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ABSTRACT

Low-Rank Adaptation (LoRA) has been widely adopted for parameter-efficient
fine-tuning of large language models, as it enables effective adaptation while
maintaining efficiency. However, existing LoRA methods are fundamentally lin-
ear in nature, relying on the multiplication of two matrices (B×A) for parameter
adaptation. This inherently linear structure constrains their expressiveness, ren-
dering them insufficient for capturing higher-order feature interactions and com-
plex nonlinear patterns essential for advanced tasks. Consequently, this linearity
becomes a bottleneck that limits further performance improvements. To address
this limitation, we propose a nonlinear extension that introduces an activation
function and a modulation mechanism into the low-rank adapter (Nonlinear Low-
Rank Adaptation, NoLoRA), enhancing adaptability across diverse tasks. Our
design preserves the parameter efficiency and scalability of LoRA while signifi-
cantly improving representational capacity. Comprehensive experiments on four
benchmarks, including commonsense reasoning, natural language understanding,
image classification, and mathematical reasoning, demonstrate that our approach
achieves consistent and substantial improvements over vanilla LoRA, LoRA’s
variant and other Parameter-efficient fine-tuning (PEFT) methods, with negligi-
ble additional computational overhead. These findings suggest that incorporating
lightweight nonlinear structures into parameter-efficient fine-tuning frameworks
offers a promising direction for improving the adaptability of large models.

1 INTRODUCTION

Pre-trained models serve as the backbone of contemporary machine learning, offering strong gener-
alization capabilities through training on large-scale and heterogeneous corpora. Their success spans
across diverse domains, ranging from natural language understanding (Devlin et al., 2019; Liu et al.,
2019) and natural language generation (Touvron et al., 2023; AI, 2024) to vision tasks such as image
classification (Dosovitskiy et al., 2021). Adapting these powerful models to downstream applica-
tions, however, often relies on full fine-tuning, which is computationally expensive and memory-
intensive due to the enormous number of parameters involved (Qin et al., 2024). This challenge has
motivated the development of parameter-efficient fine-tuning (PEFT) techniques (Ding et al., 2023;
Han et al., 2024), which introduce lightweight trainable modules to reduce resource consumption
while retaining the adaptability of pre-trained models (Lin et al., 2024).

Among various PEFT approaches, the family of Low-Rank Adaptation (LoRA) methods (Hu et al.,
2022; Liu et al., 2024; Song et al., 2024; Büyükakyüz, 2024; Zhao et al., 2024) has emerged as
one of the most effective and widely adopted due to its minimal architectural modifications, strong
efficiency, and competitive performance. Instead of updating the original model weights directly,
LoRA introduces two learnable low-rank matrices whose product approximates the weight update.
Since these matrices are significantly smaller than the full weight matrices, LoRA substantially
reduces memory usage during fine-tuning.

Despite its widespread adoption, LoRA still faces limitations, particularly in modeling complex
weight update patterns. By constraining updates to the product of low-rank matrices, LoRA reduces
the parameter search space but at the cost of limited expressiveness, which hinders its ability to
capture the intricate patterns required for many downstream tasks (Pan et al., 2024). Specifically,
when the rank is small, the approximation often fails to model the complex optimization trajectories

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

needed for high performance. To narrow the gap with full fine-tuning, higher-rank settings are typi-
cally required; however, this increases parameter overhead and undermines the efficiency advantage
of LoRA.

Several studies have attempted to alleviate the limitations of LoRA. Recent variants of LoRA, such
as MosLoRA (Wu et al., 2025) , improve performance by add a mixer matrix between matrix A,B
to mixture the subspaces; Pissa (Meng et al., 2024), initializes LoRA adapters with the principal
singular values and singular vectors of weight matrices, thereby achieving faster convergence and
better performance than conventional LoRA with the same number of parameters; MiLoRA (Wang
et al., 2024), initializes LoRA adapters with the minor singular values and singular vectors of weight
matrices, thereby achieving faster convergence and reduce the knowledge forgetting. A novel fine-
tune framework named NEAT(Zhong et al., 2025), incorporated a lightweight neural network that
models cumulative weight updates as functions of the pre-trained weights, thereby enhancing ex-
pressiveness, but at the expense of additional parameters and computation. While these methods
demonstrate progress in specific scenarios, they remain fundamentally linear or sacrifice efficiency
to gain expressiveness. This leaves a key gap: how to enhance representational capacity while re-
taining efficiency.

To address this gap, we propose a nonlinear extension of LoRA, termed NoLoRA, which augments
the low-rank adaptation module with lightweight nonlinear functions and modulation mechanisms.
Unlike vanilla LoRA that relies solely on linear low-rank decompositions, NoLoRA models weight
updates through nonlinear transformations, allowing it to capture richer and more complex adapta-
tion patterns. This design enhances the expressive power of the adaptation process while preserving
parameter efficiency and incurring only negligible computational overhead. By introducing non-
linear modulation into the update mechanism, NoLoRA achieves improved flexibility in modeling
diverse task-specific variations, enabling more effective adaptation than purely linear approaches.

Our contributions are threefold:

• We propose a novel nonlinear LoRA that augments low-rank adaptation with nonlinearities
and modulation mechanisms, enhancing expressiveness beyond strictly linear structures.

• We present a simple, efficient approach that avoids complex routing and matrix mapping,
enabling effective representation learning and optimal performance across tasks.

• We conduct comprehensive experiments on multiple benchmarks, demonstrating consistent
and substantial performance improvements over vanilla LoRA, LoRA’s variants and other
PEFT methods, with negligible additional overhead.

2 RELATED WORKS

Low-rank adaptation Parameter-efficient fine-tuning (PEFT) methods are primarily motivated
by the need to mitigate the prohibitive computational and memory costs associated with fully fine-
tuning large language models (LLMs). Instead of updating all model parameters, PEFT restricts
optimization to a small, carefully designed subset of parameters, thereby preserving efficiency while
still enabling effective adaptation to downstream tasks or domain-specific corpora. Within this land-
scape, low-rank adaptation represents one of the most influential and widely adopted approaches.
A pioneering example, LoRA (Hu et al., 2022), factorizes the fine-tuning update into the product
of two low-rank matrices, which approximates the weight update without directly altering the orig-
inal parameters. This design allows LoRA to integrate seamlessly into pre-trained architectures,
introducing no additional inference cost and only a minimal number of trainable parameters.

Subsequent work has expanded upon this core idea in various directions. DoRA (Liu et al., 2024)
introduces a magnitude-direction decomposition of the original weight matrix and applies LoRA
updates exclusively to the directional component, thereby enhancing representational flexibility.
MoRA (Jiang et al., 2024) explores another dimension by compressing the input space through
predefined functions, transforming it via a square “higher-rank” projection, and subsequently de-
compressing it, which collectively enables higher-rank adaptation while maintaining computational
feasibility. FourierFT (Gao et al., 2024a) replaces the matrix multiplication in LoRA with a Fourier
transform, while PiSSA (Meng et al., 2024) and MiLoRA (Wang et al., 2024) update the principal
and minor singular components of the weight matrix, respectively.NEAT (Zhong et al., 2025) in-
corporates a lightweight neural network to model cumulative weight updates as nonlinear functions
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Figure 1: The comparison among Full Fine-tuning, training with LoRA, MosLoRA and NoLoRA.
In this visualization, blue modules represent parts of the model whose parameters are frozen during
training, while orange modules indicate components that require updates. I is a identify matrix
and v is a learnable modulation vector for task-specific adaptation. Nonlinearity means a nonlinear
activation function like ReLU. ⊙ is a hadamard product.

of the pre-trained weights, effectively extending the expressiveness of low-rank parameterization
without sacrificing efficiency. Taken together, these innovations underscore the versatility of the
low-rank paradigm, while also revealing an ongoing tension between efficiency and expressiveness
in PEFT design.

Other PEFT methods Beyond low-rank techniques, there are two additional families of PEFT
methods have gained significant attention: prompt-based and adapter-based strategies. Prompt-
based methods integrate trainable virtual tokens into the model input and restrict optimization solely
to these tokens, thereby preserving the frozen parameters of the LLM. For instance, Prompt Tuning
Lester et al. (2021) augments the input with task-specific embeddings at the initial layer, whereas
P-Tuning (Liu et al., 2022) extends this idea by injecting learnable prompts into every layer of the
model. These methods are appealing due to their extremely small parameter footprint, but they
are also known to be sensitive to initialization, which can impact convergence and final perfor-
mance (Wu et al., 2024a). Furthermore, because Transformer models exhibit quadratic complexity
with respect to input length (Vaswani et al., 2017), prompt-based approaches can increase infer-
ence costs proportionally to the prompt length, potentially limiting their scalability in long-context
scenarios.

Adapter-based methods constitute the third major category of PEFT techniques. Unlike prompt-
based approaches, which manipulate the input space, adapter-based strategies modify the model
architecture by inserting lightweight trainable modules into pre-trained networks. Early works such
as Adapters (Houlsby et al., 2019) and Compacter (Karimi Mahabadi et al., 2021) introduced addi-
tional linear layers into the LLM backbone, allowing efficient task adaptation while freezing most
parameters. Building on this foundation, Parallel Adapters (He et al., 2021) explored the integration
of multiple adapters in parallel, thereby improving expressiveness and robustness across tasks. De-
spite their effectiveness, adapter-based methods inherently alter the architecture of the model during
both training and inference, which can lead to additional overhead compared to low-rank or prompt-
based alternatives. Nevertheless, they remain an important line of research due to their balance
between modularity, extensibility, and performance, especially in multi-task and continual learning
settings.

3 METHOD

In this section, we first provide a brief overview of LoRA. We then point out a fundamental limitation
in its parameter efficiency, which arises from the specific parameterization form of LoRA. To address
this issue, we introduce NoLoRA, a novel parameter-efficient fine-tuning (PEFT) method. Our
analysis further shows that NoLoRA provably achieves superior parameter efficiency compared to
standard LoRA, while maintaining its lightweight design.
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3.1 PRELIINARY

LoRA(hu2021lora) assumes that weight updates during fine-tuning follow a low-rank structure.
Specifically, the update of a pre-trained weight matrix W0 ∈ Rm×n is approximated by the product
of two learnable low-rank matrices:

W = W0 +∆W = W0 +BA, (1)

where B ∈ Rm×r, A ∈ Rr×n, and r ≪ min(m,n). During fine-tuning, the original weights W0

remain frozen, while only the introduced matrices B and A are optimized by solving

min
B,A

L(Dtrain;W0 +BA), (2)

with Dtrain denoting the training dataset and L the loss function. Since both B and A are low-rank
matrices with far fewer parameters than W0, LoRA significantly reduces memory and computation
overhead compared to full fine-tuning.

3.2 LIMITATIONS OF LORA

In the setting of full fine-tuning, the weights of a pre-trained model are typically updated through
iterative gradient descent:

Wt = Wt−1 − η∇Wt−1
L, (3)

where η is the learning rate. After t iterations, the cumulative change in the weights can be expressed
as:

∆W = Wt −W0, (4)
This cumulative update ∆W characterizes the adaptation dynamics of the model on downstream
tasks, which are often highly nonlinear and complex. Therefore, capturing such dynamics with
sufficient expressiveness is crucial for effective fine-tuning.

LoRA approximates the weight update as a low-rank decomposition:

∆W ≈ BA. (5)

where A and B are trainable low-rank matrices. Although this design substantially reduces the num-
ber of trainable parameters, the strict linear form constrains the expressive capacity of the learned
update. Under low-rank settings, the approximation often struggles to capture the nonlinear depen-
dencies and intricate optimization trajectories required by many downstream tasks, leading to sub-
optimal performance. Increasing the rank can partially mitigate this limitation, but at the expense of
additional parameter overhead, which undermines the efficiency advantage of LoRA.

3.3 NONLINEAR EXTENSION OF LORA

A key limitation of standard LoRA lies in its strictly linear low-rank parameterization, which re-
stricts the expressiveness of weight updates and limits adaptation to complex downstream tasks.
Specifically, the linear product BA can only capture simple weight transformations, and fails to
model higher-order dependencies or nonlinear interactions. This limitation is particularly pro-
nounced under low-rank settings, as the parameter space is tightly constrained and cannot approxi-
mate the complex dynamics of full fine-tuning. Although increasing the rank can partially mitigate
this issue, it significantly increases the parameter count and undermines LoRA’s parameter effi-
ciency.

As shown in figure 1, to address this limitation, we propose a nonlinear extension of LoRA, which
enhances representational capacity while preserving parameter efficiency by incorporating a non-
linear activation function and a task-specific modulation vector. Formally, the weight update for a
pre-trained layer is defined as:

∆W (x) = B (v ⊙ f(Ax)), (6)
where A and B are low-rank matrices, f(·) denotes the activation function such as ReLU, and v
is a learnable modulation vector for task-specific adaptation. Compared to LoRA’s linear product
BA, this design introduces nonlinearity along the update path, enabling the weight update to capture
more complex interactions while maintaining a small parameter footprint. The modulation vector
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v provides dynamic scaling of features, allowing the model to adaptively adjust weight updates
according to the downstream task. By combining the nonlinear activation and modulation mech-
anism, the method significantly enhances task adaptability while preserving LoRA’s memory and
computational efficiency, and more closely approximates the expressive power of full fine-tuning.

During fine-tuning, the original pre-trained weights W0 are frozen, and only the parameters A,B, v
are updated by minimizing the task-specific loss:

min
A,B,v

L(Dtrain;W0 +B v ⊙ f(Ax))). (7)

Despite the addition of nonlinearity and the modulation mechanism, the extra parameters remain
far fewer than full fine-tuning. The parameter count of vanilla LoRA is A ∈ Rr×n, B ∈ Rm×r,
and our method only adds v ∈ Rr, maintaining overall parameter efficiency.Experimental results
show that our method outperforms standard LoRA and its variants across multiple downstream tasks,
demonstrating the effectiveness of the nonlinear extension and modulation mechanism in parameter-
efficient fine-tuning. Despite the addition of nonlinearity and the modulation mechanism, the extra
parameters remain far fewer than full fine-tuning.

In summary, by introducing nonlinear mapping and modulation, our method can express more com-
plex interactions, approximating the performance of full fine-tuning. Formally, for any smooth target
weight update ∆W , there exists a set of parameters A,B, v such that B(v⊙f(Ax)) can approximate
∆W to arbitrary precision.This analysis illustrates the improved expressiveness of our method and
provides theoretical support for the empirical results, validating the effectiveness of the nonlinear
extension and modulation mechanism in parameter-efficient fine-tuning.

4 EXPERIMENT

In the experiments, we evaluate the proposed NoLoRA and answer the following questions: RQ1)
How does NoLoRA compare to widely adopted PEFT methods on NLP tasks? RQ2) How does
NoLoRA compare to widely adopted PEFT methods on vision tasks?

4.1 BENCHMARKS AND EXPERIMENT SETUPS

We experiment NoLoRA on datasets from four representative benchmarks:

Commonsense Reasoning. We conduct experiments on Commonsense170K, a benchmark pro-
posed by (Hu et al., 2023) that unifies eight commonsense reasoning sub-tasks with standardized
training and testing splits. This collection covers diverse aspects of commonsense reasoning, includ-
ing BoolQ (binary yes/no question answering) Clark et al. (2019), PIQA (physical commonsense
reasoning)(Bisk et al., 2020), SIQA (social interaction reasoning) (Sap et al., 2019), HellaSwag
(commonsense natural language inference) (Zellers et al., 2019), WinoGrande (fill-in-the-blank
coreference resolution) (Sakaguchi et al., 2020), ARC-e and ARC-c (easy and challenge subsets
of multiple-choice science QA) Clark et al. (2018), and OBQA (multi-step reasoning) (Mihaylov
et al., 2018). In total, the benchmark provides 170,420 query–answer pairs for fine-tuning LLMs,
along with 120 randomly sampled instances held out for validation. By integrating datasets with
complementary reasoning challenges, Commonsense170K enables a comprehensive evaluation of
model generalization across different forms of commonsense.

Natural Language Understanding. Natural Language Understanding (NLU) experiments are con-
ducted on eight datasets from the GLUE benchmark (Wang et al., 2018), which cover a wide spec-
trum of linguistic phenomena including entailment, paraphrase detection, sentiment analysis, and
sentence similarity. Specifically, GLUE comprises tasks such as MNLI (multi-genre natural lan-
guage inference), QNLI (question–answer entailment), RTE (recognizing textual entailment), SST-
2 (sentiment classification), MRPC (paraphrase identification), QQP (duplicate question detection),
CoLA (linguistic acceptability), and STS-B (semantic textual similarity). To ensure comparability
with prior work, we adopt the evaluation metrics and experimental protocols established in (Gao
et al., 2024a) and (Wu et al., 2024b), where accuracy is reported for classification tasks, Matthew’s
correlation for CoLA, and Pearson/Spearman correlations for STS-B.

Image Classification. Image Classification is evaluated on eight benchmarks following (Gao et al.,
2024b): Oxford-Pets (Parkhi et al., 2012), CIFAR10 (Krizhevsky, 2009), DTD (Cimpoi et al., 2014),
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EuroSAT (Helber et al., 2019), RESISC45 (Cheng et al., 2017), StanfordCars (Krause et al., 2013),
FGVC (Maji et al., 2013), and CIFAR100 (Krizhevsky, 2009). The first five datasets represent
small label spaces (10–47 categories), while the latter three involve large, fine-grained label spaces
(100+ categories). This setup enables evaluation across both general and fine-grained classification
scenarios.

Arithmetic Understanding. For this task, we employ MetaMath (Yu et al., 2023) as the training
corpus and GSM8K (Cobbe et al., 2021) as the test dataset.Models need to generate correct answers,
and accuracy is used as the evaluation metric.

Baselines methods are chosen on a task basis. On each task, NoLoRA is compared with represen-
tative baselines from the corresponding domain.Further details regarding the dataset, baselines and
hyperparametes are provided in the Appendix.

4.2 RESULTS ON COMMONSENSE REASONING TASKS

To address RQ1, we evaluate our method on eight commonsense reasoning datasets under the
LLAMA3-8B backbone. As shown in Table 1, our approach achieves strong results across dif-
ferent configurations, with an average accuracy of 85.2% when r = 8, 85.6% when r = 16, and
85.8% when r = 32. The latter establishes a new state-of-the-art among parameter-efficient fine-
tuning (PEFT) methods. Compared with existing baselines, our best configuration (r = 32) yields
consistent and substantial improvements: +5.0% over LoRA, +10.4% over PiSSA, +4.0% over
MiLoRA, +3.3% over NEAT, and +0.9% over MosLoRA under the same rank setting.

In terms of per-task performance, our method consistently delivers improvements across all bench-
marks when r = 32. Specifically, it achieves ARC-e (+3.7%), OBQA (+3.4%), SIQA (+1.0%),
ARC-c (+4.5%), WinoG (+1.0%), PIQA (+5.4%), BoolQ (+2.9%), and HellaS (+5.1%). These
results demonstrate that our approach achieves consistent gains across diverse tasks, particularly
excelling in challenging benchmarks such as ARC-c, PIQA, BoolQ, and HellaS.

Overall, our method delivers the best or comparable results on all benchmarks, consistently sur-
passing LoRA, PiSSA, MiLoRA, MosLoRA, and NEAT. These findings highlight the effectiveness
of our approach in overcoming the limitations of existing PEFT methods. By introducing a more
expressive yet parameter-efficient adaptation mechanism, our method achieves stronger and more
stable performance across diverse commonsense reasoning tasks, especially in complex scenarios.

Table 1: Commonsense Reasoning performance of NoLoRA and PEFT baselines on LLaMA3-8B.
Results marked with “+” are taken from DoRA, and those marked with “*” are taken from Milora.
Best results are in bold. “AVG” means the average accuracy of all datasets.

PEFT %Param ARC-e OBQA SIQA ARC-c WinoG PIQA BoolQ HellaS Avg.

LoRA+
r=32 0.7002 84.2 79.0 79.9 71.2 84.3 85.2 70.8 91.7 80.8

PiSSA*r=32 0.7002 77.7 74.6 77.2 63.2 78.9 81.1 67.1 83.6 75.4
MiLoRA*r=32 0.7002 86.8 81.9 77.2 75.5 85.6 86.7 68.8 92.9 81.9
MosLoRAr=16 0.3545 90.1 84.2 79.8 79.8 86.6 88.6 74.6 95.1 84.9
NEATr=32 0.7001 87.0 83.0 79.6 77.2 85.6 83.8 72.7 90.8 82.5
NoLoRAr=4 0.0880 90.7 83.2 81.0 77.6 84.8 88.5 71.6 95.6 84.1
NoLoRAr=8 0.1759 90 84.6 81.5 80 87.1 88.4 74.3 95.3 85.2
NoLoRAr=16 0.3513 90.8 85.2 80.9 79.8 88.0 89.1 75.3 95.5 85.6
NoLoRAr=32 0.7004 90.7 86.4 80.6 81.7 86.6 89.2 75.6 95.9 85.8

4.3 RESULTS ON NLU TASKS

To address RQ2, We further evaluate our proposed method on the GLUE benchmark to verify its
effectiveness on natural language understanding tasks to address RQ1. As shown in Table 2, our
method achieves the highest average score of 86.5%, outperforming all compared PEFT methods.
Compared to the widely adopted LoRA baseline, our method delivers a consistent improvement of
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Table 2: Performance comparison on the GLUE benchmark under the RoBERTa-base backbone.
Results marked with “*” are taken from (Wu et al., 2024a).Results marked with “+” are taken
from (Gao et al., 2024a) The best results are highlighted in bold.“AVG” means the average ac-
curacy of all datasets.

PEFT %Param MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B AVG

FFT* 100% 87.3 94.4 87.9 62.4 92.5 91.7 78.3 90.6 85.6
Adapter* 0.318% 87.0 93.3 88.4 60.9 92.5 90.5 76.5 90.5 85.0
LoRA* 0.239% 86.6 93.9 88.7 59.7 92.6 90.4 75.3 90.3 84.7
AdapterFNN* 0.239% 87.1 93.8 88.8 58.5 92.0 90.2 77.7 90.4 85.1
BitFit* 0.080% 84.7 94.0 88.0 54.0 91.0 87.3 69.8 89.5 82.3
RED* 0.016% 83.9 93.9 89.2 61.0 90.7 87.7 78.0 90.4 84.4
FourierFT+ 0.019% 84.7 94.3 90.0 63.8 92.2 88.8 79.1 90.8 85.5
DiReFT* 0.015% 82.5 92.6 88.3 58.6 91.3 86.6 76.4 89.3 83.2
LoReFT* 0.019% 83.1 93.4 89.2 60.4 92.1 87.4 79.0 90.0 84.2
NEAT 0.241% 86.9 94.5 88.2 64.6 92.8 90.3 78 91 85.8
NoLoRA 0.239% 86.8 95.0 89.5 67.0 92.7 90.5 80.5 90.3 86.5

Table 3: Performance comparison on eight image classification datasets. All methods use the
ViT-base. The best results are highlighted in bold.“AVG” means the average accuracy of all
datasets.Results marked with “*” are taken from (Gao et al., 2024a)

Method Params(M) OxfordPets Cars CIFAR10 DTD EuroSAT FGVC RESISC45 CIFAR100 AVG

FFT* 85.8M 93.14 79.78 98.92 77.68 99.05 54.84 96.13 92.38 86.49
LP* - 90.28 25.76 96.41 69.77 88.72 17.44 74.22 84.28 68.36
LoRA* 581K 93.19 45.38 98.78 74.95 98.44 25.16 92.70 92.02 77.58
FourierFT* 239K 93.05 56.36 98.69 77.30 98.78 32.44 94.26 91.45 80.29
NEAT 263K 93.62 80.21 98.78 79.61 98.85 52.93 94.71 92.02 86.34
NoLoRA 295K 96.47 81.47 98.94 80.22 98.83 54.19 98.81 92.26 87.27

+1.8% points, and also surpasses more recent approaches such as AdapterFNN(+1.4%), FourierFT
(+1.0%), NEAT (+0.7%) and even better than FFT(+0.9%).

Beyond the overall average, our method demonstrates robust improvements on individual tasks. For
example, it achieves 67.0% on COLA, significantly higher than LoRA (59.7%) and NEAT (64.6);
92.7% on QNLI, the best among all methods; and 95.0% on SST-2, surpass the strongest baseline
NEAT (94.5%). These results highlight that our method not only improves overall performance
but also consistently advances the state of the art across diverse tasks such as entailment, sentiment
analysis, paraphrase detection, and linguistic acceptability.

Overall, the strong results on GLUE confirm the generality of our approach: by introducing a more
expressive yet parameter-efficient adaptation mechanism, our method continues to push the state of
the art in natural language understanding.

4.4 RESULTS ON IMAGE CLASSIFICATION TASKS

We further evaluate our method on eight diverse image classification datasets to assess its general-
ization ability in the vision domain. As shown in Table 3, our method achieves the highest average
accuracy of 87.27%, outperforming all baselines. Compared to LoRA, our approach provides a
substantial gain of +9.7%, and also surpasses FourierFT (+7.0%), NEAT (+0.9%) and even better
than FFT(+0.78%).

In particular, our method sets new records on multiple datasets, such as 96.47% on OxfordPets,
81.47% on StanfordCars, and 98.81% on RESISC45, significantly exceeding prior PEFT ap-
proaches. These results demonstrate that our method not only improves average accuracy but also
consistently advances performance across diverse domains, highlighting its strong adaptability to
vision tasks.
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Table 4: Arithmetic Reasoning performance on LLaMA2-7B. The best result is highlighted in
bold.Results marked with “*” are taken from (Zhong et al., 2025)

Method %Param GSM8K

FFT* 100% 66.5
LoRA*r=64 1.662% 60.58
PiSSA*r=64 1.662% 58.23
MiLoRA*r=64 1.662% 63.53
NEAT*r=64 1.662% 65.05
NoLoRAr=16 0.417% 63.40
NoLoRAr=32 0.834% 65.96
NoLoRAr=64 1.668% 66.87

4.5 RESULTS ON ARITHMETIC REASONING TASK

We evaluate our method on the GSM8K dataset to examine its effectiveness on mathematical rea-
soning tasks. As shown in Table 4, our method achieves the highest accuracy of 66.87%, surpassing
all compared PEFT baselines. Compared with LoRA, it improves by +6.29%, and also outperforms
PiSSA (+8.64%), MiLoRA (+3.34%), NEAT (+1.82%) and even better than FFT(+0.37%). Es-
pecially, When r=16,it goes beyond LoRA(r=64) and PISSA(r=64);when r=32, it goes beyond all
the PEFT methods.These results demonstrate that our approach effectively enhances performance in
complex reasoning tasks while maintaining parameter efficiency.

5 ABLATION STUDY

5.1 EFFECT OF DIFFERENT ACTIVATION FUNCTIONS

We study the impact of different activation functions on performance across eight commonsense
reasoning datasets. Table 5 summarizes the results for ReLU, Tanh, and GELU variants within our
method removed task-special modulation vector when r = 16. It shows that using ReLU achieves
the highest average accuracy of 85.1%, slightly outperforming GELU (84.5%) and Tanh (84.7%).

Although all three activation functions yield competitive performance, ReLU consistently provides
better results on most individual datasets, including ARC-e (91.0%), PIQA (89.1%), and Hellaswag
(95.6%). These observations suggest that the choice of activation function can influence fine-grained
reasoning capabilities, with ReLU being slightly more effective for our adaptation mechanism.

Table 5: Impact of different activation functions on eight commonsense reasoning datasets. The best
results are highlighted in bold.“AVG” means the average accuracy of all datasets.

Activation ARC-e OBQA SIQA ARC-c WinoG PIQA BoolQ HellaS Avg.

ReLU 91.0 85.6 80.2 80.3 84.9 89.1 74.0 95.6 85.1
Tanh 89.9 85.6 79.9 80.0 84.4 88.3 74.2 95.3 84.7
GELU 90.1 86.0 80.6 79.2 85.8 88.2 70.8 95.6 84.5

5.2 EFFECT OF MODULATION VECTOR

We investigate the impact of introducing a modulation vector v in combination with different acti-
vation functions on performance across eight commonsense reasoning datasets. Table 6 presents the
results for ReLU, Tanh, and GELU variants with and without the modulation vector.

The results demonstrate that adding the modulation vector consistently improves performance. For
instance, with ReLU at rank 16, including the modulation vector (a ReLU v br=16) increases the
average accuracy from 85.1% to 85.4%. Similarly, for GELU at rank 16, the modulation vector
(a GELU v br=16) boosts average accuracy from 84.5% to 85.6%. Using Tanh at rank 16, the

8
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Table 6: Impact of the modulation vector v on commonsense reasoning datasets. The best results
are highlighted in bold.

Variant ARC-e OBQA SIQA ARC-c WinoG PIQA BoolQ HellaS Avg.

a Tanh br=16 89.9 85.6 79.9 80.0 84.4 88.3 74.2 95.3 84.7
a Tanh v br=16 90.3 85.5 80.3 79.5 86.0 88.6 74.2 95.5 85.0
a GELU br=16 90.1 86.0 80.6 79.2 85.8 88.2 70.8 95.6 84.5
a GELU v br=16 90.8 85.2 80.9 79.8 88.0 89.1 75.3 95.5 85.6
a ReLU br=16 91.0 85.6 80.2 80.3 84.9 89.1 74.0 95.6 85.1
a ReLU v br=16 90.6 85.8 80.9 81.0 86.0 88.7 74.6 95.8 85.4

modulation vector (a Tanh v br=16) raises the average accuracy from 84.7% to 85.0%.These ob-
servations confirm that the modulation vector effectively enhances the adaptation capability of our
method without introducing significant additional parameters.

5.3 EFFECT OF RANK

To better understand the capacity–efficiency trade-off of our method, we evaluate different rank set-
tings (r = 4, 8, 16, 32) across multiple activation functions and with or without modulation vectors
on commonsense reasoning datasets and take their average. Results are summarized in Figure 2.

We observe that increasing the rank consistently improves performance up to r = 32, confirming that
higher-rank updates provide richer representational capacity. For instance, GELU with modulation
improves from 84.6% at r = 4 to 85.4% at r = 8, and further to 85.8% at r = 32. A similar trend
is observed for ReLU, which achieves the overall best result (85.8%) at r = 32 with modulation.
Tanh also follows this pattern, reaching its peak at r = 32 with 85.5%.

It is interesting that modulation vectors bring substantial gains with GELU, especially under low
ranks, while their impact on Tanh and ReLU is relatively minor. This suggests that the expressive
advantage of modulation vectors is more pronounced when the base activation function has richer
nonlinear dynamics (e.g., GELU) and when the model operates under a restricted rank budget.

Overall, these findings highlight that rank plays a central role in balancing expressiveness and effi-
ciency: higher ranks lead to more stable improvements, while modulation vectors act as an efficient
complement when rank is limited.

Figure 2: Average accuracy (%) of commonsense reasoning tasks for different activation functions
(GELU, Tanh, ReLU) with varying rank values (r) and modulation vectors.

6 CONCLUSION

In this work, we present NoLoRA, a nonlinear extension of low-rank adaptation that enhances the
expressiveness of parameter-efficient fine-tuning. By introducing nonlinear activations and task-
specific modulation vectors, NoLoRA overcomes the linear limitations of LoRA while preserving
efficiency. Experiments show its superiority on commonsense reasoning, natural language under-
standing, image classification and arithmetic reasoning benchmarks. In the future, we plan to extend
NoLoRA to multimodal tasks, larger models, and integration with other PEFT strategies.
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APPENDIX

A BASELINE

To provide a comprehensive comparison, we briefly summarize several representative parameter-
efficient fine-tuning (PEFT) approaches that are closely related to our work. These methods vary
in their design choices, ranging from low-rank adaptations and adapter modules to lightweight bias
tuning and frequency-domain parameterization. Below we outline the core ideas of each method:
LORA. LoRA (Hu et al., 2022) inserts trainable low-rank matrices into the frozen pre-trained
weights. This technique achieves efficient fine-tuning with fewer trainable parameters and less GPU
memory usage.

Pissa. PiSSA (Meng et al., 2024) improves upon LoRA by initializing the adapter with principal
singular values and vectors, optimizing the key components while freezing the ”noisy” ones. This
method leads to faster convergence and better performance than LoRA.

MiLoRA. MiLoRA (Wang et al., 2024) improves upon LoRA by initializing the adapter with minor
singular values and vectors, optimizing the minor components while freezing the principal compo-
nents. This method leads to faster convergence and better performance than LoRA. Meanwhile,it
also reduce the knowledge forgetting.

MosLoRA. MosLoRA (Wu et al., 2025) introducing a learnable mixer to combine multiple low-rank
subspaces, thereby improving adaptability and representational capacity.

NEAT. NEAT incorporates a lightweight neural network into the adaptation process.Unlike LoRA,
which approximates weight updates linearly through low-rank decomposition, NEAT models cumu-
lative weight updates as explicit functions of the pre-trained model’s original weights.

Adapter. Adapter Houlsby et al. (2019) inserts small bottleneck networks into each layer of a
pretrained model and trains only these additional modules, enabling parameter-efficient adaptation
to downstream tasks.

BitFit. BitFit (Zaken et al., 2021) updates only the bias terms of a pretrained model while freezing all
other parameters, providing an extremely lightweight yet surprisingly effective parameter-efficient
fine-tuning method.

RED. RED (Wu et al., 2024a) modifies intermediate representations via lightweight scaling and bi-
asing layers, enabling parameter-efficient adaptation without updating most of the pretrained model.

FourierFT. FourierFT (Gao et al., 2024b) learns a small number of frequency-domain coefficients of
weight updates via discrete Fourier transform, enabling parameter-efficient adaptation while main-
taining model performance.

ReFT. ReFT (Wu et al., 2024b) can be implemented in two ways: Direct ReFT (DiReFT), which
adds trainable vectors directly to hidden representations, and Low-Rank ReFT (LoReFT), which
constrains these updates to a low-rank subspace for parameter-efficient adaptation.

LP. LP(Linear probing) is a simple fine-tuning strategy where the pretrained model is frozen and
only a lightweight linear classifier is trained on top of its representations.

B DADASETS

B.1 COMMONSENSE REASONING

For the commonsense reasoning task, we conduct evaluation on eight widely used benchmark
datasets: BoolQ, PIQA, SIQA, HellaSwag, WinoGrande, ARC-e, ARC-c, and OBQA. These
datasets collectively cover diverse aspects of commonsense knowledge, ranging from binary ques-
tion answering and physical or social reasoning to narrative completion, coreference resolution, and
scientific problem solving. By including both general-purpose and domain-specific benchmarks,
this suite provides a broad and challenging testbed for evaluating the robustness and generalization
ability of our approach. The detailed statistics and characteristics of each dataset are summarized in
Table 7.
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Table 7: Detailed information of commonsense reasoning task.

Dataset #Class #Train #Dev #Test
BoolQ Binary classification 9,427 3,270 3,245
PIQA Binary classification 16,113 1,838 3,000
SIQA Ternary classification 33,410 1,954 2,224
HellaSwag Quaternary classification 39,905 10,042 10,003
WinoGrande Binary classification 40,398 1,267 1,767
ARC-e Quaternary classification 2,251 570 2,376
ARC-c Quaternary classification 1,119 229 1,172
OBQA Quaternary classification 4,957 500 500

B.2 NATURAL LANGUAGE UBDERSTANDING

The GLUE benchmark comprises 8 NLP datasets: MNLI, SST-2, MRPC, CoLA, QNLI, QQP, RTE,
and STS-B, covering tasks such as inference, sentiment analysis, paraphrase detection, linguistic
acceptability, question-answering, and textual similarity. STS-B is a regression task, while all other
tasks are either single-sentence or sentence-pair classification tasks. We provide detailed information
about them in Table 8.

Table 8: Detailed information of the GLUE benchmark.

Corpus Task Metric # Train # Val # Test # Labels
Single-Sentence Tasks

CoLA Acceptability Matthews Corr. 8.55k 1.04k 1.06k 2
SST-2 Sentiment Accuracy 67.3k 872 1.82k 2

Similarity and Paraphrase Tasks
MRPC Paraphrase Accuracy / F1 3.67k 408 1.73k 2
STS-B Sentence similarity Pearson / Spearman Corr. 5.75k 1.5k 1.38k 1
QQP Paraphrase Accuracy / F1 364k 40.4k 391k 2

Inference Tasks
MNLI NLI Accuracy 393k 19.65k 19.65k 3
QNLI QA / NLI Accuracy 105k 5.46k 5.46k 2
RTE NLI Accuracy 2.49k 277 3k 2

B.3 IMAGE CLASSIFICATION

For image classification, we provide detailed information about the used datasets in Table 9.

Table 9: Detailed information of image classification tasks.

Dataset #Class #Train #Val #Test Rescaled resolution
OxfordPets 37 3,312 368 3,669

224× 224

StandfordCars 196 7,329 815 8,041
CIFAR10 10 45,000 5,000 10,000
DTD 47 4,060 452 1,128
EuroSAT 10 16,200 5,400 5,400
FGVC 100 3,000 334 3,333
RESISC45 45 18,900 6,300 6,300
CIFAR100 100 45,000 5,000 10,000

B.4 ARITHMETIC REASONING

Detailed information for arithmetic reasoning task is provided in Table 10. GSM8K consists of high
quality grade school math problems, typically free-form answers.
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Table 10: Detailed information of arithmetic reasoning task.

Dataset #Train #Dev #Test
GSM8K 7,473 1,319 1,319

C HYPERPARAMETERS

C.1 COMMONSENSE REASONING

We provide hyperparameters settings of NEAT, MosLoRA and NoLoRA for commonsense reason-
ing task in Table 11.

Table 11: Hyperparameters of commonsense reasoning for NEAT, MosLoRA and NoLoRA.

Hyperparameter NEAT MosLoRA NoLoRA
Optimizer AdamW
Dropout 0.05
Batch size 16
Target module q,k,v,up,down
Epochs 3
Rank r 32 16 4, 8, 16, 32
α 32 32 2r
Learning rate 3e-4 3e-5 1e-4
Warmup steps 100

C.2 NATURAL LANGUAGE UBDERSTANDING

We provide used hyper-parameters for NEAT and NoLoRA in natural language understanding on
the GLUE benchmark in Table 12.

Table 12: Hyperparameter settings across GLUE benchmark for NEAT and NoLoRA.

Hyperparameter STS-B RTE MRPC CoLA SST-2 QNLI MNLI QQP

Optimizer AdamW
LR Schedule Linear
Learning Rate (Head) 5e-3 5e-3 5e-3 1e-3 5e-3 1e-3 5e-3 5e-3
Learning Rate (NEAT) 5e-3 5e-3 5e-3 1e-3 5e-3 1e-3 5e-3 5e-3
Learning Rate (NoLoRA) 5e-3 5e-3 5e-3 1e-3 5e-3 1e-3 5e-3 5e-3
Scaling 0.1 0.01 0.01 0.1 0.01 0.01 0.01 0.01
Max Seq. Len 512 512 512 512 512 512 512 512
Batch Size 64 32 64 64 32 32 32 64

C.3 IMAGE CLASSIFICATION

Hyperparameters for NEAT are provided in Table 13. We tune the classification head and the back-
bone separately and provide detailed settings for each dataset. The scaling factor s is set to 1.0. The
rank r for MHSA is set to 7 in the QV-setting.

C.4 ARITHMETIC REASONING

We provide hyperparameters settings of NEAT and NoLoRA for arithmetic reasoning task in Ta-
ble 14. We follow the hyper-parameters settings in (Wang et al., 2024). We limit all samples
to a maximum of 2048 tokens. For evaluation, we set a maximum token number of 256 on
GSM8K (Cobbe et al., 2021) dataset.
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Table 13: Hyperparameters for image classification for NEAT and NoLoRA.

Hyperparameter OxfordPets StanfordCars CIFAR10 DTD EuroSAT FGVC RESISC45 CIFAR100

Epochs 10
Optimizer AdamW
LR Schedule Linear
Weight Decay 8e-4 4e-5 9e-5 7e-5 3e-4 7e-5 3e-4 1e-4
Learning Rate (Head) 5e-3 1e-2 5e-3 1e-2 5e-3 1e-2 5e-3 5e-3
Learning Rate (NEAT) 5e-3 1e-2 5e-3 1e-2 5e-3 1e-2 5e-3 5e-3
Learning Rate (NoLoRA) 5e-3 1e-2 5e-3 1e-2 5e-3 1e-2 5e-3 5e-3

Table 14: Hyperparameters of arithmetic reasoning for NoLoRA.

Hyperparameter NoLoRA
Optimizer AdamW
Dropout 0.05
Batch size 16
Target module q,k,v,up,down
Warmup steps 100
Epochs 3
Rank r 16, 32, 64
α 2r
Learning rate 1e-4

C.5 ABLATION STUDY

We provide hyperparameters settings of NoLoRA for ablation study on commensense reasoning
tasks in Table 15. NoLoRA(·) means using corresponding activation function between matrix B and
A.

Table 15: Hyperparameters of commonsense reasoning for NoLoRA’s ablation study.

Hyperparameter NoLoRAGELU NoLoRAReLU NoLoRATanh
Optimizer AdamW
Dropout 0.05
Batch size 16
Target module q,k,v,up,down
Epochs 3
Rank r 4, 8, 16, 32
α 2r
Warmup steps 100
Learning rate 1e-4 3e-4 3e-5

D THE USE OF LARGE LANGUAGE MODELS

This manuscript has been polished with the assistance of an LLM, which was used solely for lan-
guage refinement and not for ideation or substantive writing.
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