2] + η2Eπt [||∇gt(xt)−
∇g̃t(x̃t)

r + ||∇g̃t(x̃t)||
||2] + η2E[||zt||2]

− 2ηEπt
[(xt − x̃t)

T (∇gt(xt)−
∇g̃t(x̃t)

r + ||∇g̃t(x̃t)||
)]

− 2η2Eπt [(∇gt(xt)−
∇g̃t(x̃t)

r + ||∇g̃t(x̃t)||
)T zt] + 2ηEπt−1

[(xt − x̃t)
T zt]

= Eπt−1
[||x− x̃t||2] + η2Eπt

[||∇gt(xt)−
∇g̃t(x̃t)

r + ||∇g̃t(x̃t)||
||2] + η2E[||zt||2]

− 2ηEπt
[(xt − x̃t)

T (∇gt(xt)−
∇g̃t(x̃t)

r + ||∇g̃t(x̃t)||
)]

− 2η2Eπt
[∇gt(xt)−

∇g̃t(x̃t)

r + ||∇g̃t(x̃t)||
] ·���*

0
E[zt] + 2ηEπt−1

[xt − x̃t] ·���*
0

E[zt]

≤ at + η2Eπt [||∇gt(xt)−
∇g̃t(x̃t)

r + ||∇g̃t(x̃t)||
||2]︸ ︷︷ ︸

I

+η2σ2d

−2ηEπt
[(xt − x̃t)

T (∇gt(xt)−
∇g̃t(x̃t)

r + ||∇g̃t(x̃t)||
)]︸ ︷︷ ︸

II

.

(6)
where the first equality is by the fact that zt is independent of any other random variables. We
let I := η2Eπt

[||∇gt(xt)− ∇g̃t(x̃t)
r+||∇g̃t(x̃t)|| ||

2] and II := −2ηEπt
[(xt − x̃t)(∇gt(xt)− ∇g̃t(x̃t)

r+||∇g̃t(x̃t)|| )].
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Under the coupling condition πt, gl and g̃l are identical for all 0 ≤ l ≤ t. To ease the notation, when
conditioning on πt, we denote ∇gt(xt) by ht and ∇g̃t(x̃t) = ∇gt(x̃t) by h̃t. For I,

I = η2Eπt
[||ht −

h̃t

r + ||h̃t||
||2] = η2Eπt

[||ht − h̃t + h̃t −
h̃t

r + ||h̃t||
||2]

≤ 2η2Eπt
[||ht − h̃t||2]︸ ︷︷ ︸

III

+2η2Eπt
[||h̃t −

h̃t

r + ||h̃t||
||2]︸ ︷︷ ︸

IV

,

where the first inequality is due to the fact that (a + b)2 ≤ 2a2 + 2b2 for any two reals a, b. By
Assumption 4, we have that

III = 2η2Eπt
[||ht−h̃t||2] = 2η2E[||∇fi(xt)−∇fi(x̃t)||2] ≤ 2η2C1Eπt−1

[||xt−x̃t||2] = 2η2C1at.
(7)

Furthermore,

IV = 2η2Eπt
[||h̃t −

h̃t

r + ||h̃t||
||2] = 2η2E[(

r + ||h̃t|| − 1

r + ||h̃t||
||h̃t||)2] ≤ 2η2E[||h̃t||2] ≤ 2η2C2

2 (8)

where the second inequality is by Assumption 5. Combining Eq (7) and Eq (8), we obtain that

I ≤ 2η2C1at + 2η2C2
2 . (9)

Then, we will upper bound II,

II = −2ηEπt [(xt − x̃t)
T (ht − h̃t + h̃t −

h̃t

r + |h̃t|
)]

= −2ηEπt [(xt − x̃t)
T (ht − h̃t)]︸ ︷︷ ︸

V

−2ηEπt [(xt − x̃t)
T (h̃t −

h̃t

r + |h̃t|
)]︸ ︷︷ ︸

VI

.
(10)

For the first term on the right hand side, by Assumption 6,

V = −2ηEπt
[(xt − x̃t)

T (ht − h̃t)] ≤ −2ηC3Eπt−1
[||xt − x̃t||2] = −2ηC3at. (11)

For the second term on the right hand side,

VI ≤ |VI| ≤ 2ηEπt
[|(xt − x̃t)

T (h̃t −
h̃t

r + ||h̃t||
)|] ≤ 2ηEπt

[||(xt − x̃t)||||(h̃t −
h̃t

r + ||h̃t||
)||]

≤ 2η
√
Eπt

[||(xt − x̃t)||2]

√
E[||(h̃t −

h̃t

r + ||h̃t||
)||2] ≤ 2η

√
atC2

(12)
where the second inequality is by Jensen inequality. The third inequality is by Cauchy-Schwarz over
Rn. The fourth inequality is by Cauchy-Schwarz over the probability space. The fifth inequality
is by Eq (8). We remark that in order to use Cauchy-Schartz, we require that r ≥ 1 so that
r + ||h̃t|| − 1

r + ||h̃t||
> 0. Combining Eq (11) and Eq (12), we obtain that

II ≤ −2ηC3at + 2ηC2
√
at. (13)

Finally, combining Eq (6), Eq (9), and Eq (13), we obtain that

at+1 ≤ at + I + η2σ2d+ II

≤ at + η2(2C1at + 2C2
2 ) + η2σ2d+ (−2ηC3at + 2ηC2

√
at)

≤ (1− 2C3η + 2C1η
2)at + (2C2η)

√
at + η2(σ2d+ 2C2

2 ).

(14)

7



Define functions in η,

A1(η) = 2C1η
2 − 2C3η + 1,

A2(η) = 2C2η,

A3(η) = (σ2d+ 2C2
2 )η

2.

Define functions in a free variable y,

p(y) = A1y +A2
√
y +A3,

q(y) = 1− p(y) = (1−A1)y −A2
√
y −A3.

By Lemma 12, we have the following corollary,

Corollary 13. at+1 ≤ p(at).

We want to show p(y) is increasing in y and q(y) is increasing in y when y is large enough. For that,
we need the following result,

Lemma 14. When 0 < η <
C3 −

√
C2

3 − 2C1

2C1
, 0 < A1(η) < 1.

Proof. We first observe that A1(η) is a quadratic function in η. If C2
3 < 2C1 then there are

no zeros and A1 is always positive. If C2
3 ≥ 2C1, the function has two zeros which are η1 =

C3 −
√
C2

3 − 2C1

2C1
and η2 =

C3 +
√

C2
3 − 2C1

2C1
. Since we required the step size η < η1, A1 will

always be positive. Furthermore, A1(η) < 1 if and only if 0 < η <
C3

C1
. Since we required that

0 < η <
C3 −

√
C2

3 − 2C1

2C1
<

C3

C1
, we know that A1(η) < 1.

We show the following property of p(y) and q(y), which will be helpful in our later proof.

Lemma 15. q(y) has a unique zero at

y∗ = (
A2 +

√
A2

2 + 4(1−A1)A3

2(1−A1)
)2.

When 0 ≤ y < y∗, q(y) < 0. When y > y∗, q(y) > 0.

Proof. Let z =
√
y so q(z) = (1−A1)z

2 −A2z −A3 with domain z > 0. q(z) is a quadratic with
two roots

z1 =
A2 −

√
A2

2 + 4(1−A1)A3

2(1−A1)
< 0, z2 =

A2 +
√
A2

2 + 4(1−A1)A3

2(1−A1)
> 0

and we find out z2 is the unique zero in the domain so y∗ := z22 = (
A2 +

√
A2

2 + 4(1−A1)A3

2(1−A1)
)2

is the unique zero of q(y). Since q(0) = −A3 = −η2(σ2d + 2C2
2 ) < 0 and limy→∞ q(y) =

limy→∞(1 − A1)y = ∞, by continuity of q(y), we conclude that when 0 ≤ y < y∗, q(y) < 0.
When y > y∗, q(y) > 0.

We define a new sequence (yt)t≥0 such that y0 = a0 and yt+1 = p(yt).

Lemma 16. The following statements are true for (yt):

1. yt ≥ at for any t;

2. limt→∞ yt = y∗.
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Proof. We show all statements by induction on (yt). To show statement 1, we first see y0 ≥ a0.
Assume yt ≥ at, then yt+1 = p(yt) ≥ p(at) ≥ at+1. The first inequality is by the fact that p(y) is
monotonically increasing. The second inequality is by Corollary 13.

We now show the second statement. If y∗ = y0, then by induction, since y∗ is the unique zero of
q(y), yt+1 = p(yt) = p(y∗) = y∗ as desired. If y0 > y∗, we claim that (yt) is bounded below
by y∗ and decreasing so converges. We observe that yt+1 − y∗ = p(yt) − p(y∗) > 0 since p is
increasing and yt > y∗ by assumption. Then, yt − yt+1 = yt − p(yt) = q(yt) > 0 where the
inequality is by Lemma 15 and the fact that yt > y∗. Thus, the limit of (yt) exists and we denote it
y∞ := limt→∞ yt. We observe that y∞ = limt→∞ yt = limt→∞ p(yt−1) = limt→∞ p(yt). Since
p is continuous, p(y∞) = limt→∞ p(yt) = y∞ so y∞ is a zero of q(y). Since q has the unique zero
y∗, we obtain that y∞ = y∗.

If y0 < y∗, we claim that (yt) is bounded above by y∗ and increasing so converges. We observe that
yt+1 − y∗ = p(yt)− p(y∗) < 0 since p is increasing and yt < y∗ by assumption. Then, yt − yt+1 =
yt − p(yt) = q(yt) < 0 where the inequality is by Lemma 15 and the fact that yt < y∗. Thus,
the limit of (yt) exists and we denote it y∞ := limt→∞ yt. We observe that y∞ = limt→∞ yt =
limt→∞ p(yt−1) = limt→∞ p(yt). Since p is continuous, p(y∞) = limt→∞ p(yt) = y∞ so y∞ is a
zero of q(y). Since q has the unique zero y∗, we conclude that y∞ = y∗.

From Lemma 16,

lim sup
t

at ≤ lim sup
t

yt = lim
t

yt = y∗ = (
A2 +

√
A2

2 + 4(1−A1)A3

2(1−A1)
)2

≤ (
A2 +

√
4(1−A1)A3

2(1−A1)
)2

= (
(2C2η)

2 +
√

4(2C3η − 2C1η2)(σ2d+ 2C2
2 )η

2

2(2C3η − 2C1η2)
)2

= (
(2C2)

2η +
√

4(2C3η − 2C1η2)(σ2d+ 2C2
2 )

2(2C3 − 2C1η)
)2

= 2(
(2C2)

2η

2(2C3 − 2C1η)
)2 + 2(

√
4(2C3η − 2C1η2)(σ2d+ 2C2

2 )

2(2C3 − 2C1η)
)2.

(15)

When η approaches to 0 and d approaches to ∞, we have that lim supt at = O(η2) + O(ηd). We
use the same contraction idea to give an upper bound on bt+1 := Eπt

[||xt+1 − x̃t+1||4].
Lemma 17.

bt+1 ≤ Hbt + Ib
3
4
t + Jb

1
2
t +Kb

1
4
t + L (16)

where

H = 1− η22C3 + η423C4
1 + η22

9
2C2

1 + η22
5
2C2

1 + η42
17
4 C3

1

I = η22C
1
4
6 + η4 · 3 · 2 17

4 C2
1C

1
4
6

J = η222dσ2 + η22dσ2 + η423dσ2C1 + η422dσ2C1 + η32
5
2 dσ2C

1
2
1 + η224C

1
2
6 + η232

1
2C

1
2
6

+ η4 · 3 · 2 17
4 C1C

1
2
6 + η32

7
2 dσ2C

1
2
1

K = η322σ3d
3
2 + η32

5
2 d

3
2σ3C

1
2
1 + η42

17
4 C

3
4
6 + η32

5
2 dσ2C2 + η32

7
2 dσ2C2

L = η48C6 + η4σ4(d2 + 2d) + η48C2
2dσ

2 + η44C2
2dσ

2 + η32
5
2 d

3
2σ3C2).

Proof. First, we denote E := xt − x̃t, F := −(∇gt(xt)− ∇g̃t(x̃t)
r+||∇g̃t(x̃t)|| ).
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bt+1 = Eπt [||xt+1 − x̃t+1||4]

= Eπt
[||(xt − η∇gt(xt))− (x̃t − η(

∇g̃t(x̃t)

r + ||∇g̃t(x̃t)||
+ zt))||4]

= Eπt [||(xt − x̃t︸ ︷︷ ︸
E

) + η(−∇gt(xt) + (
∇g̃t(x̃t)

r + ||∇g̃t(x̃t)||
)︸ ︷︷ ︸

F

) + ηzt||4]

= Eπt
[||E + ηF + ηzt||4]

= Eπt
[(||E||2 + η2||F ||2 + η2||zt||2 + 2ηETF + 2ηET zt + 2η2FT zt)

2]

= Eπt
[||E||4 + η4||F ||4 + η4||zt||4 + 4η2(ETF )2 + 4η2(ET zt)

2 + 4η4(FT zt)
2

+ 2 · ||E||2 · η2||F ||2 + 2 · ||E||2 · η2||zt||2 + 2 · ||E||2 · 2η(ETF ) + 2 · ||E||2 · 2η(ET zt) + 2 · ||E||2 · 2η2(FT zt)

+ 2 · η2||F ||2 · η2||zt||2 + 2 · η2||F ||2 · 2η(ETF ) + 2 · η2||F ||2 · 2η(ET zt) + 2 · η2||F ||2 · 2η2(FT zt)

+ 2 · η2||zt||2 · 2η(ETF ) + 2 · η2||zt||2 · 2η(ET zt) + 2 · η2||zt||2 · 2η2(FT zt)

+ 2 · 2η(ETF ) · 2η(ET zt) + 2 · 2η(ETF ) · 2η2(FT zt)

+ 2 · 2η(ET zt) · 2η2(FT zt)],
(17)

where the third and the fourth equality is the expansion of the polynomials. We give an upper bound
for each term separately in terms of bt and other constants.

1. Eπt [||E||4] = Eπt [||xt − x̃t||4] = bt

2. Recall that ht := ∇gt(xt), h̃t := ∇g̃t(x̃t). Then,

Eπt [η
4||F ||4] = η4Eπt [||ht−h̃t+h̃t−

h̃t

r + ||h̃t||
||4] ≤ 8η4Eπt

[||ht − h̃t||4]︸ ︷︷ ︸
VII

+8η4Eπt
[||h̃t −

h̃t

r + ||h̃t||
||4]︸ ︷︷ ︸

VIII

,

(18)
where the inequality is by the fact that (a+ b)4 ≤ 8a4 + 8b4 for any two real numbers a, b.
By Assumption 4, VII ≤ 8η4C4

1bt. By Assumption 7,

VIII = 8η4Eπt
[||h̃t −

h̃t

r + ||h̃t||
||4] ≤ 8η4Eπt

[(
r + ||h̃t|| − 1

r + ||h̃t||
)4||h̃t||4] ≤ 8η4C6, (19)

Thus,
Eπt

[η4||F ||4] ≤ η4(8C4
1bt + 8C6). (20)

3. We calculate the fourth moment of the Gaussian distribution.

Eπt [η
4||zt||4] = η4Eπt [(

d∑
j=1

(zjt )
2)2] = η4(

∑
j

Eπt [zt]
4 + 2

∑
k<l

Eπt [(z
k
t )

2]Eπt [(z
l
t)

2]) = η4(3dσ4 + d(d− 1)σ4)

= η4σ4(d2 + 2d).

4.

Eπt
[4η2(ETF )2] ≤ Eπt

[4η2||E||2||F ||2] ≤ 4η2
√

Eπt
[||E||4]Eπt

[||F ||4] ≤ 4η2 ·
√
bt ·

√
8C4

1bt + 8C6

≤ 4η2
√

bt(
√
8C4

1bt +
√
8C6) = 8

√
2η2C2

1bt + 8
√
2η2C

1
2
6 b

1
2
t

(21)
where the first inequality is by Cauchy-Schwarz in Rd. The second inequality is by Cauchy-
Schwarz over the probability space. The third inequality is by Eq (20). The fourth inequality
is by subadditivity of the square root function.
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5.

Eπt
[4η2(ET zt)

2] ≤ Eπt
[4η2||E||2||zt||2] = 4η2Eπt

[||E||2]Eπt
[||zt||2] ≤ 4η2 ·

√
bt · dσ2

where the first equality is by independence and the second inequality is by Jensen’s inequal-
ity.

6.

Eπt [4η
4(FT zt)

2] ≤ 4η4Eπt [||F ||2] · Eπt [||zt||2] = 4η4 · (2C1

√
bt + 2C2

2 ) · dσ2

where the first equality is by Eq (9).

7.

Eπt
[2 · ||E||2 · η2||F ||2] ≤ 2η2

√
Eπt

[||E||4]Eπt
[||F ||4] ≤ 4

√
2η2C2

1bt + 4
√
2η2C

1
2
6 b

1
2
t ,

followed by Eq(21) and subadditivity of square root fuction.

8.
Eπt

[2 · ||E||2 · η2||zt||2] = 2η2 · Eπt
[||E||2] · Eπt

[||zt||2] ≤ 2η2 ·
√

bt · dσ2

by independence of Gaussian distribution.

9.

Eπt [2 · ||E||2 · 2η(ETF )] = 4ηEπt [−||E||2ET (h− h̃+ h̃− h̃

r + ||h̃||
)]

= 4η · (−Eπt [||E||2(xt − x̃t)
T (h− h̃)]︸ ︷︷ ︸

IX

−Eπt [||E||2ET (h̃− h̃

r + ||h̃||
)]︸ ︷︷ ︸

X

).

(22)
We observe that

IX ≤ −Eπt [||E||2 · C3||E||2] = −C3bt.

where the inequality is by Assumption 6. Furthermore,

X ≤ Eπt
[||E||2 ·||E||·||h̃− h̃

r + h̃
||] ≤ (Eπt

[(||E||3) 4
3 ])

3
4 (Eπt

[||h̃− h̃

r + h̃
||4]) 1

4 ≤ b
3
4
t ·C

1
4
6 ,

where the first inequality is by Cauchy-Schwarz over Rd. The second inequality is by
Hölder’s inequality. The third inequality is by Eq (19). Therefore,

Eπt
[2 · ||E||2 · 2η(ETF )] ≤ 4η(−C3bt + b

3
4
t · C

1
4
6 ).

10. Eπt
[2 · ||E||2 · 2η(ET zt)] = Eπt

[(4η||E||2E)T zt] =
∑d

j=1 Eπt
[4η||E||2Ej ]Eπt

[zjt ] = 0.

11. Eπt [2 · ||E||2 · 2η2(FT zt)] = Eπt [(4η
2||E||2F )T zt] =

∑d
j=1 Eπt [4η

2||E||2F j ]Eπt [z
j
t ] =

0.

12.

Eπt [2 · η2||F ||2 · η2||zt||2] = 2η4Eπt [||F ||2]Eπt [||zt||2] ≤ 2η4dσ2(2C1

√
bt + 2C2

2 ),

where the inequality is by Eq (20).

13.

Eπt
[2 · η2||F ||2 · 2η(ETF )] ≤ 4η3Eπt

[||F ||3||E||] ≤ 4η3(Eπt
[||F ||4]) 3

4 (Eπt
[||E||4]) 1

4

≤ 4η3(8C4
1bt + 8C6)

3
4 b

1
4
t ≤ 16

4
√
2η3C3

1bt + 16
4
√
2η3C

3
4
6 b

1
4
t ,

where the first inequality is by Cauchy-Schwarz over Rd. The second inequality is by
Hölder’s inequality. The third inequality is by Eq (20). The fourth inequality is by subaddi-
tivity.
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14. Eπt [2·η2||F ||2 ·2η(ET zt)] = Eπt [(4η
3||F ||2E)T zt] =

∑d
j=1 Eπt [4η

3||F ||2Ej ]Eπt [z
j
t ] =

0.

15. Eπt
[2 · η2||F ||2 · 2η2(FT zt)] = Eπt

[(2 · η2||F ||2 · 2η2F )T zt] =
∑d

j=1 Eπt
[2 · η2||F ||2 ·

2η2F j ]Eπt [z
j
t ] = 0.

16.
Eπt

[2 · η2||zt||2 · 2η(ETF )] = 4η3Eπt
[||zt||2]Eπt

[(ETF )] ≤ 4η3dσ2
√

Eπt
[||E||2]Eπt

[||F ||2]

≤ 4η3dσ2b
1
4
t (2C1

√
bt + 2C2

2 )
1
2 ≤ 4

√
2η3dσ2C

1
2
1 b

1
2
t + 4

√
2η3dσ2C2b

1
4
t

where the first inequality is by Cauchy-Schwarz over the probability space. The second
inequality is by Eq (20) and Jensen’s inequality. The third inequality is by subadditivity.

17.

Eπt [2·η2||zt||2·2η(ET zt)] ≤ Eπt [4η
3||zt||3||E||] = 4·η3Eπt [||zt||3]Eπt [||E||] ≤ 4η3d

3
2σ3b

1
4
t ,

where the first inequality is by Cauchy-Schwarz over Rd. The first equality is by the
independence of random variables. The second inequality is by Jensen’s inequality.

18.
Eπt [2 · η2||zt||2 · 2η2(FT zt)] ≤ Eπt [4η

3||zt||3||F ||] = 4 · η3Eπt [||zt||3]Eπt [||F ||]

≤ 4η3d
3
2σ3 ·

√
2C1

√
bt + 2C2

2 ≤ 4
√
2η3d

3
2σ3C

1
2
1 b

1
4
1 + 4

√
2η3d

3
2σ3C2,

(23)
where the first inequality is by Cauchy-Schwarz over Rd. The first equality is by the
independence of random variables. The second inequality is by the Jensen’s inequality and
Eq (20). The third inequality is by subadditivity of square root function.

19. Eπt [2·2η(ETF )·2η(ET zt)] = Eπt [(2·2η(ETF )·2η ·E)T zt] =
∑d

j=1 Eπt [(2·2η(ETF )·
2η · Ej · zjt ] = 0.

20. Eπt [2·2η(ETF )·2η2(FT zt)] = Eπt [(2·2η(ETF )·2η2·F )T zt] =
∑d

j=1 Eπt [2·2η(ETF )·
2η2 · F j · zjt ] = 0

21.
Eπt

[2 · 2η(ET zt) · 2η2(FT zt)]] ≤ Eπt
[8η3||E||||F ||||zt||2]

≤ 8η3
√

Eπt
[||E||2]

√
Eπt

[||F ||2] · dσ2

≤ 8η3 · dσ2 · b
1
4
t

√
2C1

√
bt + 2C2

2

≤ 8
√
2η3dσ2C

1
2
1 b

1
2
t + 8

√
2η3dσ2C2b

1
4
t

where the first inequality is by Cauchy-Schwarz over Rd. The second inequality is by
Cauchy-Schwarz over the probability space. The third inequality is using Jensen’s inequality
and Eq (9). The fourth inequality is by subadditivity of square root function.

By combining Eq (17) and the above term analysis, we obtain that

bt+1 ≤ bt + η4(8C4
1bt + 8C6) + η4σ4(d2 + 2d) + (8

√
2η2C2

1bt + 8
√
2η2C

1
2
6 b

1
2
t )

+ 4η2 ·
√

bt · dσ2 + 4η4 · (2C1

√
bt + 2C2

2 ) · dσ2

+ (4
√
2η2C2

1bt + 4
√
2η2C

1
2
6 b

1
2
t ) + 2η2 ·

√
bt · dσ2 + 4η(−C3bt + b

3
4
t · C

1
4
6 ) + 0 + 0

+ 2η4dσ2(2C1

√
bt + 2C2

2 ) + (16
4
√
2η3C3

1bt + 16
4
√
2η3C

3
4
6 b

1
4
t ) + 0 + 0

+ (4
√
2η3dσ2C

1
2
1 b

1
2
t + 4

√
2η3dσ2C2b

1
4
t ) + 4η3d

3
2σ3b

1
4
t + (4

√
2η3d

3
2σ3C

1
2
1 b

1
4
1 + 4

√
2η3d

3
2σ3C2)

+ 0 + 0

+ (8
√
2η3dσ2C

1
2
1 b

1
2
t + 8

√
2η3dσ2C2b

1
4
t )

(24)
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Since for any two positive real numbers a, b, (a+ b)
1
2 ≤ a

1
2 + b

1
2 and (a+ b)

1
4 ≤ a

1
4 + b

1
4 , we have

that
bt+1 ≤ Hbt + Ib

3
4
t + Jb

1
2
t +Kb

1
4
t + L (25)

where

H = 1− η22C3 + η2(2
9
2C2

1 + 2
5
2C2

1 ) + η4(2
17
4 C3

1 + 23C4
1 )

I = η22C
1
4
6 + η4 · 3 · 2 17

4 C2
1C

1
4
6

J = η222dσ2 + η22dσ2 + η423dσ2C1 + η422dσ2C1 + η32
5
2 dσ2C

1
2
1 + η224C

1
2
6 + η232

1
2C

1
2
6

+ η4 · 3 · 2 17
4 C1C

1
2
6 + η32

7
2 dσ2C

1
2
1

K = η322σ3d
3
2 + η32

5
2 d

3
2σ3C

1
2
1 + η42

17
4 C

3
4
6 + η32

5
2 dσ2C2 + η32

7
2 dσ2C2

L = η48C6 + η4σ4(d2 + 2d) + η48C2
2dσ

2 + η44C2
2dσ

2 + η32
5
2 d

3
2σ3C2

Lemma 18. When 0 < η < min{ 1
4C3

, C3

16(C2
1+C3

1+C4
1 )
, 1}, it is true that 0 < H < 1 and I, J,K,L >

0.

Proof. First, since η < 1
4C3

,

H > 1−22C3

4C3
+η2(2

9
2C2

1+2
5
2C2

1 )+η4(2
17
4 C3

1+23C4
1 ) = η2(2

9
2C2

1+2
5
2C2

1 )+η4(23C4
1+2

17
4 C3

1 ) > 0.

Furthermore, since η < C3

16(C2
1+C3

1+C4
1 )

and η < 1,

η2(2
9
2C2

1 + 2
5
2C2

1 ) + η4(2
17
4 C3

1 + 23C4
1 ) < η2(2

9
2C2

1 + 2
5
2C2

1 + 2
17
4 C3

1 + 23C4
1 )

< η2(26C2
1 + 26C3

1 + 26C4
1 )

<
ηC3

16(C2
1 + C3

1 + C4
1 )

(26C2
1 + 26C3

1 + 26C4
1 )

< η4C3

and so
H = 1− η4C3 + η2(2

9
2C2

1 + 2
5
2C2

1 ) + η4(2
17
4 C3

1 + 23C4
1 ) < 1.

Since η > 0, I, J,K,L > 0.

We define three functions
l1(y) = y, (26)

l2(y) = Hy + Iy
3
4 + Jy

1
2 +Ky

1
4 + L, (27)

l(y) = l1(y)− l2(y) = (1−H)y − Iy
3
4 − Jy

1
2 −Ky

1
4 − L. (28)

We define a new sequence (yt) where y0 = b0 and

yt+1 = l2(yt).

By Lemma 17 and induction, we have the following result.
Corollary 19. For each t ≥ 1, yt ≥ bt.
Lemma 20. l(y) has a unique nonnegative zero. If we denote that zero by y∗, then limt→∞ yt = y∗.

Proof. It is sufficient to show that l1(y) and l2(y) have a unique intersection when y is nonnegative.
Since l2 is concave, l′2(y) is decreasing. Since l(0) < 0 and limy→∞ l(y) = ∞, l1, l2 has
at least one intersection y∗. It suffices to show that for any y > y∗, l1(y) > l2(y) and for
any y < y∗, l1(y) < l2(y). First, we claim that l′1(y∗) > l′2(y∗). Assume l′2(y∗) ≥ l′1(y∗).
Since l′2(y) is strictly decreasing, for any y < y∗, l′2(y) > l′2(y∗) > l′1(y∗) = l′1(y).
Thus, l2(y∗) =

∫ y∗
0

l′2(t) dt >
∫ y∗
0

l′1(t) dt = l1(y∗), contradicting that y∗ is an inter-
section. Since l′2(y) is strictly decreasing and l′1(y) = 1, for any y > y∗, l′1(y) > l′2(y).
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Thus, for any y > y∗, l2(y) = y∗ +
∫ y

y∗
l′2(t) dt < y∗ +

∫ y

y∗
l′1(t) dt = l1(y). Since

l′2(0) > l′1(0), there exists 0 < ỹ < y∗ such that l′2(ỹ) = l′1(ỹ). For any 0 ≤ y ≤ ỹ,
l2(y) = l2(0) +

∫ y

t=0
l′2(t)dt > l1(0) +

∫ y

t=0
l′1(t)dt = l1(y). For any ỹ < y < y∗,

l2(y) = l2(y∗)−
∫ y

t=y∗
l′2(t)dt > l1(y) +

∫ y∗
t=0

l′1(t)dt = l1(y). Therefore, y∗ is the unique zero.

We now show that for any y0 ≥ 0, the sequence (yt) converges to y∗. If y0 = y∗ then yt = y∗ for all
t since y∗ is the stationary point. If y0 ≥ y∗, we show by induction that yt+1 ≥ y∗. Assume yt ≥ y∗

then yt+1 − y∗ = l2(yt)− l2(y∗) = H(yt − y∗) + I(y
3
4
t − y

3
4
∗ ) + J(y

1
2
t − y

1
2
∗ ) +K(y

1
4
t − y

1
4
∗ ) ≥ 0.

Thus, yt ≥ y∗,∀t. Also, since yt ≥ y∗, l(yt) > 0. Thus, yt+1 − yt = l2(yt) − yt = −l(yt) < 0.
Therefore, yt+1 < yt,∀t. Therefore, the sequence (yt) is decreasing and bounded so must converge.

Assume limt→∞ yt = y∞ so l2(y∞) = y∞ = l1(y∞). Since y∗ is the unique zero, y∞ = y∗.
The proof is similar if y0 < y∗. We first show by induction that yt+1 ≤ y∗. Assume yt ≤ y∗,

yt+1 − y∗ = l2(yt)− l2(y∗) = H(yt − y∗)+ I(y
3
4
t − y

3
4
∗ )+ J(y

1
2
t − y

1
2
∗ )+K(y

1
4
t − y

1
4
∗ ) ≤ 0. Thus,

y≤y∗,∀t. Also since yt ≤ y∗, f(yt) < 0. Thus, yt+1 − yt = l2(yt)− yt = −l(yt) > 0. Therefore,
yt+1 > yt,∀t. Therefore, the sequence (yt) is increasing and bounded so must converges. Assume
limt→∞ yt = y∞ so l2(y∞) = y∞ = l1(y∞). Since y∗ is the unique zero, y∞ = y∗.

Lemma 21. Let y∗ be the unique nonnegative zero of l(y), then

y∗ ≤ max{(I + J +K + L

1−H
)4, (

(I + J) +
√
(1−H)(K + L)

(1−H)
)2}. (29)

Proof. We now give an upper bound for y∗. Let l3(y) = (1 − H)y − (I + J + K + L)y
3
4 and

l4(y) = (1 −H)y − (I + J)y
1
2 − (K + L). For any 0 ≤ y ≤ 1, l(y) ≥ l4(y) and for any y > 1,

l(y) ≥ l3(y). Thus, for any y > 0, l(y) ≥ min{l3(y), l4(y)}. We observe that l3(y) has a unique
zero z3 = ( I+J+K+L

1−H )4 and for any y < z3, l3(y) < 0 and for any y > z3, l3(y) > 0. Similarly,

l4(y) has a unique zero z4 = (
(I+J)+

√
(I+J)2+4(1−H)(K+L)

2(1−H) )2 ≤ (
2(I+J)+

√
4(1−H)(K+L)

2(1−H) )2 such
that for any y < z4, l4(y) < 0 and for any y > z4, l4(y) > 0. If l(y∗) ≥ l3(y∗) then y∗ ≤ z3 and if
l(y∗) ≥ l4(y∗) then y∗ ≤ z4. Therefore, y∗ ≤ max{z3, z4}.

Lemma 22.

lim sup
t→∞

bt ≤ max{(I + J +K + L

1−H
)4, (

(I + J) +
√
(1−H)(K + L)

(1−H)
)2} (30)

Proof. By Corollary 19, Lemma 20, and Lemma 21,

lim sup
t→∞

bt ≤ lim
t→∞

yt ≤ y∗ ≤ max{(I + J +K + L

1−H
)4, (

(I + J) +
√
(1−H)(K + L)

(1−H)
)2}.

When η approaches to 0 and d approaches to infinity, we observe that

H = 1− η22C3 + η423C4
1 + η22

9
2C2

1 + η22
5
2C2

1 + η42
17
4 C3

1 = O(η),

I = η22C
1
4
6 + η4 · 3 · 2 17

4 C2
1C

1
4
6 = O(η),

J = η222dσ2 + η22dσ2 + η423dσ2C1 + η422dσ2C1 + η32
5
2 dσ2C

1
2
1 + η224C

1
2
6 + η232

1
2C

1
2
6

+ η4 · 3 · 2 17
4 C1C

1
2
6 + η32

7
2 dσ2C

1
2
1 = O(η2d),

K = η322σ3d
3
2 + η32

5
2 d

3
2σ3C

1
2
1 + η42

17
4 C

3
4
6 + η32

5
2 dσ2C2 + η32

7
2 dσ2C2 = O(η3d

3
2 ),

L = η48C6 + η4σ4(d2 + 2d) + η48C2
2dσ

2 + η44C2
2dσ

2 + η32
5
2 d

3
2σ3C2 = O(η4d2 + η3d

3
2 ).

14



Thus,

(
I + J +K + L

1−H
)4 = O((

η + η3d
3
2 + η2d+ η4d2 + η3d

3
2

η
)4)

= O((1 + η2d
3
2 + ηd+ η3d2 + η2d

3
2 )4)

= O(1 + η8d6 + η4d4 + η12d8 + η8d6)

= O(1 + η8d6 + η4d4 + η12d8),

and

(
(I + J) +

√
(1−H)(K + L)

(1−H)
)2 = O((

η + η2d+
√
η(η3d

3
2 + η4d2)

η
)2)

= O((1 + ηd+ η

√
d

3
2 + ηd2)2)

= O(1 + η2d2 + η2(d
3
2 + ηd2))

= O(1 + η2d2).

Therefore,
lim sup
t→∞

bt = max{O(1 + η8d6 + η4d4 + η12d8), O(1 + η2d2)}

= O(1 + η2d2 + η4d4 + η8d6 + η12d8)
(31)

Before we begin our proof on an upper bound on Eπt−1
||f(xt)− f(x̃t)||2, we first state a result on

the powers of gradient of f .

Lemma 23. If each function in {fi} satisfies Assumption 5 and Assumption 7, then for each x ∈ Rd,
||f(x)||2 < C2 and ||f(x)||4 < C6.

Proof. First,

||f(x)||2 = || 1
n

n∑
i=1

fi(x)||2 = ||
n∑

i=1

1

n
fi(x)||2 = ||Eg∼{fi}i

[g(x)]||2 ≤ Eg∼{fi}i
[||g(x)||2] < C2

where the first inequality is by Jensen’s inequality. Second,

||f(x)||4 = || 1
n

n∑
i=1

fi(x)||4 = ||
n∑

i=1

1

n
fi(x)||4 = ||Eg∼{fi}i

[g(x)]||4 ≤ Eg∼{fi}i
[||g(x)||4] < C6

where the first inequality is by Jensen’s inequality.

We now give a bound on Eπt−1 ||f(xt) − f(x̃t)||2. By Assumption 4 and Taylor expansion, we
observe that

f(x̃t) ≤ f(xt) +∇f(xt)
T (x̃t − xt) +

C1

2
||xt − x̃t||2.

Combining

−f(x̃t) ≤ −f(xt)−∇f(xt)
T (x̃t − xt) +

C1

2
||xt − x̃t||2,

we obtain that

|f(x̃t)− f(xt)|2 ≤ (|∇f(xt)
T (x̃t − xt)|+

C1

2
||xt − x̃t||2)2

≤ (||∇f(xt)||||(x̃t − xt)||+
C1

2
||xt − x̃t||2)2

≤ ||∇f(xt)||2||(x̃t − xt)||2 +
C2

1

4
||xt − x̃t||4 + C1||∇f(xt)||||xt − x̃t||3

15



which implies

Eπt−1
||f(xt)− f(x̃t)||2 ≤ Eπt−1

[||∇f(xt)||2||(x̃t − xt)||2] +
C2

1

4
Eπt−1

[||xt − x̃t||4] + C1Eπt−1
[||∇f(xt)||||xt − x̃t||3]

≤
√
Eπt−1

[||∇f(xt)||4]
√

Eπt−1
[||x̃t − xt||4] +

C2
1

4
Eπt−1

[||xt − x̃t||4]

+ (Eπt−1
[||∇f(xt)||4])

1
4 (Eπt−1

[||xt − x̃t||4])
3
4

=
√
Eπt−1 [||∇f(xt)||4]b

1
2
t +

C2
1

4
bt + (Eπt−1 [||∇f(xt)||4])

1
4 b

3
4
t

≤ C
1
2
6 b

1
2
t +

C2
1

4
bt + C

1
4
6 b

3
4
t .

By Eq (31),

lim sup
t→∞

Eπt−1
||f(xt)− f(x̃t)||2 = O(1 + ηd+ η2d2 + η4d3 + η6d4

+ 1 + η2d2 + η4d4 + η8d6 + η12d8

+ 1 + η
3
2 d

3
2 + η3d3 + η6d

9
2 + η9d6)

= O(1 + ηd+ η
3
2 d

3
2 + η2d2 + η3d3 + η4d4 + η6d

9
2 + η8d6 + η12d8).

(32)

Finally,

lim sup
t→∞

W2(f(x̃t), f(xt)) = lim sup
t→∞

inf
π̃t∈Coup(xt,x̃t)

{(E(xt,x̃t)∼π̃t
[||f(xt)− f(x̃t)||2])

1
2 }

≤ lim sup
t→∞

(E(xt,x̃t)∼πt
[||f(xt)− f(x̃t)||2])

1
2

= (lim sup
t→∞

E(xt,x̃t)∼πt
[||f(xt)− f(x̃t)||2])

1
2

= O(1 + η
1
2 d

1
2 + η

3
4 d

3
4 + ηd+ η

3
2 d

3
2 + η2d2 + η3d

9
4 + η4d3 + η6d4)

where Coup(xt∗ , x̃t∗) is the set of couplings between xt∗ , x̃t∗ .

B.2 Proof of Theorem 11

There is an existing result on the convergence of W2(f(xt), f
∗):

Lemma 24 ([7]). Under Assumptions 4–9 and appropriate step size conditions:

lim
t→∞

W2(f(xt), f
∗) = O(η)

Combining Lemma 10 and Lemma 24,

lim sup
t→∞

W2(f(x̃t), f
∗) ≤ lim sup

t→∞
W2(f(x̃t), f(xt)) + lim

t→∞
W2(f(xt), f

∗)

= O(1 + η
1
2 d

1
2 + η

3
4 d

3
4 + ηd+ η

3
2 d

3
2 + η2d2 + η3d

9
4 + η4d3 + η6d4) +O(η)

= O(1 + η
1
2 d

1
2 + η

3
4 d

3
4 + ηd+ η

3
2 d

3
2 + η2d2 + η3d

9
4 + η4d3 + η6d4)
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