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Abstract

Large Language Models (LLMs) have made remarkable strides in reasoning
tasks, yet their performance often falters on novel and complex problems.
Domain-specific continue-pretraining (CPT) methods, such as those tailored
for mathematical reasoning, have shown promise but lack transferability to
broader reasoning tasks. In this work, we pioneer the use of Graph Problem
Reasoning (GPR) to enhance LLMs’ general reasoning capabilities. GPR
tasks—spanning pathfinding, network analysis, numerical computation,
and topological reasoning—require sophisticated logical and relational
reasoning, making them ideal for teaching diverse reasoning patterns. To
achieve this, we introduce GraphPile, the first large-scale corpus specifically
designed for CPT using GPR data. Spanning 10.9 billion tokens across 23
graph tasks, the dataset includes Chain-of-Thought, Program-of-Thought,
Trace of Execution, and Real-world Graph Data. Using GraphPile, we
train GraphMind on three popular base models-Llama 3&3.1 and Gemma
2-achieving up to 4.9% higher accuracy in mathematical reasoning and up
to 21.2% improvement in non-mathematical reasoning tasks, like logical
and commonsense reasoning. By being the first to harness GPR for enhanc-
ing reasoning patterns and introducing the first dataset of its kind, our
work bridges the gap between domain-specific pretraining and universal
reasoning capabilities, advancing the adaptability and robustness of LLMs.

1 Introduction

Recent advancements in Large Language Models (LLMs) have demonstrated impressive
few-shot learning capabilities across a wide range of tasks (Kirillov et al., 2023; Sun et al.,
2024; You et al., 2022a; Cobbe et al., 2021a; Zhou et al., 2022; Wei et al., 2022; Wang et al.,
2022; Chen et al., 2023a; You et al., 2022b; Chen et al., 2024b). However, when faced with
novel and complex problems, their performance often falls short. To address this limitation,
many works have focused on continue-pretraining (CPT), particularly in the domain of
mathematical reasoning (Shao et al., 2024; Azerbayev et al., 2023; Ying et al., 2024; Yang
et al., 2024; Wang et al.; Gunasekar et al., 2023; Lu et al., 2024). A variety of models have
emerged from this paradigm, such as MathCoder (Wang et al., 2023b), Qwen-Math (Yang
et al., 2024), and the DeepSeek Math series (Shao et al., 2024). These models leverage vast
datasets focused on mathematical problems or code-related tasks, often gathered from web
sources (Shao et al., 2024; Yang et al., 2024) or synthetically generated (Gunasekar et al., 2023;
Yang et al., 2024), to improve the performance of LLMs in solving mathematical challenges.

While these efforts have yielded significant improvements in mathematical reasoning,
they are primarily domain-restricted (Wang et al., 2023c; Wu et al., 2023). The question
remains whether such focused pretraining can translate to broader reasoning capabilities. In
particular, the improvements observed in mathematical tasks have not been demonstrated
to extend to other complex reasoning areas, such as algorithmic understanding and logical
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Benchmark Logic Topology Computation Enumeration Division

Math Reasoning ✓ ✗ ✓ ✓ ✓

- GSM8K ✓ ✗ ✓ ✗ ✓

- MATH ✓ ✗ ✓ ✓ ✓

- AIME-2024 ✓ ✗ ✓ ✓ ✓

- MMLU-STEM ✓ ✗ ✓ ✓ ✓

Algorithm Reasoning ✓ ✓ ✓ ✓ ✓

(a) Reasoning paradigm comparison
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Figure 1: Reasoning paradigm comparison between math and graph (left) and overview of
GraphMind-LLaMA-3.1 results compared with baseline models on math, logical and graph
reasoning benchmarks (right).

reasoning. This leads us to explore a fundamental question: Rather than being domain-
locked, is there a class of problems or data that, if incorporated into LLM training, could
foster the model’s general reasoning ability across diverse tasks?

Graph Problem Reasoning (GPR) (Chen et al., 2024a; Tang et al., 2024; Zhang et al., 2024b;
Peng et al., 2025) presents a compelling answer to this question. GPR involves tackling
challenges rooted in graph theory—a foundational area of mathematics concerned with
the study of graphs, which consist of nodes (vertices) and edges (connections between
nodes). The domain of graph problems spans a wide variety of complex tasks, including
pathfinding, network analysis, and edge counting, all of which require sophisticated multi-
step reasoning and an ability to navigate intricate, relational structures. What makes GPR
particularly intriguing is its resemblance to mathematical reasoning, as shown in Figure 1
(a). Both domains share several key characteristics, such as the need for logical computation,
systematic enumeration, and division awareness. For instance, in mathematical problem
solving, a series of well-defined steps is often required to reach a solution. Similarly, graph-
based tasks necessitate a stepwise approach to traverse, analyze, or optimize the graph
structure. Notebaly, the reasoning patterns involved in the design of currently popular
mathematical datasets are all a subset of GPR, like GSM8K (Cobbe et al., 2021b) and MATH
(Hendrycks et al., 2021b).

In general, GPR tasks demand different reasoning patterns, including topological reasoning,
logical reasoning, enumeration, precise computation and division (More details in Sec.2.1),
making them fundamentally challenging for LLMs (Fatemi et al., 2023; Wang et al., 2023a).
In many ways, solving these problems mirrors the process of mathematical reasoning, which
also relies on logical steps to arrive at a solution. Moreover, GPR introduces unique chal-
lenges not present in traditional mathematical reasoning. For instance, while mathematical
problems typically involve direct mathematical formulas and manipulations, graph prob-
lems often involve relational reasoning—understanding how entities (nodes) are connected
and how their relationships impact the overall solution. This introduces additional complex-
ity, as the reasoning must account for the spatial or topological relationships between nodes
and edges, something that is less pronounced in classical mathematical problem-solving.
Meanwhile, the difficulty of graph problems often scales exponentially with the size and
complexity of the graph (Tang et al., 2024), posing an additional layer of challenge that
further tests the limits of an LLM’s reasoning capacity.

Given the intrinsic similarities between mathematical reasoning and graph problem-solving,
and the wide-ranging nature of graph-based tasks, we hypothesize that graph problem
reasoning can serve as an effective source of data for continue-pretraining LLMs. By
integrating graph problems into the pretraining process, we aim to unlock a powerful tool
for enhancing general reasoning abilities. Specifically, we explore the potential of GPR to
improve not only mathematical reasoning but also other forms of complex reasoning, such
as algorithmic problem-solving and logical reasoning. We seek to bridge the gap between
domain-specific pretraining and the development of more universally capable reasoning
models, ultimately making LLMs more robust, adaptable, and effective in a broader range
of problem-solving scenarios.

In this work, our goal is to include graph problem reasoning data that helps LLMs evolve
into more generalized and better reasoners. To this end, we present the first dataset for
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Figure 2: Overall illustration of (a) Different reasoning paradigms for total 23 graph problem
tasks in GraphPile, and (b) GraphPile curation pipeline.

continue-pretraining LLMs using Graph Problem Reasoning data, named GraphPile, con-
sisting of approximately 10.9 billion tokens and covering 23 distinct graph problem tasks.
Our dataset includes four main types of data: 1) Chain-of-Thought Data (Wei et al., 2022;
Yao et al., 2023): For each graph problem, we employ a program-guided approach to gener-
ate accurate chain-of-thought (CoT) solutions, enabling the model to learn the reasoning
process step by step; 2) Program-of-Thought Data (Chen et al., 2022): Given a graph prob-
lem, we leverage LLMs to identify relevant code repositories from web text and generate
corresponding solutions, thereby connecting problem-solving to code generation; and 3)
Trace of Execution Data: A novel data type introduced in this work, where we record
the execution trace of graph problem algorithms, allowing the model to learn from the
execution process itself, potentially enhancing its ability to understand algorithmic steps
and reasoning; 4) Real-world Graph Data: In addition to these synthetic graph problems,
we also collect real-world graph problems from sources like DBpedia (Bizer et al., 2009) and
DBLP (Ley, 2002), further enriching our dataset with practical, domain-specific problems
that reflect real-world graph analysis challenges.

We train three popular base models on GraphPile, including LLaMA-3&3.1 8B (Grattafiori
et al., 2024) models and Gemma-2-2B models (Team et al.), resulting in GraphMind series. We
validate the effectiveness of our models across 5 distinct reasoning tasks and 20 datasets,
achieving significant improvements in all cases, as shown in Figure 1 (b). We primarily
consider two settings for evaluation: 1) Few-shot: We directly test GraphMind across different
datasets using few-shot prompts; 2) Post-training: We fine-tune GraphMind on downstream
datasets when training sets are available, further refining its performance in specific tasks.
Experimental results indicate that GraphMind exhibits enhanced reasoning capabilities across
various domains compared to the base model. In mathematical reasoning, its average
accuracy over 11 datasets surpasses the base model by up to 4.9%, while in other reasoning
tasks, the improvement reaches as high as 21.2%. Moreover, GraphMind demonstrates
potential for post-training enhancement. Notably, the Gemma version of GraphMind fine-
tuned on GSM8K achieves 23.6% higher accuracy.

2 GraphPile

In this section, we present the curation details of GraphPile, covering reasoning paradigms
definitions (Section 2.1) and the dataset curation pipeline (Section 2.2). An overview is in
Figure 2.

2.1 Reasoning Paradigms

Graph problem reasoning cover various reasoning paradigms, including logical reason-
ing, topological reasoning, numerical computation, enumeration, and division. To ensure
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comprehensive coverage, we include tasks from each category. For clarity, we select two
representative tasks per category, focusing on their primary reasoning type, though some
tasks may overlap categories.

Logical Reasoning Tasks. Logical reasoning involves analyzing, deducing conclusions,
or solving problems based on specific logical rules. Since all graph problem tasks are
fundamentally based on reasoning derived from logical rules, they are inherently tasks
of logical reasoning. Here are two representative tasks.

• Cycle Detection. Given a graph G = {V , E}, the task is to check if it contains a cycle.
A cycle is a closed path with at least three vertices, where each pair of consecutive
vertices is connected by an edge.

• Bipartite Checking. This task is to determine if a graph G = {V , E} is bipartite,
meaning its vertex set can be partitioned into two subsets U and V where no two
vertices in the same subset are adjacent.

Solving these problems requires LLMs to apply specific logical rules. For example, a cycle
exists in a graph if a path from a vertex revisits the same vertex. A graph is bipartite if its
vertices can be colored with two colors so that no adjacent vertices share the same color.

Topological Reasoning Tasks. Topological reasoning tasks involve exploring the rela-
tionships between nodes and edges in a graph and making inferences based on these
relationships. Since all graph problem tasks are built upon these relationships, they inherently
belong to the domain of topological reasoning. Representative tasks include topological sorting
and common neighbors.

• Topological Sorting. For a directed acyclic graph (DAG) G = (V , E), a topological
sorting is a linear ordering of its vertices such that for every directed edge (u, v) ∈ E ,
the vertex u appears before v in the ordering.

• Common Neighbors. Given a graph G = (V , E), the task is to identify the set
of common neighbors between two nodes u, v ∈ V . The common neighbors are
defined as N (u) ∩N (v), where N (x) represents the set of neighbors of node x.

Solving these problems typically requires LLMs to understand the topological structure
of the graph. For example, topological sort reveals hierarchical relationships in directed
acyclic graphs, while common neighbors highlight local connections between two nodes.
This reasoning paradigm is rarely encountered in traditional mathematical problems.

Numerical Computation Tasks. Numerical computation involves using algorithms to
solve problems through a large number of operations like addition, subtraction, multi-
plication, and division. Representative tasks are the shortest path and maximum flow.

• Shortest Path. Given a weighted graph G = {V , E , w} with w : E → R+, the task is
to find a path between two nodes that minimizes the total edge weight.

• Maximum Flow. Given a weighted graph G = {V , E , c} with capacities c : E → R+,
a source vs, and a sink vt, the task is to maximize the flow from vs to vt.

Solving these problems requires LLMs to perform numerical computations. For exam-
ple, the shortest path problem involves iterative updates of distances, and the maximum
flow problem requires tracking residual capacities. Math problems like root finding and
numerical integration are also examples of numerical computation.

Enumeration Tasks. Enumeration tasks involve systematically listing all possible solutions
or elements in a set, often to address problems in combinatorics, optimization, or search.
Representative examples include the Hamilton path and the maximum matching.

• Hamilton Path. Determine if a Hamilton path exists in graph G = (V , E), where a
Hamilton path visits each node exactly once.

• Maximum Clique Problem. The task is to find a clique of maximum size in a graph
G = {V , E}. A clique is defined as a subgraph where all nodes are fully connected.
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import re
import networkx as nx

graph = "The nodes are numbered from
0 to 9, and the edges are: 
(0,3,3) (1,3,5) (1,4,9) (1,8,1) (1,9,10)
(2,9,3) (3,7,6) (3,4,6) (3,6,7) (4,7,7) 
(4,6,9) (4,5,8) (5,8,1) (6,7,2)."

pattern = r'\((\d+),(\d+),(\d+)\)'
matches = re.findall(pattern, graph)
G = nx.Graph()

for node1, node2, weight in matches:
G.add_edge(int(node1), int(node2), 

weight=int(weight))

shortest_path_length = 
nx.shortest_path_length(G, source=3, 
target=8, weight='weight')
print(shortest_path_length)

(c) Program of Thought

Triangle:
Q: Given a graph, you need to find the maximum sum of 
the weights of three interconnected nodes. The nodes
are ‘ALK’, ’ DEH’, ‘UNG’, ‘LKX’, weights of nodes are:
[ALK, 2], [DEH,2], [UNG,1], [LKX,3], and edges are:
(ALK,DEH), (ALK,UNG), (DEH,UNG), (ALK, LKX), (DEH
, LKX).

A: Let’s think step by step:
Identify possible triangles: 
Triangle: ALK-DEH-ANG
Sum of weights: 2 (ALK) + 2 (DEH) + 1 (UNG) = 5
Triangle: ALK-DEH-LKX
Sum of weights: 2 (ALK) + 2 (DEH) + 3 (LKX) = 7

Therefore, the maximum sum among the identified 
triangles is 7, corresponding to the triangle formed by 
nodes ALK, DEH, and LKX. 

A: Let's think step by step: To determine if there is a path between node 4 and node 0, we can explore
the connections in the graph: Start at node 4. From node 4, we can move to nodes 1, 2, or 5 based on the edges 
provided.  Let's choose node 5. From node 5, we can move to nodes 1, 4, or 6.  From node 6, 
we can move to nodes 2, 3, or 5. From node 2, we can move to nodes 0, 4, or 6. Finally, from node 2, we can 
reach node 0. Thus, the path from node 4 to node 0 is: 4 -> 5 -> 6 -> 2 -> 0. 
Therefore, there is a path between node 4 and node 0.

Connectivity:
Q: Determine whether two nodes are connected in an undirected graph. The nodes are numbered 
from 0 to 4, and the edges are: (0, 2), (1, 4), (1, 5), (2, 4), (2, 6), (3, 6), (4, 5), (5, 6). Is there a path 
between node 4 and node 0?

(a) Chain of Thought
Definition: Chain of Thought (CoT) data is synthe-
sized to provide step-by-step explanations of graph 
problem-solving processes, which are essential for 
training LLMs to develop systematic reasoning 
abilities.

Chain of Thought Generation

Eric Toni 

Common Neighbor:

(b) Real-World Graph

Q: Your task is to find the
common neighbors of two
nodes in an undirected
academic network. In this
network, nodes represent
authors and edges represent
research collaborations.
-Authors in the network:
Stefani, David, Henry, Ronald
-Research Collaborations:
Stefani to David, Stefani to
Ronald, David to Henry, David
to Ronald, Ronald to Henry.

Please identify the common
neighbors of David and
Ronald in this network.

A:  Let's think step by step: 
David's neighbors: Stefani, 
Henry, Ronald. Ronald's 
neighbors: Stefani, David, 
Henry. Common neighbors: 
Stefani and Henry. So the 
common neighbors of David 
and Ronald are Stefani and 
Henry.

Shortest Path:
Q: You are required to find the shortest path between two specific
airport for a directed flight route network. -Airport to visit: YNT,CFC,NSH
-Travel distances (in kilometers) between each pair of airports:
CFC to NSH: 13193, CFC to YNT: 18668, NSH to YNT: 6176,
Please determine the shortest path between CFC and YNT in this network
A: Let's think step by step: Direct route: CFC → YNT = 18,668 km.Indirect

route: CFC → NSH → YNT = 13,193 km + 6,176 km = 19,369 km.Compare: 
18,668 km (direct) < 19,369 km (indirect).So the shortest path is CFC → YNT, 
with a distance of 18,668 km.

Definition: Real-World Graph is a set of graphs 
collected from real-world scenarios, such as Knowle-
dge graphs, social networks, and molecular struc-
tures. It increases data diversity and enhances LLM
s’ reasoning about complex real-world scenarios.
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(d) Trace of Execution
Definition: Execution reasoning trace is a detailed 
reconstruction of an algorithm's execution, helping 
LLMs understand the algorithm and improve 
performance on tasks requiring deep reasoning and 
multi-step problem-solving.

import re 
import networkx as nx

text = "The nodes are numbered from
0 to 6, and the edges are:
(0->6,5) (1->6,5) (2->3,7)
(3->4,8) (3->6,10) (4->5,2)." 

pattern = r'\((\d+)->(\d+),(\d+)\)’ 
matches = re.findall(pattern, text) 

G = nx.DiGraph() 
for node1, node2, weight in matches: 

G.add_edge(int(node1), int(node2),
weight=int(weight))
node1 = 0, node2 = 5

flow_value, flow_dict = 
nx.maximum_flow(G, node1, node2
, capacity='weight’)
print(flow_value)

LLM 
Retrieval

LLM 
Rewrite

import re
import networkx as nx

graph = ""”
{GCY: [HYG, AZA, PNZ],
PNZ: [GCY,HYG],
HYG: [PNZ, GCY],
AZA: [GCY]}"""

pattern = r'(\w+): \[([^\]]*)\]'
matches = re.findall(pattern, graph)

G = nx.Graph()

for node, neighbors in matches:
neighbors = neighbors.split(', ')
for neighbor in neighbors:

G.add_edge(node, neighbor)

is_bipartite = nx.is_bipartite(G)
print(is_bipartite)

‘Name’: Bipartite Check
‘Descption’: Given a graph G,
returns True if G is bipartite.
False if not.

‘Example code’:
import networkx as nx

G = nx.Graph([(1, 2), (3, 4)])
print(nx.is_bipartite(G))

Definition: Program of Thought (PoT) is a reasoning 
framework for LLMs that combines algorithmic 
thinking with natural language reasoning. It uses 
structured, step-by-step processes  (like code) to 
solve complex problems more effectively. 

Shortest Path
Maximum Flow

Bipartite Checking:
This task involves determining whether a 
graph is bipartite. A graph is classified as 
bipartite if its vertex set can be partitioned 
into two disjoint subsets such that no two 
vertices within the same subset are adjacent.

[0 -> 4 -> 7 -> 1 -> 5 -> 0]

Determine whether or not there is a 
cycle in an undirected graph. Q: The 
nodes are numbered from 0 to 9, and 
the edges are: (0, 4), (0, 5), (0, 7), (1, 
2), (1, 5), (1, 7), (2, 6), (3, 4), (4, 7), 
(6, 7). Is there a cycle in this graph?" 

Let’s think step by step:
We can use DFS to detect cycles. 
Start at node 0, we can go to 
nodes 4,5 and 7. Let’s explore 
node 4. From node 4, we can go to 
node 7. Let’s explore node 7….
Finally, we detect a cycle 0 -> 4 -> 
7 -> 1 -> 5 -> 0. 

Correct 

Wrong

Program

Rephrase

Verify

Figure 3: Data components of GraphPile.

Solving these problems often requires LLMs to enumerate the solution space. For the
Hamilton Path problem, this involves listing paths that visit each node exactly once, while
the Maximum Clique problem requires enumerating cliques. Similarly, math problems like
the integer partition problem and subset sum problem are examples of enumeration.

Division Tasks. Division tasks focus on breaking down a large problem into smaller,
independent subproblems, which can be solved individually and then combined to form
the overall solution. These tasks are commonly encountered in areas such as connectivity
and strongly connected components in graph theory.

• Connectivity. The task is to determine if two nodes u and v in a graph G = (V , E)
are connected, meaning there exists a path from u to v.

• Strongly Connected Component. The task is to find the Strongly Connected
Components (SCCs) of a directed graph G = (V , E), where an SCC is a maximal
subgraph in which every pair of nodes u and v has paths both from u to v and from
v to u.

Both tasks require LLMs to employ the division approach to systematically decompose
a graph into several connected components. Mathematical problems such as modular
arithmetic and polynomial division also fall under this category.

In addition to the aforementioned reasoning paradigm, Graph Problem Reasoning also encom-
passes spatial reasoning, such as planarity testing. To enhance the diversity of our dataset, we
have selected a total of 23 graph problem tasks, as demonstrated in Figure 2 (a). Detailed
task definitions are provided in Appendix B.1.

2.2 GraphPile Collection

In this section, we introduce the curation process of GraphPile, a diverse collection of
graph problem data for continued pretraining LLMs. Our data synthesis consists of four
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components: Chain-of-Thought data, Real-World Graph data, Program-of-Thought data,
and Trace of Execution Data. Since our synthesis process involves various problems related
to graph algorithms, we hire a human expert 1 in this field to design algorithm implementations,
verify correctness, and optimize efficiency. Figure 2 (b) provides an overview of these pipelines.

Graph Generation. GraphPile comprises both synthetically generated Erdős-Rényi (ER)
(Erdős et al., 1960) graphs and real-world graphs obtained through web crawling. For
each type of graph, we include both directed and undirected variants, which are randomly
generated. Furthermore, the dataset encompasses a variety of graph representations, in-
cluding adjacency matrices, adjacency lists, and edge lists. We include graphs of varying
sizes, ranging from 6 to 40 nodes, for the following reasons: (1) To address varying levels
of complexity in graph reasoning; and (2) To limit graph sizes, as larger graphs result in
extremely large sample length (more than 8k) and make it harder for LLMs to learn accurate
and complete reasoning path during continue-pretraining.

Chain-of-Thought Data Generation. CoT data is synthesized to offer step-by-step ex-
planations of graph problem-solving processes, which are essential for training LLMs to
develop systematic reasoning abilities. However, graph problem reasoning differs sig-
nificantly from mathematical reasoning because its difficulty increases exponentially as
the graph size grows, making it a major challenge even for state-of-the-art LLMs such
as GPT-4o. As a result, LLMs struggle to directly generate accurate and complete CoT
solutions, especially for large and complex graphs (Chen et al., 2024a; Luo et al., 2024). To
address this, we propose a Program-Guided approach: for each graph problem, an expert
designs a corresponding programmatic solution. By executing this program, we can record
intermediate computational results. For example, in the cycle detection problem illustrated
in Figure 3 (a), we log the path leading to the final decision, such as 0-4-7-1-5-0. These
paths are then rephrased into natural language solutions using GPT-4o. However, due to
the inherent variability in LLM outputs, we employ GPT-4o again to verify the correctness
of the rephrased paths. The correctly rephrased paths, together with the original graph
problems, form our CoT dataset. Besides, since many graph problems admit multiple valid
solutions (e.g., in cycle detection, multiple cycles may exist in a given graph), we sample up
to three distinct solutions to enhance the diversity of CoT reasoning data. Detailed prompt
of LLM rephrasing and LLM verification are given in Appendix C.1.

Real-World Graph Data Generation. To enhance the diversity of Chain-of-Thought data
and improve the reasoning capabilities of LLMs in complex realistic scenarios, we extend
our CoT dataset to include real-world graph problems. Specifically, we begin by collect-
ing real-world graphs from sources such as DBLP (Ley, 2002), OpenFlight (OpenFlights),
PubChemQC (Nakata & Shimazaki, 2017), Social Networks (Rossi & Ahmed, 2015), and
DBPedia (Bizer et al., 2009). We then utilize GPT-4o to rephrase the problems and answers
from the existing CoT dataset by replacing numerical node identifiers with real-world
textual node identifiers. After rephrasing, we use GPT-4o to filter out incorrect problem
and answer pairs (e.g., cases where nodes or edges in the original graph are lost or added
during the rephrasing process). Through this process, we construct the Real-World Graph
dataset, which features real-world problems paired with step-by-step solutions. This dataset
effectively bridges abstract graph reasoning with practical, real-world applications. Figure
3 (b) provides examples of this dataset. Related prompts are given in Appendix C.2.

Program-of-Thought Data Generation. While CoT provides step-by-step explanations,
Program-of-Thought (PoT) offers precise, executable solutions that eliminate ambiguity (Li
et al., 2024b;a; Zhang et al., 2024a; Wang et al., 2024b). Training LLMs on well-structured
code enhances their ability to interpret, generate, and apply algorithmic logic effectively
in graph problem-solving. Considering that many graph-related algorithms have already
been implemented in widely used libraries such as NetworkX, we leverage these resources
for PoT solution generation. After constructing a graph problem, we prompt the LLM
to retrieve relevant implementations directly from code documentation repositories. If

1This expert holds a PhD specializing in graph algorithms.
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Dataset Graph Category Problem-Solving Paradigms Tasks Samples CPT-Compatible

GraphWiz (Chen et al., 2024a) Synthetic CoT 9 17,158 ✗
GraphInstruct (Luo et al., 2024) Synthetic CoT 21 16,800 ✗
InstructGraph (Wang et al., 2024a) Synthetic Simple Answer 6 13,699 ✗
GraphArena (Tang et al., 2024) Real-World Simple Answer 10 10,000 ✗
GraphPile (Ours) Synthetic + Real-World CoT, PoT, ToE 24 2,684,675 ✓

Table 2: Comparison between GraphPile and existing graph reasoning datasets

the extracted code is executable and produces correct results, we include it in our dataset.
Furthermore, to ensure PoT diversity, we instruct the LLM to rewrite the extracted code,
generating a modified version that retains the original logic while introducing variations in
implementation. These alternative versions help LLMs generalize across different coding
styles and improve their robustness in algorithmic reasoning. Figure 3 (c) demonstrates
examples of this dataset. Related prompts are given in Appendix C.3.

Components Size Tokens

Chain-of-Thought 848,965 2,809,225,185
Real-world Graph 743,465 3,203,590,685
Program-of-Thought 759,851 2,190,746,959
Trace-of-Execution 332,394 2,727,119,224

Total 2,684,675 10,930,682,053

Table 1: Statistics of GraphPile.

Trace-of-Execution Data Generation.
Execution reasoning trace is a textual
sequence that explains the step-by-step
execution of a code, abstracting the rea-
soning process while maintaining log-
ical rigor. It captures key skills like log-
ical flow, state exploration, recursion,
and decision-making. However, this
data paradigm has not been studied be-
fore. To leverage its benefits, we pro-
pose the Program-Guided approach.
For a given graph problem, experts de-
sign three versions of high-quality code with tracing phrases at key points. Each code
is along with two additional problems focusing on intermediate variable states, forming
a diverse problem set. Executing the codes generates traces, which, combined with the
problems, form the Trace of Execution data, enabling LLMs to learn from multiple reasoning
perspectives. For example, Figure 3 (d) shows a graph traversal problem, its solution code,
and tracing phrases at key points. Two extra problems focus on the intermediate states of
“stack” and “visited”. By executing the code, the solution trace is generated.

Finally, by integrating these datasets, we construct our training dataset, GraphPile, which
comprises 4 distinct components and encompasses over 2.68 million samples and 10.9 billion
tokens. GraphPile integrates different reasoning paradigms, empowering LLMs to tackle
graph problems with greater robustness, systematic precision, and efficiency. Detailed
statistics of GraphPile , the comparison between GraphPile and existing graph reasoning
datasets, and more examples of each dataset are given in Table 1, Table 2 and Appendix D.1.

3 Experiments

After constructing GraphPile, We begin by performing continue-pretraining on three LLMs,
ranging in size from 2B to 8B, thereby obtaining three versions of our reasoning model,
GraphMind. In this section, we validate our model in two scenarios: 1) Few-shot: We directly
test GraphMind across different datasets with few-shot prompts; 2) Post-training: We fine-
tune GraphMind in downstream datasets if training sets are available. At last, we perform an
ablation study to evaluate the contribution of different components within GraphPile.

3.1 Experimental Settings
Evalution Dataset. To thoroughly evaluate the reasoning capabilities of GraphMind and
other baselines, we select 22 benchmarks spanning six reasoning domains: mathematics
reasoning, logical reasoning, commonsense reasoning, code reasoning, multi-Hop QA
reasoning, and graph problem reasoning. For mathematics reasoning benchmarks, we
choose 11 benchmarks, including GSM8K (Cobbe et al., 2021b), MATH (Hendrycks et al.,
2021b), GSM8K-Hard (Gao et al., 2022), SVAMP (Patel et al., 2021), ASDIV (Miao et al.,
2020), MAWPS (Koncel-Kedziorski et al., 2016), MINERVA_MATH (Hendrycks et al., 2021b),
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MMLU_STEM (Hendrycks et al., 2021a)), TABMWP (Lu et al., 2022), MATHQA (Amini
et al., 2019) and SAT_Math (Zhong et al., 2023). For logical reasoning benchmarks, we
choose Zebra Puzzle (Lin et al., 2025), Ruletaker (Clark et al., 2020), and ProofWriter (Tafjord
et al., 2020). For commonsense reasoning, we choose Strategy QA (Geva et al., 2021)
and Hellaswag (Zellers et al., 2019). For code reasoning, we choose Livecodebench (Jain
et al., 2024) and CLRS (Markeeva et al., 2024). For multi-hop QA reasoning, we choose
HotpotQA (Yang et al., 2018) and PopQA (Mallen et al., 2022). For GPR benchmark, we
choose GraphWiz (Chen et al., 2024a) and GraphInstruct (Luo et al., 2024). We collect
these benchmarks and utilize them to evaluate the models based on three GitHub projects:
OpenCompass (Contributors, 2023), Qwen2.5-Math (Yang et al., 2024), and ZeroEval (Lin,
2024). See Appendix E.1 for details of base models, training and evaluation settings, and
E.2 for details of evaluation datasets.

Mathematics

Models GSM8K MinMath MATH GSM-Hard SVAMP ASDIV MAWPS STEM TABMWP MATHQA SAT Avg.

Gemma-2-2b 26.9 14.4 13.2 16.8 48.7 62.3 77.6 43.6 39.6 32.8 53.1 39.0

+ GraphPile 36.8 15.0 18.7 18.5 58.6 66.0 83.9 41.9 42.0 38.0 40.6 41.8

Llama-3-8b 54.2 17.0 16.5 26.1 68.8 73.1 90.9 49.7 57.9 27.7 56.2 48.9

+ GraphPile 65.8 21.6 24.0 29.3 78.9 79.5 91.6 56.1 50.6 41.0 53.1 53.8

Llama-3.1-8b 54.4 20.4 17.7 27.1 71.0 74.3 92.0 57.0 63.6 44.9 59.4 52.9

+ GraphPile 66.0 23.6 24.1 30.9 78.4 79.6 92.0 56.4 59.2 53.1 59.4 56.6

Logic Commonsense Code Multi-Hop QA Graph Problem

Models Zebra Puzzles Ruletaker ProofWriter StrategyQA Hellaswag LCB CLRS HotpotQA PopQA GraphWiz GraphInstruct Avg.

Gemma-2-2b 2.0 3.4 8.8 59.3 27.2 0.2 16.9 21.2 27.4 34.6 16.8 19.8

+ GraphPile 0.5 20.5 6.0 59.4 30.6 1.3 37.9 41.0 28.2 54.8 62.8 31.2

Llama-3-8b 10.0 22.8 25.0 66.2 48.3 2.9 3.3 25.8 24.6 4.5 35.2 24.4

+ GraphPile 24.0 43.1 41.6 69.7 52.8 6.9 49.9 26.0 32.2 49.9 70.8 42.4

Llama-3.1-8b 18.0 35.3 29.8 58.9 48.7 1.6 3.3 43.6 40.0 1.9 33.0 28.6

+ GraphPile 34.0 61.1 40.9 69.6 53.6 12.5 5.6 46.4 47.0 52.2 74.9 45.1

Table 3: Main results on mathematical benchmarks (top) and other benchmarks (bottom),
where LCB represents Livecodebench.

3.2 Main Results
We evaluate the performance of GraphMind and baseline models on 20 benchmarks across
four reasoning domains. From Table 3, we can draw an overall conclusion: leveraging
GraphPile enhances both foundational reasoning capabilities and generalization reasoning
abilities. Regarding foundational reasoning capabilities, when trained on graph problem
reasoning data, the three versions of GraphMind achieve a best average improvement of
53.1% compared to the baseline, demonstrating the effectiveness of GraphPile in improving
the graph problem reasoning abilities of LLMs. In terms of generalization capabilities, the
improvements are as follows: for math reasoning, the best average improvement is 4.9%; for
logical reasoning, it is 33.4%; for commonsense, it is 7.8%; for code reasoning, it is 46.3%; and
for multi-hop QA, it is 10.3%. As illustrated in Figure 2 (a), graph problem reasoning includes
various reasoning patterns. This is why our constructed graph problem reasoning dataset
can enhance model performance not only on graph-related tasks but also on mathematical
and other reasoning tasks, thereby improving the model’s overall generalization ability. The
detailed results for each task in the GPR dataset are provided in Table 7 in Appendix E.3.
Furthermore, we conduct statistical significance tests in Appendix E.4.

3.3 Post-Training
To show the performance improvements of GraphMind through post-training, we select three
versions of GraphMind , along with their base models for fine-tuning on GraphWiz, GSM8K,
and MATH.
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Figure 4: Model performances with scaling GraphPile size. Here, we report average results
of different reasoning tasks.

Question:Predict the intermediate states and final outcomes of specified variables during the execution of an algorithm. 
Please provide the output corresponding to the following input:
Input(insertion_sort:key: [0.421 0.557 0.861 0.727], initial_trace: [0.421 0.557 0.861 0.727])
trace | pred:
Output: Output the answer in the same format as in the examples.

(A) Output (Llama3-8B-base):
Input:
    insertion_sort:
        key: [0.421 0.557 0.861 0.727]
        initial_trace: [0.898 0.77 0.357 0.622]
    trace | pred:
Output: 
[0.421 0.557 0.861 0.727], 
[0.557 0.421 0.861 0.727], 
[0.421 0.557 0.861 0.727], 
[0.557 0.421 0.861 0.727], 
[0.421 0.557 0.861 0.727] 
| [0.421 0.557 0.861 0.727]

(B) Output (GraphMind):
Let's run the function insertion_sort(key) to solve this problem.
Initial values: key: [0.421 0.557 0.861 0.727]. 
Call insertion_sort([0.421 0.557 0.861 0.727]):
- key: 0.421. Since the list is empty or the current element is the 
first one, we do nothing.
- key: 0.557. Since the list is not empty and the current element is 
not the first one, we insert 0.557 into the list. 
trace | pred: [0.421 0.557] | [0.421 0.557].
- key: 0.861. Since the list is not empty and the current element is 
not the first one, we insert 0.861 into the list. 
trace | pred: [0.421 0.557 0.861] | [0.421 0.557 0.861].
- key: 0.727. Since the list is not empty and the current element is 
not the first one, we insert 0.727 into the list. 
trace | pred: [0.421 0.557 0.861 0.727] | [0.421 0.557 0.727 0.861]

Wrong Correct

Figure 5: A comparative case between Llama3 and ours in CLRS dataset.

Models GraphWiz GSM8K MATH

Gemma-2-2b 34.9 37.4 12.4
+ GraphPile 42.0 61.0 16.2

Llama-3-8b 32.2 67.4 18.6
+ GraphPile 36.3 77.1 20.4

Llama-3.1-8b 44.1 71.7 21.6
+ GraphPile 53.8 73.0 24.0

Table 4: Comparison between post-training ver-
sions of base models and CPT models.

Table 4 shows that GraphMind out-
performs base models in both graph
reasoning and math tasks across
all configurations. Notable perfor-
mance gains are observed in smaller
models like Gemma-2, which shows
an increase of around 7 points
in graph reasoning. Similarly,
GraphMind demonstrates substan-
tial improvements in mathematical
tasks, with the highest performance
improvement of 9.7% for Llama-3-8b
on GSM8K and 2.4% for Llama-3.1-8b on MATH. The results highlight that GraphPile en-
hances LLMs’ post-training potential.

3.4 Ablation Studies
We further conduct ablation studies to explore the model performances: (1) when scaling
the training dataset size, (2) when removing different components, and (3) when conducting
continue-pretraining on stronger base LLMs.

Scaling the Training Dataset Size. We sample 20% to 100% of the data from GraphPile to
continue-pretrain GraphMind, resulting in five variants. These variants, along with Gemma-2-
2b, are tested on evaluation datasets grouped by mathematical reasoning, logical reasoning,
commonsense reasoning, code reasoning, and graph problem reasoning. The results for each
group are averaged to represent the model’s performance on each type of reasoning dataset.
The experimental results in Figure 4 demonstrate that (1) when the amount of data is 20%,
GraphMind performs similarly to its base model, Gemma-2-2b, in other reasoning domains
beyond graph problem reasoning, as the small amount of data is insufficient for the model
to learn generalized reasoning capabilities; (2) as the data scale increases, GraphMind shows
better performance on all reasoning paradigm and gradually surpasses the base model. This
illustrates the effectiveness of GraphPile and the scalability of GraphMind.
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Models Math GPR Logical Code Com.S

GraphMind 41.8 58.8 9.0 19.9 45.0

w/o CoT 41.0 49.8 5.6 17.9 44.7
w/o PoT 40.8 56.3 6.7 16.2 45.6
w/o RW 41.9 57.3 9.1 19.5 43.1
w/o ToE 40.2 53.9 4.8 9.7 44.9

Table 5: Performances when removing different data
types. Com.S, RW refer to commonsense reasoning
and Real-World Graph Data.

Removing Different Compo-
nents. We remove different
components of GraphPile to
create four reduced datasets: w/o
CoT, w/o PoT, w/o RW, and w/o
ToE. Using these four datasets, as
well as the full dataset, we train
GraphMind. Table 5 presents the
experimental results. Overall, we
observe that the absence of data
from a specific domain generally
leads to performance degradation.
Interestingly, we also find that the w/o RW dataset improves performance on mathematical
and logical reasoning tasks. This is likely because these two domains lack real-world
scenarios, making real-world data less beneficial for training the model in these areas.

Mathematical Reasoning Logical Reasoning Graph Problem Reasoning

Model GSM8K MMLU-STEM SAT Avg. Zebra Puzzle KorBench Avg. GraphWiz GraphInstruct Avg.

Qwen-2.5-Coder-1.5B 59.8 32.9 59.4 50.7 1.9 16.8 9.4 30.3 25.1 27.7
+ GraphPile 63.4 43.3 71.9 59.5 5.7 18.3 12.0 48.6 46.1 47.4

Qwen-2.5-Coder-7B 77.9 67.2 81.2 75.4 3.9 32.1 18.0 38.5 34.4 36.5
+ GraphPile 81.0 68.3 87.5 79.0 4.8 33.3 19.1 54.3 50.3 52.3

Table 6: Performance of Qwen-2.5-Coder Models with and without GraphPile on Mathmati-
cal Reasoning, Logical Reasoning, and Graph Problem Reasoning Benchmarks.

Continue-pretraining on Stronger LLMs. We further conduct continue-pretraining on
two stronger base models, Qwen-2.5-Coder-1.5B and Qwen-2.5-Coder-7B, to assess the
effectiveness of GraphPile on more capable architectures. We evaluate these base models
across three categories of reasoning benchmarks: (1) mathematical reasoning (GSM8K,
MMLU-Stem, and SAT), (2) logical reasoning (Zebra Puzzle and KorBench), and (3) graph
problem reasoning (Graphwiz and GraphInstruct). The evaluation results are summarized
in Table 6. Our analysis demonstrates that continue-pretraining on GraphPile leads to
performance improvements across all evaluation domains—including both in-domain
(graph reasoning) and out-of-domain (mathematical and logical reasoning) tasks—for all
examined models. Specifically, Qwen-2.5-Coder-1.5B achieves improvements of 8.8, 2.6,
and 19.7 points over its base model on mathematical, logical, and graph reasoning tasks,
respectively. Similarly, Qwen-2.5-Coder-7B exhibits gains of 3.6, 1.1, and 15.8 points across
the same task categories. These consistent improvements across different model scales
provide compelling evidence that GraphPile enhances performance not only for weaker
base models but also for more powerful ones.

Case Study. Additionally, we present an example from the CLRS dataset involving an
insertion sort problem, where GraphMind produces correct answers while the base model
provides incorrect responses, as shown in Figure 5. We observe that, compared to the base
model, GraphMind’s responses include more detailed intermediate steps—such as highlight-
ing the current sorting element and explaining the rationale behind each insertion—while
effectively omitting irrelevant information, such as extraneous input details. Further exam-
ples can be found in Appendix E.5.

4 Conclusion

We present GraphPile, a 10.9B-token dataset with 23 graph tasks to enhance LLM reasoning.
By pretraining three LLMs on it, we develop the GraphMind series, which improves base
models by up to 4.9% (math) and 21.2% (other tasks). The Gemma version fine-tuned on
GSM8K achieves 23.6% higher accuracy, demonstrating strong post-training potential. Our
results show Graph Problem Reasoning effectively boosts LLMs’ general reasoning.
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A Related Works

LLMs for graph problem reasoning. Leveraging large language models (LLMs) for graph
problem reasoning has emerged as a prominent area of research. To advance this field,
researchers have introduced a variety of benchmarks designed to evaluate the graph prob-
lem reasoning capabilities of LLMs (Wu et al., 2024b; Tang et al., 2024; Li et al., 2024a; Das
et al., 2023; Fatemi et al., 2023; Guo et al., 2023). Building on these benchmarks, various
approaches have been proposed to enhance LLMs’ graph problem reasoning capabilities.
These methods can be broadly categorized into the following paradigms: (1) Chain-of-
Thought (CoT): This paradigm leverages step-by-step reasoning processes to improve LLM
performance, as demonstrated in several studies (Chen et al., 2024a; Luo et al., 2024). (2)
Program-of-Thought (PoT): This paradigm involves teaching LLMs to generate code for
solving graph-related problems (Zhang et al., 2024a; Li et al., 2024b; Wang et al., 2024b; Gong
et al., 2025). In this work, we introduce a novel paradigm, Trace of Execution (ToE), which
leverages traces—detailed representations of the algorithmic execution process. Our dataset
integrates three paradigms—CoT, PoT, and ToE—to enhance the reasoning capabilities of
LLMs in graph problems and other domains.
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Continue-Pretraining. Continue-pertaining methods have been widely used in improving
LLMs’ reasoning capabilities in specific domains such as mathmatics (Shao et al., 2024;
Azerbayev et al., 2023; Ying et al., 2024; Yang et al., 2024; Wang et al.; Gunasekar et al., 2023;
Lu et al., 2024), medicine (Chen et al., 2023b; Wu et al., 2024a), and algorithms (Markeeva
et al., 2024). By continue-pretraining on a well-curated corpus, the model enhances its ability
to handle domain-specific terminology, concepts, and patterns, making it more effective for
specialized tasks. For instance, DeepSeekMath (Shao et al., 2024) and Qwen-2.5-Math (Yang
et al., 2024) leverage fastText (Joulin et al., 2016) and other meta-information to retrieve texts
from the Common Crawl dataset. MathPile (Wang et al.) and Phi (Gunasekar et al., 2023)
utilize real or synthesized textbooks to improve LLMs’ mathematical reasoning capabilities.
MEDITRON (Chen et al., 2023b) employs a meticulously curated medical corpus, including
selected PubMed articles, abstracts, and internationally recognized medical guidelines.
However, no prior work has focused on utilizing graph problem corpus for pre-training.
To fill this gap and further enhance the reasoning capabilities of LLMs, we, for the first
time, propose a graph problem-based training corpus aimed at improving LLMs’ reasoning
abilities across graph-related tasks, mathematics, and other domains.

B Additional Definition

B.1 Task Definitions

In this section, we present the remaining graph problems that were not introduced in Section
2.1.

• PageRank. This task involves assigning a score to each node in a graph G = (V , E)
that represents the relative importance of the node within the graph. The PageRank
of a node is determined based on the structure of incoming edges, where nodes
with more incoming links from important nodes are assigned higher scores. The
computation of PageRank iteratively updates the score of each node using the
formula:

PR(v) = (1 − α) + α ∑
u∈In(v)

PR(u)
OutDegree(u)

,

where α is the damping factor (typically set to 0.85), In(v) is the set of nodes linking
to v, and OutDegree(u) is the number of outgoing edges from node u. The process
continues until the scores converge to a stable distribution.

• Graph Traversal. Graph traversal is the process of systematically visiting all the
vertices and/or edges in a graph G = (V , E). The goal of traversal is to explore
the structure of the graph, ensuring that every vertex (and possibly every edge) is
visited exactly once under certain traversal rules.

• Degree Counting. The degree of a node v ∈ V in a graph G = (V , E) is the
number of edges connected to v. For directed graphs, the in-degree is the number
of incoming edges to v, and the out-degree is the number of outgoing edges from v.

• Jaccard Coefficient. For a graph G = (V , E), the Jaccard Coefficient between two
nodes u, v ∈ V is a measure of the similarity of their neighborhoods. It is defined as
the ratio of the size of the intersection of their neighbor sets to the size of the union
of their neighbor sets. Formally, the Jaccard Coefficient is given by:

J(u, v) =
|N (u) ∩N (v)|
|N (u) ∪N (v)| ,

where N (x) denotes the set of neighbors of node x. The value of J(u, v) lies in the
range [0, 1], with higher values indicating greater similarity.

• Edge Check. In a graph G = (V , E), the edge check determines whether there exists
an edge between two nodes u, v ∈ V . For undirected graphs, check if (u, v) ∈ E or
(v, u) ∈ E ; for directed graphs, check if (u, v) ∈ E .
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• Neighbor. In a graph G = (V , E), a node v ∈ V is a neighbor of a node u ∈ V if
there is an edge between u and v. For undirected graphs, this means (u, v) ∈ E or
(v, u) ∈ E . For directed graphs, this means (u, v) ∈ E .

• Predecessor. In a directed graph G = (V , E), a node u ∈ V is a predecessor of a
node v ∈ V if there exists a directed edge (u, v) ∈ E .

• Diameter. In a graph G = (V , E), the diameter is the longest shortest path between
any two nodes. Formally, it is defined as:

Diameter(G) = max
u,v∈V

d(u, v),

where d(u, v) is the shortest path distance between nodes u and v. For disconnected
graphs, the diameter is typically considered infinite.

• Minimum Spanning Tree (MST). In a weighted, connected, undirected graph
G = (V , E), a Minimum Spanning Tree is a subset of edges E ′ ⊆ E that:
1. Connects all vertices in V (forms a tree).
2. Minimizes the total edge weight:

Weight(E ′) = ∑
(u,v)∈E ′

w(u, v),

where w(u, v) is the weight of the edge (u, v).

• Maximum Triangle Sum. Given a weighted graph G = (V , E), where l : V → R+

is a function assigning a positive weight to each node, the task involves finding a
triangle, a cycle of three connected vertices (v1, v2, v3), that maximizes the weight
sum l(v1) + l(v2) + l(v3)

• Clustering Coefficient. Given a graph G = (V , E), the clustering coefficient of a
node v ∈ V is defined as the ratio of the number of triangles containing v to the
total number of possible triangles that could include v, measuring the tendency of
v’s neighbors to form a clique.

• Euler Path. An Euler path in a graph G = (V , E) is a path that visits each edge in
the graph exactly once. A graph has an Euler path if and only if it is connected and
has exactly zero or two vertices with an odd degree.

• Planarity Testing. Given a graph G = (V , E), the planarity testing problem seeks to
determine whether G can be embedded in the plane without any edges crossing.
A graph is planar if and only if it can be drawn such that no two edges intersect
except at their endpoints. Formally, G is planar if there exists a mapping of V to
points in the plane and E to non-intersecting curves connecting the corresponding
points.

C Prompt Showcase

In this section, we provide examples of prompts for building GraphPile, including Chain-
of-Thought Data, Real-World Graph Data, and Program-of-Thought Data.

C.1 Chain-of-Thought Data

Prompts C.1: An Example of LLM Rehearsal Prompt

You are provided with the following information:
1. A graph problem.
2. The answer to the problem.
3. Specific requirements for solving the problem.

Your task is to solve the problem step by step and present the solution in the required
format. Make sure to follow these instructions:
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1. Begin your response with "Let’s think step by step:".
2. Solve the problem systematically to find the answer. Do not attempt to verify the
provided answer; instead, focus on deriving and presenting the solution.
3. Ensure your explanation is clear, concise, and adheres to the required format.

Here is relative information:
Problem: {Problem}
Answer: {Answer}
Requirement: {Requirement}

Prompts C.2: An Example of LLM Examination Prompt

You are provided with the following information:
1. A graph problem.
2. The solution to the problem: a1.
3. The reasoning process for solving this problem concludes with the answer a2.

Your task is to determine whether the solution a1 aligns with the answer a2 de-
rived from the reasoning process. If they align, output ’Yes’; otherwise, output ’No’. Only
output ’Yes’ or ’No’ without providing any explanation.

Here is relative information:
Problem: {Problem}
Solution: {Solution}
Reasoning Process: {Reasoning Process}

C.2 Real-World Graph Data

Prompts C.3: An Example of LLM Rephrasing Prompt

You are provided with the following inputs:
(1) A graph described in natural language.
(2) A graph problem.
(3) A real-world domain.

Your task is to map the nodes in the graph and the graph problem to meaningful,
real-world names within the specified domain. Output the rephrased graph and graph
problem.

Here is relative information:
Graph: {Graph}
Problem: {Problem}
Domain: {Domain}

Prompts C.4: An Example of LLM Filtering Prompt

You are provided with the following information:
1. An original problem and answer pair involving a graph with numerical node ID.
2. A rephrased problem and answer pair involving a graph with real-world node ID.

Your task is to verify whether the nodes and edges in the original problems and answers
correspond one-to-one with those in the rephrased problems and answers. If they
correspond, output True; otherwise, output False. Only output True or False without
providing any explanation.

Here is relative information:
Original Problem: {Original Problem}
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Original Solution: {Original Solution}
Rephrased Problem: {Rephrased Problem}
Rephrased Solution: {Rephrased Solution}

C.3 Program of Thought Data

Prompts C.5: An Example of LLM Retrieval Prompt

You are provided with the following inputs:
(1) A graph problem described in natural language.
(2) A series of code documentations.

Your task is to generate Python code that directly solves the given graph problem. The
output should only include the code itself, written in a clear and functional manner. Do
not provide any explanations or restatements of the problem.

Here is relative information:
Problem: {Problem}
Documentations: {Documentations}

Prompts C.6: An Example of LLM Rewrite Prompt

You are provided with Python code that solves a specific graph problem. Your task is to
rewrite the code while adhering to the following guidelines:
(1) Retain the original logic and functionality of the provided code.
(2) Introduce variations in the implementation, such as using different syntax, alternative
methods, or restructuring the code for improved readability or efficiency.
(3) Ensure the rewritten code is clean, functional, and adheres to best practices.

Output only the modified code. Do not include any explanations or comments.

Here is relative information:
Code: {Code}

D Dataset Showcase

D.1 Details of the GraphPile Corpus

In this section, we provide a detailed description of the GraphPile corpus, including:
Chain-of-Thought Data, Real-World Graph Data, Program-of-Thought Data, and Trace-
of-Execution Data.

D.1.1 Chain of Thought Data

Examples D.1: An Example of the Cycle Detection Problem of Chain-of-Thought Data

Input: Determine whether or not there is a cycle in an undirected graph. In an undirected
graph, (i,j) means that node i and node j are connected with an undirected edge. Given a
graph, you need to output Yes or No, indicating whether there is a cycle in the graph. Q:
The nodes are numbered from 0 to 6, and the edges are: (0, 1), (0, 4), (0, 7), (0, 9), (1, 2), (1,
7), (1, 9), (2, 9), (3, 5), (3, 8), (5, 8), (7, 9), (8, 9). Is there a cycle in this graph?"

Output: Let’s think step by step:
To determine if there is a cycle in the given undirected graph, we can use a Depth-First
Search (DFS) approach. We will traverse the graph and keep track of visited nodes to
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detect if we encounter a node that has already been visited and is not the parent of the
current node, which would indicate the presence of a cycle.
1. Graph Representation: The graph has nodes numbered from 0 to 9, and the edges are:
(0, 1), (0, 4), (0, 7), (0, 9), (1, 2), (1, 7), (1, 9), (2, 9), (3, 5), (3, 8), (5, 8), (7, 9), (8, 9).
2. DFS Traversal: - Start at node 0. Mark it as visited. - From node 0, visit node 1. Mark
node 1 as visited. - From node 1, visit node 2. Mark node 2 as visited. - From node 2,
visit node 9. Mark node 9 as visited. - From node 9, we can visit node 0, which is already
visited and is not the parent of node 9 (the parent of node 9 is node 2). This indicates the
presence of a cycle.
3. Cycle Detection: The cycle detected is 0 -> 1 -> 2 -> 9 -> 0.
Since we have found a cycle in the graph, the answer is:
[Yes]

Examples D.2: An Example of the Shortest Path Problem of Chain-of-Thought Data

Input: Find the shortest path between two nodes in an undirected graph. In an
undirected graph, (i,j,k) means that node i and node j are connected with an undirected
edge with weight k. Given a graph and a pair of nodes, you need to output the shortest
path between the two nodes. Q: The nodes are numbered from 0 to 10, and the edges are:
(0, 6, 4), (0, 7, 6), (0, 12, 1), (0, 20, 1), (0, 21, 8), (1, 3, 9), (1, 4, 3), (1, 12, 7), (1, 15, 2), (1, 17,
10), (1, 20, 4), (2, 9, 9), (2, 10, 10), (2, 11, 1), (2, 17, 4), (3, 12, 7), (3, 13, 9), (3, 17, 1), (3, 18, 6),
(3, 19, 3), (3, 20, 5), (4, 5, 9), (4, 12, 7), (4, 21, 9), (5, 8, 7), (5, 11, 8), (5, 19, 7), (6, 13, 9), (6, 17,
7), (7, 10, 8), (7, 14, 10), (7, 16, 4), (7, 19, 8), (8, 14, 10), (8, 18, 10), (8, 19, 8), (10, 12, 2), (10,
18, 5), (11, 18, 9), (11, 20, 8), (11, 21, 2), (12, 17, 10), (12, 20, 2), (13, 17, 5), (15, 18, 9), (15, 20,
10), (16, 17, 4), (16, 20, 3), (18, 20, 8), (19, 21, 2). Give the weight of the shortest path from
node 13 to node 14.

Output: Let’s think step by step:
1. Understand the Problem: We need to find the shortest path from node 13 to node 14 in
the given undirected graph. The graph is represented by a list of edges, where each edge
connects two nodes with a specific weight.
2. Identify Relevant Edges: First, we identify all edges connected to node 13 and node 14,
as well as the edges that could potentially form a path between them.
- Node 13 is connected to nodes 3, 6, and 17. - Node 14 is connected to nodes 7, 8, and 16.
3. Explore Possible Paths: We explore possible paths from node 13 to node 14 by traversing
the graph and calculating the total weight of each path.
- Path 1: 13 -> 17 -> 16 -> 7 -> 14 - Edge 13-17 has a weight of 5. - Edge 17-16 has a weight
of 4. - Edge 16-7 has a weight of 4. - Edge 7-14 has a weight of 10. - Total Weight: 5 + 4 + 4
+ 10 = 23
- Path 2: 13 -> 6 -> 17 -> 16 -> 7 -> 14 - Edge 13-6 has a weight of 9. - Edge 6-17 has a
weight of 7. - Edge 17-16 has a weight of 4. - Edge 16-7 has a weight of 4. - Edge 7-14 has
a weight of 10. - Total Weight: 9 + 7 + 4 + 4 + 10 = 34
- Path 3: 13 -> 3 -> 17 -> 16 -> 7 -> 14 - Edge 13-3 has a weight of 9. - Edge 3-17 has a
weight of 1. - Edge 17-16 has a weight of 4. - Edge 16-7 has a weight of 4. - Edge 7-14 has
a weight of 10. - Total Weight: 9 + 1 + 4 + 4 + 10 = 28
4. Determine the Shortest Path: Among the explored paths, Path 1 (13 -> 17 -> 16 -> 7 ->
14) has the lowest total weight of 23.
5. Conclusion: The shortest path from node 13 to node 14 has a weight of 23.

Examples D.3: An Example of the Bipartite Checking Problem of Chain-of-Thought
Data

Input: Determine whether or not a graph is bipartite. In a directed graph, (i->j) means
that node i and node j are connected with an directed edge from node i to node j. Given a
graph, you need to output Yes or No, indicating whether the graph is bipartite. Q: The
nodes are numbered from 0 to 6, and the edges are: (0, 4), (0, 7), (0, 8), (0, 10), (0, 15), (0,
19), (0, 21), (1, 2), (1, 5), (1, 8), (1, 10), (1, 13), (1, 16), (1, 19), (1, 21), (2, 5), (2, 13), (2, 14), (2,
20), (3, 4), (3, 6), (3, 10), (3, 12), (3, 14), (3, 16), (3, 18), (3, 21), (4, 10), (4, 16), (4, 21), (5, 11),
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(5, 12), (5, 13), (5, 15), (5, 16), (5, 18), (6, 7), (6, 11), (6, 12), (6, 13), (6, 14), (7, 8), (7, 11), (7,
14), (7, 16), (7, 17), (7, 20), (7, 21), (8, 14), (8, 15), (8, 19), (8, 20), (8, 21), (9, 12), (9, 14), (9, 15),
(9, 18), (10, 12), (10, 16), (11, 12), (11, 15), (11, 16), (11, 20), (12, 15), (12, 21), (13, 14), (13, 15),
(13, 19), (13, 20), (13, 21), (14, 16), (14, 20), (14, 21), (15, 17), (15, 20), (15, 21). Is this graph
bipartite?

Output: Let’s think step by step:
1. Understanding Bipartite Graphs: A graph is bipartite if its nodes can be divided into
two disjoint sets U and V such that every edge connects a node in U to a node in V. This
means no two nodes within the same set are adjacent.
2. Analyzing the Given Graph: The graph has nodes numbered from 0 to 21, and the
edges are provided. To determine if the graph is bipartite, we need to check if we can
assign each node to one of two sets without having any edges between nodes in the same
set.
3. Checking for Bipartiteness: - Start by assigning node 0 to set U. - Since node 0 is
connected to nodes 4, 7, 8, 10, 15, 19, and 21, these nodes must be assigned to set V. -
Now, consider node 4, which is connected to nodes 0, 10, 16, and 21. Node 4 is already in
set V, so nodes 10, 16, and 21 must be in set U. - However, node 10 is connected to node 4,
which is in set V, so node 10 should be in set U. But node 10 is also connected to node 0,
which is in set U. This creates a conflict because node 10 cannot be in both sets U and V.
4. Conclusion: The conflict arises because node 4 and node 10 are in the same set, which
violates the bipartite condition. Therefore, the graph is not bipartite.
[No]

D.1.2 Real-World Graph Data

Examples D.4: An Example of the Diameter Problem of Real-World Graph Data

Input: You are required to calculate the diameter of an undirected knowledge graph. The
diameter of a graph is the maximum distance between any pair of nodes in the graph. To
compute this, you need to find the shortest path between all pairs of nodes and then
determine the maximum length of these shortest paths.

**Problem to Solve**

- Entities in this knowledge graph: Time in Chile, Peugeot 505, Canada, Renault 12,
Los Andes Chile, Renault 18, Isla de Maipo, Santa Isabel Córdoba - The relationships
between these entities are as follows: - Time in Chile is connected to Los Andes
Chile via the relationship timeZone. - Time in Chile is connected to Isla de Maipo
via the relationship timeZone. - Peugeot 505 is connected to Los Andes Chile via the
relationship assembly. - Canada is connected to Renault 12 via the relationship assembly.
- Renault 12 is connected to Los Andes Chile via the relationship assembly. - Renault
12 is connected to Santa Isabel Córdoba via the relationship assembly. - Renault 12 is
connected to Renault 18 via the relationship predecessor. - Los Andes Chile is connected
to Renault 18 via the relationship assembly. - Renault 18 is connected to Santa Isabel
Córdoba via the relationship assembly. Please determine the diameter of this network
and output the corresponding path in the following format: [Entity1, Entity2, ..., EntityN].

Output: [Canada, Renault 12, Los Andes Chile, Time in Chile, Isla de Maipo]

Examples D.5: An Example of the Maximum Clique Problem of Real-World Graph
Data

Input: You are required to solve the Maximum Clique Problem for an undirected
academic network. In this network, nodes represent authors and edges represent research
collaborations. Your objective is to find the largest subset of nodes such that every pair of
vertices in this subset is connected by an edge.
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**Problem to Solve**

- Authors in the network: Mark S. Daskin, Zuo-Jun Max Shen, James F. Campbell,
Mercedes Landete, Javier Alcaraz, Juan F. Monge, Alfredo Marín, José L. Sainz-Pardo -
Research collaborations between these authors: Mark S. Daskin and Zuo-Jun Max Shen,
Mark S. Daskin and Mercedes Landete, Mark S. Daskin and Juan F. Monge, Mark S.
Daskin and José L. Sainz-Pardo, Zuo-Jun Max Shen and Mercedes Landete, Zuo-Jun Max
Shen and Juan F. Monge, Zuo-Jun Max Shen and José L. Sainz-Pardo, James F. Campbell
and Alfredo Marín, James F. Campbell and Mercedes Landete, Mercedes Landete and
Alfredo Marín, Mercedes Landete and Javier Alcaraz, Mercedes Landete and Juan F.
Monge, Mercedes Landete and José L. Sainz-Pardo, Javier Alcaraz and Alfredo Marín,
Javier Alcaraz and Juan F. Monge, Javier Alcaraz and José L. Sainz-Pardo, Juan F. Monge
and Alfredo Marín, Juan F. Monge and José L. Sainz-Pardo, Alfredo Marín and José L.
Sainz-Pardo. Identify the clique with the maximum number of authors in this network.
Present your answer in the following format: [AuthorA, AuthorB, AuthorC, AuthorD,
...].

Output: [Mercedes Landete, Juan F. Monge, José L. Sainz-Pardo, Mark S. Daskin, Zuo-Jun
Max Shen]

D.1.3 Program-of-Thought Data
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Examples D.6: An Example of the Maximum Matching Problem of Program-of-
Thought Data

Input: Find a maximum matching in the bipartite graph. The graph is described as
follows: {0: [6, 7, 8, 9, 10, 11], 1: [7, 8, 9, 10], 2: [6, 7, 8, 9], 3: [6, 8, 12], 4: [9, 11], 5: [8, 11], 6:
[0, 2, 3], 7: [0, 1, 2], 8: [0, 1, 2, 3, 5], 9: [0, 1, 2, 4], 10: [0, 1], 11: [0, 4, 5], 12: [3]}. Nodes
set 1 contains: node_list1 = [0, 1, 2, 3]. Nodes set 2 contains the remaining nodes except
node_list1.

Output:
import re
import networkx as nx

# Graph description
graph = "{0: [6, 7, 8, 9, 10, 11], 1: [7, 8, 9, 10], 2: [6, 7, 8, 9],

3: [6, 8, 12], 4: [9, 11], 5: [8, 11], 6: [0, 2, 3], 7: [0, 1, 2],
8: [0, 1, 2, 3, 5], 9: [0, 1, 2, 4], 10: [0, 1], 11: [0, 4, 5], 12:
[3]}"

# Regular expression to extract connections
pattern = r"(\d+):\s*\[(.*?) \]"
matches = re.findall(pattern , graph)

# Create an undirected graph
G = nx.Graph()

# Add edges to the graph
for match in matches:

node = int(match [0])
edges = [int(edge) for edge in match [1]. split(", ")]
for edge in edges:

G.add_edge(node , edge)

# Define node_list1
node_list1 = [0, 1, 2, 3]

# Find maximum matching
print(nx.bipartite.maximum_matching(G, top_nodes=node_list1))

Examples D.7: An Example of the Pagerank Problem of Program-of-Thought Data

Input: Which node has the largest PageRank value in the undirected graph where Node
VEP is connected to nodes VLI, ULY; Node VLI is connected to nodes VEP, YTT, VWB,
ULY; Node ULY is connected to nodes VEP, BZF, FHK, VLI; Node BZF is connected to
nodes YTT, FHK, GUP, ULY; Node YTT is connected to nodes BZF, FHK, VLI, VWB; Node
FHK is connected to nodes BZF, YTT, GUP, ULY; Node GUP is connected to nodes BZF,
FHK, MOB; Node VWB is connected to nodes YTT, MOB, VLI; Node MOB is connected
to nodes GUP, VWB. The damping factor is alpha. The number of iterations is max_iter.
The initial PageRank values for all nodes are initialized equally as 1/N, where N is the
number of nodes.

Output:

import re
import networkx as nx

# Graph description
graph = """ Node VEP is connected to nodes VLI , ULY.
Node VLI is connected to nodes VEP , YTT , VWB , ULY.
Node ULY is connected to nodes VEP , BZF , FHK , VLI.
Node BZF is connected to nodes YTT , FHK , GUP , ULY.
Node YTT is connected to nodes BZF , FHK , VLI , VWB.
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Node FHK is connected to nodes BZF , YTT , GUP , ULY.
Node GUP is connected to nodes BZF , FHK , MOB.
Node VWB is connected to nodes YTT , MOB , VLI.
Node MOB is connected to nodes GUP , VWB."""

# Regular expression to extract connections
pattern = r'Node (\w+) is connected to nodes? ([\w, ]+)\.'
matches = re.findall(pattern , graph)

# Create an undirected graph
G = nx.Graph()

# Add edges to the graph
for node , neighbors in matches:

neighbors = neighbors.split(', ')
for neighbor in neighbors:

G.add_edge(node , neighbor)

# Parameters
alpha = 0.85
max_iter = 100

# Calculate PageRank
pr = nx.pagerank(G, alpha=alpha , max_iter=max_iter , nstart ={node: 1/G.

number_of_nodes () for node in G.nodes()})
max_pagerank = max(pr.values ())
print(max_pagerank)

Examples D.8: An Example of the Minimum Spanning Tree Problem of Program-of-
Thought Data

Input: Output the total weight of the minimum spanning tree (MST) for the weighted
undirected graph described as follows: In an undirected graph, the nodes are numbered
from 0 to 18, and the edges are: an edge between node 0 and node 13 with weight 6, an
edge between node 0 and node 11 with weight 10, an edge between node 0 and node 1
with weight 2, an edge between node 0 and node 14 with weight 3, an edge between
node 0 and node 8 with weight 10, an edge between node 0 and node 5 with weight 9, an
edge between node 0 and node 16 with weight 8, an edge between node 1 and node 13
with weight 8, an edge between node 1 and node 8 with weight 4, an edge between node
1 and node 4 with weight 3, an edge between node 1 and node 3 with weight 6, an edge
between node 2 and node 14 with weight 10, an edge between node 2 and node 5 with
weight 3, an edge between node 2 and node 16 with weight 8, an edge between node 3
and node 15 with weight 10, an edge between node 4 and node 13 with weight 2, an edge
between node 4 and node 8 with weight 8, an edge between node 4 and node 16 with
weight 10, an edge between node 4 and node 15 with weight 5, an edge between node 4
and node 6 with weight 2, an edge between node 5 and node 11 with weight 9, an edge
between node 5 and node 16 with weight 4, an edge between node 6 and node 14 with
weight 8, an edge between node 7 and node 11 with weight 7, an edge between node 8
and node 9 with weight 10, an edge between node 8 and node 15 with weight 9, an edge
between node 10 and node 14 with weight 5, an edge between node 11 and node 13 with
weight 3, an edge between node 11 and node 18 with weight 6, an edge between node 11
and node 16 with weight 9, an edge between node 12 and node 15 with weight 9, an edge
between node 13 and node 18 with weight 8, an edge between node 14 and node 15 with
weight 7, an edge between node 16 and node 17 with weight 3.

Output:

import re
import networkx as nx
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graph = "In an undirected graph , the nodes are numbered from 0 to 18,
and the edges are: an edge between node 0 and node 13 with weight
6, an edge between node 0 and node 11 with weight 10, an edge
between node 0 and node 1 with weight 2, an edge between node 0 and
node 14 with weight 3, an edge between node 0 and node 8 with

weight 10, an edge between node 0 and node 5 with weight 9, an edge
between node 0 and node 16 with weight 8, an edge between node 1

and node 13 with weight 8, an edge between node 1 and node 8 with
weight 4, an edge between node 1 and node 4 with weight 3, an edge
between node 1 and node 3 with weight 6, an edge between node 2 and
node 14 with weight 10, an edge between node 2 and node 5 with

weight 3, an edge between node 2 and node 16 with weight 8, an edge
between node 3 and node 15 with weight 10, an edge between node 4

and node 13 with weight 2, an edge between node 4 and node 8 with
weight 8, an edge between node 4 and node 16 with weight 10, an
edge between node 4 and node 15 with weight 5, an edge between node
4 and node 6 with weight 2, an edge between node 5 and node 11

with weight 9, an edge between node 5 and node 16 with weight 4, an
edge between node 6 and node 14 with weight 8, an edge between

node 7 and node 11 with weight 7, an edge between node 8 and node 9
with weight 10, an edge between node 8 and node 15 with weight 9,

an edge between node 10 and node 14 with weight 5, an edge between
node 11 and node 13 with weight 3, an edge between node 11 and node
18 with weight 6, an edge between node 11 and node 16 with weight

9, an edge between node 12 and node 15 with weight 9, an edge
between node 13 and node 18 with weight 8, an edge between node 14
and node 15 with weight 7, an edge between node 16 and node 17 with
weight 3."

# Regular expression to extract edges with weights
pattern = r'an edge between node (\d+) and node (\d+) with weight (\d+)

'
matches = re.findall(pattern , graph)

# Create an undirected graph
G = nx.Graph()

# Add edges with weights to the graph
for node1 , node2 , weight in matches:

G.add_edge(int(node1), int(node2), weight=int(weight))

# Calculate the total weight of the minimum spanning tree (MST)
T = nx.minimum_spanning_tree(G)
mst_edges_with_weight = T.edges(data=True)
total_weight = sum(edge [2]['weight '] for edge in mst_edges_with_weight)
print(total_weight)

Examples D.9: An Example of the Common Neighbor Problem of Program-of-Thought
Data

Input: Calculate the number of common neighbors of node1 and node2 in the undirected
graph described as follows: The nodes are numbered from 0 to 13, and the edges are: (0,
6) (0, 4) (0, 9) (0, 1) (0, 13) (0, 10) (0, 11) (1, 2) (1, 12) (1, 3) (1, 9) (1, 6) (2, 5) (2, 13) (2, 7) (2, 8)
(2, 9) (2, 12) (3, 11) (3, 13) (3, 8) (4, 7) (5, 11) (5, 8) (5, 10) (6, 13) (6, 11) (6, 7) (6, 10) (7, 11) (8,
13) (8, 10) (9, 12) (9, 10) (10, 12) (10, 13) (11, 12) (12, 13).

Output:

import re
import networkx as nx

# Graph description
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graph = "The nodes are numbered from 0 to 13, and the edges are: (0, 6)
(0, 4) (0, 9) (0, 1) (0, 13) (0, 10) (0, 11) (1, 2) (1, 12) (1, 3)
(1, 9) (1, 6) (2, 5) (2, 13) (2, 7) (2, 8) (2, 9) (2, 12) (3, 11)

(3, 13) (3, 8) (4, 7) (5, 11) (5, 8) (5, 10) (6, 13) (6, 11) (6, 7)
(6, 10) (7, 11) (8, 13) (8, 10) (9, 12) (9, 10) (10, 12) (10, 13)

(11, 12) (12, 13)."

# Regular expression to extract edges
pattern = r"\((\d+), (\d+)\)"

# Create an undirected graph
G = nx.Graph()

# Find all matches in the text
matches = re.findall(pattern , graph)

# Add edges to the graph
for i, j in matches:

G.add_edge(int(i), int(j))

# Parameters
node1 = 2
node2 = 5

# Calculate common neighbors
print(len(list(nx.common_neighbors(G, node1 , node2))))

Examples D.10: An Example of the Maximum Flow Problem of Program-of-Thought
Data

Input: Calculate the maximum flow between node1 and node2 in this graph. The nodes
are numbered from 0 to 6, and the edges are: (0->6,5) (1->6,5) (2->3,7) (3->4,8) (3->6,10)
(4->5,2). Given a directed graph with capacities assigned to its edges, the maximum
flow from a source node to a sink node is the maximum amount of flow that can be sent
from the source to the sink, respecting the capacity constraints on each edge. The goal is
to find the optimal way to route flow through the network to maximize the flow from
source to sink.

Output:

import re
import networkx as nx

# Graph description
text = "The nodes are numbered from 0 to 6, and the edges are: (0->6,5)

(1->6,5) (2->3,7) (3->4,8) (3->6,10) (4->5,2)."

# Regular expression to extract edges with weights
pattern = r'\((\d+) ->(\d+) ,(\d+)\)'
matches = re.findall(pattern , text)

# Create a directed graph
G = nx.DiGraph ()

# Add edges with weights to the graph
for node1 , node2 , weight in matches:

G.add_edge(int(node1), int(node2), weight=int(weight))

# Parameters
node1 = 0
node2 = 5
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# Calculate maximum flow
try:

flow_value , flow_dict = nx.maximum_flow(G, node1 , node2 , capacity='
weight ')

print(flow_value)
except:

print("error")

D.1.4 Trace-of-Execution Data

Examples D.11: Example of the Biapartite Problem of Trace-of-Execution Data

Input: Given an undirected graph with nodes [0, 1, 2, 3], the adjacency list is as follows:
0: [1, 2, 3], 1: [0], 2: [0], 3: [0].The code with initialized parameters is as follows:
Code:
def hungarian_algorithm_with_paths(adj_list , n_left , n_right_start):

match_right = {}
match_pairs = []

def dfs(node , visited):
for neighbor in adj_list.get(node , []):

if not visited[neighbor ]:
visited[neighbor] = True
if neighbor not in match_right:

match_right[neighbor] = node
return True

elif dfs(match_right[neighbor], visited):
match_right[neighbor] = node
return True

return False
max_matching = 0
for node in range(n_left):

visited = {key: False for key in range(n_right_start ,
n_right_start + n_left)}

if dfs(node , visited):
max_matching += 1

for right_node , left_node in match_right.items():
match_pairs.append ((left_node , right_node))

return max_matching , match_pairs

Initial values: adj_list = 0: [1, 2, 3], 1: [0], 2: [0], 3: [0], n_left = 1, n_right_start = 1
Find a maximum matching in the bipartite graph.
Nodes set 1 contains: 0. Nodes set 2 contains: 1 2 3.
Please solve the problem by tracing through the code.
Output: Let’s run the function hungarian_algorithm_with_paths(adj_list, n_left,
n_right_start).
Let 's run the function hungarian_algorithm_with_paths(adj_list , n_left ,

n_right_start).
Initial values: adj_list = {0: [1, 2, 3], 1: [0], 2: [0], 3: [0]},

n_left = 1, n_right_start = 1
Call hungarian_algorithm_with_paths ({0: [1, 2, 3], 1: [0], 2: [0], 3:

[0]},1,1)
match_right = {} and match_pairs = [].
max_matching = 0
for node: 0
Current match_right: {}
Initialize visited = {1: False , 2: False , 3: False}.
Call dfs(0,{1: False , 2: False , 3: False})
for neighbor: 1
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Since neighbor 1 is not visited
visited [1] = True
match_right = {}
Since neighbor 1 is not in match_right
match_right [1] = 0
Return True
Since dfs(0,{1: True , 2: False , 3: False}) returns True
max_matching = maximum_mactching + 1, max_matching: 1
Iterate over match_right: right_node = 1, left_node = 0
Add pair (0,1) to match_pairs
All nodes in set 1 are traversed , max_matching = [(0, 1)]

Answer:
[(0, 1)]

Examples D.12: Variant 1 of the Biapartite Problem (Question to Intermediate Variable)

Input: Given an undirected graph with nodes [0, 1, 2, 3], the adjacency list is as follows:
0: [1, 2, 3], 1: [0], 2: [0], 3: [0].The code with initialized parameters is as follows:
Code:

def hungarian_algorithm_with_paths(adj_list , n_left , n_right_start):
match_right = {}
match_pairs = []

def dfs(node , visited):
for neighbor in adj_list.get(node , []):

if not visited[neighbor ]:
visited[neighbor] = True
if neighbor not in match_right:

match_right[neighbor] = node
return True

elif dfs(match_right[neighbor], visited):
match_right[neighbor] = node
return True

return False
max_matching = 0
for node in range(n_left):

visited = {key: False for key in range(n_right_start ,
n_right_start + n_left)}

if dfs(node , visited):
max_matching += 1

for right_node , left_node in match_right.items():
match_pairs.append ((left_node , right_node))

return max_matching , match_pairs

Initial values: adj_list = 0: [1, 2, 3], 1: [0], 2: [0], 3: [0], n_left = 1, n_right_start = 1
What is the size of the maximum_matching?
Please solve the problem by tracing through the code.
Output: Let’s run the function hungarian_algorithm_with_paths(adj_list, n_left,
n_right_start).

Call hungarian_algorithm_with_paths ({0: [1, 2, 3], 1: [0], 2: [0], 3:
[0]},1,1)

match_right = {} and match_pairs = [].
max_matching = 0
for node: 0
Current match_right: {}
Initialize visited = {1: False , 2: False , 3: False}.
Call dfs(0,{1: False , 2: False , 3: False})
for neighbor: 1

28



Published as a conference paper at COLM 2025

Since neighbor 1 is not visited
visited [1] = True
match_right = {}
Since neighbor 1 is not in match_right
match_right [1] = 0
Return True
Since dfs(0,{1: True , 2: False , 3: False}) returns True
max_matching = max_matching + 1, max_matching: 1
Iterate over match_right: right_node = 1, left_node = 0
Add pair (0,1) to match_pairs
All nodes in set 1 are traversed , max_matching = [(0, 1)]
So the size of the maximum matching is 1

Answer:
1

Examples D.13: Variant 2 of the Biapartite Problem (Number to Real-world Name)

Input: Given an undirected graph with nodes [Alice Johnson, Bob Smith, Catherine Lee,
David Brown], the adjacency list is as follows: Alice Johnson: [Bob Smith, Catherine Lee,
David Brown], Bob Smith: [Alice Johnson], Catherine Lee: [Alice Johnson], David Brown:
[Alice Johnson].
The code with initialized parameters is as follows:
Code:

def hungarian_algorithm_with_paths(adj_list , n_left , n_right_start):
match_right = {}
match_pairs = []

def dfs(node , visited):
for neighbor in adj_list.get(node , []):

if not visited[neighbor ]:
visited[neighbor] = True
if neighbor not in match_right:

match_right[neighbor] = node
return True

elif dfs(match_right[neighbor], visited):
match_right[neighbor] = node
return True

return False
max_matching = 0
for node in range(n_left):

visited = {key: False for key in range(n_right_start ,
n_right_start + n_left)}

if dfs(node , visited):
max_matching += 1

for right_node , left_node in match_right.items():
match_pairs.append ((left_node , right_node))

return max_matching , match_pairs

Initialized parameters: adj_list = Alice Johnson: [Bob Smith, Catherine Lee, David Brown],
Bob Smith: [Alice Johnson], Catherine Lee: [Alice Johnson], David Brown: [Alice Johnson],
n_left = 1, n_right_start = 1.
Imagine you are planning events for two different groups of friends. Group 1 contains
Alice Johnson; Group 2 contains Bob Smith, Catherine Lee, David Brown. Your task is to
determine how to maximize the interactions between friends from Group 1 and Group 2.
Which friends from Group 1 should interact with which friends from Group 2 to make
the most connections?
Please solve the problem by tracing through the code.
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Output: Let’s run the function hungarian_algorithm_with_paths(adj_list, n_left,
n_right_start).

Initial values: adj_list = {Alice Johnson: [Bob Smith , Catherine Lee ,
David Brown], Bob Smith: [Alice Johnson], Catherine Lee: [Alice
Johnson], David Brown: [Alice Johnson]}, n_left = Bob Smith ,
n_right_start = Bob Smith

Call hungarian_algorithm_with_paths ({Alice Johnson: [Bob Smith ,
Catherine Lee , David Brown], Bob Smith: [Alice Johnson], Catherine
Lee: [Alice Johnson], David Brown: [Alice Johnson]},Bob Smith ,Bob
Smith)

match_right = {} and match_pairs = [].
max_matching = 0
for node: Alice Johnson
Current match_right: {}
Initialize visited = {Bob Smith: False , Catherine Lee: False , David

Brown: False}.
Call dfs(Alice Johnson ,{Bob Smith: False , Catherine Lee: False , David

Brown: False})
for neighbor: Bob Smith
Since neighbor Bob Smith is not visited
visited[Bob Smith] = True
match_right = {}
Since neighbor Bob Smith is not in match_right
match_right[Bob Smith] = Alice Johnson
Return True
Since dfs(Alice Johnson ,{Bob Smith: True , Catherine Lee: False , David

Brown: False}) returns True
max_matching = maximum_mactching + 1, max_matching: 1
Iterate over match_right: right_node = Bob Smith , left_node = Alice

Johnson
Add pair (Alice Johnson ,Bob Smith) to match_pairs
All nodes in set 1 are traversed , max_matching = [(Alice Johnson , Bob

Smith)]

Answer:
[(Alice Johnson , Bob Smith)]

Examples D.14: Variant 3 of the Biapartite Problem (Combination of Variant 1 and
Variant 2)

Input: Given an undirected graph with nodes [Alice Johnson, Bob Smith, Catherine Lee,
David Brown], the adjacency list is as follows: Alice Johnson: [Bob Smith, Catherine Lee,
David Brown], Bob Smith: [Alice Johnson], Catherine Lee: [Alice Johnson], David Brown:
[Alice Johnson].
The code with initialized parameters is as follows:
Code:

def hungarian_algorithm_with_paths(adj_list , n_left , n_right_start):
match_right = {}
match_pairs = []

def dfs(node , visited):
for neighbor in adj_list.get(node , []):

if not visited[neighbor ]:
visited[neighbor] = True
if neighbor not in match_right:

match_right[neighbor] = node
return True

elif dfs(match_right[neighbor], visited):
match_right[neighbor] = node
return True

return False
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max_matching = 0
for node in range(n_left):

visited = {key: False for key in range(n_right_start ,
n_right_start + n_left)}

if dfs(node , visited):
max_matching += 1

for right_node , left_node in match_right.items():
match_pairs.append ((left_node , right_node))

return max_matching , match_pairs

What is the size of the maximum matching?
Please solve the problem by tracing through the code.
Output: Let’s run the function hungarian_algorithm_with_paths(adj_list, n_left,
n_right_start).

Initial values: adj_list = {Alice Johnson: [Bob Smith , Catherine Lee ,
David Brown], Bob Smith: [Alice Johnson], Catherine Lee: [Alice
Johnson], David Brown: [Alice Johnson]}, n_left = Bob Smith ,
n_right_start = Bob Smith

Call hungarian_algorithm_with_paths ({Alice Johnson: [Bob Smith ,
Catherine Lee , David Brown], Bob Smith: [Alice Johnson], Catherine
Lee: [Alice Johnson], David Brown: [Alice Johnson]},Bob Smith ,Bob
Smith)

match_right = {} and match_pairs = [].
max_matching = 0
for node: Alice Johnson
Current match_right: {}
Initialize visited = {Bob Smith: False , Catherine Lee: False , David

Brown: False}.
Call dfs(Alice Johnson ,{Bob Smith: False , Catherine Lee: False , David

Brown: False})
for neighbor: Bob Smith
Since neighbor Bob Smith is not visited
visited[Bob Smith] = True
match_right = {}
Since neighbor Bob Smith is not in match_right
match_right[Bob Smith] = Alice Johnson
Return True
Since dfs(Alice Johnson ,{Bob Smith: True , Catherine Lee: False , David

Brown: False}) returns True
max_matching = maximum_mactching + 1, max_matching: 1
Iterate over match_right: right_node = Bob Smith , left_node = Alice

Johnson
Add pair (Alice Johnson ,Bob Smith) to match_pairs
All nodes in set 1 are traversed , max_matching = [(Alice Johnson , Bob

Smith)]
So the size of the maximum matching is 1

Answer:
1

E Details of Evaluation

E.1 Base Models, Training Settings, and Evaluation Settings

Base Models. We build GraphMind upon three base models: Llama-3.1-8b, Llama-3-8b, and
Gemma-2-2b, which also serve as baseline models in our experiments.

Training Settings. During continue-pretraining, all models are trained with a learning
rate of 3 × 10−5, over 3 epochs, with a maximum sequence length of 8192, and a batch size
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of 1024. These experiments are conducted on a system equipped with 32 NVIDIA H100
GPUs. For post-training, we configure the learning rate, number of epochs, and total batch
size to 1 × 10−5, 3.0, and 64, respectively, for the two Llama models. For the Gemma models,
the corresponding settings are 1 × 10−5, 3.0, and 128. These post-training tasks are executed
on a system featuring 4 NVIDIA A800 GPUs.

Evaluation Settings. We evaluate model performance using accuracy, calculated as the
number of correct responses divided by the total number of problems. For text generation
in our main experiments, we configure the following hyperparameters: temperature = 0,
top_p = 0.95, min_p = 0, and max_token = 16384.

E.2 Benchmark information

To comprehensively evaluate the reasoning capabilities of GraphMindacross diverse domains,
we selected seventeen widely-used benchmark datasets spanning mathematical, logical,
algorithmic, and graph-based reasoning tasks.

• GSM8K: This dataset contains 1K high-quality, linguistically diverse grade school
math word problems, designed for evaluating model’s multi-step mathematical
reasoning on basic mathematical problems that require multi-step reasoning.

• MATH: It consists of 12,500 challenging competition mathematics problems, this
dataset is designed to evaluate the model’s capability to solve advanced mathemati-
cal problems.

• GSM8K-Hard: Created by replacing the numbers in the original questions with
larger and less common numbers, GSM8K-hard is a more challenging version of
the GSM8K math reasoning dataset.

• SVAMP: This is an elementary-level math word problem dataset containing 1,000
samples, created to assess models’ sensitivity to problem structure and reasoning
capabilities.

• ASDIV: This is a diverse English math word problem corpus, containing 2,305 math
word problems (MWPs) taught in elementary school, designed to evaluate and
develop MWP solvers in terms of both language patterns and problem types.

• MAWPS: Collected from various online educational websites, the MAWPS contains
3320 English mathematical word problems to evaluate and develop math word
problem-solving models of LLM.

• MINERVA_MATH: This dataset contains 272 complex mathematical questions,
carefully selected to test a model’s capacity for advanced problem-solving and
reasoning in mathematics.

• MMLU-STEM: This dataset encompass 57 subjects across multiple disciplines to
assesses both the breadth and depth of a model’s knowledge, similar to academic
and professional testing environments. We selected the STEM subset of MMLU,
which contains around 3K problems.

• TABMWP: Comprising 8,500 text-formulated problems that challenges for machines
in abstract thinking and logical reasoning, the TABMWP benchmark provides a
specialized evaluation framework for structured mathematical reasoning utilizing
tabular-based math word problems.

• MATHQA: This is a large-scale dataset of 3K math word problems for LLM by
using a new representation language to annotate over the AQuA-RAT((Ling et al.,
2017)) dataset with fully-specified operational programs.

• SAT-MATH: This dataset is composed of math problems designed to reflect the style
and difficulty of questions found on the SAT exam. It evaluates a model’s ability to
tackle a wide range of mathematical topics, including algebra, geometry, and basic
data analysis, making it a useful benchmark for assessing general mathematical
proficiency.
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• Zebra Puzzle: The dataset comprises 1,000 logic grid puzzles that are derived
from constraint satisfaction problems (CSPs) and is designed to evaluate the logical
reasoning capabilities of large language models (LLMs).

• Ruletaker: The dataset contain theories and assertions designed to assess the logical
reasoning capabilities of a model. Facts and rules are presented in natural language
sentences, thus avoiding the need for a formal representation.

• Proof-Writer: This dataset contains numerous small rulebases of facts and rules,
expressed in English. It also includes a set of questions (statements in English) that
can be proven true or false using proofs of varying depths, or the answer may be
’Unknown’ (in an open-world assumption, OWA) or assumed to be negative (in a
closed-world assumption, CWA). These tasks involve logical reasoning.

• CLRS: Selected from the third edition of the standard Introduction to Algorithms,
CLRS includes a suite of implementations of classical algorithms, aimed at evaluat-
ing algorithmic reasoning through practical tasks.

• HotpotQA: This dataset focuses on multi-hop reasoning and cross-document infor-
mation integration. It presents questions that require combining facts from multiple
passages to derive answers, testing a model’s ability to build explicit reasoning
chains.

• PopQA: This dataset is a large-scale, entity-centric QA benchmark designed to probe
language models’ memorization of factual knowledge, particularly focusing on long-
tail entities. PopQA contains 14k questions derived from Wikidata triples across
16 relationship types (e.g., occupation, capital, director), with subject popularity
quantified via Wikipedia page views.

• GraphWiz: The dataset consists of 3,600 samples covering 9 distinct graph-related
reasoning tasks, with complexities ranging from linear and polynomial time to
NP-complete problems. We use them to evaluate the capabilities of LLM in graph
reasoning taks.

• GraphInstruct: The dataset consists of 21 classical graph-based reasoning tasks
designed to evaluate the model’s graph reasoning capabilities. We selected a subset
of the dataset, consisting of tasks that are similar to those in other reasoning tasks
in terms of content.

• Strategy QA: Strategy QA provides a question answering benchmark to evaluate
models’ ability to answer questions requiring implicit multi-step reasoning. Each
example contains a strategy question, its decomposition into reasoning steps, and
evidence paragraphs from Wikipedia.

• Hellaswag: This benchmark is designed to evaluate commonsense natural language
inference (NLI) in natural language processing (NLP) models, consisting of 100,000
question-answer pairs. It aims to assess the models’ ability to generate contextually
appropriate textual continuations.

E.3 Details of Evaluation in Graph Reasoning Datasets

The detailed evaluation results on graph reasoning datasets (Graphwiz and GraphInstruct)
are presented in Table 7. For clarity, we formally define the abbreviated metrics as follows:

• Graphwiz:
– Cycle: Cycle detection.
– Connectivity: Graph connectivity.
– Flow: Maximum flow.
– Shortest: Shortest path from .
– Topology: Topological sorting.

• GraphInstruct:
– CC-C: Clustering Coefficient calculation.
– CC-N: Connected Component Network.
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Figure 6: Model performances across different temperature settings.

– MF: Maximum Flow.
– PD: Predecessor.
– CN: Common Neighbor.
– BP: Bipartite.
– PR: Page Rank.

Graphwiz GraphInstruct

Model Cycle Connectivity Flow Shortest Topology Avg. CC-C MF PD CN BP CC-N PR Avg.

Gemma-2-2b 34.5 77.5 6.75 1.5 52.75 34.6 2.36 0 1.01 13.51 73.97 9.8 0 14.38
+ GraphPile 90.25 68.75 4.5 14.75 95.75 54.8 45 49 71 98.31 99.32 13.85 0 53.78

Llama-3-8b 20.25 0 2 0 0.25 4.5 14.19 1.01 10.14 63.51 95.27 27.03 8.78 31.42
+ GraphPile 86 50.25 0.8 12.75 99.75 49.91 66.55 63.85 76.35 99.66 87.5 30.74 19.26 63.42

Llama-3.1-8b 2 0 5.75 1.25 0.5 1.9 18.24 0.34 7.43 63.85 97.64 10.47 25.8 31.97
+ GraphPile 82.25 58.5 4.5 17.75 98 52.2 63.18 57.77 93.24 99.66 99.66 35.81 60.81 72.88

Table 7: Evaluation details on GraphWiz and GraphInstruct

E.4 Significance Test

In this section, we perform a significance test to evaluate whether GraphMind consis-
tently outperforms its base model across varying temperature settings. Specifically, we
assess performance on four benchmark datasets—GSM8K, CLRS, Ruletaker, and GraphIn-
struct—comparing GraphMind-Llama3 against its base model at temperatures of 0, 0.3,
0.6, and 0.9. For each temperature, we generate three responses per sample and compute
the average accuracy to ensure robust statistical comparison. The results are shown in
Figure 6. Besides, we further compute the mean, mean difference, and p-value (using an
independent-sample t-test across the four temperature settings) for each dataset. The results
are demonstrated in Table 8.

Dataset Llama3-8b Mean GraphMind-8b Mean Mean Diff p-value

GSM8K 33.35 41.80 8.45 0.515044
CLRS 4.49 15.84 11.35 0.357915
Ruletaker 22.55 45.50 22.95 0.000389
GraphInstruct 31.00 63.85 32.85 0.000114

Table 8: Significance test on Llama3-8b and GraphMind-8b.

As shown, GraphMind-8b consistently outperforms the base Llama3-8b model on all
datasets. The improvements on Ruletaker and GraphInstruct are statistically significant (p
< 0.05), confirming the reliability of the observed gains. On GSM8K and CLRS, although
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GraphMind-8b achieves higher mean performance, the difference is not statistically signifi-
cant, mainly due to the large variance across different temperature settings, which results in
higher p-values.

E.5 Comparative Case Studies: GraphMind vs. Baseline Models

In this section, we evaluates reasoning capability of GraphMind against baselines on: (1)
mathematics, (2) logical inference, (3) algorithm, and (4) graph reasoning. These case
studies demonstrate enhanced reasoning abilities through continued pretraining, with
visual annotations highlighting critical improvements.

• Theorem Proving: Figure 7 illustrates the baseline’s poor instruction following
versus GraphMind’s validated inference chains

• Algorithm Implementation: Figure 8 reveals the baseline’s lacked intermediate
states versus GraphMind’s detailed tracing steps

• Graph Analysis: Figure 9 reveals the baseline’s structural deficiency in cycle detec-
tion versus GraphMind’s symbolic execution framework with guaranteed termina-
tion proofs.

Question: 

Theory: The lion chases the rabbit. The lion is not big. The lion is cold. The lion is red. The lion likes the rabbit. The lion sees the rabbit. The rabbit 

chases the lion. The rabbit is not cold. The rabbit is kind. The rabbit is not red. The rabbit likes the lion. The rabbit sees the lion. If someone chases 

the lion and they chase the rabbit then they see the rabbit. If someone sees the rabbit and they do not chase the lion then the lion chases the rabbit. If 

someone likes the lion and the lion is big then the lion chases the rabbit. If someone sees the rabbit then the rabbit is not big. If someone is cold 

then they like the lion. If someone likes the lion and they do not chase the rabbit then the rabbit sees the lion.

Question: The rabbit likes the rabbit.

Answer: Present your answer in the following format: [True] or [False] or [Unknown].

(A) Output (Llama 3-8b-base):

Theory: The rabbit eats the squirrel. The squirrel does not need the rabbit. If someone visits the rabbit and they are not red then the rabbit is not 

young. If the squirrel is young and the squirrel needs the rabbit then the rabbit eats the squirrel. If someone eats the squirrel then they are nice. If 

someone visits the rabbit and the rabbit needs the squirrel then the squirrel is not big. If someone is nice then they need the squirrel. If someone 

needs the squirrel and the squirrel is round then they eat the rabbit.

(B) Output (GraphMind):
 Let's think step by step:

1. **Understanding the Problem**: We are given a series of statements and a question. The statements are in the form of a theory, and the question 

is a query about the truth value of a specific statement. Our goal is to determine whether the statement "The rabbit likes the rabbit" is true, false, or 

unknown based on the given theory.

2. **Analyzing the Theory**: The theory consists of a set of logical rules and facts. Each rule is a conditional statement of the form "If A then B," 

where A and B are statements. The facts are simple statements that are assumed to be true.

3. **Evaluating the Question**: The question is "The rabbit likes the rabbit." We need to determine if this statement is true, false, or unknown 

based on the theory.

4. **Using the Theory to Evaluate the Question**:

- **Rule 1**: "If someone chases the lion and they chase the rabbit then they see the rabbit."

- **Rule 2**: "If someone sees the rabbit and they do not chase the lion then the lion chases the rabbit."

- **Rule 3**: "If someone likes the lion and the lion is big then the lion chases the rabbit. "

- **Rule 4**: "If someone sees the rabbit then the rabbit is not big. "

- **Rule 5**:  "If someone is cold then they like the lion. "

- **Rule 6**:  "If someone likes the lion and they do not chase the rabbit then the rabbit sees the lion. " 

5. **Applying the Rules**:

- **Rule 1~Rule 6**: This rule does not directly apply to the question  "The rabbit likes the rabbit. "

6. **Conclusion**: None of the rules directly apply to the question  "The rabbit likes the rabbit. " Therefore, we cannot determine the truth value of 

this statement based on the given theory. 

7. **Final Answer**: Since the question cannot be evaluated based on the given theory, the answer is  "Unknown."

Wrong

Correct

Figure 7: Logical reasoning comparison on ProofWriter: Baseline’s incomplete inference
chain (up) versus GraphMind’s theorem-proving trajectory (down).
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Question: Below is an instruction that describes a task. Give your final answer behind '#### '.Write a response that appropriately completes the 

request.

### Instruction: Every day, Wendi feeds each of her chickens three cups of mixed chicken feed, containing seeds, mealworms and vegetables to 

help keep them healthy.  She gives the chickens their feed in three separate meals. In the morning, she gives her flock of chickens 15 cups of 

feed.  In the afternoon, she gives her chickens another 25 cups of feed.  How many cups of feed does she need to give her chickens in the final 

meal of the day if the size of Wendi's flock is 20 chickens?

### Response: Let's think step by step.

(A) Output (Gemma-2b-base):

In the morning, Wendi gives her chickens 15 cups of feed. In the afternoon, she gives them 25 cups. By the end of the day, she has given her 

chickens 15+25=<<15+25=40>>40 cups of feed.

If the size of Wendi's flock is 20 chickens, then in the final meal of the day, she needs to give each chicken 40/20=2 cups of feed.

(B) Output (GraphMind):

Wendi feeds each chicken 3 cups of feed per day, and since she has 20 chickens this means she needs to feed them 20 * 3 = <<20*3=60>>60 cups 

of feed per day.

Wendi feeds her chickens 15 cups of feed in the morning and 25 cups in the afternoon, so she has already given them 15 + 25 = <<15+25=40>>40 

cups of feed.

If we consider the size of Wendi's flock, which is 20 chickens, we can see that she needs to give them 60 cups of feed - 40 cups of feed = <<60-

40=20>>20 cups of feed in the final meal of the day.

Wrong

Correct

Figure 8: Comparison of mathematical reasoning on a GSM8K: Baseline’s reasoning without
intermediate states(up) versus GraphMind’s formally verified computation steps in tracing
the mathematical task(down). Correct intermediate calculations are marked green.

Question: Below is an instruction that describes a task. Write a response that appropriately completes the request step by step.

### Instruction:

Determine whether or not there is a cycle in an undirected graph. In an undirected graph, (i,j) means that node i and node j are connected with 

an undirected edge. Given a graph, you need to output Yes or No, indicating whether there is a cycle in the graph. Q: The nodes are numbered 

from 0 to 4, and the edges are: (0, 3) (0, 4) (0, 1) (0, 2) (1, 4) (1, 2) (1, 3) (2, 3) (2, 4) (3, 4). Is there a cycle in this graph?

### Response:

(A) Output (Gemma-2b-base):

1. Create a graph with 5 nodes and 9 edges.

2. Use a set to store the visited nodes.

3. Use a queue to store the nodes to be visited.

4. Use a while loop to iterate through the nodes in the queue.

5. If the current node is not in the visited set, add it to the visited set and add its neighbors to the queue.

6. If the current node is in the visited set, there is a cycle in the graph.

7. If the queue is empty, there is no cycle in the graph.

8. Return the result.

(B) Output (GraphMind):
Yes

### Explanation:

To determine whether there is a cycle in the given undirected graph, we can use Depth-First Search (DFS). The graph has nodes numbered from 0 

to 4, and the edges are: (0, 3), (0, 4), (0, 1), (0, 2), (1, 4), (1, 2), (1, 3), (2, 3), (2, 4), (3, 4).

1. **DFS Traversal**:

   - Start at node 0.

   - From node 0, we can visit nodes 1, 2, 3, and 4.

   - Let's visit node 1 next.

   - From node 1, we can visit nodes 0, 2, 3, and 4.

   - Let's visit node 2 next.

   - From node 2, we can visit nodes 0, 1, 3, and 4.

   - Let's visit node 3 next.

   - From node 3, we can visit nodes 0, 1, 2, and 4.

   - Let's visit node 4 next.

   - From node 4, we can visit nodes 0, 1, 2, and 3.

2. **Cycle Detection**:

   - During the DFS traversal, we notice that node 4 is connected back to node 0, which is already visited and is not the parent of node 4.

   - This forms a cycle: 0 -> 1 -> 2 -> 3 -> 4 -> 0.

3. **Conclusion**:

   - Since we have found a cycle in the graph, the answer is Yes.

[Yes]

Wrong

Correct

Give a description of algorithm without answer and reasoning

Reason steps by steps then give the final answer

Figure 9: Graph reasoning analysis: Baseline’s erroneous cycle detection (up) compared
to GraphMind’s correct identification with symbolic execution traces (down). Critical
reasoning trajectories are marked green.

36


	Introduction
	GraphPile
	Reasoning Paradigms
	GraphPile Collection

	Experiments
	Experimental Settings
	Main Results
	Post-Training
	Ablation Studies

	Conclusion
	Related Works
	Additional Definition
	Task Definitions

	Prompt Showcase
	Chain-of-Thought Data
	Real-World Graph Data
	Program of Thought Data

	Dataset Showcase
	Details of the GraphPile Corpus
	Chain of Thought Data
	Real-World Graph Data
	Program-of-Thought Data
	Trace-of-Execution Data


	Details of Evaluation
	Base Models, Training Settings, and Evaluation Settings
	Benchmark information
	Details of Evaluation in Graph Reasoning Datasets
	Significance Test
	Comparative Case Studies: GraphMind vs. Baseline Models


