
Stochastic Layer-Wise Shuffle for Improving Vision Mamba Training

Zizheng Huang 1 2 3 Haoxing Chen 3 Jiaqi Li 4 Jun Lan 3 Huijia Zhu 3 Weiqiang Wang 3 Limin Wang 1 5

Abstract
Recent Vision Mamba (Vim) models exhibit
nearly linear complexity in sequence length, mak-
ing them highly attractive for processing visual
data. However, the training methodologies and
their potential are still not sufficiently explored.
In this paper, we investigate strategies for Vim and
propose Stochastic Layer-Wise Shuffle (SLWS),
a novel regularization method that can effec-
tively improve the Vim training. Without archi-
tectural modifications, this approach enables the
non-hierarchical Vim to get leading performance
on ImageNet-1K compared with the similar type
counterparts. Our method operates through four
simple steps per layer: probability allocation to
assign layer-dependent shuffle rates, operation
sampling via Bernoulli trials, sequence shuffling
of input tokens, and order restoration of outputs.
SLWS distinguishes itself through three princi-
ples: (1) Plug-and-play: No architectural modi-
fications are needed, and it is deactivated during
inference. (2) Simple but effective: The four-step
process introduces only random permutations and
negligible overhead. (3) Intuitive design: Shuf-
fling probabilities grow linearly with layer depth,
aligning with the hierarchical semantic abstrac-
tion in vision models. Our work underscores the
importance of tailored training strategies for Vim
models and provides a helpful way to explore their
scalability. Code and models are available at the
open source URL.

1. Introduction
Vision Transformers (ViTs) (Dosovitskiy et al., 2021; Liu
et al., 2021; Dong et al., 2022; He et al., 2022; Bao et al.,
2022) have achieved remarkable performance in modeling
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visual data, yet their quadratic complexity w.r.t. sequence
length (Katharopoulos et al., 2020) remains a significant
drawback. In contrast, recent advances in State Space Mod-
els (SSMs) (Kalman, 1960; Gu et al., 2021a;b; Smith et al.,
2023) offer potentially more efficient sequence-based vision
encoders (Zhu et al., 2024; Smith et al., 2023; Liang et al.,
2024; Zhang et al., 2024b; Li et al., 2024b). Among these,
Mamba (Gu & Dao, 2023; Dao & Gu, 2024) stands out for
its hardware-friendly design and selective scan computation,
enabling near-linear complexity for longer sequences and
prompting adoption in various vision tasks (Zhu et al., 2024;
Liu et al., 2024c; Wang et al., 2024; Yang et al., 2024a).
Extensions that incorporate 2-D scanning paths and visual
priors (Zhu et al., 2024; Li et al., 2024a; Huang et al., 2024;
Zhang et al., 2024a; Li et al., 2025; Tang et al., 2024) have
demonstrated competitive or even superior performance
compared to ViTs (Liang et al., 2024; Wu et al., 2024;
Yue & Li, 2024). Such improvements, observed across su-
pervised pre-training and diverse downstream applications
(Chen et al., 2024; Patro & Agneeswaran, 2024; Phung et al.,
2024), highlight Mamba’s potential as an efficient, scalable
foundation for visual processing (Yang et al., 2024b; Liu
et al., 2024a; Xiao et al., 2024).

Initial efforts to scale up Vision Mamba (Vim) models were
hindered by overfitting issues (Zhu et al., 2024; Ren et al.,
2024; Li et al., 2025), causing performance degradation and
even model collapse. In addition, the non-hierarchical Vim
architecture further complicates the pursuit of higher accu-
racy (Li et al., 2024a; Tang et al., 2024). Although a limited
number of supervised and unsupervised strategies (Wang
et al., 2024; Liu & Yi, 2024) have successfully trained and
scaled certain Mamba-based models to huge sizes (Ren
et al., 2024), recent research has moved beyond mere model
enlargement toward broader, more robust improvements.
Nevertheless, more efficient training methodologies are still
urgently needed to overcome challenges like overfitting and
narrow the performance gap with leading architectures such
as ViT on ImageNet-1k (He et al., 2022; Wei et al., 2022a;
Hou et al., 2022; Peng et al., 2022), where MambaMLP-
L (Ren et al., 2024) (84.5%) still trails MAE-L (He et al.,
2022) (85.9%).

In this paper, we focus on training methods for Vim models
and propose a Stochastic Layer-Wise Shuffle regularization
algorithm that effectively mitigates overfitting and boosts
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performance in large-scale Vim architectures. Concretely,
the algorithm unfolds in four steps at each layer’s forward
pass: (1) probability allocation to assign layer-dependent
shuffle rates, (2) operation sampling via a Bernoulli trial,
(3) shuffling the input token sequence, and (4) restoring the
output sequence to its original order. The underlying ratio-
nale is that deeper layers, which need higher-level semantic
representations, can tolerate greater perturbations in token
positions, whereas shallower layers should remain sensi-
tive to low-level information. Restoring the sequence order
prevents recursive effects for later layers. We verify the ef-
fectiveness of this method in both supervised classification
settings and a pre-training plus fine-tuning paradigm. The
main contributions of this paper are summarized as follows:

(1) We present a Stochastic Layer-Wise Shuffle regular-
ization algorithm for non-hierarchical Vision Mamba
models. This plug-and-play method effectively mit-
igates overfitting, introduces minimal overhead, and
requires no changes to the underlying architecture.

(2) In a supervised setting, we show that the algorithm
successfully addresses overfitting in large-scale mod-
els, boosting performance in visual classification and
downstream dense prediction tasks (e.g., ADE20K seg-
mentation and COCO detection).

(3) We further integrate masked feature distillation into the
Vim pretraining process, demonstrating Vision Mamba
can also beneficial from a semantic-rich frozen tok-
enizer. Notably, incorporating SLWS achieves 87.6%
accuracy on ImageNet-1K, establishing a new state-of-
the-art for Vision Mamba models on this benchmark.

2. Related Work
Vision Backbones In the field of computer vision, the
exploration of efficient and scalable backbone architec-
tures has led to significant advancements (He et al., 2016;
Krizhevsky et al., 2017; Dosovitskiy et al., 2021; Zhu et al.,
2024), primarily driven by CNNs (Simonyan & Zisserman,
2015; Li et al., 2019; Liu et al., 2022b) and ViTs (Dosovit-
skiy et al., 2021; Liu et al., 2021; Wang et al., 2021) recently.
Initially, CNNs serve as the foundation and have evolved
into deeper architectures, such as AlexNet (Krizhevsky
et al., 2017), VGG (Simonyan & Zisserman, 2015), and
ResNet (He et al., 2016). Various studies have introduced
advanced operators, architectures, and attention mechanisms
to improve the effectiveness of models such as SENet (Hu
et al., 2018) and SKNet (Li et al., 2019). The continuous
refinement of convolutional layers has resulted in architec-
tures like RepLKNet (Ding et al., 2022) and ConvNeXt
(Liu et al., 2022b), which offer improved scalability and
accuracy. Despite significant advancements, CNNs primar-

ily focus on exploiting spatial locality, making assumptions
about feature locality, translation, and scale invariance.

The introduction of ViT (Dosovitskiy et al., 2021) marks a
turning point. Adapted from the NLP community (Vaswani
et al., 2017), ViTs treat images as sequences of flattened 2D
patches to capture global relationships (Liu et al., 2022a;
Wang et al., 2021). As ViTs evolved, models like DeiT
addressed optimization challenges (Touvron et al., 2021; He
et al., 2022), while others introduced hierarchical structures
and convolution operations to incorporate inductive biases
of visual perception (Liu et al., 2021; Wang et al., 2021;
2022). These modifications allow for better performance
across diverse visual tasks, although at the cost of added
complexity in the models. Recently, there has been a trend
of reverting to the original, plain ViT architecture due to
its simplicity and flexibility in pre-training and fine-tuning
across tasks (Bao et al., 2022; Xia et al., 2022; Carion
et al., 2020; Cheng et al., 2022). However, one of the major
challenges is the quadratic complexity of the self-attention
mechanism (Katharopoulos et al., 2020; Zhu et al., 2023)
limits the number of visual tokens that can be processed
thereby impacting efficiency.

State Space Vision Models Early state space transforma-
tions (Gu et al., 2021a;b; Smith et al., 2023; Gu et al., 2023),
inspired by continuous state models and bolstered by HiPPO
initialization (Gu et al., 2020), showcased the potential for
handling extensive dependency problems (Nguyen et al.,
2023; Tallec & Ollivier, 2018). To overcome computational
and memory issues, S4 (Gu et al., 2021a) enforced diagonal
structure on the state matrix, while S5 (Smith et al., 2023)
introduced parallel scanning to enhance efficiency further.
The Mamba model (Gu & Dao, 2023; Dao & Gu, 2024)
stands out for its novel approach to SSMs. By parameter-
izing the state space matrices as projections of input data,
Mamba proposes the more flexible selective scanning.

While ViTs and CNNs have laid a robust foundation for
various visual tasks, Mamba offers a unique potential due to
the ability to scale linearly with sequence length (Patro &
Agneeswaran, 2024; Zhu et al., 2024; Nguyen et al., 2022;
Lieber et al., 2024). S4ND (Nguyen et al., 2022) is the
pioneering effort to integrate SSM into visual applications.
However, the straightforward expansion did not efficiently
capture image information. This gap led to further innova-
tions in hybrid CNN-SSM hierarchical architecture, such as
U-Mamba (Liu et al., 2024b), VMamba (Liu et al., 2024c)
and MambaMixer(Behrouz et al., 2024). Recent efforts have
sought to build generic vision backbones purely based on
SSMs without relying on attention mechanisms (Zhu et al.,
2024; Li et al., 2024a; Wang et al., 2024; Ren et al., 2024).
Vision Mamba model, built by sequentially stacking Mamba
blocks, has been shown to outperform ViT or perform on
par in small model sizes (Wang et al., 2024; Liu & Yi, 2024;

2



Stochastic Layer-Wise Shuffle for Improving Vision Mamba Training

Yang et al., 2024a). There are also some work exploring to
refine the scanning method in Vim for visual data (Yang
et al., 2024a; Li et al., 2024a; Huang et al., 2024; Chen et al.,
2024; Tang et al., 2024; Pei et al., 2024). Nevertheless, Vims
are stuck into issues like overfitting and have a noticeable
performance gap compared to ViT in large sizes.

Training Methodologies To improve the training and
generalization of deep models, various regularization tech-
niques have been developed over the past years. Normal-
izations (Ioffe & Szegedy, 2015; Ulyanov et al., 2016; Wu
& He, 2018) are proven to be effective for speeding up
the convergence, in which the Layer Normalization (Ba
et al., 2016) and RMSNorm (Zhang & Sennrich, 2019)
are popular in training of large models. The family of data
augmentations (Cubuk et al., 2020; Hoffer et al., 2020; Yun
et al., 2019; Zhang et al., 2018) helps to produce more ro-
bust representations and enhance performance. Stochastic
depth and drop path (Huang et al., 2016; Larsson et al.,
2016) drop the connection in the block level, which can not
only overcome overfitting but also decrease the training cost.
Weight decay (Krogh & Hertz, 1991; Loshchilov & Hutter,
2019) is commonly adopted for mitigating overfitting as
well in a weight-penalizing manner. Besides, the earlier
Dropout approach (Srivastava et al., 2014) introduces dis-
turbance by dropping hidden units. They have played roles
in various network training scenarios.

When it comes to vision models, numerous training strategies
have been proposed beyond supervised classification. Early
self-supervised methods relied on surrogate tasks such as
jigsaw puzzles (Noroozi & Favaro, 2016) predicting spatial
context (Doersch et al., 2015), while subsequent contrastive
approaches like SimCLR (Chen et al., 2020a), MoCo (He
et al., 2020; Chen et al., 2020c; 2021)), and iBoT(Zhou
et al., 2022) effectively trained both CNNs and ViTs by
leveraging instance discrimination. More recently, masked
pre-training techniques begin from MAE (He et al., 2022;
Tong et al., 2022) and BEiT (Bao et al., 2022) have shown
remarkable potential for scaling ViT models. These kinds
of methods reconstruct raw pixels or discrete tokens to learn
semantic-rich embeddings (Xie et al., 2022; Chen et al.,
2020b). Additionally, with a Self-EMA or frozen tokenizer,
masked feature distillation methods (Peng et al., 2022; Hou
et al., 2022; Fang et al., 2023; Baevski et al., 2022) can fur-
ther elevate their generalization and performance of ViTs. In
this strategy, the student model processes remaining patches
after masking and is trained with the teacher target, which
showcases superior efficiency and performance (Fang et al.,
2023; Li et al., 2023; Peng et al., 2023).

For non-hierarchical Vim models, several training methods
extend beyond scanning-based approaches. Vim-F (Zhang
et al., 2024c) explores frequency-domain training to enhance
the global receptive field, showing improvements for Tiny

and Small Vim models. Mamba-Reg (Wang et al., 2024)
introduces ”registers” (a group of extra [CLS] tokens) to
mitigate high-norm outliers, enabling Mamba-Reg to out-
perform ViTs under supervised classification. Meanwhile,
ARM (Ren et al., 2024) and MAP (Liu & Yi, 2024) adopt
autoregressive pipelines to further scale up Vim models.
Despite these advances, a noticeable performance gap re-
mains between Vim and ViT, highlighting the urgent need
for continued exploration of Vim’s capabilities.

3. Methodology
In this section, we propose Stochastic Layer-Wise Shuf-
fle Regularization (SLWS) for supervised training of non-
hierarchical Vim models, along with a brief introduction of
masked distillation strategy employed for pre-training. We
first present the preliminaries in the following subsections
to establish foundational concepts.

3.1. Preliminaries

State Space Model (SSM) (Gu et al., 2021a;b) is origi-
nally designed for modeling continuous-time systems by
projecting 1-D input stimulation x(t) to the output signal
y(t) via hidden state h(t) ∈ Rn. Formally, SSM is ex-
pressed with the subsequent ordinary differential equation
(ODE) as follows:

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t) +Dx(t),
(1)

where A ∈ Rn×n denotes the system’s evolutionary ma-
trix, with B ∈ Rn×1, C ∈ R1×n and D are projection
parameters. In a discrete system scenario, the above SSM
is discretized by a timescale parameter ∆, transforming the
expressions of A and B into their discrete equivalents Ā
and B̄. In Mamba models, such conversion is implemented
with the Zero-Order Hold (ZOH) rule, which is expressed
as follows:

Ā = exp(∆A),

B̄ = ∆A−1(exp(∆A− I)) ·∆B.
(2)

Then, a sequential input {xi}Li=1 is mapped via this dis-
cretized system to its output {yi} as:

h′
i = Āhi−1 + B̄xi,

yi = Ch′
i +Dxi.

(3)

Mamba (Gu & Dao, 2023) designs the B, C, and ∆ to be
input-dependent to improve the intrinsic capacity for con-
textual sensitivity and adaptive weight modulation. Besides,
a Selective Scan Mechanism is ensembled in for efficient
computation. To this end, for a Vim (Zhu et al., 2024) block
(or layer) sℓ, it includes an SSM branch, whose output is
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Figure 1: Stochastic Layer-Wise Shuffle Regularization (SLWS). Deeper layers are assigned larger probabilities for
shuffle regularization to enhance positional transformation invariance. The variable bℓ is sampled based on these probabilities
to determine whether to execute regularization. SLWS only involves sequence permutation and restoration, and is not
applied during inference. The snake icon indicates where regularization is performed.

multiplied by the result of another gated branch to produce
the final output sequence Xℓ ∈ RT×D. Thus, the corre-
sponding forward process of non-hierarchical Vim (without
downsampling) is expressed in the following form:

Xℓ = sℓ (Xℓ−1) . (4)

Masked Feature Distillation (MFD) techniques enhance
pre-training by masking a significant portion of image
patches and subsequently reconstructing the targets using
the unmasked regions as input. Methods such as MAE (He
et al., 2022) have been proven effective in training foun-
dational Vision Transformers (ViTs) without relying on
labeled data. Further research has shown that employing
feature-level targets can lead to additional improvements,
including the use of HOG features (Wei et al., 2022a), Self-
EMA (Baevski et al., 2022), CLIP embeddings (Radford
et al., 2021; Wei et al., 2022b; Hou et al., 2022), and dis-
crete tokens (Peng et al., 2022). The MFD process can be
formulated as follows:

min E
X

dist [T (X), d (f (Xv))] , (5)

where T represents the teacher tokenizer, f denotes the
student model, and Xv refers to the remained visible parts.
dist [·, ·] is the selected distance function.

3.2. Stochastic Layer-Wise Shuffle

As formulated above, the SSM-based Mamba was origi-
nally proposed for sequence modeling but does not natu-
rally adapt to two-dimensional image data, where patch

sequences are non-causal. Several previous studies have
integrated different scanning strategies into Mamba layers
to better capture spatial context (Zhu et al., 2024; Liu et al.,
2024c; Yang et al., 2024a; Li et al., 2024a; Tang et al., 2024).
Nevertheless, these methods remain reliant on simple 1-D
corner-to-corner scanning and often suffer from overfitting.
To address these limitations, we propose Stochastic Layer-
Wise Shuffle (SLWS), a regularization technique guided by
the following insights:

(1) Fixed corner-to-corner sequential or regional scanning
in Vim does not naturally align with the need to capture
both local and global spatial correlations.

(2) Deeper layers of a vision encoder should learn higher-
level semantic representations, while shallower layers
primarily encode low-level information.

(3) Achieving stronger semantic perception in deeper lay-
ers requires transformation invariance for patch po-
sitions, whereas shallower layers must preserve posi-
tional sensitivity.

(4) Introducing stochastic perturbations into the sequen-
tial structure can increase task complexity, potentially
mitigating overfitting, but also contributes to simulate
diverse spatial contexts.

(5) Besides designing layer-dependent for differing seman-
tic requirements, a sequence restoration step ensures
that subsequent layers receive inputs in the original
order, thus avoiding unnecessary disruptions.
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Random Shuffle Forward and Restoration Inspired
by stochastic depth (Huang et al., 2016), we introduce a
Bernoulli random variable bℓ ∈ {0, 1} to determine whether
the ℓ-th layer will apply shuffle-based regularization. If
bℓ = 1, the input token sequence Xℓ−1 will be randomly
shuffled into X

′

ℓ−1, thereby encouraging positional trans-
formation invariance. Otherwise, Xℓ−1 remains unchanged.
We denote this operation by π(· | bℓ), and its inverse
π−1(· | bℓ) restores the shuffled output Xℓ to the original
order to avoid recursive effects on later layers:

Xℓ = π−1
ℓ

(
sℓ
(
π(Xℓ−1 | bℓ)

))
. (6)

Layer-Wise Probability Assignment Additionally, each
Vim layer is assigned a distinct probability of applying
SLWS, reflecting the intuition that deeper layers should ex-
hibit greater transformation invariance. In this work, we use
a linear scheduling function starting with ℓ = 0. Specifi-
cally, the probability pℓ of applying shuffle regularization at
the ℓ-th layer is:

P (bℓ = 1) =
ℓ

L
PL, (7)

where PL is a hyperparameter. Since we shuffle tokens
according to a discrete uniform distribution, the probability
that the i-th token moves to the j-th position is:

P
(
xℓ
i ⇒ x

′ℓ
j

)
=

1

L+ 1
P (bℓ = 1)

=
ℓ

(L+ 1)L
PL.

(8)

Notably, hierarchical Mamba architectures with spatial
downsampling operations are incompatible with SLWS,
as token sequence length reduction prevents output order
restoration. Additionally, SLWS fundamentally differs from
random scanning methods. Because our layer-dependent
probability allocation imposes progressive regularization
intensity that aligns with hierarchical semantic abstraction.

3.2.1. EFFICIENCY ANALYSIS

Fig. 1 and Algorithm 1 illustrate SLWS for Vim training
with PyTorch pseudo-code. Random index generation in-
curs O(L) complexity, while sorting for restoration adds
O(L logL). Because we apply the same random index to
the entire batch, the batch size does not inflate these costs.
Consequently, SLWS introduces only O(L logL) additional
maximal overhead, and our ablation results in Section 4.3
confirm the minimal impact on overall training efficiency.

Overall, SLWS offers several key advantages: (1) It is easy
to implement and does not alter the model architecture,
adding no extra cost at inference time. (2) It fosters stronger

Algorithm 1 Layer-Wise Shuffle forward

Require: token sequence Xℓ−1 ∈ RB×T×D ,
layer sℓ, probability pℓ, training flag F

Ensure: token sequence Xℓ

1: # this layer is trained with regularization
2: if F and rand(1) < pℓ then
3: shuffle indices = randperm(T).expand(B, 1, D)
4: restore indices = argsort(shuffle indices, dim=1)
5: X

′
ℓ−1 = gather(Xℓ−1, 1, shuffle indices)

6: X
′
ℓ = sℓ(X

′
ℓ−1)

7: Xℓ = gather(X
′
ℓ , 1, restore indices)

8: else
9: # inference or trained without regularization

10: Xℓ = sℓ(Xℓ−1)
11: end if
12: Return: Xℓ

modeling of 2D visual data by encouraging position invari-
ance in deeper layers. (3) By increasing task complexity, it
helps mitigate overfitting without incurring heavy computa-
tional overhead in training.

3.3. Masked Pre-training for Vim

The fundamental idea of visual masked modeling is to re-
construct the complete target by leveraging relationships
between unmasked image patches, thereby capturing com-
plex semantic dependencies. We establish a simple masked
pre-training pipeline for the Vim encoder, as formulated in
Eq. (5) and illustrated in Fig. 2. Alongside the Vim student
encoder, we employ frozen CLIP vision encoders (Radford
et al., 2021) as the teacher tokenizers T , which provide
feature targets. Inspired by MAE (He et al., 2022), our ap-
proach adopts a auto-encoder design, featuring a lightweight
self-attention decoder d that reconstructs the Vim features
f(Xv) to match the teacher outputs. To enhance training
stability, we apply normalization layers to encoded features,
decoder outputs, and teacher targets. We further employ the
smooth-ℓ1 loss for the distance metric dist [·, ·].

4. Experiments
We conducted extensive experiments to evaluate Vim train-
ing, exploring non-hierarchical models trained via super-
vised classification and pre-training paradigms, assessing
their downstream task performance, and performing detailed
algorithm analysis through ablation studies. We conduct
both horizontal and vertical comparisons to analyze our
model and approach.

4.1. Implementation Settings

We evaluate various sizes of non-hierarchical Vision Mamba
models and details of settings are listed in Appendix A. Con-
figurations of non-hierarchical models with different sizes
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Vim model Decoder

Loss

Masking tokens
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Figure 2: Masked feature distillation pipeline. A frozen
semantic-rich teacher as tokenizer produces target for the
student branch, which is in auto-encoder style.

involved in experiments are listed in the Table 1, in which
MambaR (Wang et al., 2024) models add a group of ex-
tra tokens based on Vim (Zhu et al., 2024). We use the
AdamW optimizer (Loshchilov & Hutter, 2019) with a co-
sine learning rate schedule and employ BFloat16 precision
to enhance training stability. Additionally, we report results
using Exponential Moving Average.

Table 1: Model configurations.

Model Block Config. Width Depth #Param. (M)

ViT-B Attention+MLP 768 12 86
Vim-B Mamba 768 24 98
Vim-M Mamba 576 32 74
MambaR-B Mamba 768 24 99
MambaMLP-B Mamba+MLP 768 12 85

ViT-L Attention+MLP 1024 24 309
Vim-L Mamba 1024 40 284
MambaR-L Mamba 1024 48 341
MambaMLP-L Mamba+MLP 1024 24 297

ViT-H Attention+MLP 1280 32 632
MambaMLP-H Mamba+MLP 1536 24 662

For supervised training, we train from scratch on ImageNet-
1K (Deng et al., 2009), which contains 1.28 million samples
for the classification task. Middle and base-size models
are trained for 300 epochs with a batch size of 2048, while
large models are trained for 200 epochs with a batch size
of 1024. The shuffle rate PL is set to 0.5 for middle and
base-size models and 0.6 for large models. Following the
VideoMamba (Li et al., 2024a) setup, a [CLS] token is
prepended to the token sequences for classification.

For MFD pre-training, we use frozen CLIP vision encoders
as tokenizers. Inspired by MAE (He et al., 2022), our de-
coder is a lightweight self-attention transformer with four
blocks and a hidden dimension of 512. We apply layer

Table 2: Vim training comparisons, where “S.” indicates
SLWS, “sup.” indicates supervised classification, “reg.”
refers to token registers (Wang et al., 2024), and “cont.”
denotes contrastive training. All models are evaluated on
the ImageNet-1K benchmark.

Model Training tech. #Params Epoch Acc.(%)

supervised
Vim-M sup. 74M 300 80.9
Vim-B sup. 98M 300 79.8
Vim-B [14 stride] sup. 98M 300 81.2
Vim-L sup. 284M 300 collapsed
Vim-M sup., S. 74M 300 82.8 (+1.9)
Vim-B sup., S. 98M 300 82.7 (+2.9)
Vim-L sup., S. 284M 200 82.9
Vim-L [384 res.] sup., S. 284M 220 84.5
MambaR-B sup., reg. 99M 220 83.0
MambaMLP-L sup. 297M 300 81.4
MambaR-B sup., reg., S. 99M 220 83.1 (+0.1)
MambaMLP-L sup., S. 297M 300 82.9 (+1.5)

pre-training
MambaMLP-B cont. 85M 300 81.4
MambaMLP-B MAE 85M 300 81.6
MambaMLP-B ARM 85M 300 82.5
MambaMLP-B ARM 85M 1600 83.2
MambaMLP-L ARM 297M 1600 84.5
MambaMLP-H ARM 662M 800 85.0
MambaMLP-B MAE, S. 85M 300 82.0 (+0.4)
MambaMLP-B MFD, S. 85M 300 84.3 (+1.1)
MambaMLP-L MFD 297M 300 86.4 (+1.9)
MambaMLP-L MFD, S. 297M 300 86.7 (+2.2)
MambaMLP-H MFD, S. 662M 300 87.6 (+2.6)

normalization to the output features to improve training sta-
bility. During pre-training, we use image sizes of 192 and
224 for the MAE and MFD pipelines, respectively. The
shuffle rate is set to 0.4 for large and huge models. For the
masking strategy in MFD, we follow existing studies (Peng
et al., 2023; Hou et al., 2022) by setting the masking ratio
to 0.5 and 0.6 with utilizing attentive masking.

4.2. Main Results

Vim Training Comparison To evaluate the SLWS regu-
larization and MFD training pipeline, we compare it with
state-of-the-art (SOTA) training methods in both supervised
and pre-training settings. Table 2 presents the results, includ-
ing Vim (Zhu et al., 2024), MambaR (Wang et al., 2024), and
MambaMLP (Ren et al., 2024). Notably, ARM and MAE
pre-train models with an input resolution of 192× 192 and
subsequently fine-tune with 224×224. We utilize a CLIP-B
for MambaMLP-B with a CLIP-L for MambaMLP-L and
MambaMLP-H as teacher tokenizers, respectively. Based
on these results, we draw the following observations:

(1) SLWS significantly improves supervised Vim train-
ing across model scales. For the middle-sized Vim-M,
SLWS boosts accuracy by 1.9%, and for the base-sized
Vim-B, the gain reaches 2.9% (from 79.8% to 82.7%).
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Figure 3: Training and evaluation loss curves for 300
epochs middle-size Vims.

Notably, SLWS enables stable training of the previ-
ously collapsing Vim-L (284M parameters), achieving
82.9% accuracy and 84.5% with 384×384 fine-tuning.

(2) MFD pre-training substantially enhances Vim capa-
bilities. When combined with SLWS, MambaMLP-B
achieves 84.3% accuracy (+1.1% over the ARM base-
line), while MambaMLP-L reaches 86.7%, surpass-
ing ARM’s 1600-epoch result (84.5%) within just 300
epochs. This demonstrates a clear training efficiency
advantage over previous methods and highlights the
importance of leveraging a semantic-rich tokenizer.

(3) SLWS provides complementary benefits across train-
ing paradigms. In MAE pre-training, SLWS improves
MambaMLP-B by 0.4% (81.6% to 82.0%). For MFD,
we observe a 0.3% improvement over MambaMLP-L
(86.4% to 86.7%), and SLWS enables MambaMLP-H
to achieve 87.6%, i.e., the new state-of-the-art result
for Vision Mamba on ImageNet-1K.

Consequently, SLWS not only prevents collapse in super-
vised learning of large models through stochastic regular-
ization but also enhances cross-paradigm generalization
without any architectural changes. It is also worth noting
that combining MFD with SLWS is particularly effective for
non-hierarchical Vim training. Beyond the above accuracy
evidence for mitigating overfitting, we plot the training and
evaluation curves in Fig. 3 for further demonstration. We
observe that the model trained with SLWS stabilizes at a
higher training loss yet achieves a lower evaluation loss.
By contrast, the ablated model tends to overfit, showing
a lower training loss but a higher error rate on evaluation.
This confirms that SLWS effectively adds perturbation to

Table 3: ImageNet-1K classification comparison among
different backbone and training methods.

Model Training #Params FLOPs Acc.(%)

Hierarchical
RegNetY-4G sup. 21M 4G 80.0
RegNetY-8G sup. 39M 8G 81.7
RegNetY-16G sup. 84M 16G 82.9
ConvNeXt-T sup. 29M 4.5G 82.1
ConvNeXt-S sup. 50M 8.7G 83.1
ConvNeXt-B sup. 89M 15.4G 83.8
Swin-T sup. 28M 4.6G 81.3
Swin-S sup. 50M 8.7G 83.0
Swin-B sup. 88M 15.4G 83.5
Swin-B SimMIM 88M 15.4G 84.0
Swin-L SimMIM 197M 35.8G 85.4
VMamba-T sup. 31M 4.9G 82.5
VMamba-S sup. 50M 8.7G 83.6
VMamba-B sup. 89M 15.4G 83.9

Non-Hierarchical
ConvNeXt-S sup. 22M 4.3G 79.7
ConvNeXt-B sup. 87M 16.9G 82.0
DeiT-S sup. 22M 4.6G 79.8
DeiT-B Distill. 87M 17.6G 81.9
ViT-B [MAE sup.] sup. 87M 17.6G 82.3
ViT-L [MAE sup.] sup. 309M 61.6G 82.6
ViT-B MAE 87M 17.6G 83.6
ViT-L MAE 309M 61.6G 85.9
ViT-H [14 stride] MAE 632M 167G 86.9
ViT-B MaskDistill 87M 17.6G 85.0
ViT-L MaskDistill 309M 61.6G 87.6
ViT-B BEITv2 87M 17.6G 85.0
ViT-L BEITv2 309M 61.6G 87.3
Vim-S sup. 26M 4.3G 80.5
VideoMamba-S sup. 26M 4.3G 81.2
VideoMamba-M sup. 74M 12.7G 80.9
VideoMamba-M self-Distill. 74M 12.7G 82.8
LocalViM-S sup. 28M 4.8G 81.2
PlainMamba-L2 sup. 25M 8.1G 81.6
PlainMamba-L3 sup. 50M 14.4G 82.3
MambaR-S sup., reg. 28M 4.5G 81.1
MambaR-B sup., reg. 99M 17.8G 83.0
MambaR-L sup., reg. 341M 64.2G 83.6
MambaR-L [384 res.] sup., reg. 341M 179G 84.5
MambaMLP-B ARM 85M 15.5G 83.2
MambaMLP-L ARM 297M 54.7G 84.5
MambaMLP-H ARM 662M 123G 85.0
MambaMLP-B MFD, S. 85M 15.5G 84.3
MambaMLP-L MFD, S. 297M 54.7G 86.7
MambaMLP-H MFD, S. 662M 123G 87.6

sequential perception, raising task complexity and reducing
the overfitting risk for Vim.

Comparison to Various Backbones. Table 3 reports
ImageNet-1K classification results across a range of back-
bones. We include CNN-based methods (RegNetY (Ra-
dosavovic et al., 2020), ConvNeXt (Liu et al., 2022b)), hi-
erarchical Transformers (Swin (Liu et al., 2021) trained
with SimMIM (Xie et al., 2022)), and ViT variants trained
with DeiT (Touvron et al., 2021), MAE, MaskDistill (Peng
et al., 2023), or BEITv2 (Peng et al., 2022). We also list
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SSM-based approaches (VMamba (Liu et al., 2024c), Vim,
VideoMamba (Li et al., 2024a), LocalViM (Huang et al.,
2024), PlainMamba (Yang et al., 2024a), MambaR (Wang
et al., 2024), ARM). Under purely supervised training, sev-
eral SSM-based models match or exceed the performance
of their CNN and hierarchical Transformer counterparts at
comparable model sizes. When pre-training is introduced,
masked modeling generally boosts performance across ar-
chitectures. However, there remains a noticeable gap be-
tween the previous best SSM-based results and advanced
ViT models trained via masked image modeling (e.g., ARM
85.9% vs MAE 86.9%). Moreover, the introduction of our

Figure 4: Pre-training comparison anchored by MAE on
ImageNet-1K.

SLWS + MFD pipeline narrows this gap considerably. By
further unlocking the potential of non-hierarchical Vim-like
models, it enables them to outperform ViT models trained
with MAE, demonstrated by Fig. 4. This substantial im-
provement underscores the value of our approach in improv-
ing the performance of Vim models.

Dense Prediction Downstream Tasks To evaluate model
capabilities, we conduct semantic segmentation experi-
ments on ADE20K, detection and instance segmentation on
COCO2017 benchmark.

For segmentation experiment, we adopt the UPerNet (Xiao
et al., 2018) head on ImageNet-1K trained models. All the
models are trained for 160K iterations with batch size 16.
Following the common settings (Chen et al., 2023; Yang
et al., 2024a; Wang et al., 2024), we use an Adam opti-
mizer with 0.01 weight decay and a polynomial learning
rate schedule. The learning rates of the base and large-size
models are set as 6e-5 and 3e-5, respectively. The [CLS]
and register tokens are discarded in the segmentation task.
As shown in Table 4, our SLWS-regularized MambaR-B
surpasses both ViT-B and its non-SLWS counterpart, which
consistently demonstrates the superiority brought by the
proposed SLWS regularization. When integrating the multi-
scale adapter configuration (Chen et al., 2023), MambaR-

Table 4: Semantic segmentation results on ADE20K Val.
Computation FLOPs are measured under 512×2048 input
resolution. ”MS” means multi-scale test.

Model #Param. FLOPs mIoU +MS

ResNet-50 67M 953G 42.1 42.8
ResNet-101 85M 1030G 42.9 44.0
ConvNeXt-B 122M 1170G 49.1 49.9

DeiT-B+MLN 144M 2007G 45.5 47.2
ViT-B 127M - 46.1 47.1
ViT-Adapter-B 134M 632G 48.8 49.7
ViT-L [MAE] 127M - 53.6 -
Swin-B 121M 1170G 48.1 49.7

ViM-S 46M - 44.9 -
ViM-B 131M 477G 45.2 -
MambaR-B 132M - 47.7 -
MambaR-L 377M - 49.1 -
Vim-M [S.] 106M 384G 47.2 48.2
Vim-B [S.] 131M 477G 47.0 48.3
MambaR-B [S.] 131M 477G 48.2 48.9
MambaR-Adapter-B [S.] 145M 1428G 49.3 50.1
MambaMLP-L [MFD, S.] 324M 1270G 53.8 -

Adapter-B outperforms ViT-Adapter-B by 0.5%. Addition-
ally, our MFD+SLWS framework enables MambaMLP-L
to match MAE ViT-L’s performance.

Table 5: Object detection and instance segmentation
results. FLOPs are calculated with size 1280×800. Gray
fonts indicate the models pre-trained on ImageNet-21K.

Model #Param. FLOPs APb APb
50 APb

75 Apm APm
50 Apm

75

ConvNeXt-B 108M 486G 47.0 69.4 51.7 42.7 66.3 46.0

Swin-B 107M 496G 46.9 - - 42.3 - -
ViT-B 114M - 42.9 65.7 46.8 39.4 62.6 42.0
ViT-L 337M - 45.7 68.9 49.4 41.5 65.6 44.6
ViT-Adapter-B 120M - 47.0 68.2 51.4 41.8 65.1 44.9
ViT-Adapter-L 348M - 48.7 70.1 53.2 43.3 67.0 46.9

PlainMamba-L3 79M 696G 46.8 68 51.1 41.2 64.7 43.9
Vim-M [S.] 103M 564G 46.8 68.8 50.7 41.8 65.6 44.8
MambaR-B [S.] 131M 726G 47.7 69.7 51.8 42.6 66.7 45.8
MambaR-L [S.] 383M 1734G 48.9 70.8 53.4 43.6 67.4 47.0

For downstream object detection and instance segmentation
tasks, we follow previous work to evaluate our method. The
Mask R-CNN (He et al., 2017) structure is adopted with
1× schedule for 12-epoch fine-tuning. We utilize the com-
monly adopted settings in previous work (Liu et al., 2021)
and compare to different-type backbones. To compute the
multi-scale features to fit the FPN network structure, we use
the Adapter setup following (Yang et al., 2024a; Chen et al.,
2023). The results are reported in Table 5. It can be seen
that our middle-size model is on par with the corresponding
CNN and Transformer model, while the base-size model
traine with registers and SLWS outperforms ViT-Adapter-B
and ConvNext-B by 0.7 points APb. MambaR-L demon-
strates higher APb/APm and even outperforms ImageNet-
21K pretrained ViT-Adapter-L and ViT-L.
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4.3. Ablation Studies

In this subsection, we perform ablation studies by varying
the settings of the SLWS regularization to investigate its
effects and provide an in-depth analysis. We use middle-
size vanilla Vim models as the default for experiments.

Table 6: Ablation study on training throughput. Higher
throughput (images/second) is better under the same setting.

Setting 128 224 384 512 768

w/o SLWS. 315.7 167.9 56.8 29.0 13.97
w/ SLWS. 311.4 164.8 55.7 28.6 13.72
Loss (%) ↓ 1.36 1.85 1.94 1.38 1.79

SLWS has a Negligible Impact on Training Through-
put. SLWS operates on both input and output sequences
of Mamba blocks, with efficiency analysis detailed in Sec-
tion 3.2. To empirically evaluate its computational overhead,
we conduct throughput measurements using standard image
resolutions ranging from 128×128 to 768×768. Results in
Table 6 demonstrate consistent throughput reduction below
2% across all resolutions. This negligible overhead con-
firms SLWS as a simple but effective training regularization
technique for vision mamba models.

Table 7: Ablation studies on probability settings. ”D” and
”E” denote decreased linear, and exponential probability
assignments, respectively.

Type PL Acc. Type PL Acc.

Layer-depend.

0.4 82.3 Layer-depend. (D) 0.5 81.2

0.5 82.7 Layer-depend. (E) 0.5 82.2

0.6 82.4
Constant

0.1 81.5
0.7 82.4 0.4 81.1

Layer-Wise Probability Assignment is Necessary. The
layer-wise probability is a crucial component of the SLWS
design, introducing a semantic level prior across different
layers. Table 7 presents the results under various probabil-
ity assignment settings. Since shallower blocks are more
sensitive to patch positions, the layer-dependent cases gen-
erally outperform the constant settings. We also provide a
decreased linear probability assignment comparison, which
takes larger shuffle probabilities for shallower layers. The
result further demonstrates the correctness of the seman-
tic level prior. Besides the linear setting, we experiment
with a exponential one, i.e. a modification of Eq. (7) to
P (bℓ = 1) = P

(L−ℓ+1)
L , which has a performance drop of

0.5 points compared to the vanilla linear one.

Including the [CLS] Token in Shuffling Slightly Im-
proves Performance. As the [CLS] token is used for

Table 8: Ablation studies on [CLS] token shuffling with
different size of models.

[CLS] token in Shuffling Middle Base Large

× 82.6 82.6 82.8
✓ 82.7 82.6 82.9

supervised classification training except for MambaR con-
figuration, we investigate whether including it in the shuf-
fling process affects performance. The ablation results for
different model sizes on ImageNet-1K are shown in Table 8.
We observe that including the [CLS] token in shuffling
yields slightly better performance under the same settings
for middle and large models. Consequently, for code sim-
plicity, we shuffle the entire sequence by default, and the
same approach applies when using registers.

5. Conclusion
We present Stochastic Layer-Wise Shuffle, a specialized
regularization method for non-hierarchical Vision Mamba
training that addresses overfitting through layer-dependent
sequence perturbations. By progressively increasing shuf-
fle probabilities across layers, SLWS enhances positional
transformation invariance in deeper semantic abstractions
while preserving low-level spatial sensitivity. This approach
achieves significant improvements for supervised training
of Vision Mamba. When integrated with masked feature
distillation, our Vim models establish new state-of-the-art
results on ImageNet-1K and dense prediction tasks among
the same type models. The method does not introduce archi-
tecture modification and has negligible overhead, effectively
unlocking the potential of Vision Mamba models.
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A. Implementation Details
A.1. Supervised Training Settings

In supervised classification training, we build our pipeline with the codebase of DeiT (Touvron et al., 2021) and the setups
are listed in the following Table A.1. For MambaMLP-L training, the layer-wise shuffle rate and drop path rate are 0.5.
For MambaR, we follow the training setup from Wang et al. (2024), which employs a three-stage strategy equivalent to
approximately 220 epochs of training at an input resolution of 224 except setting layer-wise shuffle rate to 0.1.

Table A.1: Supervised training implementation settings.

Config Base & Middle Large

optimizer AdamW
base learning rate 5e-4
weight decay 0.1 0.15
layer-wise lr decay 0
learning rate schedule cosine decay
batch size 2048 1024
warmup epochs 30
training epochs 300 200
augmentation RandAug (9, 0.5)
label smoothing 0.1
mixup 0.8
cutmix 1
reprob 0.25
drop path rate 0.5 0.7
layer-wise shuffle rate 0.5 0.6
EMA decay 0.99992 0.99992

A.2. Pre-training Settings

We provide the configurations of models used in MFD pre-training in the following Table A.2. During pre-training, we
use image sizes of 192 and 224 for the MAE and MFD pipelines, respectively, and the masking ratio for MAE is 0.7. The
224 resolution is a common training setting adopted by works like Vim(Zhu et al., 2024), ViT(Dosovitskiy et al., 2021),
and MAE(He et al., 2022). ARM(Ren et al., 2024) uses 192 due to its unique design requirement of dividing images
into multiple 64×64 patch groups. To ensure fair comparison under the same training epochs, their MAE experiment also
followed this resolution. For MFD pre-training, we used the standard 224 resolution but with only 18.75%-37.5% of ARM’s
training epochs, significantly reducing computational costs.

Table A.2: Pre-training training implementation settings.

Config Base Large Huge

optimizer AdamW
base learning rate 1.5e-4
weight decay 0.05
learning rate schedule cosine decay
batch size 2048 1024 1024
warmup epochs 30
training epochs 300 300 300
shuffle rate 0.1 0.4 0.6
masking ratio 0.5 0.6 0.6
augmentation RandomResizedCrop
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