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Abstract

The rapid progression of urbanization has generated a diverse array of urban1

data, facilitating significant advancements in urban science and urban computing.2

Current studies often work on separate problems case by case using diverse data,3

e.g., air quality prediction, and built-up areas classification. This fragmented4

approach hinders the urban research field from advancing at the pace observed in5

Computer Vision and Natural Language Processing, due to two primary reasons.6

On the one hand, the diverse data processing steps lead to the lack of large-scale7

benchmarks and therefore decelerate iterative methodology improvement on a8

single problem. On the other hand, the disparity in multi-modal data formats9

hinders the combination of the related modal data to stimulate more research10

findings. To address these challenges, we propose UrbanDataLayer (UDL), a suite11

of standardized data structures and pipelines for city data engineering, providing a12

unified data format for researchers. This allows researchers to easily build up large-13

scale benchmarks and combine multi-modal data, thus expediting the development14

of multi-modal urban foundation models. To verify the effectiveness of our work,15

we present four distinct urban problem tasks utilizing the proposed data layer.16

UrbanDataLayer aims to enhance standardization and operational efficiency within17

the urban science research community. The examples and source code are available18

at https://github.com/SJTU-CILAB/udl.19

1 Introduction20

The accelerated pace of urbanization has enhanced life quality while concurrently inducing issues21

such as air pollution and traffic congestion. Extensive urban data has been recorded due to the22

widespread use of advanced sensing technologies [29]. Simultaneously, urban studies have sprung up23

among various domains of human mobility [15], air quality [6, 20], traffic dynamics [18], climate24

change [35], spatial planning [48] and poverty [42, 32], etc. However, several challenges are posed.25

Firstly, numerous urban studies work on separate problems using different datasets case by case or26

performing different processings on the same dataset. This lack of standard benchmarks hinders27

the overall improvement of research. In urban issues, researchers often self-define the problem and28

propose methods accordingly. Based on an analysis of 88 papers published in seven AI conferences29

shown in Fig. 1, three phenomena are observed. (1) Many urban problems are defined within the same30

domain, yet disparate datasets are used for identical problems. (2) Even if they use the same datasets,31
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(a) Urban problems in diverse areas.
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(b) Used datasets distribution.

Figure 1: Problems and datasets in published papers. (a) Urban problems studied in five areas: traffic,
public service, environment, ecomomy and resource (from left to right). The numbers below are
the count of relevant papers. (b) Dataset types for each category. Each bar represents the number of
papers using that dataset. Papers use data of different datasets in similar domains and the distribution
of datasets is very decentralized.

variations in data processing might lead to inconsistent experimental data. (3) More differences32

in the final experimental data may also exist that are not known due to the data not being publicly33

available. Even in relatively mature urban tasks such as urban spatial-temporal prediction, only less34

than 30% of the papers have made their data public [36]. As shown in Table 1, a significant portion35

of experimental data in urban studies remains inaccessible. This phenomenon makes comparisons36

between these methods difficult and the results are hard to reproduce due to non-public experimental37

data. Furthermore, researchers cannot continuously improve the performance of the methods under38

the same standard, which hinders the progress of urban research.39

Secondly, urban data exists in multiple modalities, miscellaneous formats, and non-uniform gran-40

ularity, and involves cumbersome processing; urban research often requires multiple data fusions.41

Repetitive and intricate data processing is troublesome and prone to errors, making data utilization42

poor. Fusing knowledge from different datasets is effective and essential in urban research. Unlike43

Computer Vision and Natural Language Processing which have standardized datasets such as Im-44

ageNet [7] and WikiText-103 [30], urban datasets frequently adopt distinct storage formats with45

diverse granularities, encompassing images, tables, trajectories, points, and beyond. This challenge46

impedes researchers especially novices in the domain of efficiently and correctly combining and47

leveraging the data, which introduces obstacles in large-scale urban research.48

Therefore, we propose an effective and efficient urban data management suite named UrbanDataLayer49

(UDL), which provides five standard urban data layers and efficient data processing tools with the50

following characteristics. (1) Reproducible benchmark: People can utilize UDL to easily process51

their data, make it a public benchmark, and compare with SOTA methods. (2) Combinable multi-52

modal data: We provide examples of combining urban data with spatio-temporal base data, e.g.,53

satellite image and road network data to create the possibility for multi-modal spatio-temporal54

foundation model building. (3) Extensibility: UDL can be expanded in both spatio-temporal and55

feature dimensions and encourages researchers to fill in the gaps of absent universal urban data.56

2 Related Work57

In contrast to other domains like Computer Vision, Natural Language Processing or tasks like Graph58

Node Classification have common datasets such as ImageNet [7] and CIFAR-10 [17], WikiText-59

103 [30], Cora [27], respectively. Regrettably, urban computing research lacks common datasets and60

data formats and somewhat inhibits the advancement of this field.61

It has recently come to our attention that there is a benchmark LibCity [37] for solving urban spatio-62

temporal prediction problems. It includes pivotal stages related to traffic prediction into a systematic63

pipeline and provides 40 diverse datasets of unified storge format. It merely focuses on scenarios of64

urban traffic and does not cover all types of data in urban.65

Data produced within urban areas typically exhibits an association with either spatial or spatiotemporal66

attributes [47]. Datasets originating from diverse domains present different structures, resulting in67
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Table 1: Data used in published research. The research of the same field works on separate datasets
and most of them are not public. Take economy, air, and traffic domain as examples.

Domain Data Time span Spatial coverage Paper Type Used Time Used Space Public*

Economy

Digital Globe
Worldview Satellite - Global [13] Polygon - South Korea %

Villages images
from Google Maps 2011 Global [32] Grid 2011 India %

Nightlight from NOAA 2013 Global [42] Grid 2013 Africa %

Nightlight from NASA 2012 Global [28] Grid 2012 Global "

Expenditure (poverty)
from LSMS 2011 - 2012 Uganda [42] Grid 2011 - 2012 Uganda %

[2] Grid 2011 - 2012 Uganda %
Urban LIA (low-

income areas) Data - Kisumu, Malindi,
Nakuru [19] Point - Kisumu, Malindi,

Nakuru %

Income statistics
from SECC 2011 India [32] Grid 2011 India %

Air

KDD CUP of
Fresh Air

Jan. 1, 2017 -
Apr. 30, 2018 Beijing [12] Graph Jan. 1, 2017 -

Apr. 30, 2018 Beijing %

Urban Air data
Aug. 2012 -
May. 2015

302 Chinese
cities

[49] Point Aug. 2012 -
May. 2015

Chinese
mainland %

[6] Point May. 1, 2014 -
Apr. 30, 2015 Beijing %

Jan. 1, 2015 -
Dec. 31, 2018

Chinese
mainland [20] Point Jan. 1, 2015 -

Dec. 31, 2018
Chinese

mainland "

Traffic

NYC-Taxi Jan. 1, 2015 -
Mar. 1, 2015 New York City

[43] Grid Jan. 1, 2015 -
Mar. 1, 2015 New York City "

[45] Grid Jan. 1, 2015 -
Mar. 1, 2015 New York City %

Traffic dataset
from Caltrans 2015 - 2016 San Francisco [41] Graph 2015 - 2016 San Francisco %

* Whether the processed data in the paper is public.

different representations. When confronting a problem, it is customary to extract knowledge from68

numerous diverse datasets by data fusion. In particular, the recently proposed time-series large69

models [40, 11] frequently fuse data from different domains to obtain knowledge.70

In the last decades, work like Open Geospatial Consortium [1] has been dedicated to establishing71

standards for geospatial data which is also related to urban data. However, the standards assembled as72

OGC APIs are designed primarily for geospatial data’s release and access, which can be viewed more73

as a kind of "raw data". Unlike OGC, UDL aims to define an urban data pipeline that can process and74

fuse data as input directly into the model. In addition, it is not limited to geospatial data and other75

urban data like time series data are also in this scope.76

3 UrbanDataLayer: A Data Suite for Urban Research77

3.1 UDL layer-wise pipeline78

The UDL (UrbanDataLayer) is a suite of standard data structures and pipelines for city data engineer-79

ing, which processes city data from various raw data into a unified data format. The datasets used80

in one research may have different types and formats, and often come from different sources [23].81

Urban data inputs into the UDL undergo a series of transformations, including conversion from raw82

data to standardized data layers, re-alignment of granularity, and fusion of disparate datasets, before83

being utilized and stored. Consequently, we delineate four stages of data wrapping and three data84

processing steps within the UDL, as depicted in Fig. 2.85

The four data wrappers represent four stages in the data processing pipeline, transitioning from raw86

data to fused data that can be directly utilized by models. These stages include the raw data source,87

standard data layer, granularity-aligned data, and fused data, respectively. In standard data layer which88

is the main component of UDL, we summarize the urban data into five data structures: grid, graph,89

point, linestring and polygon. The details of each data layer are provided in the documentation1.90

The UrbanDataLayer builds the data layers and user-friendly APIs, simplifying the processing and91

reuse of city data in urban research. As depicted in Fig. 2, the components of UrbanDataLayer92

between four data wrappers are scheme transformation, granularity alignment, and feature fusion.93

1https://urbandatalayer-doc.readthedocs.io/en/latest/
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Figure 2: Overview of UrbanDataLayer framework. The words in red are the data processing steps.

In contemporary urban computing, datasets from diverse domains increasingly exhibit interconnec-94

tions influenced by complex underlying relationships [46], underscoring the need for effective data95

fusion techniques to capture and leverage these connections. To exemplify the application of UDL96

(depicted at the bottom of Fig. 2), let’s consider an example. Given nightlight data and population97

data in different formats and granularities, we aim to derive fused data for future downstream tasks.98

The process unfolds as follows: Firstly, we obtain standard grid data while preserving the original99

granularity through Scheme Transformation. Next, we acquire the target granularity data via Granu-100

larity Alignment. Subsequently, the fused data can be extracted through Feature Fusion. The entire101

process is managed by UDL.102

3.2 General functionalities103

For the defined five types of UDL layers, data operations like constructing, modifying and querying104

data by coordinates are provided. Besides this, users can easily access common data processing meth-105

ods through UDL interfaces. The main types of interfaces are as follows: (1)Scheme Transformation:106

Facilitates the transfer of raw data to UDL data and between data layers (Fig. 3). (2)Granularity107

Alignment: Converts a standard data layer into different spatial granularities. (3)Feature Fusion:108

Aggregates cross-domain data. The structure of the UDL interface is shown in Fig. 4.109
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Figure 3: Transformation within layers. Red arrows indicate that there is intra-area aggregation
during the transformation process, which may lose some precision.

3.3 Productivity110

Data from diverse domains comprise numerous modalities, each recorded by distinct data types,111

distributions, scales, and granularities. For example, satellite images [13] are represented by pixel112

intensities, whereas POIs [39, 12] are usually represented by spatial points linked to a static category.113

Human mobility data [15] is embodied as trajectories, while road networks are represented as114

graph [18] and population data [21] is represented as grid-based data with real-value. The property of115

multiple data layers and friendly APIs of UDL well facilitates the combination of features, which116
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is evident in two aspects, as depicted in Fig. 5. First, the transition from diverse raw data sources117

to standard layer data of specified structures becomes routine and procedural, eliminating the need118

for repetitive processing (via user-defined functions) of similar data types. Second, various data119

layers can be quickly and easily aligned with or transformed to each other in UDL according to120

the geographic coordinate characteristics of urban data, rather than reprocessing from the original121

data every time. Both of their outputs can be directly used as inputs to the model or with minor122

adjustments.123

Using the nightlight data from the three experimental cases described in later sections as an example,124

we include 0.02◦ and 0.01◦ grid data in Shanghai, 0.05◦ and 0.01◦ grid data in New York and point125

data. Without UDL, processing from the raw data needs to be conducted 6 times. However, with126

UDL, only 2 steps are required using the ready-to-use API. Subsequently, only 4 times exist between127

the UDL layer, where the users need to complete the conversion from 0 times.128

Especially with the rise of large language models related to urban computing such as time-series129

foundation models, UDL facilitates easy data fusion for these models. To demonstrate this idea with130

an example of time-series foundation models UniTS [11] and PatchTST [31], various data types can131

be transformed into point data as inputs to both models. And this form is the main data provider for132

the current time-series models [50]. We anticipate that it will be a significant tool for urban-related133

large language models.134

4 Empirical Cases135

In this section, we use four typical downstream tasks to illustrate how UrbanDataLayer (UDL) can136

accelerate and enhance urban research. Four cases cover both supervised learning and unsupervised137

learning tasks, including PM2.5 concentration prediction, built-up areas classification, identification138

of administrative boundaries, and El Nino anomaly detection. A more detailed description of data139

and implementation of cases are provided in https://github.com/SJTU-CILAB/udl.140
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Table 2: Effectiveness of combining different features in PM2.5 prediction problems. The best per-
formance of the combination for each compared method is underlined and the best performance of all
is bolded. Overall, in PM2.5 prediction, combining more features contributes to better performance.

Region Shanghai New York
Method XGBoost MLP XGBoost MLP

Measurement RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

Roadnet Intersection Density 3.953 4.861 0.181 3.710 4.779 0.199 0.608 0.778 0.368 0.720 0.898 0.040
Nightlight 4.327 5.127 0.089 4.821 5.859 -0.204 0.743 0.936 0.084 0.721 0.881 0.074
Population 4.374 5.134 0.086 4.373 5.185 0.057 0.740 0.932 0.093 0.676 0.854 0.130

Roadnet + Nightlight 3.672 4.582 0.272 3.404 4.276 0.359 0.591 0.762 0.393 0.648 0.828 0.183
Roadnet + Population 3.669 4.535 0.287 3.464 4.365 0.332 0.591 0.764 0.390 0.677 0.864 0.111

Nightlight + Population 3.974 4.783 0.207 4.044 4.810 0.189 0.713 0.901 0.151 0.619 0.792 0.252
Combining All 3.355 4.235 0.378 3.103 4.075 0.417 0.578 0.753 0.408 0.644 0.817 0.204

• The major experiments are composed of results of combining various features using classic methods141

to demonstrate the benefit of unifying diverse data input via UDL. In this sense, innovating advanced142

methods for each task is not within our scope.143

• Successfully conducting the experiments justifies the fact that: (1) UDL facilitates easy processing144

of data to build reproducible benchmarks; (2) UDL is applicable across different spatial regions,145

temporal periods, and feature dimensions, thereby enabling the scaling up of spatial-temporal data.146

4.1 PM2.5 concentration prediction147

Accurate air quality prediction is of great importance to urban governance and human livelihood [12].148

In this paper, we study the frequently-discussed PM2.5 concentration prediction problem [20, 22, 26].149

We use XGBoost and MLP models, combining night-time lights, population, and road intersection150

density as inputs, to conduct experiments in Shanghai, China (120◦E ∼ 122◦E, 30◦N ∼ 32.4◦N)151

and New York State, United States (80◦W ∼ 70◦W, 40◦N ∼ 45.5◦N). The predicted results152

are evaluated against the value obtained from the NASA Socioeconomic Data and Applications153

Center (recognized as ground truth on all grids). Three metrics are considered respectively as RMSE,154

MAE and R2. The data is split into training data and test data at a ratio of 9:1. Table 2 shows the155

performance of different feature combinations on PM2.5 concentration prediction in two regions. It is156

observed that combining more features performs better on XGBoost and MLP overall. The observed157

patterns can be attributed to the strong spatial correlation between intersection density, nightlight,158

population, and the PM2.5 (as shown in Fig. 6 and Fig. 7). The figures depict grid aggregation,159

where each cell value represents the average of the original values within that cell. The granularity160

of the data is 0.02◦ × 0.02◦ per grid in Shanghai, and 0.05◦ × 0.05◦ per grid in New York State.161

An interesting observation is that areas with higher values for the three urban features—intersection162

density, nightlight, and population—tend to exhibit higher PM2.5 concentrations, as seen in New163

York City and downtown Shanghai. These results indicate that incorporating knowledge from more164

domain-relevant data sources enhances the accuracy of environmental pollution predictions.165

(a) PM2.5 concentration (b) Intersection density (d) Population(c) Nightlight
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New York State. Big cities, e.g., New York and Boston, exhibit high values across all four dimensions.
Among these urban features, intersection density emerges as the most significant factor in predicting
PM2.5 concentrations.
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Table 3: Effectiveness of combining different features in built-up surface classification problems.
The best performance of the combination for each compared method is underlined and the best
performance of all is bolded.

Region Shanghai New York
Method LR DT RF GBDT Adaboost LR DT RF GBDT Adaboost

A
cc

ur
ac

y

Nightlight 0.736 0.653 0.653 0.747 0.744 0.783 0.733 0.734 0.808 0.808
SMOD 0.764 0.767 0.768 0.767 0.760 0.729 0.729 0.729 0.729 0.729

Population 0.761 0.677 0.677 0.767 0.766 0.861 0.818 0.818 0.869 0.868
Nightlight+SMOD 0.781 0.706 0.715 0.786 0.782 0.862 0.820 0.821 0.871 0.869

Nightlight+Population 0.781 0.708 0.710 0.786 0.782 0.862 0.820 0.821 0.871 0.869
SMOD+Population 0.781 0.707 0.732 0.786 0.782 0.862 0.820 0.823 0.871 0.869

All 0.782 0.714 0.772 0.794 0.790 0.863 0.819 0.857 0.873 0.871

F1

Nightlight 0.710 0.663 0.664 0.746 0.731 0.814 0.785 0.786 0.853 0.851
SMOD 0.788 0.786 0.787 0.786 0.737 0.738 0.738 0.738 0.738 0.738

Population 0.743 0.690 0.690 0.770 0.758 0.884 0.853 0.854 0.896 0.894
Nightlight + SMOD 0.777 0.718 0.725 0.791 0.792 0.884 0.855 0.856 0.897 0.895

Nightlight + Population 0.777 0.719 0.721 0.791 0.792 0.884 0.855 0.856 0.897 0.895
SMOD + Population 0.777 0.719 0.739 0.791 0.792 0.884 0.855 0.858 0.897 0.895

All 0.776 0.725 0.778 0.800 0.793 0.886 0.854 0.886 0.899 0.896

A
U

C
-R

O
C

Nightlight 0.742 0.652 0.653 0.749 0.748 0.789 0.717 0.717 0.780 0.784
SMOD 0.760 0.765 0.765 0.765 0.765 0.765 0.765 0.765 0.765 0.765

Population 0.765 0.677 0.677 0.768 0.769 0.864 0.807 0.807 0.858 0.860
Nightlight + SMOD 0.784 0.706 0.715 0.787 0.782 0.865 0.809 0.810 0.859 0.860

Nightlight + Population 0.784 0.707 0.710 0.787 0.782 0.865 0.809 0.809 0.859 0.860
SMOD + Population 0.784 0.707 0.733 0.787 0.782 0.865 0.809 0.811 0.859 0.860

All 0.784 0.714 0.773 0.795 0.790 0.866 0.807 0.845 0.861 0.863

4.2 Built-up areas classification166

Obtaining accurate information about urban built-up areas is crucial for urban planning and man-167

agement [34]. In this paper, we investigate the problem of using population, nightlight, and urban168

index to classify the urban region functions in the level of 0.01◦ × 0.01◦ in space. The experimental169

areas of interest are Shanghai and New York State, consistent with the previous section. Five classic170

classifiers are chosen for this task: Logistic Regression (LR), Decision Tree (DT), Random Forest171

(RF), Gradient Boosting Decision Tree (GBDT) [10] and AdaBoost [9]. To verify the feasibility of172

the combination, the accuracy, F1-score (the average harmonic mean of precision and recall), and the173

Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) are used as the main174

metric for the classification tasks.175

The results are shown in Table 3, from which we have the following observations. (1) Combining176

all features achieves the best performance in both regions, which means the nightlight, SMOD (an177

indicator showing the degree of urbanization), and population all contribute to the identification of178

built-up areas. (2) By further analyzing the SHAP value, we demonstrate the impact of each feature179

for individual samples. As observed in Fig. 8 (e), SMOD has more total impact than the other two180

features, while for some regions nightlight matters much more. Relation within the data also garners181

considerable attention. As depicted in Fig. 8 (a) - (c), SMOD values have a more positive impact on182

classification when both SMOD and population values are high in the region. SMOD tends to be183

higher when the population is higher, which collectively causes a positive influence. When nightlight184

values are the same, the lower the SMOD, the more positive the effect they have on classification.185
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(a) (b) (c)

(d) (e)

Figure 8: SHAP value analysis of three features for built-up areas classification in Shanghai. (a) - (c)
illustrate the interactions between each feature and other features, where each data point represents a
sample. In (d), SMOD has the highest mean SHAP value across all given samples, indicating it has
the most influence on the results. (e) presents the SHAP values under each feature value, with color
representing the level of the feature value.

4.3 Identification of administrative boundaries186

Identifying the boundaries of cities is crucial for urban planning (e.g., infrastructure building) and187

urban service arrangement (e.g., delivery). It is believed that using human activity data, e.g., POI,188

population, road network data, and nightlight data, can help to identify the city boundary. By utilizing189

UDL to unify the aforementioned data to point-wise data, this task can be further formulated as190

a clustering problem. Two commonly used clustering methods, K-Nearest Neighbor (KNN) and191

Gaussian Mixture Model (GMM) are used, and the clustered boundaries are compared with public192

administrative district boundaries. Here, we consider two metrics of this specific task. (1) F1-score:193

The F1-score is the harmonic mean of precision and recall. Precision focuses on the number of points194

assigned to a district that actually belong to that distinct while recall is more concerned with how195

many points belonging to a district are successfully clustered. (2) IOU: We calculate the Intersection196

over Union (IOU) between the obtained clustering boundaries and corresponding administrative197

districts.198

(a) POI (b) POI + Roadnet (c) POI + Population (d) All

(e) POI (f) POI + Population (g) POI + Roadnet + Population (h) All

Figure 9: Clustering results in Shanghai using K-means Model ((a) - (d)) and in New York City
using Gaussian Mixture Model ((e) - (h)). The x and y coordinates represent latitude and longitude
respectively. The points of different colors indicate different clusters predicted, and the polygons of
different colors are the ground truth of the administrative divisions.
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Table 4: Effectiveness of combining different features in boundary identification problems. The best
performance of the combination for each compared method is underlined and the best performance
of all is bolded.

City Shanghai New York City
Method KNN GMM KNN GMM

Measurement F1 IOU F1 IOU F1 IOU F1 IOU

POI 0.608 0.338 0.571 0.300 0.557 0.207 0.625 0.303
POI + Roadnet 0.542 0.349 0.497 0.332 0.867 0.330 0.874 0.511

POI + Nightlight 0.499 0.329 0.479 0.294 0.864 0.341 0.771 0.411
POI + Population 0.455 0.231 0.463 0.228 0.467 0.281 0.542 0.306

POI + Roadnet + Nightlight 0.489 0.319 0.473 0.315 0.891 0.370 0.706 0.434
POI + Nightlight + Population 0.509 0.309 0.435 0.279 0.874 0.350 0.702 0.398
POI + Roadnet + Population 0.471 0.286 0.463 0.309 0.914 0.367 0.913 0.577

Combining All 0.475 0.327 0.399 0.280 0.899 0.376 0.909 0.613

Table 5: Effectiveness of combining different features in anomaly detection problems. The best
performance of each compared method is bolded and the second best performance is underlined.

Method EI Nino Dataset
LOF CoLA ANOMALOUS GAE OCGNN ONE

A
U

C
-R

O
C SP1+ ZW2+ MW3 0.525 0.540 0.469 0.489 0.498 0.469

SP + Humidity + AT4 0.522 0.450 0.463 0.482 0.496 0.464
SP + ST5+ AT 0.525 0.542 0.466 0.488 0.493 0.476

SP + ZW + MW + Humidity + AT 0.540 0.440 0.456 0.499 0.495 0.457
All 0.538 0.425 0.449 0.478 0.507 0.463

1 SP: Spatial information contains longitude and latitude.
2 ZW: Zonal winds (west < 0, east > 0).
3 MW: Meridional winds (south < 0, north > 0).
4 AT: Air temperature.
5 ST: Sea surface temperature and subsurface temperatures down to a depth of 500 meters.

From Table 4, we observe that using POI information alone achieves the best performance in Shanghai199

while adding auxiliary data yields better results in New York City. Fig. 9provides insight into this200

difference: in Shanghai, POI data effectively differentiates between urban and suburban areas, while201

the population and road network data distribute more evenly across various districts, which can202

compromise the distinguishing capability of POI data. Conversely, in New York City, POI data203

alone is insufficient, and the addition of auxiliary data complements the POI information, leading to204

improved performance.205

4.4 El Nino anomaly detection206

Detecting urban anomalies (e.g., traffic anomaly, unexpected crowds, environment anomaly, and207

individual anomaly) holds significant importance in the endeavor to enhance the urban life quality208

and arrange emergency actions [44]. Here, we use El Nino dataset as an example to demonstrate209

how UDL assists in outlier detection tasks. The original dataset is assumed to be without anomalies.210

Following the approach in [8], we introduce anomalies constituting 2% of the dataset. We then211

compare the performance of different combinations of node features using various anomaly detection212

methods [24], including LOF [4], CoLA [25], ANOMALOUS [33], GAE [16], OCGNN [38] and213

ONE [3]. The evaluation metric utilized is the Area Under the Curve (AUC) of the Receiver Operating214

Characteristic (ROC).215

We show AUC values for all methods on all feature combinations in Table. 5. It is observed that the216

combination of spatial information, zonal winds, and meridional winds achieves relatively better217

results overall. The best combination of results is sea surface temperature and air temperature using218

CoLA. Moreover, we shed light on some interesting observations regarding the results to explain why219

it is more likely to be an outlier. In Fig. 10 (a), considering the properties of air temperature and sea220

surface temperature, the outlier is similar to its neighbors in one of the attributes while another is221

much higher or lower. We can observe that the detected anomaly’s (upper left) air temperature is222

around 26◦. But its sea surface temperature is higher than 28.5◦ where its “neighboring” samples223

with the same air temperature are below 28◦. Similar observations in structural aspects can be made224
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(a) (b)

Sur:27.16
Air:27.55

Sur:29.29
Air:27.39

Sur:26.64
Air:28.50

Sur:29.39
Air:27.81

Anomaly

OCGNN

Anomaly
Normal edge

Abnormal edge

Figure 10: The detected anomaly and surrounding points of El Nino region. (a) Detected anomaly
points by CoLA. (b) Detected structural anomaly nodes by OCGNN.

in Fig. 10 (b), where an anomaly may be a node whose edges are inaccurately linked. As the edges225

are established based on spatio-temporal information, edge relationships exist between nodes that226

have the same temporal or spatial information. The node in the graph is recognized as an anomaly227

because the spatio-temporal feature is replaced, making the edges in the dotted line unusually present.228

Since the features of the anomalies are replaced randomly, the best combination of features may be229

stochastic.230

5 Conclusion and Outlook231

This paper introduces a unified data pipeline including standard data structures and easy-to-use232

processing interfaces on urban research. We define the standard data layers from five common data233

organizations used in urban science and provide three components in the pipeline. UDL mitigates234

the gap between various urban data and urban computing research by addressing the challenges:235

(1) handling dirty and repetitive data processing, (2) establishing a unified standardized format, (3)236

integrating alignment and fusion for urban data. This will enable reproducible benchmark construction237

and foster the development of the multi-modal databases. The effectiveness and productivity of UDL238

have been demonstrated in four instances. We believe it will become a promising data tool to inspire239

more researchers to tackle the urban problems our cities face.240

When data layers are constructed globally, the availability of sufficient data facilitates large-scale241

urban research and the development of large models [5, 14]. Despite the high productivity of UDL,242

the alignment of urban data is currently limited to geospatial information and future research could243

explore more aspects. In the future, we will incorporate tasks across regions and explore solutions to244

urban issues on a global scale.245

Acknowledgments and Disclosure of Funding246

This work was sponsored by National Natural Science Foundation of China under Grant No.247

62102246, 62272301, and Provincial Key Research and Development Program of Zhejiang un-248

der Grant No. 2021C01034. Part of the work was done when the students were doing internships at249

Yunqi Academy of Engineering.250

10



References251

[1] Open geospatial consortium. https://ogcapi.ogc.org/.252

[2] Kumar Ayush, Burak Uzkent, Kumar Tanmay, Marshall Burke, David Lobell, and Stefano253

Ermon. Efficient poverty mapping from high resolution remote sensing images. In Proceedings254

of the AAAI Conference on Artificial Intelligence, volume 35, pages 12–20, 2021.255

[3] Sambaran Bandyopadhyay, N Lokesh, and M Narasimha Murty. Outlier aware network embed-256

ding for attributed networks. In Proceedings of the AAAI conference on artificial intelligence,257

volume 33, pages 12–19, 2019.258

[4] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: identifying259

density-based local outliers. In Proceedings of the 2000 ACM SIGMOD international conference260

on Management of data, pages 93–104, 2000.261

[5] Shengchao Chen, Guodong Long, Tao Shen, and Jing Jiang. Prompt federated learning262

for weather forecasting: Toward foundation models on meteorological data. arXiv preprint263

arXiv:2301.09152, 2023.264

[6] Weiyu Cheng, Yanyan Shen, Yanmin Zhu, and Linpeng Huang. A neural attention model for265

urban air quality inference: Learning the weights of monitoring stations. In Proceedings of the266

AAAI Conference on Artificial Intelligence, volume 32, 2018.267

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-268

scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern269

recognition, pages 248–255. Ieee, 2009.270

[8] Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. Deep anomaly detection on attributed271

networks. In Proceedings of the 2019 SIAM International Conference on Data Mining, pages272

594–602. SIAM, 2019.273

[9] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning274

and an application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.275

[10] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of276

statistics, pages 1189–1232, 2001.277

[11] Shanghua Gao, Teddy Koker, Owen Queen, Thomas Hartvigsen, Theodoros Tsiligkaridis, and278

Marinka Zitnik. Units: Building a unified time series model. arXiv preprint arXiv:2403.00131,279

2024.280

[12] Jindong Han, Hao Liu, Hengshu Zhu, Hui Xiong, and Dejing Dou. Joint air quality and weather281

prediction based on multi-adversarial spatiotemporal networks. In Proceedings of the AAAI282

Conference on Artificial Intelligence, volume 35, pages 4081–4089, 2021.283

[13] Sungwon Han, Donghyun Ahn, Hyunji Cha, Jeasurk Yang, Sungwon Park, and Meeyoung Cha.284

Lightweight and robust representation of economic scales from satellite imagery. In Proceedings285

of the AAAI Conference on Artificial Intelligence, volume 34, pages 428–436, 2020.286

[14] Langwen Huang and Torsten Hoefler. Compressing multidimensional weather and climate data287

into neural networks. arXiv preprint arXiv:2210.12538, 2022.288

[15] Renhe Jiang, Xuan Song, Zipei Fan, Tianqi Xia, Quanjun Chen, Satoshi Miyazawa, and Ryosuke289

Shibasaki. Deepurbanmomentum: An online deep-learning system for short-term urban mobility290

prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.291

[16] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint292

arXiv:1611.07308, 2016.293

11

https://ogcapi.ogc.org/


[17] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.294

2009.295

[18] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural296

network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926, 2017.297

[19] Zhili Li, Yiqun Xie, Xiaowei Jia, Kara Stuart, Caroline Delaire, and Sergii Skakun. Point-to-298

region co-learning for poverty mapping at high resolution using satellite imagery. In Proceedings299

of the AAAI Conference on Artificial Intelligence, volume 37, pages 14321–14328, 2023.300

[20] Yuxuan Liang, Yutong Xia, Songyu Ke, Yiwei Wang, Qingsong Wen, Junbo Zhang, Yu Zheng,301

and Roger Zimmermann. Airformer: Predicting nationwide air quality in china with trans-302

formers. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages303

14329–14337, 2023.304

[21] Ziqian Lin, Jie Feng, Ziyang Lu, Yong Li, and Depeng Jin. Deepstn+: Context-aware spatial-305

temporal neural network for crowd flow prediction in metropolis. In Proceedings of the AAAI306

conference on artificial intelligence, volume 33, pages 1020–1027, 2019.307

[22] Jeremiah Liu, John Paisley, Marianthi-Anna Kioumourtzoglou, and Brent Coull. Accurate308

uncertainty estimation and decomposition in ensemble learning. Advances in neural information309

processing systems, 32, 2019.310

[23] Jia Liu, Tianrui Li, Peng Xie, Shengdong Du, Fei Teng, and Xin Yang. Urban big data fusion311

based on deep learning: An overview. Information Fusion, 53:123–133, 2020.312

[24] Kay Liu, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang, Kaize Ding,313

Canyu Chen, Hao Peng, Kai Shu, George H. Chen, Zhihao Jia, and Philip S. Yu. Pygod: A314

python library for graph outlier detection. arXiv preprint arXiv:2204.12095, 2022.315

[25] Yixin Liu, Zhao Li, Shirui Pan, Chen Gong, Chuan Zhou, and George Karypis. Anomaly316

detection on attributed networks via contrastive self-supervised learning. IEEE transactions on317

neural networks and learning systems, 33(6):2378–2392, 2021.318

[26] Yonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, et al. Multivariate time series imputation319

with generative adversarial networks. Advances in neural information processing systems, 31,320

2018.321

[27] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating322

the construction of internet portals with machine learning. Information Retrieval, 3:127–163,323

2000.324

[28] Chenlin Meng, Enci Liu, Willie Neiswanger, Jiaming Song, Marshall Burke, David Lobell,325

and Stefano Ermon. Is-count: large-scale object counting from satellite images with covariate-326

based importance sampling. In Proceedings of the AAAI Conference on Artificial Intelligence,327

volume 36, pages 12034–12042, 2022.328

[29] Chuishi Meng, Yanhua Li, Yu Zheng, Jieping Ye, Qiang Yang, Philip S Yu, and Ouri Wolfson.329

The 12th international workshop on urban computing. In Proceedings of the 29th ACM SIGKDD330

Conference on Knowledge Discovery and Data Mining, pages 5874–5875, 2023.331

[30] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture332

models. arXiv preprint arXiv:1609.07843, 2016.333

[31] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is334

worth 64 words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730,335

2022.336

12



[32] Shailesh Pandey, Tushar Agarwal, and Narayanan C Krishnan. Multi-task deep learning for337

predicting poverty from satellite images. In Proceedings of the AAAI Conference on Artificial338

Intelligence, volume 32, 2018.339

[33] Zhen Peng, Minnan Luo, Jundong Li, Huan Liu, Qinghua Zheng, et al. Anomalous: A joint340

modeling approach for anomaly detection on attributed networks. In IJCAI, pages 3513–3519,341

2018.342

[34] Lang Sun, Lina Tang, Guofan Shao, Quanyi Qiu, Ting Lan, and Jinyuan Shao. A machine343

learning-based classification system for urban built-up areas using multiple classifiers and data344

sources. Remote Sensing, 12(1):91, 2019.345

[35] Thomas Vandal, Evan Kodra, Sangram Ganguly, Andrew Michaelis, Ramakrishna Nemani, and346

Auroop R Ganguly. Deepsd: Generating high resolution climate change projections through347

single image super-resolution. In Proceedings of the 23rd acm sigkdd international conference348

on knowledge discovery and data mining, pages 1663–1672, 2017.349

[36] Jingyuan Wang, Jiawei Jiang, Wenjun Jiang, Chengkai Han, and Wayne Xin Zhao. Towards ef-350

ficient and comprehensive urban spatial-temporal prediction: A unified library and performance351

benchmark. arXiv preprint arXiv:2304.14343, 2023.352

[37] Jingyuan Wang, Jiawei Jiang, Wenjun Jiang, Chao Li, and Wayne Xin Zhao. Libcity: An open353

library for traffic prediction. In Proceedings of the 29th international conference on advances354

in geographic information systems, pages 145–148, 2021.355

[38] Xuhong Wang, Baihong Jin, Ying Du, Ping Cui, Yingshui Tan, and Yupu Yang. One-class356

graph neural networks for anomaly detection in attributed networks. Neural computing and357

applications, 33:12073–12085, 2021.358

[39] Zhecheng Wang, Haoyuan Li, and Ram Rajagopal. Urban2vec: Incorporating street view359

imagery and pois for multi-modal urban neighborhood embedding. In Proceedings of the AAAI360

Conference on Artificial Intelligence, volume 34, pages 1013–1020, 2020.361

[40] Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen362

Sahoo. Unified training of universal time series forecasting transformers. arXiv preprint363

arXiv:2402.02592, 2024.364

[41] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang.365

Connecting the dots: Multivariate time series forecasting with graph neural networks. In366

Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery &367

data mining, pages 753–763, 2020.368

[42] Michael Xie, Neal Jean, Marshall Burke, David Lobell, and Stefano Ermon. Transfer learning369

from deep features for remote sensing and poverty mapping. In Thirtieth AAAI Conference on370

Artificial Intelligence, 2016.371

[43] Huaxiu Yao, Xianfeng Tang, Hua Wei, Guanjie Zheng, and Zhenhui Li. Revisiting spatial-372

temporal similarity: A deep learning framework for traffic prediction. In Proceedings of the373

AAAI conference on artificial intelligence, volume 33, pages 5668–5675, 2019.374

[44] Mingyang Zhang, Tong Li, Yue Yu, Yong Li, Pan Hui, and Yu Zheng. Urban anomaly analytics:375

Description, detection, and prediction. IEEE Transactions on Big Data, 8(3):809–826, 2020.376

[45] X. Zhang, C. Huang, Y. Xu, L. Xia, P. Dai, L. Bo, J. Zhang, and Y. Zheng. Traffic flow377

forecasting with spatial-temporal graph diffusion network. In AAAI, 2021.378

[46] Yu Zheng. Methodologies for cross-domain data fusion: An overview. IEEE transactions on379

big data, 1(1):16–34, 2015.380

13



[47] Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. Urban computing: concepts, method-381

ologies, and applications. ACM Transactions on Intelligent Systems and Technology (TIST),382

5(3):1–55, 2014.383

[48] Yu Zheng, Yuming Lin, Liang Zhao, Tinghai Wu, Depeng Jin, and Yong Li. Spatial planning384

of urban communities via deep reinforcement learning. Nature Computational Science, pages385

1–15, 2023.386

[49] Yu Zheng, Xiuwen Yi, Ming Li, Ruiyuan Li, Zhangqing Shan, Eric Chang, and Tianrui Li.387

Forecasting fine-grained air quality based on big data. In Proceedings of the 21th ACM SIGKDD388

international conference on knowledge discovery and data mining, pages 2267–2276, 2015.389

[50] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai390

Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In391

Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 11106–11115,392

2021.393

14



Checklist394

1. For all authors...395

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s396

contributions and scope? [Yes] See Section 1.397

(b) Did you describe the limitations of your work? [Yes] See Section 5.398

(c) Did you discuss any potential negative societal impacts of your work? [No]399

(d) Have you read the ethics review guidelines and ensured that your paper conforms to400

them? [Yes]401

2. If you are including theoretical results...402

(a) Did you state the full set of assumptions of all theoretical results? [N/A]403

(b) Did you include complete proofs of all theoretical results? [N/A]404

3. If you ran experiments (e.g. for benchmarks)...405

(a) Did you include the code, data, and instructions needed to reproduce the main exper-406

imental results (either in the supplemental material or as a URL)? [Yes] We provide407

related document and code.408

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they409

were chosen)? [Yes] We include the experiment details in supplemental material.410

(c) Did you report error bars (e.g., with respect to the random seed after running experi-411

ments multiple times)? [No]412

(d) Did you include the total amount of compute and the type of resources used (e.g., type413

of GPUs, internal cluster, or cloud provider)? [No]414

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...415

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4.416

(b) Did you mention the license of the assets? [No]417

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]418

We include detailed anomaly detection models in supplemental material.419

(d) Did you discuss whether and how consent was obtained from people whose data you’re420

using/curating? [N/A]421

(e) Did you discuss whether the data you are using/curating contains personally identifiable422

information or offensive content? [N/A]423

5. If you used crowdsourcing or conducted research with human subjects...424

(a) Did you include the full text of instructions given to participants and screenshots, if425

applicable? [N/A]426

(b) Did you describe any potential participant risks, with links to Institutional Review427

Board (IRB) approvals, if applicable? [N/A]428

(c) Did you include the estimated hourly wage paid to participants and the total amount429

spent on participant compensation? [N/A]430

15


	Introduction
	Related Work
	UrbanDataLayer: A Data Suite for Urban Research
	UDL layer-wise pipeline
	General functionalities
	Productivity

	Empirical Cases
	PM2.5 concentration prediction
	Built-up areas classification
	Identification of administrative boundaries
	El Nino anomaly detection

	Conclusion and Outlook

