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Figure 1: MolVision overview: Average performance comparison of models in zero-shot (ZS), in-
context (ICL), chain-of-thoughts (CoT), and finetuning (FT) for classification (Left ↑) and regression
tasks (Center ↓). (Right:) Impact of using visual information on model performance (↑) (JanusPro).

Abstract

Molecular property prediction is a fundamental task in computational chemistry
with critical applications in drug discovery and materials science. While recent
works have explored Large Language Models (LLMs) for this task, they primar-
ily rely on textual molecular representations such as SMILES/SELFIES, which
can be ambiguous and structurally less informative. In this work, we introduce
MolVision, a novel approach that leverages Vision-Language Models (VLMs) by
integrating both molecular structure as images and textual descriptions to enhance
property prediction. We construct a benchmark spanning ten diverse datasets,
covering classification, regression and description tasks. Evaluating nine different
VLMs in zero-shot, few-shot, and fine-tuned settings, we find that visual informa-
tion improves prediction performance, particularly when combined with efficient
fine-tuning strategies such as LoRA. Our results reveal that while visual informa-
tion alone is insufficient, multimodal fusion significantly enhances generalization
across molecular properties. Adaptation of vision encoder for molecular images in
conjunction with LoRA further improves the performance. The code and data is
available at : https://molvision.github.io/MolVision/.

1 Introduction

Recent advancements in Large Language Models (LLMs) have revolutionized natural language
understanding and generation across multiple domains (1). Models such as GPT (2; 3), LLaMA (4),
and Mistral (5) have demonstrated exceptional capabilities in reasoning, knowledge retrieval, and
complex problem-solving. Extending beyond pure text-based reasoning, Vision-Language Models
(VLMs) integrate visual and textual modalities (1; 6; 7; 8), enabling them to perform tasks such
as image captioning, visual question answering, and multimodal retrieval with remarkable success.
While VLMs have been extensively explored in computer vision and NLP applications, their potential
in scientific domains—particularly in chemistry—remains largely unexplored. Given that molecular
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Figure 2: MolVision comparison: Comparison of relevant molecular property prediction approaches.

structures are inherently visual, leveraging vision in molecular analysis presents an exciting, yet
underexplored, research direction.

Recent works such as ChemLLM (9) and ChemLLM-Bench (10) have begun to explore LLMs for
molecular property prediction. These methods primarily rely on textual molecular representations,
such as SMILES and SELFIES, which have been widely used in cheminformatics for decades.
However, these representations have notable limitations, including their non-uniqueness and syntactic
instability, where structurally identical molecules may have vastly different textual encodings. This
ambiguity introduces challenges for LLMs, which process molecular structures as linear strings,
potentially overlooking key structural relationships. While some approaches attempt to improve these
representations through graph-based models (11), the integration of easily available visual molecular
data remains largely unexplored in this domain.

Incorporating visual information has the potential to significantly enhance molecular property pre-
diction. Chemists usually analyze molecular structures using bond-line or skeletal diagrams to infer
properties such as reactivity, toxicity, and solubility. These visual representations inherently encode
structural and spatial information that textual descriptors may fail to capture. For example, subtle
differences in geometry, stereochemistry, or electron delocalization can have profound effects on
molecular properties, yet are difficult to represent accurately in SMILES format alone. By leveraging
VLMs, which are designed to process both visual and textual inputs, we aim to bridge this gap and
improve predictive modeling in cheminformatics.

To this end, we introduce MolVision, a multimodal benchmark for molecular property prediction. In
contrast to prior works MolVision integrates both textual and visual representations (Figure 2). Our
benchmark spans ten diverse datasets, covering classification, regression and description tasks across
a wide range of molecular properties, including toxicity, solubility, and bioactivity. We evaluate nine
different VLMs in zero-shot, few-shot, and fine-tuned settings, providing a comprehensive analysis
of their performance in this domain (Figure 1). We also propose a simple contrastive strategy to adapt
visual component of VLMs for this domain and demonstrate its effectiveness for property prediction.

Through extensive experimentation, we uncover several key insights. First, while VLMs struggle
in zero-shot settings, their performance improves significantly with in-context learning and fine-
tuning. Second, efficient adaptation techniques such as LoRA enhance the predictive accuracy and
generalization to unseen molecular properties. Third, while visual information alone is insufficient for
accurate property prediction, combining molecular images with textual representations yields notable
performance gains specifically for larger molecules. These findings suggest that vision-augmented
molecular modeling presents a promising avenue for future research in AI-driven chemistry, with
numerous potential applications. We make the following contributions:

• We introduce MolVision, a novel approach for molecular property prediction, integrating
molecular structure images with textual representations.

• We present a multimodal benchmark and systematically assess nine state-of-the-art VLMs
in zero-shot, few-shot, and fine-tuned settings across ten datasets highlighting their strengths
and limitations for property prediction.

• We show that efficient adaptation of VLMs for property prediction enhances both perfor-
mance and generalization, and that combining visual and textual data significantly improves
molecular property prediction.

• We propose a simple contrastive strategy, implemented with LoRA, to efficiently adapt vision
aspect of VLMs for this domain and demonstrate it effectiveness for property prediction.
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You are an expert chemist, your task
is to predict the property of molecule

using your experienced chemical
property prediction knowledge.

Smiles: O=C1Nc2ccc(Cl)cc2C
(c2ccccc2)=NC1O

Toxic: Yes
Smiles: Cc1cn[nH]c1

Toxic: No

Please strictly follow the format, no other information can
be provided. Given the Smiles string of a molecule, predict

whether the molecule exhibits androgen receptor (AR)
toxicity based on its structure, by analyzing whether it is

toxic (Yes) or non-toxic (No) in relation to the AR pathway.
Consider factors such as molecular structure, functional

groups, and known toxicophores to assess the compound's
potential toxicity and its interaction with the androgen

receptor, please answer with only Yes or No. A few
examples are provided in the beginning.

Below is the molecule
who's property you have
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Figure 3: Overview of visual-textual approach for property prediction: The image representation
along with textual description are used as input by the VLM where the image is encoded by a vision
encoder and textual description is encoded by a text encoder. These multimodal features are used to
generate the output with the help of a decoder. We show template prompt used for property prediction,
including general outline, task instruction, in-context learning (ICL with k=2), and an image prompt.

2 Related works
Property prediction: Prior research in molecular property prediction has explored various methods
and representations (12). Traditional approaches, like molecular fingerprints (13; 14) and descriptors
(15), rely on expert knowledge but are limited in capturing complex data relationships. Recently,
machine learning techniques (16; 17; 18), particularly graph-based methods like graph convolutional
networks (GCNs) (19), have gained prominence for capturing molecular interactions. Additionally,
deep learning models, including RNNs, CNNs, and transformers (20; 21; 22; 23; 24), have shown
strong performance in modeling structural and sequential information from molecular data.

Multimodal foundational models: Recent advances in Foundational Models (5; 4; 25) have shown
the ability of multimodal LLMs to process both vision and language. These models integrate vision
encoders (26; 27) with LLMs (28; 4) for generating text responses. Models like Llama Adapter V2
(7) and Flamingo (29) explored multimodal structures. Typically, these models pre-train on image
caption datasets (30; 31) and fine-tune on task-specific datasets (32). Models such as Llava 1.5 (33)
and QwenVL (34) are designed for instruction-following tasks but may struggle with science-specific
challenges like computational chemistry.

Foundation models for property prediction: Recent efforts have explored LLMs for property
prediction, such as ChemLLM (9), ChemLLMBench (10), FS-Mol (35) and Nach0 (36). ChemLLM
(9) utilizes ChemData, an instruction-tuning dataset, to address the need for specialized models in
chemistry. Guo et al. (10) assess LLMs in chemistry, focusing on understanding and reasoning tasks
with zero-shot and few-shot learning. In (37), the authors propose to utilize graphical structure with
LLMs for molecule captioning, IUPAC name prediction, and molecule-text retrieval. In contrast, our
work examines the role of multimodal vision-language models, incorporating visual and textual data
for molecular property prediction, a first-of-its-kind exploration.

3 Visual language models for property prediction

We propose use of visual information, in the form of molecular images, alongside textual descriptions
to improve property prediction. Images provide structural insights that are challenging to interpret
from text alone. A vision-language model processes both the image and text prompt to generate a
textual output, as shown in Figure 3. The input image is divided into patches, which are converted
into tokens for the vision encoder (e.g., ViT (38)). The textual prompt is passed through a text encoder
(e.g., BERT (38)), and the visual and textual features are fused via multi-modal learning (e.g., using
Q-Former). LLM decoder (e.g., a transformer model) uses these fused features for text generation.
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Figure 4: Sample visual and textual representation pairs: The images in top row shows skeletal
structure of molecules and bottom row shows their corresponding SMILES representations.

Text prompt: The prompt consists of three components passed to the text encoder: 1) General
outline provides an overview of the task, 2) Task instruction includes detailed task-specific guidance,
and 3) Question requests the model’s answer in a specific format. For in-context learning and
chain-of-thoughts, additional information like examples or reasoning steps is included (Figure 3).

3.1 Model variants

We study three different setups: 1) zero-shot, 2) few-shot, and 3) fine-tuning on training data.

Zero-shot: The model is evaluated without fine-tuning or in-context examples.

Few-shot: We use two approaches: 1) In-context Learning (ICL): traditional prompting (labeled ICL)
and Chain of Thought (CoT) Prompting. Traditional ICL constructs prompts with examples similar
to the input, enabling the model to learn relationships in the new domain. CoT prompting enhances
reasoning by guiding the model through intermediate steps. In cheminformatics, molecular similarity
is often quantified using methods like similarity and distance metrics. For selecting few-shot samples,
we use the Tanimoto index, an effective parameter for similarity prediction (39).

Finetuning: Vision-language models (VLMs) possess a substantial number of trainable parameters,
rendering traditional fine-tuning impractical as all model parameters undergo gradient updates
simultaneously. In our study, we adopt LoRA (Low-Rank Adaptation) (40) for efficient fine-tuning,
a technique that significantly reduce the number of trainable parameters. LoRA achieves this by
updating weights through a pair of trainable rank decomposition matrices, which operate in parallel
with existing weight matrices, while keeping the original pre-trained weights frozen during fine-
tuning. We only adapt the LLM decoder keeping other components frozen during this finetuning to
preserve the generalization capabilities of vision and text encoders (Figure 3).

3.2 Model architectures

We study nine different state-of-the-art visual language models in this study. This includes both closed-
source and open-source models. In open-source, we experimented with Janus-Pro 7B (41), BLIP-2
(38), Llava 1.5 (33), Llama Adapter V2 (7), CogVLM (42), Qwen-VL (34), and mPLUGOWL2 (43).
For closed-source, we experimented with GPT-4V and GPT-4o (1).

4 MolVision benchmark

In this section, we introduce the MolVision benchmark, which includes ten diverse datasets. These
datasets cover a wide range of properties, such as molecular weight, topological polar surface area,
and toxicity, and encompass classification, regression and description tasks. A summary in Table 1.

Tasks: VLMs generate textual outputs based on image and text prompts. For classification, we frame
the task as a True/False question, where the model predicts whether a molecule inhibits a target
property. For regression, the model generates a numerical value representing the target property and
for description task, the model generates textual output.

Dataset curation: We incorporate both molecular skeletal structures as images and
SMILES/SELFIES representations. Existing property prediction datasets primarily focus on textual
representations like SMILES, lacking structural images. To address this, we augment these datasets
with skeletal images generated using RDKit (44). Figure 4 illustrates examples of skeletal (bond-line)
structures alongside their SMILES representations. RDKit also enables conversion between SMILES
and SELFIES, allowing us to explore diverse molecular encodings and enhance model robustness.
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4.1 Benchmark datasets

Table 1: MolVision benchmark details:
Statistics of datasets used in this study.

Dataset Train Test Property

Classification

BACE-V 1,210 303 Bioactivity
BBBP-V 1,640 410 BBB Pen.
HIV-V 32,902 8,225 HIV activity
ClinTox-V 1,193 298 Toxicity
Tox21-V 6,265 1,566 Toxicity

Regression

ESOL-V 902 226 Solubility
LD50-V 5,908 1,477 Toxicity
QM9-V 107K 27K Quantum
PCQM4Mv2-V 3.0M 0.7M Quantum

Molecular Description

ChEBI-V 32,000 8,000 Description

The curation process provides both image representations
corresponding to each molecule along with a formatted
prompt which is derived through manual engineering. The
benchmark consists of the following datasets (more details
in Appendix): BACE-V is derived from BACE (Binary
Activity of Chemical Entities) dataset (45) which is widely
used for binary classification in bioactivity prediction, par-
ticularly for BACE-1 inhibitors linked to Alzheimer’s.
BBBP-V is based on the Blood-Brain Barrier Penetra-
tion (BBBP) dataset (46), which provides binary labels
for BBB penetration. HIV-V is based on the HIV (47)
where we focus on predicting HIV replication inhibition.
Clintox-V is derived from ClinTox dataset (45) and our
focus is on predictions of clinical toxicity and FDA ap-
proval status. Tox21-V is based on the Tox21 dataset (48)
and focuses on predicting chemical toxicity, critical for
environmental safety. ESOL-V is based on the ESOL
dataset (49), and focus on predicting aqueous solubility of
organic compounds. LD50-V is based on the LD50 (50)
and focuses on acute toxicity. QM9-V is derived from
the QM9 (51) and focuses on quantum chemical properties. PCQM4Mv2-V is derived from the
PCQM4Mv2 dataset (52) and focuses on predicting the HOMO-LUMO gap. ChEBI20-V is derived
from the Chemical Entities of Biological Interest (ChEBI) (53)database and focuses on generating
accurate textual descriptions of molecular structures.

5 Experiments and results
Next, we provide evaluations on MolVision benchmark followed by some discussion and analysis.

Evaluation metrics: We evaluate classification performance using Accuracy and F1 Score. We
evaluate classification using Accuracy and F1 Score, where Accuracy measures correct predictions,
and F1 Score balances precision and recall. For regression, we use mean absolute error (MAE)
and root mean square error (RMSE) to quantify prediction deviations. Molecular description tasks
are assessed with BLEU-2, BLEU-4, ROUGE-1, ROUGE-2, ROUGE-L, and METEOR, capturing
n-gram precision, sequence overlap, and semantic similarity.

5.1 Benchmarking results

All experiments are conducted with a temperature of 0 (unless stated) to reduce prediction volatility.

Zero-shot: VLMs are trained on large-scale datasets to learn associations between visual and textual
features. However, property prediction presents a distinct challenge, differing from their training
domain. Figures 1 (left and center) show zero-shot results across all datasets, where performance
remains low for most models, except for proprietary models GPT-4o and GPT-4v. (More in Appendix.)

Few-shot: Tables 2 and 3 present few-shot ICL performance for classification and regression tasks,
respectively. All models show performance gains over zero-shot, though Llama Adapter v2 7B and
Qwen VL consistently underperform with classification accuracy below 48% and high regression
errors. BBBP-V and QM9 remain challenging datasets, while Tox21-V and LD50 yield comparatively
better results. As expected, closed models such as GPT-4o and GPT-4v achieved the best performance
across most datasets however Janus-Pro 7B performed better on certain datasets. The performance
was followed by Llava 1.5 13B and BLIP-2 as the second best open-source models for classification
and regression, respectively. Table 3 also reports CoT prompting results for regression, showing
further improvements, also seen in classification tasks (Figure 1, more info in Appendix).

Finetuning: Table 4 presents classification results after model adaptation, showing significant
performance improvements with fine-tuning. A similar trend is observed for regression tasks, where
adaptation reduces prediction error (Figure 1). Detailed results are provided in the Appendix.
Overall, BLIP-2 achieves the best performance across both classification and regression tasks, while
mPlugOWL2 remains competitive in classification but underperforms in regression. Table 5 show
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Table 2: Few-shot performance for classification tasks: A comparison of accuracy (f1-score) on
property prediction task using in-context learning (ICL with k=2). († - fully supervised training)

Models BACE-V ↑ BBBP-V↑ HIV-V ↑ ClinTox-V ↑ Tox21-V ↑ Average ↑
GNN Models

UniMol (11) † 0.78(0.67) 0.82(0.70) 0.82(0.73) 0.94(0.83) 0.77(0.65) 0.83(0.72)
Molca (37) † 0.79(0.73) 0.74(0.72) 0.89(0.84) 0.93(0.84) 0.80(0.72) 0.83(0.77)

LLM [ICL k=2]

Guo et. al. (54) 0.49(0.40) 0.46(0.46) 0.86(0.80) 0.57(0.36) 0.57(0.52) 0.59(0.51)
Davinci-003 0.65(0.64) 0.39(0.37) 0.78(0.83) 0.84(0.85) 0.68(0.51) 0.67(0.64)
ChemLLM(9) 0.18(0.12) 0.12(0.08) 0.19(0.09) 0.21(0.13) 0.18(0.09) 0.18(0.10)
Gal-1.3B (55) 0.38(0.29) 0.42(0.26) 0.33(0.23) 0.40(0.34) 0.49(0.32) 0.40(0.29)
Gal-6.7B (55) 0.41(0.30) 0.44(0.28) 0.35(0.25) 0.43(0.36) 0.52(0.34) 0.44(0.31)

VLM [ICL k=2]

GPT-4o 0.56(0.53) 0.77(0.81) 0.82(0.56) 0.59(0.44) 0.42(0.58) 0.63(0.58)
GPT-4v 0.72(0.66) 0.63(0.60) 0.95(0.44) 0.96(0.94) 0.72(0.52) 0.80(0.63)
Janus Pro 7B 0.78(0.71) 0.68(0.62) 0.92(0.52) 0.83(0.56) 0.69(0.49) 0.78(0.58)
BLIP-2 0.36(0.52) 0.37(0.29) 0.60(0.30) 0.34(0.36) 0.75(0.42) 0.48(0.38)
Llava 1.5 13B 0.49(0.48) 0.44(0.39) 0.24(0.34) 0.64(0.76) 0.81(0.31) 0.52(0.46)
Llama Ad v2 7B 0.28(0.29) 0.18(0.11) 0.19(0.17) 0.29(0.12) 0.31(0.21) 0.25(0.18)
CogVLM 0.48(0.51) 0.40(0.37) 0.31(0.21) 0.64(0.62) 0.69(0.65) 0.50(0.47)
QwenVL 0.69(0.46) 0.30(0.12) 0.28(0.36) 0.52(0.48) 0.62(0.63) 0.48(0.41)
mPlugowl2 0.59(0.32) 0.35(0.38) 0.62(0.29) 0.34(0.42) 0.69(0.56) 0.52(0.39)

Table 3: Few-shot performance for regression: A comparison of error in prediction using in-context
learning (ICL k=2) and chain-of-thoughts (CoT) with traditional and LLM based approaches.

Model ESOL-V ↓ LD50-V ↓ QM9-V ↓ PCQM4M-V ↓ Average ↓
Traditional approaches

GenRA(56) - 0.58 - - -
Unimol (11) 0.788 - 0.00467 0.070 -

Large Language Models

GPT-3.5 4.24 11.67 13.52 1.81 5.81
Llama2 13B 27.71 49.22 78.92 102.92 64.69
Mistral 13B 33.21 27.46 66.80 88.90 54.09
ChemLLM (9) 23.42 33.91 147.10 29.01 58.36
GAL-1.3B (55) 18.92 40.49 140.92 29.92 -
Gal-6.7B (55) 13.47 38.02 128.90 28.48 -
Molca (37) 1.849 0.982 4.889 0.802 -

Vision-Language Models ICL CoT ICL CoT ICL CoT ICL CoT ICL CoT

GPT-4o 0.98 0.77 0.87 0.60 8.38 5.24 0.68 0.53 2.73 1.78
GPT-4v 0.99 0.71 0.71 0.59 8.62 4.66 0.77 0.66 2.78 1.66
Janus-Pro 7B 0.61 0.89 0.72 0.60 8.53 4.42 0.62 0.38 2.52 1.57
BLIP-2 1.99 1.07 0.73 0.49 16.01 10.09 1.30 1.25 5.01 3.23
Llava 1.5 13B 6.01 2.18 0.94 0.69 27.00 15.21 1.42 1.49 8.84 4.89
Llama Ad v2 7B 3.08 2.17 3.36 2.12 28.09 19.24 4.06 2.36 9.15 6.47
CogVLM 1.26 1.21 3.47 0.78 25.85 15.15 1.44 1.24 8.50 4.59
Qwen VL 3.96 2.89 1.06 0.63 38.92 18.08 10.61 9.56 13.64 7.29
mPlugOWL2 1.46 1.50 0.94 0.71 29.33 19.17 1.84 1.62 8.89 5.25

performance on molecular description task after finetuning. We observe that CogVLM outperforms
other VLMs across all metrics and performs better than recent graph-based LLM.

Zero-shot generalization: Figure 5 shows results with zero-shot generalization where we adapted
the model on one dataset and evaluated on others. As shown, the performance is better than few-shot
(Table 2), however the performance is not as good as LoRA where the model was finetuned on the
target dataset (Table 4). From Figure 5 we observe that after training on HIV-V dataset we get the
best zero-shot average accuracy (61%) and best zero-shot avg F1-score is observed after training on
BBBP-V. ClinTox-V and BBBP-V are the most difficult datasets for zero shot generalization with an
average accuracy of 39% and 40%, respectively.
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Table 4: Classification performance after finetuning: Accuracy (F1 score) comparison of models
finetuned using LoRA. The best performing models are highlighted with bold text.

Models BACE-V ↑ BBBP-V↑ HIV-V ↑ ClinTox-V ↑ Tox21-V↑ Average ↑
RF 0.79(0.76) 0.82(0.88) 0.87(0.52) 0.85(0.46) 0.83(0.26) 0.83(0.57)
XGBoost 0.81(0.77) 0.85(0.90) 0.87(0.55) 0.88(0.62) 0.84(0.33) 0.85(0.63)
ChemLLM (9) 0.18(0.12) 0.12(0.08) 0.19(0.09) 0.21(0.13) 0.18(0.09) 0.17(0.10)
Molca (37) 0.79(0.73) 0.74(0.72) 0.89(0.84) 0.93(0.84) 0.80(0.72) 0.83(0.77)

BLIP-2 0.86(0.83) 0.93(0.96) 0.92(0.76) 0.89(0.93) 0.99(0.80) 0.92(0.86)
Llava 1.5 13B 0.84(0.83) 0.86(0.88) 0.80(0.81) 0.70(0.72) 0.92(0.93) 0.82(0.83)
Llama Adapter v2 7B 0.52(0.48) 0.45(0.46) 0.43(0.42) 0.58(0.62) 0.68(0.69) 0.53(0.53)
CogVLM 0.72(0.71) 0.78(0.82) 0.85(0.83) 0.88(0.90) 0.93(0.93) 0.83(0.84)
Qwen VL 0.78(0.78) 0.70(0.72) 0.60(0.61) 0.71(0.64) 0.75(0.64) 0.71(0.68)
mPlugOWL2 0.86(0.82) 0.90(0.88) 0.90(0.91) 0.89(0.92) 0.94(0.96) 0.89(0.89)

Table 5: Molecular description performance after finetuning: Comparison of models finetuned
using LoRA on the ChEBI dataset. The best performing models are highlighted with bold text.

Models BLEU-2 ↑ BLEU-4 ↑ ROUGE-1 ↑ ROUGE-2 ↑ ROUGE-L ↑ METEOR ↑ Average ↑
MolT5 (57) 59.40 50.80 65.40 51.00 59.40 61.40 57.90
Molca (37) 62.00 53.10 68.10 53.70 61.80 65.10 60.60

BLIP-2 59.06 58.03 58.93 58.47 58.89 58.19 58.60
CogVLM 63.00 60.01 62.39 61.16 62.00 60.60 61.52
mPlugOWL2 51.93 49.64 51.56 50.67 51.33 50.06 50.87
Llava 1.5 13B 60.88 58.99 60.62 59.80 60.42 59.40 60.02
Llama Adapter v2 7B 46.60 44.65 46.27 45.50 46.07 45.00 45.68
Qwen VL 52.00 50.04 51.63 50.78 51.40 50.44 51.05

Table 6: Impact of visual information: A performance comparison showing the impact of visual
information (molecular image) when used with textual description (SMILES). Accuracy is shown
for classification (BACE-V, BBBP-V, HIV-V, Clintox-V (CV), Tox21-V (TV)), and MAE (LD50-V,
QM9-V and PCQM4Mv2-V (PV)) and RMSE (ESOL-V) is shown for regression tasks.

Model Input BACE-V ↑ BBBP-V ↑ HIV-V ↑ CV ↑ TV ↑ ESOL-V ↓ LD50-V ↓ QM9-V ↓ PV ↓

BLIP-2
Text Only 0.71 0.76 0.69 0.64 0.78 9.89 7.80 31.76 11.31
Image Only 0.15 0.09 0.10 0.13 0.18 32.16 31.23 149.12 36.96
Image+Text 0.86 0.93 0.92 0.89 0.99 1.07 0.49 4.92 1.99

JanusPro
Text Only 0.45 0.47 0.62 0.50 0.40 1.23 1.16 20.94 2.09
Image Only 0.19 0.12 0.20 0.14 0.13 21.57 12.49 125.03 16.20
Image+Text 0.78 0.68 0.92 0.83 0.69 0.61 0.72 8.53 0.62

Figure 5: Zero-shot generalization: Visualization of accuracy
(left) and F1-score (right) for zero-shot cross-dataset perfor-
mance using BLIP-2. Each heatmap illustrates results from
fine-tuning on one dataset (y-axis) and evaluating on others.

Models Zero ICL CoT LoRA

GPT-4v 2/1/2 1/3/1 1/1/2 -
GPT-4o 5/3/1 3/2/2 3/2/1 -
JanusPro 7B 1/2/3 2/1/3 2/3/3 -
BLIP-2 7/5/8 7/4/6 7/3/7 1/1/3
Llava1.5 13B 4/8/4 4/6/7 6/6/4 4/4/2
Llama v2 7B 9/7/9 9/8/9 9/8/9 6/6/6
CogVLM 4/6/5 6/5/4 8/5/5 3/2/1
Qwen VL 8/9/7 8/9/5 5/9/6 5/3/4
mPlugOWL2 3/4/6 5/7/8 4/7/8 2/5/5

Table 7: Overall ranking: Per-
formance in terms of average
ranking across datasets (classifica-
tion/regression/description).

5.2 Comparison with existing methods

We compare our approach with traditional methods such as XGBoost, RF, GenRA (56), and Unimol
(11), as well as recent LLM-based property prediction models that rely solely on text (ChemLLM-
Bench (54) and ChemLLM (9)). Table 2 shows that incorporating visual information leads to better
performance than LLMs using text alone. Table 3 compares VLMs with traditional models, where
Janus-Pro, GPT-4o, and GPT-4v achieve competitive results on ESOL and LD50, though performance
on QM9 and PCQM4M remains lower due to extensive training of traditional models on these
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Figure 6: Analysis on molecular-size, model-size and effect of in-context examples: The first plot
shows the impact of molecular size on regression error in LD50 with JanusPro, highlighting how
visual data improves performance. The middle figure shows comparison of VLMs across datasets
Accuracy vs F1 Score for zero shot (ZS), in-context (ICL), CoT and finetuning (FT). The bubble size
represents the model’s parameter scale. The right figure shows variation in accuracy and f1-scores in
case of different ICL examples for GPT-4o model.

Figure 7: Analysis on finetuning, temperature and SELFIES vs. SMILES: The first plot shows
the impact of percentage of finetuning data. The middle figure shows performance variation with
temperature across datasets for BLIP2. The last figure shows analysis of SMILE vs SELFIES string
for ICL k=2 across various models.

datasets. In classification tasks (Table 4), VLMs consistently outperform traditional approaches, with
the largest gains on challenging datasets like BBBP-V. We also compare with a recent graph-based
domain specific LLM approach Molca (37), and observe that our vision based approach provides
better or comparable performance across all tasks and datasets (Table 3 and 5).

5.3 Discussion and analysis

This section provides further discussion and analysis for more insights into the benchmark.
Impact of visual data: Previously, we showed that VLMs outperform LLMs (Tables 2 and 3). Here,
in Table 6, we analyze the impact of visual information within the same model by evaluating BLIP-2
and JanusPro in three configurations: (1) Image+Text (molecular structure images + SMILES), (2)
Text Only (SMILES), and (3) Image Only (molecular images). We see that image-only inputs are
insufficient, but augmenting text with visual data improves performance, showing the benefits of
multimodal learning. Limitations and ethical considerations are discussed in Appendix.

Molecular size: We analyze the impact of molecular size on performance and find that larger
molecules are more challenging, suggesting that longer representations are harder for models to inter-
pret (Figure 6 (a)). We also observe that incorporating visual representations improves performance
on larger molecules, further reinforcing the value of structural images in property prediction.

Capability of different models: After fine-tuning (Table 4), BLIP-2 achieves the highest accuracy
across classification tasks, except for ClinTox-V, where mPlugOWL2 performs comparably. mPlu-
gOWL2 ranks second overall, followed by CogVLM and Llava 1.5 13B, as confirmed in Table 7.
BLIP-2 also excels in regression tasks.

Impact of model size on performance: Since VLMs are trained on large-scale datasets, their size
generally correlates with performance. In our analysis of property prediction, we observe a similar
trend, where larger models consistently outperform their smaller counterparts (Figure 6 (c)). Notably,
while larger models perform better post-ICL, smaller models surpass them after fine-tuning.
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Figure 8: Analyzing visual features: The left two plots show t-SNE visualizations of visual encodings
of BLIP-2 before and after cross-modal fusion respectively. The right two plots show corresponding
t-SNE plots with the proposed contrastive loss using Tanimoto augmentation (T-Aug).

Table 8: Performance comparison for proposed contrastive learning: Evaluation of different
contrastive learning approaches across multiple molecular datasets.

Method BACE-V BBBP-V HIV-V Clintox-V Tox21-V ESOL-V LD50-V QM9-V PCQM-V Chebi-V
Acc(F1) Acc(F1) Acc(F1) Acc(F1) Acc(F1) (RMSE) (MAE) (MAE) (Average)

LoRA 0.86(0.83) 0.93(0.96) 0.92(0.76) 0.89(0.93) 0.99(0.80) 1.76 0.78 4.92 0.24 58.59

Aug 0.87(0.85) 0.94(0.95) 0.93(0.78) 0.90(0.94) 0.97(0.83) 0.90 0.20 4.09 0.21 60.98
T-Aug 0.91(0.88) 0.95(0.96) 0.95(0.84) 0.93(0.93) 0.98(0.89) 0.58 0.10 2.95 0.12 63.73

Effect of number of ICL examples: Figure 6 (a) shows that performance improves with more
in-context examples but degrades beyond a certain point. This can be accredited to VLMs’ limitations
in processing long prompts with excessive tokens.

Effect of amount of finetuning data: Figure 7 (left) show the impact of increasing finetuning data
from 0% to 100% in 20% increments. We observe best performance with 100% data in all datasets,
resulting in ∼40% increase in performance.

Effect of temperature: Figure 7 shows how accuracy (F1-score) averaged across datasets vary with
change in temperature. With most of the models (in supplementary) usually highest accuracy and
F1-score is observed at lower temperatures (0.0-0.4) (in appendix), however, BLIP-2 showed better
performance at higher temperatures (0.8).

SELFIES vs SMILES. SELFIES are more robust molecular representations, adhering to valence
and ring constraints, thus avoiding invalid molecule generation (58). In Figure 7 (right) we observe
that with few exceptions, SELFIES provides better scores on most datasets.

5.4 Adaptation of vision encoder to molecular structures

To enhance the visual representation capability of VLMs in the molecular domain, we analyzed
the vision embeddings of BLIP-2 using t-SNE and found them to be poorly clustered and non-
discriminative—likely due to pretraining on natural images (Fig. 8). To address this, we fine-tuned the
vision encoder using a contrastive learning objective (NT-Xent loss (59)) along with LoRA finetuning.
We follow two strategies for identifying the positive pairs and use them in separate approaches. First
approach uses augmented views of the same molecule (Aug, Table 8), and second approach uses
structurally similar molecules identified via Tanimoto similarity (>0.85) (T-Aug). As shown in
Fig. 8, the similarity-based approach leads to more distinct and meaningful clusters in the embedding
space, capturing pharmacophoric patterns more effectively. This method significantly improves
performance—reducing ESOL RMSE by 35%, LD50 MAE by 51%, and boosting classification
accuracy and F1 scores by 2–4% over the base model. These results underscore the importance of
domain-aware vision adaptation, and demonstrate that Tanimoto-guided contrastive learning offers a
simple yet powerful enhancement for VLMs in molecular property prediction.

6 Conclusion
We present MolVision, a multimodal approach for molecular property prediction using vision-
language models. We analyze zero-shot, few-shot, and fine-tuned models, combining 2D molecular
structure images with textual representations. We provide evaluations on a wide variety of datasets
covering classification, regression and description tasks, and demonstrate the benefits of visual
information for molecular property prediction. Adaptation of vision encoder of VLMs to molecular
data makes them more promising. This study will serve as a benchmark for further research exploring
the use of easily available 2D visual information in multimodal molecular modeling.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Section 1

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Appendix

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: See Abstract
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]

Justification: See Section 4. Additional experiment settings details are available at code
documentation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: See Section 5.3; Zero temperature

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: appendix

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research adheres to the NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Previous Datasets used have been cited in the manuscript.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Code, Datasets have been released as a part of the manuscript.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Evaluation of LLMs for certain tasks
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related works
	Visual language models for property prediction
	Model variants
	Model architectures

	MolVision benchmark
	Benchmark datasets

	Experiments and results
	Benchmarking results
	Comparison with existing methods
	Discussion and analysis
	Adaptation of vision encoder to molecular structures

	Conclusion
	Acknowledgment

