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Abstract

Score-based diffusion models have emerged as popular generative models trained
on increasingly large datasets, yet they are often susceptible to attacks that can dis-
close sensitive information. To offer Differential Privacy (DP) guarantees, training
these models for score-matching with DP-SGD has become a common solution.
In this work, we study Differentially Private Diffusion Models (DPDM) both the-
oretically and empirically. We provide a quantitative L? rate of DP-SGD to its
global optimum, leading to the first error analysis of diffusion models trained with
DP-SGD. Our theoretical framework contributes to uncertainty quantification in
generative Al systems, providing essential convergence guarantees for trustworthy
decision-making applications that require both privacy preservation and reliability.

1 Introduction

Diffusion models have emerged as a powerful class of generative models, demonstrating remarkable
success in generating high-quality synthetic data across various domains including images, text, and
time series data [8} [11]. However, as these models are increasingly trained on large-scale datasets
that often contain sensitive information, privacy concerns have become paramount. The ability of
generative models to memorize and potentially leak training data has been well-documented [2|
3l|, raising fundamental questions about the privacy guarantees of diffusion models in practical
applications.

To address these privacy vulnerabilities, differentially private training has emerged as the gold
standard for providing formal privacy guarantees. Differential Privacy (DP) offers a mathematically
rigorous framework that quantifies the maximum information leakage about any individual training
example [S]]. The canonical approach for training machine learning models with DP guarantees is DP-
SGD [l1]], which adds calibrated noise to gradients during training. While empirical studies have shown
the feasibility of training differentially private diffusion models [4! 6], theoretical understanding of
the convergence properties and privacy-utility tradeoffs remains limited.

This paper provides theoretical analysis of diffusion models trained with differential privacy. We
focus on the score-matching objective central to denoising diffusion probabilistic models (DDPMs)
and analyze the convergence properties of DP-SGD applied to this objective. Our analysis reveals
fundamental tradeoffs between privacy, accuracy, and computational complexity, providing theoretical
insights that complement existing empirical studies and inform the design of privacy-preserving
generative models.

* Authors ordered alphabetically.
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1.1 Our Contributions

We provide the first rigorous convergence analysis of DP-SGD applied to the score-matching objective
used in diffusion models. Specifically, we establish upper bounds on the Wasserstein-2 distance
between the output of DP-SGD and the global optimum, revealing how the convergence rate depends
on the privacy parameters (¢, d), dimensionality d, and step size 1. Our analysis shows that the
convergence rate scales as O(1+n'/2d" /2 +n3/*d3/* 4 nd4-n3/2d3/2 4-n2d? +n3d*/* +n*d> +n°d?),
when 7 is small and d is large. When 1 = O(d~?), the phase transition of the convergence rate is
described in Table[T} We observe that in order to achieve less than constant convergence rate, the step
size needs to be at most O(d~!). This demonstrates the fundamental privacy-utility-dimensionality
tradeoff in differentially private diffusion models. See Appendix [A]for the comparison of our work
with the related works.

range of 0 0>1 %§0<1 O<9<%
convergence rate | O(1) | O(d?>~%%) | O(d*~%%)

Table 1: Convergence rates in terms of n = O(d~%).

2 Preliminaries

2.1 Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPMs) are latent variable models of the form pg(z) :=
[ po(xo.1) dz1.7, where a1, . .., xp are latents of the same dimensionality as the data zo ~ ¢(zo).
The model consists of two complementary Markov processes: a fixed forward process that gradually
corrupts data by adding Gaussian noise, and a learned reverse process that generates data by iteratively
denoising. The forward process g(z1.7|xo) is defined as a Markov chain that adds Gaussian noise
according to a variance schedule 31, ..., Br:

T

q(z1.7|m0) = H q(xe|zi—1),  qla]zi—1) = N(xe; /1 — Brxe—1, Bed). (1

t=1

The reverse process pg(xo.7) is parameterized as a Markov chain with learned Gaussian transitions
where p(zr) = N(zr;0,I) is the prior distribution. Training is performed by optimizing the
variational bound on negative log likelihood. However, [8] showed that superior empirical results are
obtained using the simplified training objective:

£simple(0) = Et,zo,e [||€ - 66’(\/ o + V1 — oue, t)HQ] y ()
where ¢ ~ Uniform(1,...,T) and € ~ N (0, I). In this parameterization, the neural network eg(x, t)

is trained to predict the noise € that was added to the original data x( to obtain the noisy observation
Tt.

2.2 Differential Privacy and Algorithms

Differential privacy (DP) provides a rigorous mathematical framework for quantifying privacy
guarantees in machine learning algorithms [1]]. Formally, a randomized mechanism M : D — R
satisfies (e, §)-differential privacy if for any two adjacent datasets D, D’ € D differing by a single
record and any subset of outputs S C R:

Pr[M(D) € S] < e Pr[M(D’) € S] + 6,
where ¢ controls the privacy budget and ¢ accounts for the probability of privacy failure.

In our analysis, we compare standard Stochastic Gradient Descent (SGD) with Differentially Private
SGD with Normalization (DP-NSGD) in the empirical risk minimization setting.



Definition 1 (SGD with singleton batch). Starting with an arbitrary initial point x, for a fixed step
size 1 > 0, the Stochastic Gradient Descent algorithm (SGD) iteratively updates

Tiy1 = T — NV ge(21), (3)
where g is sampled uniformly from {f1, ..., f,} independently.
To provide differential privacy guarantees, we use DP-NSGD [14], which normalizes gradients
instead of clipping them:

Definition 2 (DP-NSGD with singleton batch). Starting with an arbitrary initial point x, for a fixed
step size 1 > 0, a normalization parameter v > 1, and a noise parameter o > 0, the Differentially
Private SGD with Normalization (DP-NSGD) algorithm iteratively updates

- . V§i(3+) )

1 =T —n| ——=—rt— + 2 4)
i t”Q+WMM|t

where §; is sampled uniformly from { f1, ..., fn} independently and z; ~ N (0,021).

The privacy guarantee for DP-NSGD is established by the following result:

Lemma 3 (Privacy Guarantee [1l]). If the noise parameter o > 7V2log(€l'25/5), then DP-NSGD is

(O( |§E), 9)-differentially private, where | X | is the size of the training set and T is the number of

iterations.

A key advantage of DP-NSGD over traditional DP-SGD (which uses gradient clipping) is the ease of
parameter tuning: the regularizer r provides a more robust and intuitive hyperparameter that can be
tuned without extensive knowledge of gradient magnitudes, unlike clipping thresholds which require
careful dataset-specific calibration.

3 Main Result

Our theoretical analysis focuses on the optimization of the simplified diffusion objective introduced
in Section 2.1. Since the objective function samples clean data from the training set, we consider the
empirical risk minimization (ERM) formulation for optimization purposes. Given a training dataset
T = {&}™_, where each &; represents a training sample (which could be a noisy data point and
timestep pair), we formulate the ERM problem as:

n

min = 3 fi(z) = min f(2),

zERI N 4 1 r€R4
i=

where z is the parameter to be optimized. The individual loss functions f;(z) correspond to the
samples of the simplified objective function from the training set. This formulation allows us to
analyze the convergence properties of DP-NSGD applied to diffusion model training while working
with the mathematically tractable objective that underlies the simplified diffusion loss.

Let f* :=inf, f(x). We measure how close the output of DP-NSGD is to f* using the Wasserstein-2
distance W5 (X,Y") = inf, ccoup(x,v) v/ E~[||X — Y|[?], where Coup(X,Y") is the collection of all
couplings between the distributions of X and Y.
Our goal is to give an upper bound for the minimal W5 distance between f(Z;) and f* as ¢ goes to
infinity:

lin sup Wa(f(24), 7).

We need several assumptions on the class of functions { f; }7_;.

Assumption 4 (Lipschitz continuity). There exists a constant Cy such that for any i € [n], z,y € R",
IVfi(z) = Vi)l < Cillz = yl|-

This assumption ensures that gradients don’t change too rapidly, which is crucial for controlling the
accumulation of errors introduced by privacy noise.



Assumption 5 (Bounded gradient variance). There exists a constant C such that for any i € [n], = €
R™, when g is uniformly sampled from { f;}_,, E[||Vg(2)|?] = Co.

This controls the inherent stochasticity in gradient estimates.

Assumption 6 (Dissipation). There exists a constant Cy such that for any i € [n],z,y € R",
(z —y)"(Vfi(z) = Vfily)) = Csllz — y||%

This is a strong convexity-like condition that ensures the optimization landscape is well-conditioned. It
guarantees that the algorithm makes consistent progress toward the optimum and prevents oscillatory
behavior.

Assumption 7 (Bounded gradient fourth moment). There exists a constant C such that for any
i € [n], x € R", when g is uniformly sampled from { f;}"_,, E[||Vg(x)||*] = Ce.

This higher-order moment condition is needed to control the variance of our coupling analysis. It
ensures that extreme gradient values don’t dominate the convergence analysis.

Assumption 8 (Polyak-Lojasiewicz (PL) Condition). There exists a constant p such that, for any x
in the domain of f, ||V f(z)||? > 2Cs(f(x) — f*), where f* is the global infinimum of f.

This condition ensures that whenever we are far from the optimum (large f(x) — f*), the gradients are
sufficiently large to make progress. This is weaker than strong convexity but still ensures convergence.

Assumption 9 (Expected Residual). Each f; satisfies the expected residual condition. That is, there
exists C7 > 0 such that

Elllfi(x) = fi(z") = (Vf(z) = Vf(@")|P’] < 207(f(x) = f(z")), Vo €R"

This technical condition bounds the variance between individual functions f; and the population
function f. It ensures that the finite-sample approximation doesn’t deviate too much from the
population objective.

To give an upper bound for lim sup,_, .. Wa(f(Z:), f*), we separate Wy (f(Z:), f*) into two terms
Wa(f(&¢), f(z¢)) and Wa(f(z), f*) and give an upper bound on each of them. See Appendix [B|
for the complete proof and methodology.

Lemma 10 (Main Coupling Lemma). Let Z;, x; be the t-iterate of DP-NSGD, SGD out of T iterations
respectively. Assume each f; satisfies AssumptionsdH7| Let w,_1 be a coupling of xy, &, such that
g1 = g forany 1 <[ <t — 1. Under appropriate step size conditions,

lim sup Wa(f(Z), f(x)) = O+ 2dY 240343 4 pnd 403232 4P a2 40P d A 4t d®+nd*).
t—o0

Combining this lemma with an upper bound on Wa(f(z¢), f*) [, we have our main theorem.

Theorem 11 (Main Result). Let { f;} satisfy Assumptions Under appropriate step size condi-
tions:

limsup Wa(f(Z:), f*) = O(14+0"2dY 2 +0®/*d3/* +pd4-0>2 a3 2 02 d? 0P d* 0t dP+n8d?).
t—o0
©)

This theorem establishes the fundamental privacy-utility-dimensionality tradeoffs in differentially
private diffusion models, showing how the convergence rate degrades with increasing dimensionality
and privacy constraints.

4 Conclusion

In this work, we provided a theoretical analysis of diffusion models trained with differential privacy,
establishing rigorous convergence bounds for DP-SGD applied to score-matching objectives and
revealing fundamental privacy-utility-dimensionality tradeoffs. Our analysis demonstrates that
convergence rates scale polynomially with dimensionality, highlighting the curse of dimensionality
in privacy-preserving generative modeling, while providing theoretical foundations that complement
empirical studies. Future work includes extending analysis to sophisticated diffusion variants,
investigating alternative privacy mechanisms, and experiments on financial time series, and supply
chain logistics data.
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A Literature Review

The intersection of differential privacy and diffusion models emerged as a critical research area
following demonstrated privacy vulnerabilities in generative systems. [3] first demonstrated that large
language models leak training data, while [2] extended this to production model extraction attacks,
and [15]] revealed multimodal vulnerabilities specific to diffusion models. In response to these privacy
threats, [4]] introduced the first comprehensive framework for differentially private diffusion models
(DPDM), establishing the theoretical and practical foundations for privacy-preserving generative
modeling. Building on this pioneering work, [6] provided empirical validation that DPDM can gener-
ate high-utility synthetic images with formal privacy guarantees, while [[10] improved computational
efficiency through latent space operations. Recent advances have focused on practical deployment
with [13]] presenting comprehensive production-scale evaluation and efficient fine-tuning approaches
developed by [9] and [12]], collectively establishing differentially private training as the primary
defense against privacy attacks on diffusion models. Despite these empirical successes, theoretical
understanding of convergence properties and privacy-utility tradeoffs in DPDM remains limited,
motivating the need for rigorous analysis of DP-SGD applied to score-based generative models.

B Detailed Proofs

B.1 Proof of Lemma (10l

We denote a; := E, . [||z; — %;||*] forany 0 < ¢ < T.
Lemma 12. Assume Assumption[5and Assumption|6| for any t > 0,

a1 < (1—2C5n+ 2017]2)at + (2C2n)v/ar + n2(02d + 2022).

Proof. First, we observe that

N . Vi (74) 2
E — A-F _ (s — (I
Wt[||$t+1 xt"rl” } Trt[”(xt Tlvgt(ft)) (‘rt 77(7,+ ||Vg ( )H +Zt))” ]
_ Vg (T4) 2
=E., - —n(Vyg: - )t
- V@t(xt)
Eq _llx—z 214+ 2]Em Vi (x — I 1121 4+ p2Ef||2
N Vgt(l‘t)
—2nE;, (v — T T(Vg(zy) — ——L
Vg (@) 7 \T
—2%E,.. [(V - + 2nEr, _, (24 — T4
n t[( gt(mt) T+|\Vgt(l‘t)\|) Zt] N, [(‘Tf If) Zt]
- V@t(xt)
=E,; _[l[lt—2 214+ 2Em Vi (x — I 1121 4+ p2Ef||2
- Vgt(l‘t)
—2nEx, (v — T T (Vg (xy) — TV
Vg (a 0
2 (Van(e) — — ) ) e o [, - 2 Bledl
r+ [V ()] H
Vi (74) 2 2 2
Sa—&—QEW,V Ty) — ———||*] +n°0o“d
PRIV e) ~ G
I
. Vi (%)
_2 Eﬂ—t Ty — T T V X e ——————
n [( t t) ( gt( t) 7‘+vat(xt)||
I
(6)
where the first equality is by the fact that z; is independent of any other random variables. We
let 1 := n?Ex,[|[Var (1) — spreatiyl[?] and T := —2nEx, (2, — 30)(Vge(21) — ryraard )



Under the coupling condition 7y, ¢g; and g; are identical for all 0 < < ¢. T9 ease the notation, when
conditioning on 7;, we denote Vg;(x:) by hy and V§:(Z:) = Vg+(Z¢) by hs. For I,
hy hy

——=— "] = P°Ex, [[|he = B + by — ——
7+ |[hel| 7 ([P

1= 1’Ex, [|l7e — 117]

h

< 20°Ex, [[|he = bl ] + 207 B, (Il — —— =
t 7+ Bl |

I

I17],

v

where the first inequality is due to the fact that (a + b)? < 2a? + 2b? for any two reals a,b. By
Assumption[d] we have that

I = 20°Ex, [|[he—Re*] = 20°E[||V fi(2e) = V fi(#)]]*] < 20°C1Er,_, [|Jze— 3:|]*] = 20*Chray.

(7N
Furthermore,
7 h 7"‘|'W~lt‘|_1~ 2 2 (12 2 2
IV = 2B, [[|he — —— 7] = 20°E[(—— = [1he])*] < 20°E[||he]?] < 20°C3 (®)
Pt [ ot [[Re] i
where the second inequality is by Assumption[5] Combining Eq (7) and Eq (8], we obtain that
I < 2n?Cha; + 2n°C3. )

Then, we will upper bound II,

= —2nE,[(x; — %)" (he — hy + hy — )]

r o+ |
. - T h (10)
= =B, (w1 — &0)" (h — h)] =208, (20 — 80)" (hy — —=—)] .
7+ |h
\%
VI
For the first term on the right hand side, by Assumption [6]
V = —20E, [(x — Z0) T (he — hy)] < =20CsE,_[|lze — 2¢])?] = —2nCsay. (11)
For the second term on the right hand side,
VI < |VI| < 20Er, [[(z — &) ( i )| < 20Bx, [l|(z: — Z4)I|]| (R L il
= = Tt t— Lt t— T T = Tt t— Lt t— T 7
7+ [[hel| 7+ ([l
I R
< 20V/Ex, [[|(we — 2Py [Ell| (A — —=—)I12] < 20v/a;Ce
7 [[hel|
(12)

where the second inequality is by Jensen inequality. The third inequality is by Cauchy-Schwarz over
R™. The fourth inequality is by Cauchy-Schwarz over the probability space. The fifth inequality
is by Eq (8). We remark that in order to use Cauchy-Schartz, we require that » > 1 so that
hel| —1
% > (. Combining Eq (TT) and Eq (T2), we obtain that
r—+ +

II < —2nCsay + 2nCay/ay. (13)

Finally, combining Eq (6), Eq (9), and Eq (T3), we obtain that
a1 <ap+1+ 77202d +1I
< ar +n*(2C1a; + 203) + n*o?d + (—2nCsay + 2nCay/ay) (14)
< (1 —2C3n + 20197 ar + (209m)v/ar +n*(o*d + 2C3).



Define functions in 7,

Al(n) = 201772 - 2037’] + 1,
AQ(T}) = 202777
As(n) = (0°d +2C3)n”.

Define functions in a free variable y,

p(y) = A1y + A2y + As,
q(y) =1-ply) = (1 — A1)y — As/y — A3.

By Lemma[I2] we have the following corollary,
Corollary 13. a;11 < p(at).

We want to show p(y) is increasing in y and ¢(y) is increasing in y when y is large enough. For that,

we need the following result,
Cs3 — \/C?% —2C,
50 ,0< Ay
1

Lemma 14. When 0 < n < (n) <L

Proof. We first observe that A;(n) is a quadratic function in n. If C3 < 2C, then there are
no zeros and A; is always positive. If C3 > 2C}, the function has two zeros which are 7; =

C3— /CZ—2C, and py — G2 VCE—2C
, =

C
201 2611
C
always be positive. Furthermore, A;(n) < 1if and only if 0 < 5 < =3 Since we required that

(O
_ 2_2 :
“ W < %,We know that A;(n) < 1.
1 1

. Since we required the step size n < 1, A; will

0<n<

We show the following property of p(y) and ¢(y), which will be helpful in our later proof.

Lemma 15. ¢(y) has a unique zero at

_ (A2 +AZ+4(1 - A1) A,
= 2(1 - Ay)

).
When 0 < y < yx, q(y) < 0. Wheny > y,, q(y) > 0.

Proof. Let z = /y so q(z) = (1 — A1)z — A>z — A3 with domain z > 0. ¢(2) is a quadratic with
two roots

 As— JAZ+4(1— A))A;

. Ao+ AT+ A(1— A))A;
T 2(1— Ay)

<0, 2o = 2(1— A7) >0

Ag + /A2 +4(1 — Ay)As
2(1 - Ay)

is the unique zero of ¢(y). Since ¢(0) = —A3z = —n?(0%d + 2C3) < 0 and lim, o ()

lim, o (1 — A1)y = oo, by continuity of ¢(y), we conclude that when 0 < y < y,, q(y) <

When y > y., q(y) > 0.

2

~—

and we find out zy is the unique zero in the domain so y, = 23 = (

Oo |l

We define a new sequence (y;)¢>o such that yo = ap and y¢11 = p(ys).

Lemma 16. The following statements are true for (y;):
1. y; > ay for any t;

2. im0 Yt = Yae



Proof. We show all statements by induction on (y;). To show statement 1, we first see yo > ag.
Assume y; > ay, then yi11 = p(y:) > p(ag) > agqq. The first inequality is by the fact that p(y) is
monotonically increasing. The second inequality is by Corollary [T3]

We now show the second statement. If y, = yo, then by induction, since y, is the unique zero of
q¥), Yir1 = p(y) = p(y«) = y. as desired. If yo > y., we claim that (y;) is bounded below
by y. and decreasing so converges. We observe that y;+1 — y. = p(y:) — p(y«) > 0 since p is
increasing and y; > y. by assumption. Then, v — yr41 = y¢ — p(y:) = q(y¢) > 0 where the
inequality is by Lemma and the fact that y; > y,. Thus, the limit of (y;) exists and we denote it
Yoo := limy_, oo yz. We observe that yoo = lims o0 yr = limy o0 p(yr—1) = limy— 00 p(y:). Since
p is continuous, p(Yso) = limy— 00 P(Yt) = Yoo SO Yoo is a zero of ¢(y). Since ¢ has the unique zero
Yx, We obtain that y.o = ..

If yo < y., we claim that (y;) is bounded above by y, and increasing so converges. We observe that
Ye+1 — Y« = P(yt) — p(y«) < 0 since p is increasing and y; < y. by assumption. Then, y; — y411 =
ys — p(ys) = q(ys) < 0 where the inequality is by Lemma [15]and the fact that y; < .. Thus,
the limit of (y;) exists and we denote it Yoo = lim; oo ¥:. We observe that yoo = limy_oo yr =
limy 00 P(ye—1) = limy_y00 P(y¢). Since p is continuous, P(Yoo) = limy— 00 P(Yt) = Yoo SO Yoo 1S @
zero of ¢(y). Since ¢ has the unique zero y., we conclude that Yoo = Ys.

O
From Lemma [T6}
A AZ +4(1 - ADA
1imtsup a; < limtsupyt = li{nyt =y, = ( 2t \/2(21+_ 1511) 1) 3)2
(A2 + 41— A Az,
- 2(1 - Ay)
_ ((2Cn)” + VARG — 2012)(0d + 2C3) (15)

2(2C3m — 2C1n?)
(2C5)%n + \/4(2C3n — 2C112)(02d + 2C3) 2
2(2C5 — 2C1n)
) 4 2( V4(2C5n — 2C1?)(02d + 2C3)
2(2C5 — 2C1n)

= (

(202)27]

=250, — 20m) >

When 7 approaches to 0 and d approaches to oo, we have that lim sup, a; = O(n?) + O(nd). We
use the same contraction idea to give an upper bound on by 1 := Er, [||z¢411 — Z141]]4].

Lemma 17.
3 1 1
b1 < Hby + Ib} + Jb? + Kb} + L (16)
where
H=1-n2%Cs +*2°C + 1?22 C? + 1?23 C2 + n*27 C}
1 4 17 1
I=n2°C¢ +n*-3-27C{C{
1 1 1
J =n%22do? + n?2do? + n*22do?Cy + n*22do?Cy + T]32%d02012 + 77224062 + 77232%062
1 1
+0-3-29C,C¢ + P22 do>C
K = 18220348 + P28 di o307 + 12 O + P28 do?Cy + 28 doCy
L = n*8Cs + no*(d® + 2d) + n*8C2do? + n*4C2do? + n32%d%a3C’2).

Proof. First, we denote F := xy — &y, F := —(Vgi(y) — %).



bpr = Br, [||meg1 — Feqa||]
Vg (T4)

=Exr, [[[(ze = nVgi(2e)) — (@0 — U(m +2:))]1*)
~ Bl = )+ 1=V + (i) 4l
E

=Er [[|E+nF +nz]
=Er[(||BIP + 0?[|FI1” + n?[|z|* + 20 ETF + 2nE" 2 + 20° F" 2,)?]
=E [|BII* + 0 [FII* + 0]z + 40° (BT F)? + 40 (ET 2,)? + 4! (FT 2,)?
+2-[[BI12 -0 |FII?+ 2 |- n?llze] 2 + 2 [|E]1? - 20(ETF) + 2 [|B||? - 20(ET ) + 2 - || E|* - 20 (FT 2,)
+ 2 |[FIP 0P|zl + 2?12 - 20(ETF) + 2 0°||F|[* - 20(ET 20) + 2 0P| | F|* - 20 (FT 2,)
+ 207|212 - 20(ETF) + 2 0P|z * - 20(ET 20) + 2 0?24l * - 20 (F 7 2,)
+2-20(ETF) - 20(ET2) +2-20(ETF) - 20*(FT 2,)

+2-29(ETz) - 20 (FT )],
a7)
where the third and the fourth equality is the expansion of the polynomials. We give an upper bound
for each term separately in terms of b, and other constants.

L Er, [[|E]I"] = Ex, [llze — Z:|"] = bt

2. Recall that by := Vg, (x4), by := V§; (). Then,
- .
7+ [[hel|
VI
(18)
where the inequality is by the fact that (a + b)* < 8a* + 8b* for any two real numbers a, b.
By Assumption 4] VII < 87*C{b,. By Assumption|7]

1] < 89" Ex, [lle = Dl "] + 81" Er, [[ e — 1],

VII

Er, (1| F11"] = 0*Er, Il —Pet Ay ——
7+ [l

7 TRl =1 405 s 4
VII = 87*Er, [||he — ————*] < 87" Ex, [(——=——)*[|he||*] < 81*Cs, (19)
7+ ||| 7+ | [he|
Thus,
Ex, [n*[|F[|*] < n*(8C1b: + 8Cs). (20)

3. We calculate the fourth moment of the Gaussian distribution.
d
Er, [0*]2e]*] = 1B, [ ()2 = 0* O En,[2t]* + 2 B, [(2F)?]Ex, [(21)°]) = 1*(3do™ + d(d — 1)0*)
j=1 J k<l

= nto?(d® + 2d).

Er, [47° (BT F)?*] < Eq, [40? || B| (| F|]”] < 40° /Ex, [|| Bl [ER, [[[FI["] < 4% - /by - \/8Cb + 8Ci
< 402 \/by(\/8CED, + \/8C6) = 8V212C2b, + 8V 212 CEb?
(21)

where the first inequality is by Cauchy-Schwarz in R¢. The second inequality is by Cauchy-
Schwarz over the probability space. The third inequality is by Eq (20). The fourth inequality
is by subadditivity of the square root function.
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10.

11.

12.

13.

Er, [477(E"20)%) < B, [40°|| B|P||22][°] = 40°Ex, [[|EIP|Er, [l]2][°] < 4n* - /by - do

where the first equality is by independence and the second inequality is by Jensen’s inequal-
ity.

Ex, [4n" (F"2)%] < 49'Ex, [||FI*] - Ex, [||21%] = 4n* - (2C1v/by +2C3) - do®
where the first equality is by Eq (9).

Er[2- || B n*[[FIIP] < 20° /B [[| EIER ([ FII*] < 4V20°CPby + 4V20°C b7
followed by Eq(2T) and subadditivity of square root fuction.

Ex[2- | BIP - nll21%] = 20° - Ex, (I1EI®) - Ex, [ll=e]*) < 20° - /by - do®
by independence of Gaussian distribution.

))-

= - h
Er [2-||E| - 20(E" F)] = 4B, [-||E|PET (h — h+ h — ———)]
=+ ||A]
) . o
=4 (=Ex,[|| B||*(w¢ — 20)" (h — h)] —Ex, [|| E]PE" (h — =
7+ Al
X
(22)
We observe that
IX < —Er, [[|E]]* - G3||E|*] = —Csby.
where the inequality is by Assumption[6] Furthermore,
X < Ex, [[|E|*[|B||-|h~ h 1< ExUIENP)E]) Er, [I1A- h 14 <bi-Ci
> Ly "+ 7 = T Tt "+ 3 — Yt 6

where the first inequality is by Cauchy-Schwarz over R%. The second inequality is by
Holder’s inequality. The third inequality is by Eq (I9). Therefore,

3 1
Er,[2-]|BI[* - 2n(ETF)] < 4n(=Csb; + b/ - Cg).

[2-||BI12 - 20(ET %)) = B, [(4n]| E|E)T 2] = ¥5_, Ex, [40]| E||* E|Ex, []] = 0.

j=

i1 En, [40° || E|]* FI)Er, [2]] =

E.,
Er,[2-||EI[? - 202 (FT2)] = Ex, [(4n?| E|PF)T 2] = 35
0.

Er, [2- P [|F|* - 7P[|2e][*] = 20*Ba, [|| F|PJEn, [||2:]]%] < 20*do®(2C1v/by +2C3),
where the inequality is by Eq (20).

3 1
Er, 2 0?||F|]? - 20(ET F)] < 49K, [||F|]P||E|[] < 40*(Ex, [||F]|*])* (Ex, [ | E]|*])
< 4P (8C1b, + 8C4) b3 < 16V203C30, + 163207 Ca b7,

where the first inequality is by Cauchy-Schwarz over R?. The second inequality is by
Holder’s inequality. The third inequality is by Eq (20). The fourth inequality is by subaddi-
tivity.
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14. I()Em 212 || F|[2-20(ET 2)] = Ex, (40| FI2E)T 2] = 325_, B[40 | F|[* BI]Eq, []] =
15. B, 2 (| F|1? - 202(FT2)] = Bx [(2- 12| FI[2 - 202F)T 2] = 35 B, [2- 2| F[2 -

202 FIE,, [2]] = 0.
16.
Er (2 0%||2el|? - 20(ET F)] = 417°Er, [||24|*Er, (BT F)] < 40°do® /Er, [[| E|P|Ex, [[| F[]
1 1 11 1
< 4nPdo?b (201/by + 202)2 < 4V2PPdo®CEDE + 4V/20°do? Cyb}
where the first inequality is by Cauchy-Schwarz over the probability space. The second
inequality is by Eq (20) and Jensen’s inequality. The third inequality is by subadditivity.
17.
Ex, [2:7°||2¢][*-20(E" 24)] < Ex, [4°||2e] P EV]) = 40°Eor, (||| PJE, (|| EII] < 40°d2 ™D,

where the first inequality is by Cauchy-Schwarz over R?. The first equality is by the
independence of random variables. The second inequality is by Jensen’s inequality.

18.
Er 20?2?20 (F 20)] < Er, [40° 2| P F|I]) = 4 - 17° B, [[ 2] P ] Ere, [[| F] ]

11
aPd3o® \/201\/by + 202 < V2P d2 6P CEbE + 4V20Pd2 03 Cy,
(23)
where the first inequality is by Cauchy-Schwarz over R?. The first equality is by the
independence of random variables. The second inequality is by the Jensen’s inequality and
Eq (20). The third inequality is by subadditivity of square root function.

IN

19. E.,[2-2n(ETF)-2n(ET )] = E,, [(2-2n(ETF)-2n-E)T 2] = Z?zl E.[(2-2n(ETF)-
2 - B2l =0.

20. B, [2:20(ETF)-20*(F7 )] = Bx, [(2-20(ETF)-202- F)" 2] = 35,
22 Fi.Zl]=0

21.

E,,[2:2n(ETF)-

Er,[2-20(E"2) - 20 (FT 2)]) < Ex, [80° || B[||F]]]2]1%]
< 87 VEx (|| EIP]VEx,[[|FI?] - do®

< 8- do? - b/ 2C1 /by + 202

< 8V2Pdo 07 b? + 8v20Pdo? Cob]

where the first inequality is by Cauchy-Schwarz over R%. The second inequality is by
Cauchy-Schwarz over the probability space. The third inequality is using Jensen’s inequality
and Eq (9). The fourth inequality is by subadditivity of square root function.

By combining Eq (I7) and the above term analysis, we obtain that
bep1 < by + 71 (8C by + 8C) + ot (d2 + 2d) + (8v2n2C2b, + 8V22C2b7)
+4n% - /by - do? + 4t - (201/by + 2C2) - do?
+ (4V212C2, + 4220262 ) + 20 - /by - do? + d(—Ciby + b - CF) +0+0
+ 20 do?(2C1/by + 2C2) + (16V203C3b, + 16 V20 Ca b ) +0 + 0
F (AV2PAo2CEDF + AV do?Cobl) + diPdd o%bF + (4V20PdR o C2bT + 4V2nPdE o3 C)
1040
+ (8v2PdoCEbE + 822 do?Cyb)) ”

12



Since for any two positive real numbers a, b, (a + b)% < a? +b? and (a+ b)i <ai+ bi, we have
that

3 1 1
bys1 < Hby + IbS + Jb? + Kb} + L (25)
where
H=1-n22Cs +12(25C2 + 2302 +n* (27 C5 + 2°C})
2% | 4 1T 9 g
I =n22C3 +n*-3-27CO;
5 1 1 1 1
J =n*22do? + n*2do® + n*23do*Cy + n*22do?Cy + nP22do?CE 4+ 1?20 CZ + 10?3220
+nt 325 C1CE + 028 do>CF
K =13220%d% + 2830307 + 012 OF + P28 do?Cy + 28 doCy
L = n*8Cs + n'o*(d® + 2d) + n*8C2do? 4+ n*4C2do® + 7)32%d% 030y
O

Lemma 18. When0 < n < min{ﬁ itistruethat0 < H < landI,J, K,L >

0.

e S 1},
’ 16(01 +Cl +Cl),

Proof. First, since n < e

220
H>1-=5 n2(22C24+25 C2) 40t (27 C34+23C%) = (25 C2425 C2)+n* (22Ci 427 C3) > 0
3
Furthermore, since 1 < W andn < 1,
1 1 1

N2(22C2 +23C%) + (27 C3 + 2301 < 2(22C% +25C2 + 279 CF 4+ 2°CY)
<n?(25C% +2°C3 + 2°C))

nC3 6,2 6,3 6 4
< 2°C 2°C 2°C
16(C%+C§+Cf)( PG+ EG)
< 7’]403
and so . . i
H=1-n4C3 +n*(22C% +2:0%) +n*(27 C} +2°C}) < 1
Sincen >0,1,J,K,L > 0. O
‘We define three functions
Lhy) =y, (26)
lg(y)zHy—FIy%—FJy%—FKyi—FL, 27
l(y) = L(y) —la(y) = (1 — H)y — Iy% — Jy* — Ky’ — L. (28)

We define a new sequence (y;) where yo = by and

Yer1 = l2(yr)-
By Lemma and induction, we have the following result.
Corollary 19. Foreacht > 1, y; > b,.

Lemma 20. [(y) has a unique nonnegative zero. If we denote that zero by y.., then lim;_,oc Y1 = Y.

Proof. Tt is sufficient to show that /; (y) and l5(y) have a unique intersection when ¥ is nonnegative.
Since [y is concave, l5(y) is decreasing. Since [(0) < 0 and lim, .o l(y) = oo, l1,l2 has
at least one intersection y,. It suffices to show that for any y > ., l1(y) > l2(y) and for
any y < ¥, l1(y) < l2(y). First, we claim that 1} (y.) > 15(y«). Assume 15(y.) > 11 (y«).
Since I4(y) is strictly decreasing, for any y < y*, hy) > ly) > Uiy = 1(y).
Thus, lo(y.) = [, I5(t) dt > [/"11(t) dt = li(y.), contradicting that y, is an inter-
section. Since 15(y) is strlctly decreasing and U(y) = 1, for any y > w., li(y) > l5(y).
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Thus, for any y > ., la(y) = y« + [/ (t) dt < yo + [ 11(t) dt = L(y). Since
15(0) > l’( ) there exists 0 < § < y* such that l’(~) = l{(g). Forany 0 < y < ¢,
lg() = lg )+ [L lb)dt > 11(0) + 2,1 (t)dt = li(y). Forany § < y < yu,
l2(y) - y. la(t)dt > iy +fy* I (t)dt = l1(y). Therefore, y, is the unique zero.

We now show that for any yo > 0, the sequence (y;) converges to y.. If yo = y. then y; = y. for all
t since y, is the stationary point. If yg > y., we show by 1nduct10n that Yt > Ys- Assume Yt > Yy

then yo1 — . = la(ye) — la(ys) = H(ye —yo) + Iy — )+ J(y7 —y?) + Ky} —y2) 2 0.
Thus, y; > ys, Vt. Also, since 3 > v, l(yt) > 0. Thus, yer1 — 4 = la(ye) — v = —l(ye) < 0.
Therefore, y;+1 < yt, Vt. Therefore, the sequence (y;) is decreasing and bounded so must converge.

Assume lim; o0 ¥t = Yoo 80 12(Yoo) = Yoo = 11(Yoo). Since y, is the unique zero, Yoo = Ys.
The proof is similar if yg < y.. We first show by 1nduct10n that Yt < Vs Assume Y < Yo

1

Vet —ye = la(ye) — la(ye) = Hye —y.) + Iy —yi) + J(uf —y2 )+K(yt —y.) < 0. Ths,
Y<ys, Vt. Also since y¢ < ., f(y:) < 0. Thus, 441 — ye = la(yt) — y¢ = —1(y) > 0. Therefore,
Yi+1 > Yt, Vt. Therefore, the sequence (y;) is increasing and bounded SO must converges. Assume
limy o0 Yt = Yoo S0 12(Yoo) = Yoo = 11 (Yoo ). Since y, is the unique zero, Yoo = Y.

O

Lemma 21. Let y. be the unique nonnegative zero of l(y), then

I+J+K+L, (I+J)+/QA-H)(K+L),,
1-H Vo (1-H) )

y» < max{( (29)

Proof. We now give an upper bound for y.. Letl3(y) = (1 - H)yy— (I +J + K + L)y% and
la(y) = (1 — H)y — (I + J)y2 — (K + L). Forany 0 < y < 1, I(y) > l4(y) and for any y > 1,
I(y) > I3(y). Thus, for any y > 0, I(y) > min{l3(y), l4(y)}. We observe that I3(y) has a unique
zero z3 = (LHEEEL)Y and for any y < 23, [3(y) < 0 and for any y > 23, [3(y) > 0. Similarly,

(I+J)+\/(I+J)2+4(17H)(K+L)) <( 2(I+J)++/4(1—H)( K+L)

l4(y) has a unique zero z4 = ( 50— ST
that for any y < z4, l4(y) < 0 and for any y > z4, l4(y) > 0. If [(y«) > I5(y«) then e < 23 and 1f
U(ys) > l4(y«) then y, < z4. Therefore, y. < max{zs, z4}.

O
Lemma 22.
. I+J+K+L I1+J)+ 1-H)(K+L
imsupty < max(( T E L (VRS AEE g o
Proof. By Corollary [19] Lemma[20] and Lemma[21]
I+J+K+L I+J)+ 1-H)(K+L
limsupb, < lim gy < g, < max{(——— ) (( ) (1( 7 X ))2}-
O

When 7 approaches to 0 and d approaches to infinity, we observe that
H=1-n22C5 +5*2°C* + 222 C2 + 22502 + 9*27 03 = O(n),
1 1

I=n22C¢ +n* 329 C3C¢ = O(n),
1 1 1

J =n?2%do? + n*2do? + n*23do*Cy + n*22de? 0y + n32%d02Cf + 77224062 + n232%062

1 1
+n*-3. 2147701062 + 7732%(102012 = 0(n*d),
1 3
K =132%63%d3 + 1’23d30%CE + 1*2% CF + 1722 doCy + P27 doCy = O(nPd?),
L =n*8Cs +no*(d* + 2d) + n*8C2do? 4+ n*4C2do? + 7732%d% 03Cy = O(n*d® + nsd%).
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Thus,

I+J+K+L, n+nPd? +nd+ntd? +pids |,
(————F—)" =0 )%)
1-H n
= O((1 4 n?d? +nd+ n>d?> + n>d?)*)
— O(]. +7]8d6 +’I74d4 +7712d8 +’I78d6)
= O(L+n*d® +n'd* + n'?d®),

(I+J)+/I-H)(E+1L) 2_O(<n+n2d+\/n(n3d%+n4d2))2)

( (1— ) r= .

O((1 +nd+ ny\/d? +nd?)?)
O(1 + n?d? + n?(d? + nd?))
O(1 + n?d?).

and

Therefore,
limsup by = max{O(1 + n%d® + n*d* + n'2d®), 0(1 + n*d?)}
t—o0 (31)
— 0(1 +’I72d2 + n4d4 + T]8d6 + 7712d8)

Before we begin our proof on an upper bound on E., || f(z¢) — f(&¢)||?, we first state a result on
the powers of gradient of f.

Lemma 23. [f each function in { f;} satisfies Assumptlon@and Assumption E then for each x € RY,
If(@)II* < C2and || f(2)]]* < C.

Proof. First,

If@)I]” = II*Zfz I = IIZ ~fi(@)|* = [[Egm sy, 9@ < Egugri.[llg(@)[]?] < Co
where the first inequality is by Jensen’s inequality. Second,

If @) = II*Zfz It = IIZ = fi(@)|[* = [[Egn sy, [9@]I1* < Egugriylllg(@)l]'] < Co
where the first inequality is by Jensen’s inequality. O

We now give a bound on E, ,||f(z¢) — f(:)||*>. By Assumption 4| and Taylor expansion, we
observe that

F(0) < FGe) + V)T @ - ) + ey — 2
Combining
(@) < ~ @)~ VI @) -2 + Ll — 2P,
we obtain that
7@~ F@? < (V)™ @l + e — w2
C
< (VS @l @ =zl + e = &]%)?

- C? - -
<|IVF@)PII(E — zo)|]” + j”fct — ||+ CLl|V f (@) ||[|we — &4
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which implies

02
Er,_ |f(2e) = FEP < B, IV F () |PI(E — 20) 117 + TIEWH[H% — &' + C1E, _ [V f (o) [l — &[]

< B IV Ty B 17— 2l 1]+ SB[l — 2]
+ B, [V @)1 5 (B, (Il — 3]

1 02 1.3
= VEr NIV S @) 1967 + =100+ B, 19 ()[4

11 C3 13
< CEb + b+ Cbe

By Eq (1),
limsup Er, || f(z¢) — f(Z)]]* = O(1 + nd + n*d® + n*d® + n°d*
t—o0
+ 1 + 772d2 + n4d4 + ,,,ISdG + 7712d8
+14n2d? +0°d® 4 °d3 + °d%)
= O(1 +nd +n2d* +1*d® + d® + n*d* + nd? + nPd® + n'2d®).

(32)
Finally,
limsup Wo(f(Z¢), f(x¢)) = limsup  inf  {(E, 5~ [|[f(2¢) — f(@)”z])%}
t—o00 t—oo mrE€Coup(xrs,Tt)

< limsup(Be, z,)r, I (20) = £(30) )%

= (0 SUp B, 5y, (1 (20) = F(E0) )2

=0 +n2d? +nidi +nd+n2d? +n2d® +12d? + n'd® + n®d?)
where Coup(x4+, T4+ ) is the set of couplings between @y« , T 4=
B.2 Proof of Theorem [Tl

There is an existing result on the convergence of Wa(f (), f*):

Lemma 24 ([7]). Under Assumptions @9 and appropriate step size conditions:
A Wo(f (@), f7) = O(n)

Combining Lemma|[I0]and Lemma[24]
limsup Wa(f(Z:), f*) < limsup Wa(f(Z4), f(2¢)) + lim Wa(f(2), f*)
t—o0 t—o0 t—o0

3 .3
14

+nd+n2d? +n?d® + pPdi + ntd® + 1°dY) + O(n)
+nd+n3d? +n?d? +2dT + ptd® +nSd?)

:O(1+7]%d% +nid
= O(1+n%d% +n%d

e
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