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Abstract

Schema matching (SM) and entity match-001
ing (EM) tasks are crucial for data integra-002
tion. While large language models (LLMs)003
have shown promising results in these tasks,004
they suffer from hallucinations and confusion005
about task instructions. This study presents006
the Knowledge-Compliant Matching Frame-007
work (KCMF), an LLM-based approach that008
addresses these issues without the need for009
domain-specific fine-tuning. KCMF employs010
a once-and-for-all pseudo-code-based task de-011
composition strategy to adopt natural lan-012
guage statements that guide LLM reason-013
ing and reduce confusion across various task014
types. We also propose two mechanisms,015
Dataset as Knowledge (DaK) and Example016
as Knowledge (EaK), to build domain knowl-017
edge sets when unstructured domain knowl-018
edge is lacking. Moreover, we introduce a019
result-ensemble strategy to leverage multiple020
knowledge sources and suppress badly format-021
ted outputs. Extensive evaluations confirm that022
KCMF clearly enhances five LLM backbones023
in both SM and EM tasks while outperform-024
ing the non-LLM competitors by an average025
F1-score of 17.93%.026

1 Introduction027

Schema matching is the task of identifying cor-028

respondences between elements of two or more029

database schemas. This task plays an important030

role in data integration efforts. Another task called031

entity matching, also known as entity resolution or032

record linkage, aims to identify schema instances033

that refer to the same real-world entity. While these034

two tasks vary in their definitions and approaches,035

they share the common goal of matching database036

elements. This paper attempts to tackle these tasks037

under the umbrella term data matching, employing038

a unified methodology while still retaining their039

original problem settings independently, i.e., entity040

matching is solved based on the database records,041
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Figure 1: Three common issues in LLM-based data
matching tasks and an overview of the enhancement
will be discussed in this study: As demonstrated at the
bottom, with pseudo-code and retrieved knowledge, by
going through statements from the former, the LLM are
able to reject the match between patient-id and drug-id.

whereas schema matching is solved using metadata 042

only due to privacy considerations. 043

Early systems for data matching tasks rely on ex- 044

pert systems or traditional machine learning meth- 045

ods, while modern data matching approaches often 046

employ pre-trained language models (PLMs) as 047

the backbone (Li et al., 2020; Zhang et al., 2021; 048

Zeakis et al., 2023), which is then fine-tuned on 049

task-specific datasets. However, PLM-based meth- 050

ods usually incur efforts to collect fine-tuning data 051

and face performance degradation when handling 052

out-of-domain data during inference. Large Lan- 053

guage Models (LLM) are PLMs of massive scales 054

with billions of parameters, trained on vast and 055

diverse datasets. With huge internal knowledge 056

gained from pre-training and strong representation 057

capability, LLMs show competitive performance 058

on numerous data-wrangling benchmarks, partic- 059

ularly without the need for fine-tuning (Narayan 060

et al., 2022; Peeters and Bizer, 2023; Sheetrit et al., 061

2024; Peeters and Bizer, 2024). This remarkable ef- 062
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ficacy liberates users from the burden of fine-tuning063

efforts.064

Despite promising results, LLM-based methods065

for data matching face several performance issues.066

For clarity of presentation, we focus mainly on067

schema matching in the main text; further dis-068

cussions of entity matching are provided in Ap-069

pendix A. As depicted in Figure 1, these issues070

are categorized into three types: (1) hallucina-071

tion, where the LLM generates incorrect deduction072

from correct evidence at hand; (2) under-matching,073

where the LLM rejects matching with overly strict074

criteria; and (3) over-matching, where the LLM075

over-generalizes the association of the input data.076

While hallucination is a widely recognized prob-077

lem that can harm the LLM’s performance in many078

other tasks (Zhang et al., 2023a; Rawte et al., 2023),079

under-matching and over-matching, jointly termed080

as confusion in this paper, are challenges specific081

to the data matching tasks.082

This study presents the Knowledge-compliant083

Matching Framework (KCMF), a fine-tuning-free084

and retrieval-enhanced approach to data matching085

tasks. To address the problem of confusion, KCMF086

employs a pseudo-code-based task decomposition087

strategy for LLMs. Pseudo-code here is an ordered088

list of task-specific conditional statements, written089

in natural language, that guide the matching pro-090

cess. The LLM can easily evaluate the validity of091

each condition for the data being matched, and then092

follow the corresponding directives. By walking093

through the pseudo-code, the LLM is able to rea-094

son its way to the final matching result. Unlike095

Chain-of-Thought (Wei et al., 2022), which relies096

on LLM’s internal knowledge to generate reason-097

ing steps, KCMF uses explicit task-aware pseudo-098

code, eliminating the need to engineer prompts for099

different datasets, that is, pseudo-code is written100

only once for a task (such as schema matching).101

To address hallucination, KCMF incorporates102

external knowledge in the form of natural lan-103

guage sentences related to the input data. To com-104

pensate for the lack of such unstructured domain105

knowledge, KCMF builds domain knowledge sets106

by leveraging readily available datasets (Dataset107

as Knowledge, DaK) and examples (Examples as108

Knowledge, EaK) from various domains. Since109

fine-tuning-free LLMs tend to generate improperly110

formatted outputs that do not match the format111

given in the demonstration, we employ a technique112

called Inconsistency-tolerant Generation Ensemble113

(IntGE) to suppress such unexpected outputs and114

maintain an automated downstream workflow. 115

We evaluate KCMF on three SM datasets and 116

four EM datasets. The comprehensive results 117

show that KCMF significantly improves five LLM 118

backbones, exceeds the current non-LLM best- 119

performers (SMAT (Zhang et al., 2021) for SM 120

and SUDOWOODO (Wang et al., 2023a) for EM), 121

and achieves performance comparable to fine-tuned 122

LLMs in certain cases, all without any fine-tuning. 123

1. We introduce KCMF, an LLM-based frame- 124

work that incorporates a unified methodology 125

to solve schema matching and entity matching 126

tasks, eliminating the need for task-dependent 127

model design and domain-specific fine-tuning. 128

2. We propose 1) a once-and-for-all pseudo-code- 129

based task decomposition strategy across task 130

types, to guide the LLM’s reasoning by obtain- 131

ing task-specific conditional statements, reduc- 132

ing confusion during matching, 2) two mecha- 133

nisms, namely DaK and EaK, to build knowl- 134

edge sets in lack of unstructured domain knowl- 135

edge, and 3) IntGE, a result-ensemble strat- 136

egy designed to leverage multiple knowledge 137

sources and suppress poorly formatted outputs. 138

3. We perform a comprehensive evaluation for 139

KCMF and demonstrate its superiority against 140

various popular SM and EM methods. Our anal- 141

ysis also shows that KCMF can generalize ef- 142

fectively across different LLMs. 143

2 Background and Task Definition 144

2.1 Related Work 145

Conventional Schema Matching (SM) approaches 146

can generally be categorized into 1) constraint- 147

based methods, which utilize attributes defined in 148

database constraints to measure similarity among 149

schemas (Alexe et al., 2010; Chen et al., 2018; 150

Atzeni et al., 2019), and 2) linguistic-based meth- 151

ods, which leverage the semantic information con- 152

tained in schema names or descriptions to construct 153

mappings (Kettouch et al., 2017; Asif-Ur-Rahman 154

et al., 2023). More recent studies have adopted 155

deep neural networks to tackle SM. Zhang et al. 156

(2021) use an attention-based BiLSTM with pre- 157

trained word embeddings. Zhang et al. (2023b) 158

leverage BERT (Kenton and Toutanova, 2019) to 159

generate schema features, which are then used 160

to train a linear classifier under semi-supervised 161

learning. With the advent of LLMs, Narayan et al. 162

(2022) were the first to apply LLMs to SM, using 163

straightforward serialization with few-shot settings. 164
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Recent LLM-based SM approaches, such as Zhang165

et al. (2024a), attempt to tackle this task using Su-166

pervised Fine-tuning (SFT). While SFT achieves167

strong results, it needs tremendous efforts to collect168

fine-tuning data and is hard to transfer to unseen169

domains. Another line of works, such as Sheetrit170

et al. (2024) and Parciak et al. (2024), utilize propri-171

etary LLMs, which have shown promising results172

on several benchmarks. However, these approaches173

still suffer from high computational costs and pro-174

duce indecisive outputs. Our approach aims to175

extend the scope of LLM-based SM by utilizing176

task-specific pseudo-code to guide LLMs’ predic-177

tions within a single-round inference. The design178

offers explicit criteria for the matching task, ad-179

dressing the confusion problem mentioned earlier.180

Entity Matching (EM) is often considered a down-181

stream task of SM by many previous works (Nie182

et al., 2019; Li et al., 2020; Brunner and Stockinger,183

2020; Barlaug and Gulla, 2021). Similar to SM,184

traditional non-LLM solutions for EM focus on185

computing similarity between entities (Thirumuru-186

ganathan et al., 2018; Ebraheem et al., 2018; Ka-187

sai et al., 2019; Li et al., 2020). Following the188

initial application of LLM to EM (Narayan et al.,189

2022), LLM-based solutions have been actively ex-190

plored (Fan et al., 2024; Peeters and Bizer, 2024;191

Li et al., 2024; Wang et al., 2024). From the outset,192

our approach is designed as a unified framework193

capable of addressing both SM and EM. By rec-194

ognizing the deep semantic similarities and shared195

motivations between SM and EM — such as align-196

ing and matching data elements — we develop a197

methodology that seamlessly integrates both tasks.198

Retrieval Augmented Generation (RAG) incorpo-199

rates retrieved documents into queries and has be-200

come a popular paradigm in mitigating hallucina-201

tion in LLMs (Lewis et al., 2020; Yu et al., 2023;202

Shao et al., 2023; Jiang et al., 2023; Asai et al.,203

2023; Xu et al., 2023; Shi et al., 2024). While204

RAG has shown reliable results in addressing hal-205

lucination, its performance is limited by the quality206

of the retrieved documents and, obviously, is chal-207

lenging to deploy in scenarios lacking unstructured208

knowledge sources. Our approach adopts the con-209

cept of introducing external knowledge to alleviate210

hallucination. In particular, to address the lack of211

unstructured domain knowledge in data matching,212

we present two mechanisms, DaK and EaK, for213

building knowledge sets by utilizing existing do-214

main knowledge bases. Our approach showcases215

the potential of external knowledge enhancement 216

strategies on LLM-based classification tasks. 217

2.2 Task Definition 218

We denote by S the source schema from database 219

D, and S ′ the target schema from databaseD′. The 220

goal of schema matching (SM) is to identify all 221

pairs of attributes (A,A′) such that A ∈ S and 222

A′ ∈ S ′, and both attributes represent the same 223

information in their respective schemas. 224

In this paper, we focus on a more straightfor- 225

ward scenario: we enumerate all possible mappings 226

M⊆ D×D′ and determine whether each mapping 227

{r, r′} ∈ M is correct or not. Each candidate map- 228

ping {r, r′} consists of two items, where each item 229

r is composed of a schema name N and a schema 230

description C from the corresponding database D. 231

We framework our schema matching task as 232

an LLM generation task guided by pseudo-code 233

instructions under a knowledge-enhanced setting. 234

This involves 1) a list P of designated task-specific 235

pseudo-code and 2) a list K of knowledge items 236

retrieved from all available knowledge sets K. 237

We serialize the inputs, including the pseudo- 238

code P , candidate mapping {r, r′}, and retrieved 239

knowledge items K, into a prompt tailored to the 240

LLM L using a function ϕ. An LLM-generated 241

response LR is then obtained as: 242

LR← L
(
ϕ(P, {r, r′},K)

)
. (1) 243

Our task objective is to classify the correctness of 244

each candidate mapping. Specifically, we aim to 245

obtain a binary classification result c ∈ {yes, no} 246

from the LLM’s response LR, indicating whether 247

the mapping {r, r′} is correct. For clarity of pre- 248

sentation, here we focus on defining SM, though it 249

should be noticed that this setting can also be gen- 250

eralized to entity matching task (cf. Appendix A). 251

3 Matching Framework 252

3.1 Framework Overview 253

Figure 2 presents an overview of our proposed 254

KCMF, which operates in four sequential stages. 255

S1. Pseudo-code Design: Experts decompose the 256

task into task-related conditional statements in nat- 257

ural language. A superior advantage of our ap- 258

proach is that this pseudo-code for a task is de- 259

signed once and can be reused by anyone perform- 260

ing the matching task, without the need to write 261

custom ones. S2. Knowledge Retrieval & Construc- 262

tion: KCMF constructs granular domain knowl- 263

edge and database-structure knowledge via retriev- 264
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Figure 2: Overview of KCMF. Our carefully designed pseudo-code (detailed in Appendix B) offers a reusable and
efficient solution for both SM and EM tasks. This eliminates the need for redesigning statements from scratch when
working with new datasets, streamlining the process and enhancing adaptability.

ing information from domain knowledge bases and265

discovering database structures. S3. Prompt Gener-266

ation: Utilizing the knowledge from S2 and pseudo-267

code from S1, KCMF generates LLM prompts268

that include demonstrations. S4. Inconsistency-269

tolerant Generation Ensemble: KCMF uses the270

constructed prompts to query the LLM. The multi-271

ple outputs generated are combined, mitigating the272

ill-formatting issue, to reach the final decision.273

Illustrative examples of the main KCMF compo-274

nents in this section are provided in Appendix A.275

3.2 Pseudo-code Design276

As Figure 1 depicts, one of the challenges that277

LLMs face when performing matching is the is-278

sue of under-matching and over-matching. This279

issue stems from the ambiguity of the task instruc-280

tion “match”. Without additional context, the word281

match lacks a clear definition in this setting1. Take282

schema matching as an example. The term match283

in this context has at least three different interpreta-284

tions, depending on the focus of the task:285

• The data types of the column values are the same286

1As shown in Appendix F, there is a discrepancy between
what GPT-3.5 understands the instruction match and the in-
tended objective of the schema matching task.

or convertible to each other. 287

• Table definitions are semantically related. 288

• Schemas refer to the same real-world concept. 289

To address this ambiguity, we propose a task-aware 290

strategy to decompose the task into pseudo-code 291

composed of conditional statements directly de- 292

rived from the task’s motivation. As shown in 293

S1 of Figure 2, natural language predicates are 294

structured into if-then-else constructs, each provid- 295

ing sufficient conditions to determine “matched” 296

or “not matched” cases. The pseudo-code is de- 297

signed to comprehensively cover all relevant task 298

conditions. This process requires manual effort 299

to understand the task’s motivation and design the 300

pseudo-codeR (see implementation details in Ap- 301

pendix B). To apply this pseudo-code, we intro- 302

duce a reasoning prompting strategy inspired by 303

Chain-of-Thought (Wei et al., 2022), which will be 304

discussed in section 3.4. 305

3.3 Building Domain Knowledge Set 306

To solve the matching task within a knowledge- 307

enhanced setting, we first need to retrieve a do- 308

main knowledge list K. However, because answers 309

for matching tasks cannot be explicitly derived 310

from retrieved information and due to the scarcity 311
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of unstructured domain knowledge, we propose312

two mechanisms: Dataset as Knowledge (DaK)313

and Examples as Knowledge (EaK). These mech-314

anisms are designed to construct highly relevant315

unstructured knowledge sets tailored specifically316

for matching tasks. Further implementation details317

are provided in Appendix B.318

Dataset as Knowledge (DaK) Due to pri-319

vacy concerns, concrete records from the source320

databases D and D′ are often inaccessible to the321

schema matching system (Johnson et al., 2023;322

Zhang et al., 2023b). This means that the matching323

task must be performed using only metadata. In324

this setting, LLMs are required to understand the325

structures of D and D′, which, however, can only326

be partly seen during inference through the limited327

metadata representations {r, r′} (cf. Section 2.2).328

Hence, we propose DaK to acquire knowledge of329

the structure of source databases by searching meta-330

data from the full datasetM, as shown in Figure 3.331

provider
person-hospital patient-provider

Patient is ...
A foreign key to the provider table.

provider-id
Provider table contains clinicians
that provide patient care

... DaK Entry

DaK Knowledge

2

3

Dataset     

1

Figure 3: A toy example of DaK. Object “provider” and
the description of which are identified, respectively (①
& ②); then, they are integrated as an entry and a piece
of DaK knowledge (③).

The procedure of DaK aims to discover database332

objects and their metadata from the candidate pool333

M (see pseudo-code in Appendix A). As shown334

in Figure 3, DaK operates in three steps: 1) for a335

given candidate pair {r, r′} ∈ M, DaK identifies336

an object O; in the example, O is a table named337

“provider”. While this step can utilize techniques338

like Named Entity Recognition (NER), for rapid339

prototyping, we extract O by traversing all schema340

names N and N ′ associated with r, r′ (see ①). 2)341

DaK then scans the remaining pairs {r, r′} to find342

metadata KDaK related to the identified object O;343

in this example, KDaK is the description of the ta-344

ble “provider”. This is accomplished by matching345

O with descriptions C from the other candidate346

pairs (see ②). 3) After obtaining an object list CObj347

consisting of each identified object O, and a meta-348

data list CDaK consisting of all matched knowledge349

KDaK, DaK proceeds to form the name of O as an350

entry and KDaK of O as the corresponding DaK351

knowledge. As shown in Figure 3, the name of 352

the identified object “provider” and the descrip- 353

tion of “provider” are constructed into a piece of 354

DaK knowledge: {provider: provider table con- 355

tains clinicians that provide patient care}. 356

Examples as Knowledge (EaK) Using text 357

chunks from a self-built corpus has become a de 358

facto approach for retrieval enhancement to re- 359

duce LLM hallucinations (Gao et al., 2024). For 360

common-sense QA tasks, such text chunks can be 361

easily retrieved from existing commonsense cor- 362

pora. However, the knowledge required for match- 363

ing tasks is domain-specific, and existing KBs are 364

mainly structured as entity databases or thesaurus 365

rather than natural language text. Thus, we propose 366

EaK, as depicted in Figure 4. 367

Knowledge Base

Retrieve PhraseGlobulin

Protein

...

Bio-
molecule

globulin

Parent

Parent

Globulin is a kind
of Protein.

Protein is a kind
of Biomolecule.

······

Web
API

Dense
Retrieval

Filter

globulinglobulinglobulin

Candidate
Keywords

Figure 4: An example of EaK.

As its name suggests, EaK aims to explain com- 368

plex concepts using examples. Given a pair {r, r′}, 369

EaK first extracts keywords from it by querying 370

an LLM, and then queries an LLM again to filter 371

the domain-irrelevant ones (see pseudo-code in Ap- 372

pendix G). Obtaining all candidate keywords, EaK 373

uses these candidates to search domain KBs for the 374

top-k related records. For remote KBs, retrieval can 375

be done through a search over the provided Web 376

API; while for local KBs, this procedure can be im- 377

plemented using stronger dense retrieval. For each 378

retrieved record, EaK leverages its relationships 379

and properties to form explanatory knowledge. For 380

example, in Figure 4, EaK generates the knowledge 381

by phrasing the parent relation. 382

3.4 Prompt Construction 383

Pseudo-code-based Reasoning Prompting In a 384

paradigm of k-shot in-context learning, we sam- 385

ple k valid match pairs {d, d′} as demonstrations 386

together with the pseudo-codeR, the queried pair 387

{r, r′}, and knowledge list K. The fundamental 388

pattern of the prompt is illusrated in Figure 5. 389

There are two placeholders in the prompt, 390

{CRSNG} for the reasoning steps and {ans} for the 391
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Prompt
Task Instruction: Are A and B matched?

Knowledge: Date type is a basic SQL data type.

Pseudo-code    : 1) If columns are not the same type of data,
then the answer is no, else check the next statement...
Demonstrations               :
Schema A is drug-code, B is drug-id                            . 
Schema A is provider-id, B is drug-id                            .
Target Data            :Schema A is patients-birthdate, B is
person-month_of_birth.

Figure 5: A toy prompt combining all outcomes from
previous sections and placeholders {CRSNG} and {ans}.

answer. To generate CRSNG and ans, we first de-392

fine each single statement in pseudo-code R (cf.393

Section 3.2) as p→ q. Then, we check each state-394

ment sequentially: for the current statement p→ q,395

the condition p is checked if it is satisfied; if p is396

fulfilled, terminate the process and set the answer397

ans = q; if not, proceed to the next statement; con-398

tinue this process until an answer is drawn (see the399

reasoning construction algorithm in Appendix A).400

Next, the obtained CRSNG and ans will be inserted401

into prompt. This process is repeated for all demon-402

strations to obtain the full set of reasoning steps.403

Notably, the pseudo-code can be extended for com-404

plex cases with multiple reasoning paths by adding405

an "ELSE" clause for alternative statements.406

Self-Indicator Extraction Inspired by the per-407

formance gain observed when generating a high-408

quality summary at the beginning of reasoning in409

our experiments, we further add a Self-Indicator410

Extraction pre-task. This plugin module generates411

a filtered text segment, called self-indicator (KSI),412

describing key information from {r, r′}. Specif-413

ically, taking {r, r′} and K as input, an LLM is414

used to generate KSI (cf. Appendix B), which is415

then appended to the prompts created above.416

Summarized Demonstrations After decompos-417

ing task instructions into pseudo-code, we leverage418

in-context learning to enable the LLM to learn rea-419

soning behaviors beyond the concept of “match”.420

To manage the prompt length, we use an LLM to421

summarize all demonstration pairs {d, d′} (cf. Ap-422

pendix B), and use summarized pairs to improve423

efficiency without losing essential information.424

3.5 Inconsistency-tolerant Generation425

Ensemble (IntGE)426

With multiple knowledge sets available, a straight-427

forward utilization is to combine all retrieved428

knowledge within one prompt, but this practice429

leads to information within a prompt flooded thus430

bringing unexpected outputs (Parciak et al., 2024). 431

Therefore, we instead propose IntGE to integrate 432

diverse information sources and improve output 433

stability in a fine-tuning-free manner. We define 434

the available knowledge sets from unique sources 435

as K = [K1,K2, . . . ,Kn]. For a given pair {r, r′}, 436

we retrieve information from each source in K, re- 437

sulting in n knowledge lists. Each list is used to 438

construct a prompt following the method in Sec- 439

tion 3.4, creating n prompts. We ensemble the n 440

binary classification results using majority voting 441

to determine the prediction for {r, r′}. 442

As noted in previous studies (Cuconasu et al., 443

2024; Zhang et al., 2024b), LLMs tend to pre- 444

fer familiar input from their pre-training phase, 445

and distracting context can lead to poor outputs. 446

IntGE aims to prevent interference between dif- 447

ferent knowledge sources by separating them into 448

distinct prompts. Inspired by Wang et al. (2023b); 449

Shi et al. (2024), we adopt a straightforward voting 450

strategy. This approach leverages multiple knowl- 451

edge sources while enhancing the model’s robust- 452

ness against poorly formatted outputs by keeping 453

prompt lengths manageable. 454

4 Experiments 455

4.1 Experimental Setup 456

Dataset and Metrics Following Narayan et al. 457

(2022), we choose the challenging Synthea, 458

MIMIC, and CMS from the OMAP benchmark 459

(Zhang et al., 2021) for SM. For EM, we adapt the 460

MedMentions benchmark (Mohan and Li, 2019) to 461

construct a new biomedical dataset MedMentions 462

Matching (MMM), with details in Appendix B. 463

To assess KCMF’s generalization beyond the 464

biomedical domain, we include widely used out- 465

of-domain EM datasets: Amazon-Google (AG), 466

Walmart-Amazon (WA), DBLP-Scholar (DS) from 467

DeepM (Mudgal et al., 2018). 468

Following Zhang et al. (2021); Narayan et al. 469

(2022), we report F1-score across all pairs for its 470

suitability in the inherently imbalanced data match- 471

ing tasks and include accuracy to show precision 472

and recall trends after applying KCMF. Detailed 473

precision and recall results are in Appendix C. 474

Settings We mainly follow Section 3 to con- 475

duct experiments. However, for AG, WA and 476

DS in EM, those derived from e-commerce 477

and publication-profile data lacking readily avail- 478

able knowledge bases, we test KCMF with- 479

out knowledge construction & retrieval. Un- 480
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MIMIC Synthea CMSMethods Acc F1 Acc F1 Acc F1

SMAT 0.9865 0.2020 0.9902 0.3850 0.9852 0.5000

GLM-4-Flash 0.9512 0.0369 0.9895 0.1143 0.9922 0.1667
+KCMF 0.9816+3.04% 0.1061+6.92% 0.9852+0.43% 0.1538+3.95% 0.9836−0.86% 0.2500+8.33%

Llama-3-8B 0.3272 0.0060 0.8870 0.0233 0.9926 0.0952
+KCMF 0.9774+65.02% 0.0765+7.05% 0.9572+7.02% 0.0863+6.30% 0.9481−4.45% 0.1192+2.40%

Mistral-7B 0.9931 0.1538 0.9686 0.0792 0.9879 0.2051
+KCMF 0.9947+0.16% 0.3200+16.62% 0.9895+2.09% 0.1143+3.51% 0.9867−0.12% 0.2273+2.22%

GPT-3.5 0.9767 0.0745 0.9865 0.0909 0.7656 0.0196
+KCMF 0.9944+1.77% 0.6207+54.62% 0.9936+0.71% 0.4242+33.33% 0.9867+22.11% 0.2917+27.21%

GPT-4o 0.9964 0.3030 0.9919 0.0769 0.9922 0.1667
+KCMF 0.9959−0.05% 0.3500+4.70% 0.9946+0.27% 0.4667+38.98% 0.9887+0.20% 0.4082+24.15%

Table 1: The results for the schema matching task.

less otherwise noted, LLMs utilized in KCMF481

are GPT-3.5-turbo-1106. Detailed settings and482

all prompts, including pseudo-code, are in Ap-483

pendix A and G. Given KCMF’s fine-tuning-484

free nature, we mainly compare it with (1) five485

few-shot LLM baselines including API-styled486

GPT-3.5-turbo-1106, GPT-4o, and GLM-4-Flash487

and locally-deployed Llama-3-8B-Instruct and488

Mistral-7B-Instruct; and (2) non-LLM com-489

petitors, namely SMAT (Zhang et al., 2021) achiev-490

ing the best SM performance on OMAP (by clas-491

sifying schema pairs just like KCMF) and SU-492

DOWOODO (Wang et al., 2023a), a self-supervised493

SoTA methods for EM tasks.494

4.2 Main Results for SM and EM495

KCMF achieves superior performance in SM496

As shown in Table 1, generally KCMF is signifi-497

cantly better than all LLM baselines and SMAT for498

SM. Though this superiority is less pronounced on499

CMS, a notable performance improvement over500

LLM baselines is still evident. Specifically, on501

Synthea, GPT-3.5-version KCMF outperforms502

the previous SMAT by 3.92% in F1-score, and on503

MIMIC, the gain increases to 41.87%. In addition,504

we observe that the F1-score of GPT-3.5-version505

KCMF outperforms all baselines by an average506

of 33.73% and 50.59% on Synthea and MIMIC,507

respectively. On MMM, the F1-score of KCMF sur-508

passes all LLM baselines by an average of 10.62%,509

and on CMS this gain reaches 12.86%.510

KCMF ensures positive sample recall in SM Al-511

though we see a slight drop in accuracy for GPT-4o-512

version KCMF, this 0.05% drop is not caused by513

a failure in recall, as detailed precision and recall514

in Appendix C show. Instead, it results from an515

increase in both true-positive and false-positive re-516

calls, specifically, the drop is due to the correct517

recalling of 2 extra positive samples and incorrect 518

recalling of 5 negative samples, which looks rea- 519

sonable for the 2 more true-positive raise the recall 520

from 38.5% to 53.8% while keeping the precision 521

around 25.0%, so we still consider this a strong 522

result for an inherently imbalanced matching task. 523

KCMF generalizes well on out-of-domain EM 524

As shown in Table 2, KCMF consistently enhances 525

the performance of all LLMs for EM, aligning with 526

the SM results in Table 1. Even without knowl- 527

edge retrieval, KCMF remains competitive with the 528

semi-supervised method SUDOWOODO, highlight- 529

ing its strong generalizabilities across commonly 530

used EM datasets. 531

KCMF generalizes across backbones for both 532

SM and EM We observe that after implementing 533

KCMF, the F1-score of each backbone is improved 534

by an average of 17.98%, 17.21%, 8.91%, 6.44%, 535

11.69%, 24.71%, 8.54% on MIMIC, Synthea, 536

CMS, MMM, AG, WA, and DS, respectively. 537

These results demonstrate that our proposed KCMF 538

can generalize across different backbones and con- 539

sistently improve the performance of LLMs on 540

both SM and EM tasks. Notably, on MIMIC, the 541

strongest version of KCMF achieves an F1-score 542

of 0.6207, clearly outperforming a fine-tuned SoTA 543

JELLYFISH (Zhang et al., 2024a) for SM, which 544

achieves 0.4314. This result indicates the great po- 545

tential of fine-tuning-free LLMs in data matching 546

tasks on domain-specific data. 547

4.3 Component Analysis 548

Task-specific pseudo-code disambiguates task in- 549

structions The pseudo-code is designed to pre- 550

vent LLM confusion about task objectives by pro- 551

viding explicit conditional statements. To explore 552

its effectiveness, we examine KCMF on Synthea 553
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MMM AG WA DS
Methods Acc F1 Acc F1 Acc F1 Acc F1

SUDOWOODO - - 0.9492 0.5045 0.9532 0.5236 0.9089 0.7706
GLM-4-Flash 0.9663 0.6841 0.6140 0.3410 0.4256 0.2332 0.9195 0.8009

+KCMF 0.9690 0.7334 0.8203 0.5164 0.8404 0.5038 0.9646 0.9035
∆ +0.27% +4.92% +20.63% +17.54% +41.48% +27.06% +4.51% +10.26%

Llama-3-8B 0.9574 0.6738 0.7553 0.2761 0.2660 0.1861 0.8377 0.6799
+KCMF 0.9730 0.7783 0.6594 0.3561 0.8023 0.4692 0.9093 0.7637

∆ +1.56% +10.45% −9.59% +8.00% +53.63% +28.31% +7.16% +8.38%

Mistral-7B 0.9671 0.7046 0.7479 0.4289 0.4300 0.2275 0.8555 0.6318
+KCMF 0.9689 0.7206 0.7771 0.4511 0.8824 0.5594 0.8948 0.6595

∆ +0.18% +1.60% +2.92% +2.22% +45.24% +33.19% +3.93% +2.77%

GPT-3.5 0.9297 0.6242 0.8731 0.2988 0.8380 0.4071 0.8915 0.6245
+KCMF 0.9727 0.7758 0.8809 0.5991 0.9517 0.7288 0.9300 0.8260%

∆ +4.30% +15.16% +0.78% +30.03% +11.37% +32.17% +3.85% +20.15%

GPT-4o 0.9658 0.6738 0.9097 0.6810 0.9688 0.8469 0.9613 0.8920
+KCMF 0.9661 0.6744 0.9128 0.6875 0.9746 0.8750 0.9653 0.9035

∆ +0.03% +0.06% +0.31% +0.65% +0.58% +2.81% +0.40% +1.15%

Table 2: The results for the entity matching task.

without our proposal: all pseudo-code and corre-554

sponding reasoning steps are removed from the555

demonstrations, and the results are compared with556

the complete KCMF. We classify false-positive557

errors into three types: Over-matching (OM), as558

described in Figure 1; Position Mismatching (PM),559

where parts of r and r′ (e.g., a schema’s table and560

another’s column) are incorrectly matched; and In-561

correct Reasoning (IR), covering errors not fitting562

the first two categories. Table 3 shows that the563

pseudo-code reduces all three error types.564

Settings # (Case)
IR OM PM

w/o pseudo-code 8 60 11
w. pseudo-code 5 13 1

∆ -37.5% -78.3% -90.9%

Table 3: Number of erroneous cases with and without
the proposed pseudo-code on Synthea.

IntGE enhances robustness against badly-565

formatted outputs To assess the impact of IntGE,566

we test a knowledge-all-in-one (AIO) version567

of KCMF, which removes IntGE and combines568

knowledge from all sources into a single prompt.569

As shown in Figure 6, results are categorized into570

three types: Badly-formatted, where the output571

does not follow the demonstrated format; Well-572

formatted, where it does; and Eliminated, where573

IntGE’s voting mechanism removes poorly for-574

matted outputs, ensuring the final result is well-575

formatted. The results clearly indicate that the AIO576

setting performed poorly. In contrast, IntGE ef-577

fectively reduces the number of badly-formatted578

output via its multi-prompt voting mechanism. The579

results imply a paradigm for retrieving knowledge580

from different sources for inference-only LLMs, 581

i.e., splitting retrieved knowledge into separate 582

prompts based on the source to improve output 583

quality while managing prompt length. 584

IntGE AIO
Badly-formatted

0

200

400

600

800

Co
un

t #

3

735

IntGE AIO

IntGE AIO
Eliminated

0

20

40

60

80

44

0

IntGE AIO

IntGE AIO
Well-formatted

0

1000

2000

3000

4000

2917

2229

IntGE AIO

Figure 6: Ablations of IntGE on Synthea.

In addition to the above analysis, detailed abla- 585

tion results in Appendix D and E further confirm 586

the necessity and effectiveness of each component 587

of KCMF. 588

5 Conclusion 589

We presented KCMF, a fine-tuning-free framework 590

for solving data matching tasks under a knowledge- 591

enhanced setting, with a pseudo-code based task 592

instruction strategy for addressing the problem of 593

confusion, and mechanisms DaK, EaK, and IntGE 594

for building and utilizing knowledge from various 595

sources in scarcity of unstructured domain knowl- 596

edge. Our evaluations show that KCMF enhances 597

five LLM backbones and outperforms the current 598

non-LLM solutions in most cases in a completely 599

fine-tuning-free paradigm, and our pseudo-code ef- 600

fectively mitigated LLMs’ confusion towards the 601

matching tasks. Our future work involves extend- 602

ing KCMF to make it suitable for both metadata- 603

based and instance-based scenarios, and further 604

improving the efficiency of the matching workflow. 605
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6 Limitations606

One limitation of our approach is the reliance on607

human effort to select appropriate domain knowl-608

edge bases (KBs) as sources of information, which609

may pose challenges for practical implementation.610

Also, this study primarily focuses on matching611

tasks framed as predicting enumerated data pairs612

rather than directly identifying potential mappings613

within source databases. While this approach sim-614

plifies the problem formulation, it may lead to in-615

creased computational demands and thus have an616

environmental impact. Although cost is a concern,617

our cose analysis in Appendix E shows the cost-in-618

total remains acceptable. Nontheless, we recognize619

the unexplored opportunity for efficiency optimiza-620

tion in future work.621

References622

Bogdan Alexe, Mauricio Hernández, Lucian Popa, and623
Wang-Chiew Tan. 2010. Mapmerge: Correlating624
independent schema mappings. Proceedings of the625
VLDB Endowment, 3(1-2):81–92.626

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and627
Hannaneh Hajishirzi. 2023. Self-RAG: Learning628
to Retrieve, Generate, and Critique through Self-629
Reflection. arXiv preprint. ArXiv:2310.11511 [cs].630

Md Asif-Ur-Rahman, Bayzid Ashik Hossain, Michael631
Bewong, Md Zahidul Islam, Yanchang Zhao, Jeremy632
Groves, and Rory Judith. 2023. A semi-automated633
hybrid schema matching framework for vegetation634
data integration. Expert Systems with Applications,635
229:120405.636

Paolo Atzeni, Luigi Bellomarini, Paolo Papotti, and637
Riccardo Torlone. 2019. Meta-mappings for schema638
mapping reuse. Proceedings of the VLDB Endow-639
ment, 12(5):557–569.640

Nils Barlaug and Jon Atle Gulla. 2021. Neural networks641
for entity matching: A survey. ACM Transactions on642
Knowledge Discovery from Data (TKDD), 15(3):1–643
37.644

Ursin Brunner and Kurt Stockinger. 2020. Entity match-645
ing with transformer architectures-a step forward in646
data integration. In 23rd International Conference647
on Extending Database Technology, Copenhagen, 30648
March-2 April 2020, pages 463–473. OpenProceed-649
ings.650

Chen Chen, Behzad Golshan, Alon Halevy, Wang-651
Chiew Tan, and AnHai Doan. 2018. BigGorilla: An652
Open-Source Ecosystem for Data Preparation and653
Integration.654

Florin Cuconasu, Giovanni Trappolini, Federico Sicil-655
iano, Simone Filice, Cesare Campagnano, Yoelle656

Maarek, Nicola Tonellotto, and Fabrizio Silvestri. 657
2024. The power of noise: Redefining retrieval for 658
rag systems. In Proceedings of the 47th International 659
ACM SIGIR Conference on Research and Develop- 660
ment in Information Retrieval, pages 719–729. 661

Muhammad Ebraheem, Saravanan Thirumuruganathan, 662
Shafiq Joty, Mourad Ouzzani, and Nan Tang. 2018. 663
DeepER – Deep Entity Resolution. Proceed- 664
ings of the VLDB Endowment, 11(11):1454–1467. 665
ArXiv:1710.00597 [cs]. 666

Meihao Fan, Xiaoyue Han, Ju Fan, Chengliang Chai, 667
Nan Tang, Guoliang Li, and Xiaoyong Du. 2024. 668
Cost-effective in-context learning for entity resolu- 669
tion: A design space exploration. In 2024 IEEE 670
40th International Conference on Data Engineering 671
(ICDE), pages 3696–3709. IEEE. 672

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, 673
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang, 674
and Haofen Wang. 2024. Retrieval-Augmented Gen- 675
eration for Large Language Models: A Survey. arXiv 676
preprint. ArXiv:2312.10997 [cs]. 677

Zhengbao Jiang, Frank Xu, Luyu Gao, Zhiqing Sun, 678
Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie 679
Callan, and Graham Neubig. 2023. Active Retrieval 680
Augmented Generation. In Proceedings of the 2023 681
Conference on Empirical Methods in Natural Lan- 682
guage Processing, pages 7969–7992, Singapore. As- 683
sociation for Computational Linguistics. 684

Alistair E. W. Johnson, Lucas Bulgarelli, Lu Shen, Alvin 685
Gayles, Ayad Shammout, Steven Horng, Tom J. Pol- 686
lard, Sicheng Hao, Benjamin Moody, Brian Gow, Li- 687
wei H. Lehman, Leo A. Celi, and Roger G. Mark. 688
2023. MIMIC-IV, a freely accessible electronic 689
health record dataset. Scientific Data, 10(1):1. 690

Jungo Kasai, Kun Qian, Sairam Gurajada, Yunyao Li, 691
and Lucian Popa. 2019. Low-resource deep entity 692
resolution with transfer and active learning. In Pro- 693
ceedings of the 57th Annual Meeting of the Asso- 694
ciation for Computational Linguistics, pages 5851– 695
5861. 696

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina 697
Toutanova. 2019. Bert: Pre-training of deep bidirec- 698
tional transformers for language understanding. In 699
Proceedings of naacL-HLT, volume 1, page 2. Min- 700
neapolis, Minnesota. 701

Mohamed Kettouch, Cristina Luca, Mike Hobbs, and 702
Sergiu Dascalu. 2017. Using semantic similarity for 703
schema matching of semi-structured and linked data. 704
Pages: 133. 705

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 706
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 707
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock- 708
täschel, et al. 2020. Retrieval-augmented generation 709
for knowledge-intensive nlp tasks. Advances in Neu- 710
ral Information Processing Systems, 33:9459–9474. 711

9

http://arxiv.org/abs/2310.11511
http://arxiv.org/abs/2310.11511
http://arxiv.org/abs/2310.11511
http://arxiv.org/abs/2310.11511
http://arxiv.org/abs/2310.11511
https://doi.org/10.1016/j.eswa.2023.120405
https://doi.org/10.1016/j.eswa.2023.120405
https://doi.org/10.1016/j.eswa.2023.120405
https://doi.org/10.1016/j.eswa.2023.120405
https://doi.org/10.1016/j.eswa.2023.120405
https://doi.org/10.14778/3303753.3303761
https://doi.org/10.14778/3303753.3303761
https://doi.org/10.14778/3303753.3303761
https://doi.org/10.14778/3236187.3236198
http://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2312.10997
https://doi.org/10.18653/v1/2023.emnlp-main.495
https://doi.org/10.18653/v1/2023.emnlp-main.495
https://doi.org/10.18653/v1/2023.emnlp-main.495
https://doi.org/10.1038/s41597-022-01899-x
https://doi.org/10.1038/s41597-022-01899-x
https://doi.org/10.1038/s41597-022-01899-x
https://doi.org/10.1109/ITECHA.2017.8101923
https://doi.org/10.1109/ITECHA.2017.8101923
https://doi.org/10.1109/ITECHA.2017.8101923


Huahang Li, Shuangyin Li, Fei Hao, Chen Jason Zhang,712
Yuanfeng Song, and Lei Chen. 2024. Booster: Lever-713
aging large language models for enhancing entity714
resolution. In Companion Proceedings of the ACM715
on Web Conference 2024, pages 1043–1046.716

Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai717
Doan, and Wang-Chiew Tan. 2020. Deep Entity718
Matching with Pre-Trained Language Models. Pro-719
ceedings of the VLDB Endowment, 14(1):50–60.720
ArXiv:2004.00584 [cs].721

Sunil Mohan and Donghui Li. 2019. MedMentions:722
A Large Biomedical Corpus Annotated with UMLS723
Concepts. arXiv preprint. ArXiv:1902.09476 [cs].724

Sidharth Mudgal, Han Li, Theodoros Rekatsinas, An-725
Hai Doan, Youngchoon Park, Ganesh Krishnan, Ro-726
hit Deep, Esteban Arcaute, and Vijay Raghavendra.727
2018. Deep Learning for Entity Matching: A Design728
Space Exploration. In Proceedings of the 2018 Inter-729
national Conference on Management of Data, pages730
19–34, Houston TX USA. ACM.731

Avanika Narayan, Ines Chami, Laurel Orr, and Christo-732
pher Ré. 2022. Can foundation models wrangle733
your data? Proceedings of the VLDB Endowment,734
16(4):738–746.735

Hao Nie, Xianpei Han, Ben He, Le Sun, Bo Chen,736
Wei Zhang, Suhui Wu, and Hao Kong. 2019. Deep737
Sequence-to-Sequence Entity Matching for Heteroge-738
neous Entity Resolution. In Proceedings of the 28th739
ACM International Conference on Information and740
Knowledge Management, pages 629–638, Beijing741
China. ACM.742

Marcel Parciak, Brecht Vandevoort, Frank Neven,743
Liesbet M. Peeters, and Stijn Vansummeren. 2024.744
Schema Matching with Large Language Mod-745
els: an Experimental Study. arXiv preprint.746
ArXiv:2407.11852 [cs].747

Ralph Peeters and Christian Bizer. 2023. Using chatgpt748
for entity matching. In European Conference on Ad-749
vances in Databases and Information Systems, pages750
221–230. Springer.751

Ralph Peeters and Christian Bizer. 2024. Entity Match-752
ing using Large Language Models. arXiv preprint.753
ArXiv:2310.11244 [cs].754

Vipula Rawte, Amit Sheth, and Amitava Das. 2023. A755
Survey of Hallucination in Large Foundation Models.756
arXiv preprint. ArXiv:2309.05922 [cs].757

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie758
Huang, Nan Duan, and Weizhu Chen. 2023. En-759
hancing Retrieval-Augmented Large Language Mod-760
els with Iterative Retrieval-Generation Synergy. In761
Findings of the Association for Computational Lin-762
guistics: EMNLP 2023, pages 9248–9274, Singapore.763
Association for Computational Linguistics.764

Eitam Sheetrit, Menachem Brief, Moshik Mishaeli, and 765
Oren Elisha. 2024. ReMatch: Retrieval Enhanced 766
Schema Matching with LLMs. arXiv preprint. 767
ArXiv:2403.01567 [cs]. 768

Weijia Shi, Sewon Min, Michihiro Yasunaga, Min- 769
joon Seo, Richard James, Mike Lewis, Luke Zettle- 770
moyer, and Wen-tau Yih. 2024. Replug: Retrieval- 771
augmented black-box language models. In Proceed- 772
ings of the 2024 Conference of the North American 773
Chapter of the Association for Computational Lin- 774
guistics: Human Language Technologies (Volume 1: 775
Long Papers), pages 8364–8377. 776

Saravanan Thirumuruganathan, Shameem A. Puthiya 777
Parambath, Mourad Ouzzani, Nan Tang, and Shafiq 778
Joty. 2018. Reuse and Adaptation for Entity Res- 779
olution through Transfer Learning. arXiv preprint. 780
ArXiv:1809.11084 [cs, stat]. 781

Runhui Wang, Yuliang Li, and Jin Wang. 2023a. Su- 782
dowoodo: Contrastive Self-supervised Learning for 783
Multi-purpose Data Integration and Preparation. In 784
2023 IEEE 39th International Conference on Data 785
Engineering (ICDE), pages 1502–1515, Anaheim, 786
CA, USA. IEEE. 787

Tianshu Wang, Xiaoyang Chen, Hongyu Lin, Xuanang 788
Chen, Xianpei Han, Hao Wang, Zhenyu Zeng, and 789
Le Sun. 2024. Match, Compare, or Select? An Inves- 790
tigation of Large Language Models for Entity Match- 791
ing. arXiv preprint. ArXiv:2405.16884 [cs]. 792

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, 793
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and 794
Denny Zhou. 2023b. Self-Consistency Improves 795
Chain of Thought Reasoning in Language Models. 796
arXiv preprint. ArXiv:2203.11171 [cs]. 797

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 798
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 799
et al. 2022. Chain-of-thought prompting elicits rea- 800
soning in large language models. Advances in neural 801
information processing systems, 35:24824–24837. 802

Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2023. RE- 803
COMP: Improving Retrieval-Augmented LMs with 804
Compression and Selective Augmentation. arXiv 805
preprint. ArXiv:2310.04408 [cs]. 806

Wenhao Yu, Hongming Zhang, Xiaoman Pan, Kaixin 807
Ma, Hongwei Wang, and Dong Yu. 2023. Chain- 808
of-Note: Enhancing Robustness in Retrieval- 809
Augmented Language Models. arXiv preprint. 810
ArXiv:2311.09210 [cs]. 811

Alexandros Zeakis, George Papadakis, Dimitrios Sk- 812
outas, and Manolis Koubarakis. 2023. Pre-Trained 813
Embeddings for Entity Resolution: An Experimen- 814
tal Analysis. Proceedings of the VLDB Endowment, 815
16(9):2225–2238. 816

Haochen Zhang, Yuyang Dong, Chuan Xiao, and Masa- 817
fumi Oyamada. 2024a. Jellyfish: A Large Lan- 818
guage Model for Data Preprocessing. arXiv preprint. 819
ArXiv:2312.01678 [cs]. 820

10

https://doi.org/10.14778/3421424.3421431
https://doi.org/10.14778/3421424.3421431
https://doi.org/10.14778/3421424.3421431
http://arxiv.org/abs/1902.09476
http://arxiv.org/abs/1902.09476
http://arxiv.org/abs/1902.09476
http://arxiv.org/abs/1902.09476
http://arxiv.org/abs/1902.09476
https://doi.org/10.1145/3183713.3196926
https://doi.org/10.1145/3183713.3196926
https://doi.org/10.1145/3183713.3196926
https://doi.org/10.1145/3357384.3358018
https://doi.org/10.1145/3357384.3358018
https://doi.org/10.1145/3357384.3358018
https://doi.org/10.1145/3357384.3358018
https://doi.org/10.1145/3357384.3358018
http://arxiv.org/abs/2407.11852
http://arxiv.org/abs/2407.11852
http://arxiv.org/abs/2407.11852
http://arxiv.org/abs/2310.11244
http://arxiv.org/abs/2310.11244
http://arxiv.org/abs/2310.11244
http://arxiv.org/abs/2309.05922
http://arxiv.org/abs/2309.05922
http://arxiv.org/abs/2309.05922
https://doi.org/10.18653/v1/2023.findings-emnlp.620
https://doi.org/10.18653/v1/2023.findings-emnlp.620
https://doi.org/10.18653/v1/2023.findings-emnlp.620
https://doi.org/10.18653/v1/2023.findings-emnlp.620
https://doi.org/10.18653/v1/2023.findings-emnlp.620
http://arxiv.org/abs/2403.01567
http://arxiv.org/abs/2403.01567
http://arxiv.org/abs/2403.01567
http://arxiv.org/abs/1809.11084
http://arxiv.org/abs/1809.11084
http://arxiv.org/abs/1809.11084
https://doi.org/10.1109/ICDE55515.2023.00391
https://doi.org/10.1109/ICDE55515.2023.00391
https://doi.org/10.1109/ICDE55515.2023.00391
https://doi.org/10.1109/ICDE55515.2023.00391
https://doi.org/10.1109/ICDE55515.2023.00391
http://arxiv.org/abs/2405.16884
http://arxiv.org/abs/2405.16884
http://arxiv.org/abs/2405.16884
http://arxiv.org/abs/2405.16884
http://arxiv.org/abs/2405.16884
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2310.04408
http://arxiv.org/abs/2310.04408
http://arxiv.org/abs/2310.04408
http://arxiv.org/abs/2310.04408
http://arxiv.org/abs/2310.04408
http://arxiv.org/abs/2311.09210
http://arxiv.org/abs/2311.09210
http://arxiv.org/abs/2311.09210
http://arxiv.org/abs/2311.09210
http://arxiv.org/abs/2311.09210
https://doi.org/10.14778/3598581.3598594
https://doi.org/10.14778/3598581.3598594
https://doi.org/10.14778/3598581.3598594
https://doi.org/10.14778/3598581.3598594
https://doi.org/10.14778/3598581.3598594
http://arxiv.org/abs/2312.01678
http://arxiv.org/abs/2312.01678
http://arxiv.org/abs/2312.01678


Jing Zhang, Bonggun Shin, Jinho D. Choi, and Joyce C.821
Ho. 2021. SMAT: An Attention-Based Deep Learn-822
ing Solution to the Automation of Schema Match-823
ing. In Ladjel Bellatreche, Marlon Dumas, Panagi-824
otis Karras, and Raimundas Matulevičius, editors,825
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A Methodology855

Appendix A.1 provides examples illustrating the856

key concepts from the main text used to construct857

the final prompt. Appendix A.2 discusses the858

adaptations required for applying KCMF to entity859

matching tasks. Appendix A.3 presents algorithms860

formalized based on the main procedure described861

in Section 3.862

863

A.1 Examples864

The following examples correspond to the KCMF865

techniques described in Section 3 and illustrated in866

Figure 2.867

Self-indicator
From the descriptions and knowledge, I know that schema A is
the date of birth for the patient in the patient table, and schema
B is the month of birth for the patient in the person table.

Schema Description
For schema A patients-birthdate: patient demographic data.
;the date the patient was born.

Schema Description
For schema B person-month_of_birth: {NL description of
table person};{NL description of attribute month_of_birth}

Candidate Pair
Schema A: patient-birthdate
Description of schema A: {    of patient-birthdate} 
Schema B: person-month_of_birth
Description of schema B: {    of person-month_of_birth}

Figure 7: Examples of schema description C, self-
indicator KSI, and candidate pair {r, r′} based on the
schema patients-birthdate and person-month_of_birth.

In-context Demonstration

2. Based on rule I, I must check each rule sequentially.
3. The DATE of BIRTH and the MONTH of BIRTH are both
date-related data types, I need to check rule III.
4. The PERSON table and the PATIENT table both refer to
individuals in the healthcare system,  I need to check rule IV.
5. The MONTH of BIRTH and the DATE of BIRTH both refer
to the birth information of a patient, based on rule IV, the
answer is yes.

Figure 8: An example of the in-context learning demon-
stration, i.e., an example of the [Examples] in Table 26,
directly derived from the components from Figure 7.

A.2 Discussions on Entity Matching (EM)868

Since entity matching operates at the level of869

records, the task of entity matching can be defined870

by slightly modifying the definition of r described 871

in Section 2.2 for schema matching: 872

r = {N, attr1, attr2, . . . , attrm}, (2) 873

where N represents the name of the entity r, but the 874

schema description C is replaced with a sequence 875

of attributes {attr1, attr2, . . . , attrm}, which cor- 876

responds to all the other column values of the entity 877

r. 878

For KCMF, the only difference between solv- 879

ing schema matching (SM) and entity matching 880

(EM) tasks is the number of attributes requiring 881

serialization. In SM, KCMF only needs to seri- 882

alize schema name and description, whereas in 883

EM, KCMF needs to serialize the entity name 884

and potentially a variable number of attributes. In 885

addition, since SM operates at the schema level 886

while EM at the record level, EM datasets are of- 887

ten much larger in scale in practice. As a result, 888

introducing blocking as a preprocessing phase, as 889

commonly performed in conventional EM meth- 890

ods (Ebraheem et al., 2018; Zhang et al., 2020), 891

could achieve higher efficiency in handling those 892

larger EM datasets. 893

A.3 Algorithms 894

Algorithm 1 formalizes from the metadata dis- 895

covering procedure introduced in Section 3.3. 896

As discussed in Section 3.3, the functions 897

ObjectDiscovery() and FindMetadata() can be 898

implemented using readily available Named Entity 899

Recognition (NER) models or LLMs. 900

Algorithm 1 Metadata Discovery

Input: A matching task dataset D
Output: A metadata list CDaK and an object list CObj

1: CDaK ← ∅, CObj ← ∅
2: for {ri, r′i} ∈ D do
3: O ← ObjectDiscovery(ri, r

′
i)

4: for {rj , r′j} ∈ D, j ̸= i do
5: KDaK ← FindMetadata(O, rj , r

′
j)

6: if KDaK ̸= NULL then
7: CDaK.insert(KDaK)
8: CObj.insert(O)
9: end if

10: end for
11: end for
12: return CDaK, CObj

Algorithm 2 formalizes the scan-then-check pro- 901

cedure over statements while constructing prompts, 902

which has been discussed in Section 3.4. 903

Here, in Algorithm 2, getQ() takes a statement 904

R as input and returns its conclusion (the q from 905

p→ q). 906
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Algorithm 2 Constructing Reasoning Steps

Input: Current demonstration {d, d′} and the pseudo-codeR
Output: A reasoning steps CRSNG and a corresponding final
answer ans

1: CRSNG ← ∅
2: for R ∈ R′ do
3: CRSNG.append(genReasoningStep(R, d, d′))
4: if isConditionMet(R, d, d′) or

isLastStatement(R,R) then
5: ans← getQ(R)
6: return CRSNG, ans
7: end if
8: end for

B Implementation907

In this section, we present detailed information908

on implementing KCMF, specifically, B1. guide-909

lines for designing the pseudo-code for a specific910

task (i.e., SM or EM), B2. the knowledge sources911

and the models used for knowledge retrieval and912

construction, B3. the models and parameters used913

for pre-tasks (e.g., self-indicator extraction) during914

prompt construction, B4. the models and parame-915

ters used in inference, B5. the modifications made916

to the MedMentions dataset to construct MMM,917

and B6. the accessibility datasets and code used in918

the experiments.919

B1. Pseudo-code Design The pseudo-code used920

in our experiments for SM and EM is shown in921

Table 24 and Table 25, respectively. It was directly922

authored based on the objectives of the matching923

tasks.924

As emphasized in the main text, the pseudo-925

code statements are defined as “IF-THEN-ELSE”.926

To better utilize the LLM’s natural language com-927

prehension capability, this structure is adapted to928

“IF, THEN, otherwise” in the actual design of the929

pseudo-code. To ensure that the given pseudo-code930

is checked in the correct order, a statement is added931

at the beginning of the designed pseudo-code to932

explicitly specify that the subsequent statements933

should be checked in order. This precautionary step934

can be omitted when using more advanced LLMs935

(e.g., GPT-4o).936

Additionally, to cover all the task motivations937

of the matching task, we include overlapped con-938

ditions in the pseudo-code statement design. For939

the last statement of all the pseudo-codes, we set940

a general condition to guarantee comprehensive941

coverage of all cases.942

B2. Knowledge Retrieval & Construction The943

retrieval pipeline in this paper is based on key-944

words extracted from {r, r′}, then the quality- 945

managed keywords are used to retrieve and con- 946

struct the knowledge sets following the techniques 947

demonstrated in Section 3. Specifically, we adopt 948

GPT-3.5 to extract domain-specific, difficult-to- 949

understand keywords from {r, r′} (see Table 16 for 950

details of the prompt). After that, we use GPT-3.5 951

to filter the extracted keywords (see Table 17 and 952

Table 18 for details of the prompt), and we empir- 953

ically design a blacklist for further rejecting low- 954

quality keywords. 955

To construct the EaK knowledge set, we select 956

SNOMED-CT as the knowledge base (KB) and use 957

its API2 based on the above keywords to search 958

for the associated entities in the KB, specifically 959

here we keep the top-1 search results, and for the 960

searched entities, we query their children entities 961

again using the API and randomly sample up to 3 962

children entities. The parent and children are then 963

serialized into EaK knowledge in the form of “One 964

of parent is children”. 965

For out-of-domain knowledge sources, we based 966

on the English WIKIDATA API3 to search for en- 967

tity codes using extracted keywords. We use the 968

searched top-1 entity code to construct SPARQL 969

statements for knowledge query from WIKIDATA4 970

while using this entity code to query the page ex- 971

traction from English WIKIPEDIA5. Then, for the 972

retrieved results, we use GPT-3.5 to summarize 973

the retrieved extractions to limit their length to no 974

more than 1000 words under a zero-shot setting 975

(see Table 21). 976

B3. Prompt Construction GPT-3.5 is used to 977

extract the self-indicator of schema pairs (or entity 978

pairs in MMM). The used prompts can be found in 979

19. To implement Demonstration-summarization- 980

only, we also use GPT-3.5 to compress the input 981

{r, r′}. Specifically, to control the length of the 982

prompt, we split {r, r′} into two queries (see Ta- 983

ble 20 for the detailed prompt). 984

B4. Inference Settings For the MIMIC, Synthea 985

and CMS datasets, we take WIKIDATA with DaK, 986

WIKIPEDIA with EaK, and EaK as the knowledge 987

sources to evaluate KCMF under the 4-shot set- 988

ting. For MMM, we take WIKIDATA, WIKIPEDIA, 989

and EaK as the knowledge sources to evaluate the 990

2https://browser.ihtsdotools.org/snowstorm/
snomed-ct

3https://www.wikidata.org/w/api.php
4https://query.wikidata.org/
5https://en.wikipedia.org/w/api.php
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framework under the 2-shot setting. We empirically991

set temperature to 0 and top_p to 0.1 for stable out-992

puts if these two parameters are available. Also, we993

directly took poorly formatted outputs as negative994

predictions in our experiments for metrics calcula-995

tion and workflow automation. The pseudo-code996

we designed for these two tasks can be found in997

Appendix G. We derived the main results from the998

best result of running five times.999

B5. Construction of the MMM Dataset We1000

present MedMentions Matching, or MMM, a clin-1001

ical entity matching dataset modified from Med-1002

Mentions (Mohan and Li, 2019). MedMentions is1003

an entity linking dataset whose data are recognized1004

entity mentions from PubMed documents labeled1005

with Unified Medical Language System (UMLS)1006

code. Inspired by the fact that entities referred to1007

the same real-world concept are matched from the1008

view of EM, we re-organized the MedMentions as1009

per Figure 9: For entities belonging to the same1010

UMLS code, we keep the pairs with lowest simi-1011

larity as positive. For those belonging to different,1012

we sample the pairs with the highest similarity as1013

negative. Then we use sentences where sampled1014

entities are located as context. In total, MMM con-1015

tains 7,359 positive and 100,000 negative examples1016

and an example can be found in Figure 10.1017

UMLS: C0854135 

1) chronic Pseudomonas aeruginosa infection

2) Pseudomonas aeruginosa (Pa) infection

3) chronic Pa infection

matched

UMLS:C2316287

1) FH2D

2) FH2D+

3) family history of type 2 diabetes

not matched
not matched
not matched

Context
DCTN4 as a modifier of chronic
Pseudomonas aeruginosa
infection in cystic fibrosis.

Context
The aim of this study was to
explore the impact of FH2D on
arterial stiffness in young people.

Figure 9: The process of constructing MedMentions
Matching (MMM) dataset.

Entity A Context A Entity B Context B Label
chronic
Pseudo-
monas

aeruginosa

DCTN4 as a
modifier of chronic

Pseudomonas
aeruginosa..

FH2D

The aim of this
study was to

explore the impact
of FH2D...

0
(not matched)

...

Figure 10: An example from MMM.

B6. Dataset and Code All datasets can be ac-1018

cessed through original papers cited in this study,1019

specifically for modifying MMM, the script is given1020

in our supplementary codes. Table 4 presents the1021

statistics of the test sets used in the main experi-1022

ment, sampled as 10% stratified subsets.1023

Dataset Task # (Instance) # (Positive) IR

Synthea SM 2964 8 370.5
MIMIC SM 6408 13 492.9
CMS SM 2564 20 128.2

MMM EM 10736 736 14.6
AG EM 2293 234 9.8
WA EM 2049 193 10.6
DS EM 5842 1070 5.5

Table 4: Statistics of evaluation datasets. IR = # (In-
stance) / # (Positive) is the Imbalance Ratio. The larger
the IR, the harder the matching task.

C Performance Gain Analysis 1024

Methods MIMIC Synthea CMS
P R P R P R

SMAT 11.5 84.6 24.4 90.9 33.9 95.0

GLM-4 1.9 46.2 7.4 25.0 50.0 10.0
+KCMF 5.9 53.8 9.7 37.5 19.4 35.0

∆ +4.0 +7.6 +2.3 +12.5 −30.6 +25.0

Llama-3 0.3 100.0 1.2 50.0 100.0 5.0
+KCMF 4.2 46.2 4.6 75.0 6.9 45.0

∆ +3.9 −53.8 +3.4 +25.0 −93.1 +40.0

Mistral 10.3 30.8 4.3 50.0 21.1 20.0
+KCMF 21.6 61.5 9.1 37.5 20.8 25.0

∆ +11.3 +30.7 +4.8 −12.5 −0.3 +5.0

GPT-3.5 4.1 46.2 5.6 25.0 1.0 30.0
+KCMF 56.3 69.2 28.0 87.5 25.0 35.0

∆ +52.2 +23.0 +22.4 +62.5 +24.0 +5.0

GPT-4o 25.0 38.5 5.6 12.5 50.0 10.0
+KCMF 25.9 53.8 31.8 87.5 34.5 40.8

∆ +0.9 +15.3 +26.2 +75.0 −15.5 +29.2

Table 5: Precision (P) and Recall (R) measures in SM.
KCMF excels in imbalanced tasks like SM by effec-
tively balancing precision and recall, leveraging pseudo-
code to enhance recall without compromising precision.

To further explore how KCMF achieves a higher 1025

F1-score compared to both LLM baselines and the 1026

conventional method, we provide a detailed anal- 1027

ysis of Precision (P) and Recall (R) on the three 1028

SM datasets with the highest imbalance ratios (see 1029

Table 4). The results are provided in Table 5. 1030

In imbalanced tasks like SM, often struggle to 1031

balance precision and recall, a challenge also evi- 1032

dent in LLM baselines. As shown in Table 5, dif- 1033

ferent LLM baselines exhibit varying tendencies 1034

toward recall. However, KCMF demonstrates per- 1035

formance improvements by addressing these im- 1036

balances: for baselines that prioritize precision, 1037

KCMF enhances recall by identifying more posi- 1038

tive samples while effectively managing false posi- 1039

tives, ensuring precision remains stable. This aligns 1040

with the practical preference for higher recall in 1041

matching tasks, reducing the need for additional 1042

human verification. For baselines that emphasize 1043
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recall, KCMF improves precision by correctly re-1044

jecting negative samples, with less emphasis on1045

further recall gains when unnecessary.1046

The performance gain of KCMF owes to its abil-1047

ity to enhance recall through pseudo-code, which1048

operates independently of the model’s reliance on1049

the exposed data distribution. This enables KCMF1050

to accurately reject negative instances while im-1051

proving the recall of positive samples.1052

D Ablation Study1053

In this section, we incrementally stack techniques1054

onto a bare LLM, demonstrating how techniques1055

proposed in the main text transform a backbone1056

model into a comprehensive matching framework.1057

The evolution process is visually summarized in1058

Figure 11 taking the SM task on Synthea as an1059

example, which provides an overview of how each1060

technique incrementally enhances the F1-score.1061

The process begins with a plain zero-shot LLM1062

query (GPT-3.5 baseline), which achieves an initial1063

F1-score of 9.1%. Through the addition of various1064

techniques, the final framework, KCMF, attains1065

an F1-score of 42.4%, significantly outperforming1066

both the GPT-3.5 baseline (9.1%) and the SMAT1067

method (38.5%). The following subsections detail1068

the techniques that contribute to this substantial1069

performance improvement.1070

Prompt
Design &

Techniques

Summary
Pretask

+1 Demo

SMAT

GPT-3.5 baseline
···KCMF

38.5

9.1

42.4

EaK

Wikidata+EaK

IntGE
35.3

38.9

31.6

31.3

26.7

29.3

28.6

27.3

17.7

20.3

17.7
17.7

14.3

14.3

1.3

Examples as
Knowledge

Task Motivated
Instruction

Chain-of-Thought

Knowledge → Rules

Unique Indices

Instruction
Extraction

Demo Only
Summarization

Self-indicator
Reasoning

[NULL, Wikipedia+EaK, EaK]

[NULL, Wikipedia, EaK]

[Wikidata, Wikipedia+EaK, EaK]

[Wikidata, Wikipedia, EaK]

F1-score (%)
on Synthea

0 10 20 30 40

Figure 11: KCMF evolved from a plain zero-shot LLM
query method. The horizontal axis depicts the F1-score
for each version of KCMF on Synthea.

D.1 Prompt Design and Construction 1071

We conducted incremental experiments using 1072

WIKIDATA+DaK with a 3-shot setting on Synthea 1073

as the baseline. The results, summarized in Table 6, 1074

illustrate the impact of each optimization. 1075

Increment Shot Accuracy F1-score

TO Inst. 3 0.5735 0.0125
CoT 3 0.9798 0.1429

Know2Rule 3 0.9798 0.1429
U-indices 3 0.9811 0.1765

Inst. Extraction 3 0.9841 0.2034
Summary Pretask 3 0.9781 0.1772

+1 demo 4 0.9892 0.2727

Table 6: Ablation studies for prompt design and con-
struction.

• TO Inst. Task-Oriented Instruction: We revised 1076

the instruction from Narayan et al. (2022) to “Can 1077

records in schema B be transformed and stored 1078

into schema A?” to better align with the schema 1079

matching task’s objectives. 1080

• Know2Rule (Knowledge to Rule): The “knowl- 1081

edge for the task” prompt element was renamed 1082

to “rules for the task” for improved clarity and 1083

alignment with task requirements. 1084

• U-indices (Unique Indices): We applied unique 1085

indices for the different elements of the prompt 1086

that need to be numbered. We used Roman 1087

numerals, lowercase letter numbers, and nu- 1088

meric numbers separately for the row number of 1089

pseudo-code, the sequence number of retrieved 1090

knowledge, and sequence number of reasoning 1091

steps. 1092

• Inst. Extraction (Instruction Extraction): We ex- 1093

tracted the instructions and rules for each demon- 1094

stration and placed them at the beginning of the 1095

prompt. 1096

• Summary Pretask and +1 Demo: The Summary 1097

Pretask was designed to shorten prompt length, 1098

and +1 Demo added an extra demonstration. 1099

All the optimizations we added are motivated by 1100

achieving higher precision while ensuring promis- 1101

ing recalls. 1102

As shown in Table 6, CoT, U-indices and Inst. 1103

Extraction brought 13.04%, 3.36%, 2.69% im- 1104

provement in F1-score on Synthea. Although 1105

Summary Pretask caused a temporary drop in per- 1106

formance, the combination of Summary Pretask 1107
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and +1 Demo still shows a strong result; the F1-1108

score is improved by 6.93% compared to the Inst.1109

Extraction step. We examine the results of the Sum-1110

mary Pretask and the +1 Demo as a whole because1111

the motivation for the Summary Pretask was to1112

shorten the length of the prompt.1113

D.2 Summary Pretask1114

For the summary pretask, we apply two strategies:1115

All and Demo Only. The Demo Only strategy in-1116

volves summarizing only the demonstrations used1117

in the prompt, as described in Section 3.4. The All1118

strategy builds on Demo Only by additionally sum-1119

marizing descriptions of the target schema pairs.1120

As shown in Table 7, the compression strategy of1121

Demo Only outperforms the All strategy by 1.3%1122

on F1-socre under the 4-shot setting. This indicates1123

that focusing compression on demonstration exam-1124

ples is more effective than extending it to target1125

schema pairs.1126

Strategy Accuracy F1-score

All 0.9892 0.2727
Demo only 0.9899 0.2857

Table 7: Ablation study of the summary pretask’s strate-
gies on Synthea.

D.3 Examples as Knowledge (EaK)1127

Following the Demo Only setting in Appendix D.2,1128

we further verify the validity of the knowledge1129

constructed through EaK. We introduce EaK as a1130

knowledge source and form three distinct knowl-1131

edge sets: WIKIDATA, EaK, and WIKIDATA+EaK,1132

which are used for constructing the prompt.1133

As shown in Table 8, EaK, characterized by its1134

concise and high-quality knowledge, achieves the1135

best performance among the three configurations.1136

Using EaK alone as the knowledge source outper-1137

forms WIKIDATA and WIKIDATA+EaK by 0.7%1138

and 2.6%, respectively, in terms of F1-score. This1139

highlights the advantage of leveraging high-quality,1140

compact examples as a knowledge source.1141

Knowledge Source Accuracy F1-score

WIKIDATA 0.9899 0.2857
EaK 0.9902 0.2927

WIKIDATA+EaK 0.9889 0.2667

Table 8: Ablation study of EaK on Synthea.

D.4 Self-indicator Reasoning (SIR) 1142

To evaluate the effectiveness and generalizability 1143

of Self-Indicator Reasoning (SIR), we introduce 1144

it into demonstrations across different knowledge 1145

sources for both the MMM and Synthea datasets. 1146

Results on MMM Table 9 presents the results 1147

with and without SIR on the MMM dataset with 1148

WIKIDATA, WIKIPEDIA, and EaK as the knowl- 1149

edge sources, respectively. We observe that all 1150

cases with SIR outperform cases without SIR, with 1151

their F1-scores improving by an average of 7.73%. 1152

More specifically, F1-scores of SIR with WIKI- 1153

DATA, WIKIPEDIA, and EaK as knowledge sources 1154

improved by 8.43%, 7.05%, and 7.70%, respec- 1155

tively. These results demonstrate the robustness 1156

and effectiveness of SIR in enhancing the reason- 1157

ing capabilities of the model. 1158

Knowledge Source w. SIR Accuracy F1-score

WIKIDATA No 0.9498 0.6534
WIKIDATA Yes 0.9667 0.7387

WIKIPEDIA No 0.9603 0.6979
WIKIPEDIA Yes 0.9719 0.7684

EaK No 0.9593 0.6997
EaK Yes 0.9729 0.7767

Table 9: The ablation study of SIR on MMM (2-shot
setting).

Results on Synthea Meanwhile, for Synthea, 1159

also based on the Demo Only setting, we introduce 1160

SIR with WIKIDATA as the knowledge source. As 1161

shown in Table 10, SIR improved the F1-score on 1162

Synthea by 2.68%, further confirming its effec- 1163

tiveness. 1164

Knowledge Source w. SI Accuracy F1-score

WIKIDATA No 0.9899 0.2857
WIKIDATA Yes 0.9926 0.3125

Table 10: The ablation study of SIR on Synthea (4-shot
setting).

D.5 Inconsistency-tolerant Generation 1165

Ensemble (IntGE) 1166

The ablation experiments for IntGE build upon the 1167

findings from Appendix D.4. Here, we evaluate 1168

the performance of IntGE by combining different 1169

knowledge sources and testing various configura- 1170

tions. Given that the impact of SIR is less pro- 1171

nounced on Synthea compared to MMM, we also 1172

include SIR as an experimental variable. 1173
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Results on Synthea Table 11 showcases the1174

results of IntGE applied to Synthea using dif-1175

ferent combinations of knowledge sources. All1176

ensembled configurations outperform the single-1177

knowledge-source baseline (WIKIDATA). The1178

F1-scores of IntGE under combinations [NULL,1179

WIKIPEDIA+EaK, EaK], [NULL, WIKIPEDIA,1180

EaK], [WIKIDATA, WIKIPEDIA+EaK, EaK], and1181

[WIKIDATA, WIKIPEDIA, EaK] are improved by1182

7.74%, 4.04%, 11.04%, 0.33%, respectively. These1183

results highlight the effectiveness of combining1184

multiple knowledge sources in improving model1185

performance.1186

Knowledge Source Voting Accuracy F1-score

WIKIDATA No 0.9926 0.3125
[NULL, WIKIPEDIA+EaK, EaK] Yes 0.9926 0.3889

[NULL, WIKIPEDIA, EaK] Yes 0.9926 0.3529
[WIKIDATA, WIKIPEDIA+EaK, EaK] Yes 0.9936 0.4242

[WIKIDATA, WIKIPEDIA, EaK] Yes 0.9912 0.3158

Table 11: Ablation study of IntGE on Synthea (4-shot
setting). NULL denotes no knowledge source.

Results on MMM We conducted similar experi-1187

ments on the MMM dataset, as shown in Table 12.1188

The F1-scores of IntGEs based on the combina-1189

tions [WIKIDATA, WIKIPEDIA, EaK], [WIKIDATA,1190

WIKIPEDIA, EaK∗], [WIKIDATA∗, WIKIPEDIA,1191

EaK], [WIKIPEDIA, EaK, NULL] increased by1192

3.61%, 2.88%, 3.71%, and 3.71%, respectively, as1193

compared to the results based on the single WIKI-1194

DATA data source. Here, the asterisk (∗) indicates1195

that the prompt for the corresponding knowledge1196

source excludes self-indicators in reasoning steps.1197

These results confirm the robustness and adapt-1198

ability of IntGE across varying configurations and1199

datasets.1200

Knowledge Source Voting Accuracy F1-score

WIKIDATA No 0.9667 0.7387
[WIKIDATA, WIKIPEDIA, EaK] Yes 0.9727 0.7748

[WIKIDATA, WIKIPEDIA, EaK∗] Yes 0.9715 0.7675
[WIKIDATA∗, WIKIPEDIA, EaK] Yes 0.9727 0.7758

[WIKIPEDIA, EaK, NULL] Yes 0.9727 0.7758

Table 12: Ablation study of IntGE on MMM (2-shot
setting).

Summary The experiments here demonstrate1201

that IntGE consistently improves performance by1202

leveraging diverse knowledge sources, with sig-1203

nificant F1-score gains across both MMM and1204

Synthea. The results emphasize the value of com-1205

bining high-quality knowledge sources and adapt-1206

ing reasoning strategies for optimal results.1207

E Cost Analysis 1208

This section presents an ablation study of the main 1209

components of KCMF, analyzing their token costs 1210

and contributions to performance improvement. 1211

The results are grouped by techniques to evaluate 1212

their trade-offs in terms of cost and gain, provid- 1213

ing deeper insights into the effectiveness of each 1214

component. 1215

In Figure 12, token costs and performance gain 1216

of GPT-4o-mini versioned KCMF are visualized 1217

as multiple bars, those unhatched represent the 1218

percentage of tokens the corresponding technique 1219

takes, while hatched bars represent the gain in F1- 1220

score of each technique to the baseline. It should be 1221

noted that the performance gain here and in the fol- 1222

lowing text are obtained by ablations, e.g., the gain 1223

of the self-indicator is the difference between ver- 1224

sions of KCMF with and without self-indicators. 1225

According to Figure 12, both self-indicator and 1226

knowledge show consistent and independent per- 1227

formance gain, among which, we observe that self- 1228

indicator is significantly cost-effective, especially 1229

for schema matching tasks, which may be due to 1230

its effect in clarifying the complexity and hetero- 1231

geneity of schemata. Also, knowledge is necessary 1232

for KCMF to achieve its optimal performance. 1233

The token cost and gain of the F1-score of each 1234

technique are listed in Table 14, and the API invok- 1235

ing costs are reported in Table 13. Generally, the 1236

average cost of KCMF is times the baseline, due to 1237

the pseudo-code, reasoning steps, and the retrieved 1238

knowledge included in its query, and we consider 1239

this overhead worthwhile because 1) KCMF’s total 1240

cost is still satisfactory, where around 60 cents for 1241

each dataset, and 2) it shows consistent and com- 1242

petitive performance gain towards different LLMs. 1243

Further, we introduce the cost performance (CP), 1244

which is the ratio of the gain of F1-score to the to- 1245

ken percentage (of total) for the main components 1246

of the KCMF, to measure the trade-off between 1247

cost and gain for techniques in KCMF. CP is for- 1248

mally defined in Equation 3, where |T ′| and |T | 1249

denote numbers of tokens corresponding to the sin- 1250

gle technique and the whole prompt respectively. 1251

CP =
∆F1

|T ′|/|T |
(3) 1252

To ensure fairness, CPs are averages calculated 1253

on Synthea, MIMIC, CMS, and MMM due to the 1254

absence of knowledge in the other three datasets. 1255

According to Table 14, we find that self-indicator is 1256

more cost-effective than knowledge, but knowledge 1257

17



MIMIC Synthea CMS MMM AG WA DS

Baseline 0.0077¢ 0.0068¢ 0.0074¢ 0.0048¢ 0.0034¢ 0.0054¢ 0.0056¢
KCMF 0.0260¢ 0.0278¢ 0.0253¢ 0.0207¢ 0.0207¢ 0.0271¢ 0.0220¢

Table 13: API costs using GPT-4o-mini endpoint.
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Figure 12: Cost and gain of the KCMF’s main components, using GPT-4o-mini as the backbone model.

is also necessary for the whole KCMF to achieve1258

its best performance. Also, we observe that the1259

self-indicator generalizes well on AG, WA, and1260

DS, which indicates that self-indicator is a versa-1261

tile method for improving LLM’s performance on1262

matching tasks.1263

Dataset Token Cost/Query
K SI Infer Total

MIMIC Cost 111 219 1123 1453
Gain 5.3% 5.0% - 11.7%

Synthea Cost 199 221 1263 1683
Gain 6.7% 13.3% - 20.0%

CMS Cost 36 114 877 1027
Gain 1.5% 4.8% - 17.3%

MMM Cost 23 61 1051 1135
Gain 0.2% 0.3% - 8.2%

AG Cost - 90 795 885
Gain 1.2% - 15.6%

WA Cost - 109 1044 1153
Gain 2.2% - 41.0%

DS Cost - 94 912 1006
Gain 0.2% - 19.9%

CP 0.441 0.474 -

Table 14: Cost and gain ablation results on all datasets
in the main experiment, with averaged cost perfor-
mance (CP) for knowledge (K) and self-indicator (SI).
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F Discrepancies in LLM’s Understanding of Schema Matching Instructions 1264

Table 15 presents the prompt using vanilla zero-shot Chain-of-Thought on Synthea and the response 1265

from GPT-3.5. It can be observed that there is a discrepancy between what GPT-3.5 understands the 1266

instruction “match” and the actual objective of the schema matching task. 1267

Are schema A and B matched? Let’s think step by step.
schema A: person-month_of_birth
description of schema A: the person domain contains records that uniquely identify each patient in the source data who is time
at-risk to have clinical observations recorded within the source systems.;the month of birth of the person. for data sources that
provide the precise date of birth, the month is extracted and stored in this field.
schema B: patients-birthdate
description of schema B: patient demographic data.;the date the patient was born.

Based on the descriptions provided:

**Schema A:**
- **Name:** person-month_of_birth
- **Description:** This schema appears to be related to a person domain where records uniquely identify each patient. It
specifically captures the month of birth of the person. If the source data provides the precise date of birth, only the month is
extracted and stored in this field.

**Schema B:**
- **Name:** patients-birthdate
- **Description:** This schema relates to patient demographic data and specifically captures the date when the patient was born.

Now, to determine if schema A and schema B are a match, we need to consider the following points:

1. **Data Captured:**
- Schema A captures only the month of birth if the precise date is available.
- Schema B captures the full birthdate.

2. **Granularity:**
- Schema A has a lower granularity by capturing only the month, whereas Schema B captures the full date.
3. **Context and Usage:**
- Schema A seems more focused on situations where the precise date is not necessary, and only the month suffices (possibly for
anonymization or simplification purposes).
- Schema B is more comprehensive as it captures the exact birthdate, which is typically more useful for demographic analysis
and age calculation.

**Conclusion:**
Based on the descriptions:
- Schema A (‘person-month_of_birth‘) and Schema B (‘patients-birthdate‘) do not appear to be a direct match because they
capture different levels of detail regarding the birthdate of patients. Schema A focuses on the month of birth, while Schema B
captures the full birthdate.

Therefore, they serve different purposes and would likely be used in different contexts within a database or system that manages
patient or person-related data.

Table 15: GPT-3.5’s response on Synthea.

G Detailed Prompts 1268

In this section, we present all prompt templates used in the experiments covered in the main text, 1269

specifically: 1270

• Tables 16 to 21 1271

– Prompts for pre-tasks, including keywords extraction and quality management (DaK introduced 1272

in Section 3.3), self-indicator extraction, demonstration and retrieval summarization (Sec- 1273

tion 3.4). 1274

• Tables 22 and 23 1275

– Prompts of baselines for comparison in the main experiment, Tables 22 and 23 are for SM and 1276

EM, separately. 1277
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• Tables 24 and 251278

– Task-specific pseudo-codes for SM and EM used by KCMF.1279

• Tables 26 and 271280

– Prompts obtained from Section 3.4, which are used to query LLMs directly.1281

You need to extract all the keywords in the schema that require special domain knowledge to understand, keywords
should be separated by commas.
Example 1:
Schema: provider-npi
Schema description: the provider table contains a list of uniquely identified healthcare providers. these are individuals providing
hands-on healthcare to patients, such as physicians, nurses, midwives, physical therapists etc.;the national provider identifier
(npi) of the provider.
Answer: national provider identifier, npi

Example 2:
Schema: imaging_studies-sop description
Schema description: patient imaging metadata.;description of the sop code.
Answer: sop

Example 3:
Schema: procedure_occurrence-modifier_concept_id
Schema description: the procedure_occurrence table contains records of activities or processes ordered by, or carried out by, a
healthcare provider on the patient to have a diagnostic or therapeutic purpose. procedures are present in various data sources
in different forms with varying levels of standardization.;a foreign key to a standard concept identifier for a modifier to the
procedure (e.g. bilateral). these concepts are typically distinguished by ’modifier’ concept classes (e.g., ’cpt4 modifier’ as part of
the ’cpt4’ vocabulary).
Answer: foreign key, identifier, cpt4

Your turn:

Table 16: Prompt for keyword extraction.

You need to find out which of the given keywords are relevant to the database or medical field and return them, keywords
should be separated by commas.

Example 1:
birthday, home, dcm, location, primary key
Answer: dcm, primary key

Example 2:
endtime, id, recognition, observation, data model, algorithm, artificial
Answer: id, data model

Your turn:

Table 17: Prompt for keyword quality management for the schema matching datasets (MIMIC, Synthea, and CMS).

Tell if the given word is a hard-to-understand biomedical domain term, only yes or no.

Example 1:
leaf
Answer: no

Example 2:
deoxynivalenol
Answer: yes

Your turn:

Table 18: Prompt for keywords quality management for the entity matching datasets (MMM, AG, WA, and DS).
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Instruction: Given two schemas, you need to summarize the column and table for each considering the given knowledge.
[Examples]
Your turn:
{r, r′}
[Ki]
Answer:

Table 19: Prompt for self-indicator extraction (SIR).

Instruction: You need to summarize the given schema based on its schema name and description. The summary should be
focused on retaining and explaining concepts in the database domain. Schema name is the table and column names of the schema
separated by a dash. Schema description is the table and column descriptions of the schema separated by a semicolon.

[Examples]

Your turn:
{r, r′}
Answer:

Table 20: Prompt for demonstration summarization.

Instruction: You need to summarize the given text into a paragraph less than 1000 words.
{CONTENT}
Your answer:

Table 21: Prompt for retrieval summarization.

Are schema A and B the same? ONLY yes or no.
[Examples]
Your turn:
{r, r′}
{RESPONSE}

Table 22: Prompt template of baseline for the schema matching datasets (MIMIC, Synthea, and CMS).

Question: Do entity A and entity B refer to the same real-world concept? Only yes or no.
[Examples]
Your turn:
{r, r′}
Answer:
{RESPONSE}

Table 23: Prompt template of baseline for the entity matching datasets (MMM, AG, WA, and DS).

I: Rules II, III, and IV MUST be checked SEQUENTIALLY until you conclude an answer.
II: If the columns of the two schemas can not be the same type of data in the database, the answer is no, otherwise, check rule III.
III: If the tables of the two schemas are not semantically the same, the answer is no, otherwise, check rule IV.
IV: If the columns of the two schemas do not refer to the same concept, the answer is no, otherwise, the answer is yes.

Table 24: Pseudo-code for the schema matching datasets (MIMIC, Synthea, and CMS).

I: Rules II, III, and IV MUST be checked SEQUENTIALLY until you conclude an answer.
II: If Entity A is an abbreviation of Entity B or vice versa, the answer is yes, otherwise check rule III.
III: If Entity A is an alias of Entity B or vice versa, the answer is yes, otherwise check rule IV.
IV: If Entity A and Entity B refer to the same real-world concept the answer is yes, otherwise the answer is no.

Table 25: Pseudo-code for the entity matching datasets (MMM, AG, WA, and DS).
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Question:
Can records in schema B be transformed and stored in schema A? The task should be solved by completing the reasoning steps
and concluding a final answer ONLY yes or no. Do not stop until you draw a final answer. Schema name is the table and column
names of the schema separated by a dash.
Rules for the task:
[R]
[Demonstrations]
Your turn:
{r, r′}
Knowledge for the task:
[Ki]
Reasoning:
1. {Self-indicator}
Please continue the reasoning until you draw a final answer ONLY yes or no:
{RESPONSE}

Table 26: Prompt template of KCMF for the schema matching datasets (MIMIC, Synthea, and CMS).

Question:
Do entity A and entity B refer to the same real-world concept? You must think step by step, and finally draw an answer only yes
or no.
Rules for the task:
[R]
[Demonstrations]
Your turn:
{r, r′}
Knowledge for the task:
[Ki]
Reasoning:
1. {Self-indicator}
Please continue the reasoning until you draw a final answer ONLY yes or no:
{RESPONSE}

Table 27: Prompt template of KCMF for the entity matching datasets (MMM, AG, WA, and DS).
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