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ABSTRACT

Various advancements in artificial neural networks (ANNs) are inspired by biologi-
cal concepts, e.g., the artificial neuron, an efficient model of biological nerve cells
demonstrating learning capabilities on large amounts of data. More recent inspira-
tions with promising results are advanced regularization techniques, e.g., synaptic
scaling, and backpropagation alternatives, e.g., Targetprop. While neurosciences
continuously discover and better understand the mechanisms of biological neural
networks (BNNs), new opportunities for a transfer of these concepts towards ANNs
arise. However, only a few concepts are readily applicable, and improvements for
ANNs are far from being guaranteed. In this paper, we focus on the inhomogeneous
and dynamically changing structures of BNNs in contrast to mostly homogeneous
and fixed topologies of ANNs. More specifically, we transfer concepts of synaptic
diversity, namely spontaneous spine remodeling, diversity in synaptic plasticity,
and multi-synaptic connectivity to ANNs. We observe ANNs enhanced by these
concepts to learn faster, predict with higher accuracy, and be more resilient to
gradient inversion attacks. Our proposed methods are easily applicable to existing
ANN topologies and are therefore supposed to stimulate an adaptation of and
further research into these mechanisms.

1 INTRODUCTION

Biologically motivated methods have been frequently proposed in machine learning and artificial
intelligence and many important theories and methods are inspired by biology, e.g., artificial neurons
like the McCulloch-Pitts cell (McCulloch & Pitts, 1943), backpropagation (Rumelhart et al., 1986;
LeCun et al., 2012), or the visual cortex inspired CNNs (Hubel & Wiesel, 1968; Lecun et al., 1998;
Krizhevsky et al., 2012). Follow-up studies again refer to and discuss the biological plausibility of
these methods, e.g., Targetprop being more plausible than backpropagation while yielding similar
performance (Lee et al., 2015; Meulemans et al., 2020; Bartunov et al., 2018) or biologically inspired
random backward connections not existing in today’s artificial networks (Lillicrap et al., 2016). Other
studies propose entirely new methods based on whole new models of artificial neurons (Pogodin &
Latham, 2020). Among these studies, especially those proposing new kinds of neural connections
(Hasani et al., 2019), focusing on binocular data processing (Nguyen et al., 2016), and studying
spiking neural networks recently gained research focus (Woźniak et al., 2020). A promising candidate
for future advances are plasticity rules like Hebbian plasticity (Hebbs, 1949; Fox & Stryker, 2017).
Bredenbberg et al. used synaptic plasticity and a recurrent framework to realize unsupervised learning
(cp. (Bredenberg et al., 2020)). Limbacher et al. designed a network which is capable of harnessing
synaptic plasticity to learn and recall input-output associations (Limbacher & Legenstein, 2020).
Hofmann and Mäder (Hofmann & Mäder, 2021) propose synaptic scaling, a regularization based
on a plasticity rule (Tetzlaff et al., 2011). Blier et al. found that training with random learning rates
spanning over magnitudes improved robustness to hyper-parameter variations (Blier et al., 2020).
Few of the recent advances, however, are directly compatible with state-of-the-art artificial network
architectures and the limited scalability of biologically plausible learning has also been discussed as
a limitation (Bartunov et al., 2018).

From a neuroscience perspective, biological neural networks are highly complex structures consisting
of a wide array of neuron and synapse types. Decades of experimental neuroscience research revealed
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that synapses are diverse and dynamic. Their number, molecular composition and morphology are
constantly subject to changes (Choquet & Triller, 2013; Fauth & Tetzlaff, 2016; Berry & Nedivi,
2017). Such modulations result in synapse and neuron specific synaptic plasticity, multi-synaptic
connectivity between pairs of neurons and spontaneous remodeling of synaptic connections. In
contrast, ANNs do not feature this synaptic diversity yet.

In this paper, we aim to study synaptic diversity added to common ANN architectures. More
specifically, we study the three biologically inspired phenomena: diversity in synaptic plasticity,
spontaneous spine remodelling, and multi-synaptic connectivity. For each, we propose a computa-
tionally light-weight realization aiming for applicability across state-of-the-art architectures. In an
experimental setup with three of these architectures and three benchmark datasets, we evaluate each
method separately and in combination in terms of learning speed, model performance, and robustness
against gradient inversion.

We will publish the code for our proposed methods and a converter function for patching arbitrary
PyTorch models with our proposed methods on acceptance of the manuscript.

2 BACKGROUND ON SYNAPTIC DIVERSITY OF BNNS

Diversity in synaptic plasticity. Learning is associated with synaptic plasticity, which is the ability
of synapses to change their conductivity in response to neuronal activity. The most established forms
of synaptic plasticity are Long-Term Potentiation (LTP) and Depression (LTD). However, the amount
of potentiation and depression expressed at synapses depends on various factors such as the type
and frequency of neuronal firing patterns but also on the brain region, neuron and synapse type
(Abbott & Nelson, 2000; Buchanan, 2010). In addition, the location of synapses on the dendritic
tree influences synaptic plasticity. Back-propagating action potentials are attenuated as they travel
along the dendritic tree, thereby, synapses distant from the soma are less susceptible to potentiation
than proximal synapses (Froemke, 2010; Bono & Clopath, 2017). The ability of synapses to undergo
activity-induced changes also depends on the synapse’s and neuron’s history, size and age. Such
history dependent modulation of synaptic plasticity is termed metaplasticity (Abraham, 2008). While
there exist numerous biological mechanisms that mediate metaplasticity, metaplasticity manifests
itself in that it inhibits or facilitates the induction and persistence of potentiation and depression of
synaptic strength. Recent studies have shown that the stimulus-response and population coupling
of individual neurons are variable. Whereas some neurons exhibit stable responses to a specific
stimulus over days, others are highly dynamic (Ranson, 2017; Okun et al., 2015; Sweeney & Clopath,
2020). It has been hypothesized that this variability originates from different, neuron-specific learning
rates, which has functional implications: whereas neurons with high learning rates can flexibly learn
new stimulus associations, less plastic neurons act as a stable, perturbation resistant "backbone" of
stimulus representations (Sweeney & Clopath, 2020). Thus, there exist numerous mechanisms that
influence synaptic plasticity and, thereby, the rate at which synapses undergo changes. In contrast, in
ANNs, the learning rate is usually fixed across the network. We integrate diverse learning rates into
our model by applying a constant random factor to the gradient of each synapse in the network, a
method we call fuzzy learning rates. Blier et al. observe that variation in learning rates of artificial
neurons benefits hyper-parameter robustness (Blier et al., 2020). We hypothesize that diversity in
synaptic plasticity, realized as fuzzy learning rates, may have a stabilizing and regularizing effect on
the learning.

Spontaneous spine remodeling. In biological neural networks, most excitatory synapses form
onto dendritic spines adjoined by axonal terminals. Dendritic spines grow, stabilize, and get pruned
in an activity-dependent manner. Activity-dependent spine formation and pruning can be Hebbian,
acting on a timescale of hours or homeostatic, acting on a timescale of days (Fauth & Tetzlaff, 2016).
In addition to these activity-driven changes, dendritic spines are also subject to activity-independent,
spontaneous remodeling and degradation (Ziv & Brenner, 2018; Fauth et al., 2015). Experimental
studies found that the survival probability of dendritic spines is independently determined by their size
and age (Loewenstein et al., 2015; Trachtenberg et al., 2002). Thereby, some spines turn over within
days (Loewenstein et al., 2015; Holtmaat et al., 2005; Fauth et al., 2017) whereas others are stable for
months (Yang et al., 2009; Holtmaat et al., 2005; Trachtenberg et al., 2002). In addition, there exists
a positive correlation between spine size and synaptic strength (Matsuzaki et al., 2004). Thus, as
synapses experience potentiation of synaptic strength, their survival probability increases. Consistent
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Figure 1: Top: illustration of a nerve cell highlighting each studied synaptic diversity mechanism.
Here, xi denotes the input from the pre-synaptic neuron, wi the synaptic weight, and yi the output
of the postsynaptic neuron. Thereby, the leftmost illustration refers to a nerve cell as interpreted by
most ANN models today. The second illustration shows a neuron where individual synapses show
different learning speeds, highlighted by varying color brightness. The third illustration shows small
synapses that are subject to random re-initialization, representing spine remodeling and pruning. The
weight of the pruned synapse is indicated by an apostrophe. The fourth illustration shows a neuron
with multiple synapses between two neurons. Bottom: a more formal representation of each neuron.
Depiction of the biological neuron is adapted from (Mariana Ruiz Villarreal, 2007) (released into
public domain).

with this notion, in mice, the fraction of persistent spines increases during development (Holtmaat
et al., 2005). Finally, whereas spine maturation is often associated with long-term potentiation, several
studies found that spines mature and thereby form functional synapses even in the absence of synaptic
activity (Harms & Craig, 2005; Sigler et al., 2017; Sando et al., 2017). Thus, dendritic spines are
highly dynamic. By contrast, in ANNs, connections between neurons are often represented as stable
units that do not experience spontaneous remodeling and pruning. We formalized a model inspired
by the above findings, in which synapses are spontaneously reinitialized dependent on their current
weight. We call this method weight rejuvenation. Methods such a DropConnect randomly drop
synaptic weights resulting in noisy activation and yielding improved generalization. Furthermore,
trained ANNs are often characterized by relatively few large weights and a majority of small weights
(Hofmann & Mäder, 2021). Therefore, iterative rejuvenation of small weights is not expected to be
harmful to the current training progress but may help explore new training directions.

Multi-synaptic connectivity. The ongoing formation and remodeling of spines and their respective
synapses result in multi-synaptic connections between pairs of neurons, averaging around 3-5 (Fauth
& Tetzlaff, 2016; Markram et al., 1997; Feldmeyer et al., 2006). By contrast, in ANNs, connections
are usually modeled by a single synapse. Multi-synaptic connections may have various functional
implications. It has been shown theoretically, for example, that the collective dynamics of multiple
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synapses can store information for long duration despite synaptic turnover (Fauth et al., 2017). In
the current work, we abstract the concept of multi-synaptic connections such that it can be easily
applied to existing ANN architectures. We show that such multi-synaptic ANNs are more resilient to
gradient inversion attacks. Connecting multiple synapses to a single input is expected to allow for
new activation patterns. For example, an input connected to a neuron via a positive and a negative
weight will change activation statistics. Multi-synaptic connectivity also distributes the gradient
across several synapses in back-propagation, which may harden an ANN against gradient inversion
attacks.

3 METHOD

3.1 FUZZY LEARNING RATES (I)

We propose fuzzy learning rates as a method (I) for realizing diversity in synaptic plasticity in artificial
neural networks. Fuzzy learning rates refers to varying synaptic learning rates η̂n,i. One η̂n,i is
applied to each synapse with corresponding weight wn,i that belongs to a layers’ neuron. Neurons are
enumerated with n = 0, 1, 2, ... and i = 0, 1, 2, ..., where n denotes the post- and i the pre-synaptic
neuron. We denote the neural transmission function without bias as φn = g(

∑
i∈I wn,ixi), where xi

refers to the input from neuron i and g refers to an arbitrary non-linearity, e.g., a rectified linear unit
function (ReLU) (Hahnloser et al., 2000). Accordingly, a learning rate for every individual synapse is
realized as a constant random factor applied to its gradient. Therefore, a typical gradient descent step
changes from wn,i,t+1 = wn,i,t − η∇φn,i to

wn,i,t+1 = wn,i,t − η∇φn,i � η̂n,i. (1)

A factor η̂n,i is randomly drawn from a uniform distribution per weight upon initialization of the
network

η̂n,i ← U(1− τ

2
, 1 +

τ

2
), (2)

where U is the uniform distribution and τ is a scaling range.

The method’s run time is independent of the size of the input sample and is executed once for all
weights. However, it increases the number of operations needed to forward the network linearly with
the model’s size.

3.2 WEIGHT REJUVENATION (II)

We propose weight rejuvenation as a method (II) to realize random re-initialization of synaptic
connections, inspired by spontaneous spine remodeling of biological neural networks. Weight
rejuvenation means that a weight wn,i is reset to a random value with a certain probability, mimicking
spine purging and formation. More specifically, the smaller a weight becomes throughout a training
process, the higher its probability of being reinitialized. We denote this probability as

Pre = 1− 1

σre
√

2π

∫ wn,i

−∞
e−

1
2
t−µ
σre

2

dt, (3)

where σre is the rejuvenation variance calculated with respect to the maximum value of a layers’
synaptic weights

σre = wmax/dre, (4)

where dre is the rejuvenation distance factor. For example, a rejuvenation distance factor of 1 means
that the maximum synaptic weight of a layerwmax is reinitialized with a probability of∼ 16%. Figure
2 shows that the number of rejuvenated synaptic weights is large in the beginning and decreases
during training. After an initial phase, the number stagnates on a certain level, introducing further
noise to the synaptic weights. The time consumption is independent of the size of the input data and
is calculated once per training step across all weights. However, weight rejuvenation increases the
overall number of a network’s operations linearly with the model’s size.
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Figure 2: Course of the number of rejuvenated synaptic weights during 500 training steps of a shallow
MLP.

3.3 WEIGHT SPLITTING (III)

We propose weight splitting as method (III) for incorporating multi-synaptic connectivity into
artificial neural networks, inspired by the observation that biological neurons can have several
connections among one another. We realize this behavior by replicating |Γ| times a neuron’s linear
units and aggregating their results before activation. These multiple linear units allow for varying
weights per synapse. Thereby, Γ denotes the set of indices of the replicated neurons and its cardinality
may be interpreted as the number of connections between a pair of neurons. Accordingly, a layers’
transmission function is denoted as

φn = g

∑
γ∈Γ

∑
i∈I

wn+γb N|Γ| c,i
xi

 ∀ 0 < n <
N

|Γ|
, (5)

where b N|Γ|c denotes the distance of the accumulated synapses indices. Split weights share the same
gradient update. Therefore, their absolute value will sustain a constant difference during training
(cp. Fig. 5 in the Appendix). However, the non-linearity alters the activation so that the learning
behavior changes. Our method increases the overall number of a network’s operations linearly with
the model’s size but independently on the input sample size.

4 EXPERIMENTATION

We evaluate our proposed methods with experiments on accuracy and learning progress and the
robustness against gradient inversion.

4.1 SETUP

To evaluate the effects of the proposed biological-inspired methods, we study them in three experi-
ments. First, we aim to examine whether the proposed methods yield comparable or even improved
accuracy when integrated into typical model architectures and training benchmark problems. Second,
we aim to examine whether the proposed methods help neural networks learn with comparable or even
faster speed. Finally, latest research hypothesizes that gradient inversion attacks (Geiping et al., 2020)
are most effective if single neurons have high gradients during distributed learning of classification
tasks (Pan et al., 2020). Therefore, we argue that weight splitting might mitigate gradient inversion
attacks and aim to evaluate this question.

To study how the proposed methods affect artificial neural architectures’ ability, we run three-
fold cross-validated experiments on the MNIST (LeCun et al., 1998), CIFAR-10 and CIFAR-100
(Krizhevsky, 2009) benchmarks. We normalize the data samples using mean and standard deviation
calculated on the training splits. Moreover, we examine three network architectures: a shallow
learning MLP, a modified version of AlexNet (Krizhevsky et al., 2012) and a ResNet20/32/56 (He
et al., 2016). We use a cross-entropy loss function across all the classification experiments. The MLP

5



Under review as a conference paper at ICLR 2022

consists of one hidden layer with 1,000 neurons for the MNIST training and two hidden layers with
3,000 neurons each for the CIFAR-10 and CIFAR-100 trainings. The models with weight splitting
share the same number of trainable parameters as the models without weight splitting. Accordingly,
we duplicated the activations of each layer such that the number of activations of each layer persists.

All experiments are performed with the same general hyper-parameters. We use SGD as optimizer
with a learning rate of η = 0.01. No other augmentation or regularization is used, except for the
inherent methods per architecture, i.e., residual connections and batch normalization of the ResNet
architecture. We train a network for 100 epochs and retrospectively determine the epoch where
accuracy was not increasing for five following consecutive epochs (early stopping). We report
this epoch as a measure for learning speed and report the model’s test accuracy at this epoch. All
experiments together resulted in 1,200 h of training time on GPUS of Type Nvidia 2080 Ti. The
learning speed is determined in an early stopping scheme.

Our experiments that evaluate the robustness against gradient inversion attacks are based on a method
described by (Geiping et al., 2020) 1. This method is used to extract batch samples based on gradients
and yields a measure for privacy in federated learning of sensible data, like health or finance data. In
our setting, we present the mean reconstruction loss for five fixed consecutive batches of eight samples
from CIFAR-100 reconstructed from untrained networks and networks trained for 100 epochs.

4.2 HYPER-PARAMETERS OF THE PROPOSED METHODS

Our proposed methods require adaptable hyper-parameters. To obtain mostly unbiased results, we
train for ten epochs and a batch size of 1,000 using nevergrad (Rapin & Teytaud, 2018) with a budget
of 100. All experiments except for the gradient reconstruction are performed on a random 2:1 split of
the MNIST dataset. We determine the parameters τ = 0.09, dre = 14,and Γ = 2 to yield the highest
accuracy in this setting. How accuracy changes when the parameters τ and dre are changed is shown
in Figure 3a. Beyond dre of 15 the effect diminishes, the mean accuracy is no longer affected and
stays at a level of 0.45 after 10 epochs training. All Γ values grater 2 yield inferior results. The range
in which the parameters can be chosen to still have a positive effect ranges from 0.02 < τ < 0.1 and
7 < dre < 15. We show additional observations on the stability towards slight learning rate variations
in the appendix 9.2. All hyper-parameters are fixed for all experiments.
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(a) Surface plot of the influence of the two parameters
τ and dre on the accuracy in a hyper parameter tuning.
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(b) Detailed surface plot of the influence of the two
parameters τ and dre on the accuracy in a hyper pa-
rameter tuning.

Figure 3: Plots showing results of the hyper parameter tuning experiment.

5 RESULTS

We present our results for the experiments on accuracy across two tables (cp. Tables 1 and 2), while
Table 3 shows the results for our gradient inversion experiment.

1Implementation found at: https://github.com/JonasGeiping/invertinggradients

6



Under review as a conference paper at ICLR 2022

5.1 ACCURACY AND LEARNING PROGRESS

Overall the accuracy observed on the different combinations fluctuates on a higher than baseline level
and is never significantly worse than the baseline. The results are presented in Table 1. Especially
in the MLP setting on the CIFAR-10 dataset, the results are not significantly different from the
baseline. The highest accuracy is achieved when fuzzy learning rates, weight rejuvenation, and
weight splitting are combined, but we also observe experiments without a significant effect on the
accuracy. Especially using our methods in the MLP/CIFAR-10 setting shows no large effect with
the highest accuracy of 56.13% compared to the baseline of 55.00%. Another observation is that
the CIFAR-10 and CIFAR-100 settings were unstable for the AlexNet and ResNet56 experiments
with observed accuracy of 19.4% and 1.3%. In these cases, stable results are only observed when
weight splitting is used, which resulted in an accuracy of 33.71%; 32, 41% higher than the baseline.
A similar observation regarding training stability is made in the settings AlexNet/CIFAR-10 and
ResNet56/CIFAR-10. However, the results using weight rejuvenation show lower accuracy than the
combinations without weight rejuvenation. Nevertheless, accuracy improvements of 21.45% and
14.42% are observed in the AlexNet/MNIST and ResNet56/CIFAR-10 settings. Intermediate results
show minor improvements around 2% to 5%

We present our results on the learning speed experiments in Table 2. The largest number of epochs to
achieve the highest accuracy are observed for the baseline models, whereas we observe the lowest
number of epochs with a combination of weight rejuvenation and weight splitting. We observe
best learning speeds when only applying fuzzy learning rates for two method-dataset combinations,
while we observe mediocre results beyond the baseline for the rest of the combinations. Overall low
or lowest numbers of epochs are observed in settings where all methods are combined. However,
we observed worse numbers (85 and 85), largely deviating from the best results, for the AlexNet
experiments on the MNIST and CIFAR-100 datasets with epochs compared to 68 and 56 epochs. For
the other experiments, this combination shows no large difference to the best observed numbers.

5.2 ROBUSTNESS AGAINST GRADIENT INVERSION

The results for the gradient inversion experiment are displayed in Table 3. We calculated the optimal
reconstruction error based on the gradients of a batch. The reconstruction attacks are successful if
they can achieve low reconstruction errors. Overall, the reconstruction errors are small, so we decided
to report them in percent. Especially for the untrained and unmodified shallow MLP and the AlexNet,
the attacks are highly successful. With errors of 3.47% and 0.22% the reconstructed images show
fine details like displayed in Figure 4. We observe the largest reconstruction errors with 135.35%
and 155.43% for the modified (all methods) untrained and trained ResNet32 architecture. We also
observed that the weight splitting alone improves the MSE in most cases, even in the untrained cases.
Fuzzy learning rates alone do not improve the MSE without training in nearly all cases but lead to
improvements combined with weight splitting.

6 DISCUSSION

We observed overall improving effects of a combination of all methods on the accuracy and learning
speed in many experiments (dataset-architecture combinations) but also observed nearly no effect
in other experiments. In particular, the MLP/MNIST combination often does not benefit from the
proposed methods. Considering the accuracy results and the learning speed results, we can see that
the combination of weight splitting and weight rejuvenation yields the highest accuracy together
with the fastest learning speeds. Furthermore, the fuzzy learning rates are often beneficial regarding
accuracy but tend to slow down learning in the more shallow architectures. Finally, this observation is
confirmed by the gradient inversion experiments where the fuzzy learning rates improve the MSE in
all cases except the smallest untrained architecture. Interestingly, the observation that the instabilities
in our experiments are reduced and therefore the resilience against inappropriately chosen parameters
is increased has resemblance with the question from neuroscience of how our brain can function
reliably in the presence of various noise sources (Faisal et al., 2008).

Our experimental setup is based on three architectures and datasets; although we tested on networks
incorporating convolutions, batch normalization, and residual connections, we can not conclude that
our methods have a general effect, especially for a wide variety of hyperparameter combinations as
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Figure 4: Images with the lowest reconstruction error of all batches reconstructed from the AlexNet
architecture trained on 100 epochs. Left side with our methods combined; on the right side without
our methods.

Table 1: Results of the experiment on accuracy. The table shows the observed mean accuracy in
percent and standard deviations for 3-fold cross-validation runs for a given combination of parameters
for the datasets MNIST (M10), CIFAR-10 and CIFAR-100 (C10 and C100). The highest accuracy
for a dataset and architecture combination is highlighted in bold. The numbers I, II and III denote
the methods of fuzzy learning rates, weight rejuvenation, and weight splitting, respectively.

Methods MLP AlexNet ResNet56
acc [%]↑ ± std. acc [%]↑ ± std. acc [%]↑ ± std.

I II III M10 C10 C100 M10 C10 C100 M10 C10 C100
95.70 55.00 23.62 76.83 19.40 1.30 96.28 50.54 37.39
±0.21 ±0.73 ±0.56 ±5.56 ±0.75 ±0.20 ±0.11 ±1.52 ±0.38

√ 96.81 55.73 28.33 97.99 63.01 28.29 98.08 61.52 36.79
±0.23 ±0.90 ±0.50 ±0.05 ±0.76 ±0.52 ±0.13 ±1.16 ±0.19

√ 96.63 56.13 26.91 97.72 57.64 2.54 96.51 50.92 33.88
±0.19 ±0.81 ±0.64 ±0.09 ±0.50 ±0.20 ±0.34 ±1.09 ±0.24

√ √ 97.18 54.80 27.12 98.11 63.01 33.71 96.38 50.74 43.13
±0.14 ±0.96 ±0.39 ±0.06 ±0.75 ±0.83 ±0.51 ±1.68 ±1.21

√ 95.72 55.51 23.43 76.47 21.03 0.97 98.24 60.92 41.12
±0.30 ±0.72 ±0.53 ±4.18 ±0.66 ±0.11 ±0.14 ±0.26 ±0.47

√ √ 96.79 55.49 28.29 98.15 62.93 28.22 98.14 62.04 35.14
±0.18 ±0.40 ±0.49 ±0.02 ±0.95 ±0.93 ±0.11 ±0.52 ±0.74

√ √ 96.74 56.01 26.74 97.87 57.36 2.11 96.61 51.28 32.45
±0.14 ±0.61 ±0.45 ±0.10 ±0.43 ±0.39 ±0.55 ±1.01 ±1.41

√ √ √ 97.25 54.42 27.07 98.28 63.42 33.14 96.20 64.96 44.37
±0.14 ±0.60 ±0.57 ±0.14 ±0.89 ±0.16 ±0.56 ±1.47 ±1.26

learning rates or optimizers. We observed that the combination of all our methods shows superior
learning speed and classification accuracy in our experiments, but we did not observe a general
effect. This is most likely due to poor parameterization leading to inferior baseline results and poor
performance of some experimental settings. Especially the learning rate and optimizer may not have
been optimal for all neural architectures and dataset combinations. However, we hypothesize that our
methods can be highly beneficial if data privacy is needed in a field of limited computing time and
resources.
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Table 2: Results of the experiment on learning speed. The table shows the observed mean epoch
when the maximum accuracy occurred, and its standard deviations for 3-fold cross-validation runs
for a given combination of parameters for the datasets MNIST (M10), CIFAR-10, and CIFAR-100
(C10 and C100). The lowest numbers of trained epochs for dataset and architecture combinations are
highlighted in bold. The numbers I, II and III denote the methods of fuzzy learning rates, weight
rejuvenation, and weight splitting, respectively.

Methods MLP AlexNet ResNet56
ep(max acc)↓ ± std. ep(max acc)↓ ± std. ep(max acc)↓ ± std.

I II III M10 C10 C100 M10 C10 C100 M10 C10 C100
99 99 99 99 93 93 99 98 99

±0.8 ±0.8 ±1.9 ±0.9 ±5.7 ±1.3 ±0.8 ±1.6 ±0.2
√ 100 67 96 79 76 89 86 90 78

±0.5 ±9.5 ±1.7 ±9.5 ±7.1 ±2.8 ±4.9 ±5.5 ±7.6
√ 98 96 99 94 99 79 96 97 93

±1.7 ±1.7 ±0.9 ±5.3 ±0.9 ±13.0 ±1.6 ±3.1 ±2.0
√ √ 88 46 62 68 59 77 87 86 91

±3.7 ±3.3 ±5.0 ±14.3 ±9.0 ±2.9 ±2.1 ±0.5 ±0.5
√ 81 91 88 82 84 56 88 87 93

±4.1 ±7.4 ±11.9 ±7.9 ±8.9 ±14.3 ±1.4 ±1.6 ±1.7
√ √ 89 74 93 88 90 87 88 100 100

±1.41 ±7.78 ±4.97 ±4.11 ±6.94 ±2.36 ±0.47 ±0.47 ±0.0
√ √ 87 85 83 83 90 87 84 88 92

±7.3 ±9.5 ±13.6 ±5.4 ±0.5 ±4.2 ±4.5 ±0.8 ±1.7
√ √ √ 86 55 62 85 58 85 82 85 74

±1.7 ±7.6 ±6.9 ±10.7 ±3.3 ±11.5 ±7.9 ±4.5 ±4.2

Table 3: Results of the experiment on gradient inversion. The table shows the observed reconstruction
error (mean square error) for different combinations of methods for untrained models and models
trained 100 epochs on CIFAR-100. Highest reconstruction errors for the dataset and architecture
combinations are highlighted in bold. The numbers I, II and III denote the methods of fuzzy learning
rates, weight rejuvenation and weight splitting respectively.

MLP AlexNet ResNet20 ResNet32
Methods MSE[%]↑ MSE[%]↑ MSE[%]↑ MSE[%]↑

I II III 0 ep 100 ep 0 ep 100 ep 0 ep 100 ep 0 ep 100 ep
3.47 3.62 0.22 0.20 62.20 73.65 70.78 79.61√

30.21 31.26 28.30 30.33 88.76 89.19 94.31 94.71√
3.06 4.31 0.26 0.21 59.07 62.21 70.58 81.14√ √

41.42 45.04 28.38 39.06 75.93 85.49 81.34 84.37√
55.53 60.05 42.11 46.96 49.93 50.05 75.47 78.71√ √
42.70 58.73 94.47 96.85 81.68 86.74 97.31 102.43√ √
47.74 55.30 35.43 53.60 59.07 62.21 94.52 107.36√ √ √
49.65 64.84 101.79 112.85 124.21 132.17 135.35 155.43

7 FUTURE WORK

The proposed methods are inspired by nature and showed a beneficial effect on classification tasks
and the prevention of gradient inversion attacks. We did not provide any theoretical foundation for
the different effects. Future work can focus on a solid theoretical foundation for the observed effects.
Here, one should investigate the influence of the proposed methods on the weights and activations,
different layer types, and optimizers. Expertise in computational neurosciences and machine learning
and a more extensive experimental study, including various model architectures, datasets, and tasks,
is needed to build such a theoretical foundation. Another important future work will be to understand
better why these methods are beneficial in our specific settings.
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8 REPRODUCIBILITY STATEMENT

Our reproduction package contains all code needed to reproduce our experiments, including the hyper-
parameters and network implementations. We also included a readme with instructions on installing
the python package and running experiments updating arbitrary state-of-the-art architectures. We
will provide the package to the reviewers only through a comment with restricted visibility. It will be
published on acceptance of the manuscript.
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9 APPENDIX

9.1 WEIGHT SPLITTING

Figure 5: We conducted an experiment on ResNet20 to evaluate how weight splitting is influencing a
neuron’s synaptic weights with the aim to receive an observation on the balance of the synapses that
connect two neurons. The blue curve denotes the case with enabled weight splitting; two neurons
are connected by two corresponding synapses in this case and their absolute weight difference is
calculated and averaged over the whole network. In case of no weight splitting, denoted by the orange
curve, there are no corresponding synapses, but we still calculated the difference to another synapse
for comparison. We observe that weight splitting leads to a constant difference in the weights and
that in the case without weight splitting the differences shrink. These observation could cause the
observed difference in convergence behavior and generalization properties that we observed in our
experiments. We also observe that while the absolute values shrink, the variances of the differences
are constant throughout the training; this means that all weights are affected in the same way, no
matter if they are larger or smaller at the beginning of the training.
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9.2 LEARNING RATE VARIATION

(a) Accuracy in the learning rate variation experiment for different learning rates η. The AlexNet
is trained on a 1:2 split of MNIST for 10 epochs. We observe that the mean and variance over
the whole range of η changes randomly, with a slightly lower mean value towards 0.05 and a
marginally lower variance towards 0.2. Therefore, we conclude that a learning rate of 0.1 as a
typical standard is a stable choice for our experimental setup.

(b) Mean Square Reconstruction Error in learning rate variation experiment for different learning
rates η. The AlexNet is trained on a 1:2 split of CIFAR-100 for 10 epochs and the gradient
reconstruction is conducted on the saved weights. blue to the left denotes the baseline and
orange to the right the modified model. We observe a overal larger variation in the baseline
than in the modified model but the relative variation of the variances is observed larger for the
modified model. While the mean value of the modified model is observed marginally larger
for learning rates towards 0.05 and lower towards 0.2, the mean value for the baseline model is
observed constant over the whole range. Considering this preliminary observations, we find no
significant changes of the models behavior regarding the learning rate.

Figure 6: Plots showing results of the learning rate variation experiment.
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