
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HYBRID NEURAL-MPM FOR INTERACTIVE FLUID
SIMULATIONS IN REAL-TIME

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a neural physics system for real-time, interactive fluid simulations. Tra-
ditional physics-based methods, while accurate, are computationally intensive and
suffer from latency issues. Recent machine-learning methods reduce computational
costs while preserving fidelity; yet most still fail to satisfy the latency constraints
for real-time use and lack support for interactive applications. To bridge this gap,
we introduce a novel hybrid method that integrates numerical simulation, neural
physics, and generative control. Our neural physics jointly pursues low-latency
simulation and high physical fidelity by employing a fallback safeguard to classical
numerical solvers. Furthermore, we develop a diffusion-based controller that is
trained using a revserve modeling strategy to generate external dynamic force fields
for fluid manipulation. Our system demonstrates robust performance across diverse
2D/3D scenarios, material types, and obstacle interactions, achieving real-time
simulations at high frame rates (11 ∼ 29% latency reduced) while enabling fluid
control guided by user-friendly freehand sketches. We present a significant step
towards practical, controllable, and physically plausible fluid simulations for real-
time interactive applications. We promise to release both models and data upon
acceptance.

Generative Force Fields
(Sec. 3.2)

Real-time Simulation
(Sec. 4.2)

Interactive Fluid Control (Sec. 4.3)

Latency
-11% ~ -29%

Real-Time & Interactive
Fluid SimulationsHybrid Solver

(MPM + Neural Physics)
(Sec. 3.1)

Figure 1: We target real-time, interactive fluid simulations. Our hybrid solver integrates a numerical simulator
and neural physics (Section 3.1), enabling real-time simulation (Section 4.2). In addition, we generate external
force fields (Section 3.2) to support users to control fluids interactively via freehand sketches (Section 4.3).

1 INTRODUCTION

Modeling fluid behavior is essential for advancing diverse engineering fields, including entertain-
ment (Stam, 2023), urban planning (Blocken & Stathopoulos, 2013), fashion design (Volino et al.,
2005), and virtual reality (VR) (Solmaz & Van Gerven, 2022). Moreover, controllability, aiming to
instruct movements and shapes of fluids, is also a very important attribute for volumetric effects,
character animations, and fluid-solid coupling (Raveendran et al., 2012). Realizing compelling and
interactive physics simulations in real-time has been the long-standing objective for years in order to
deliver transformative user experiences.

Traditional simulation methods, though powerful, often demand significant implementation efforts
and computational costs (Bridson, 2015). Recent neural physics and machine learning approaches

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

present a promising path forward by learning from data, delivering transformative changes for use
cases such as fluid interactions and animations (Sanchez-Gonzalez et al., 2020). However, fidelity
and latency in these neural-based methods are not well-balanced. Moreover, most methods only focus
on the accuracy of non-interactive applications, and their computational complexity still remains
generally high for real-time scenarios (Brandstetter et al., 2022).

Motivated by the above challenges, we ask two scientific questions:

Q1: Can neural physics accelerate real-time fluid simulations and interactions?
Q2: Can neural physics and generative methods be optimized for interactive fluid control?

We aim to explore a novel paradigm: neural physics for interactive simulations in real-time (Figure 1).
We provide affirmative answers. The core idea is to proactively marry the strengths of numerical
simulation (high fidelity), neural physics (low latency), and generative control (interactivity)
to deliver authentic and diverse fluid simulations. Specifically, neural physics is responsible for
significantly low-latency fluid simulation with tolerant errors, and numerical simulation will serve
as a fallback solution when fluid dynamics is increasingly complex. Furthermore, to make fluid
animation compatible with user-friendly control, we introduce another diffusion-based controller to
generate external force fields to assist manipulations. We summarize our contributions below:

1. We improve the error-latency trade-off of fluid simulation. First, to accelerate neural physics, we
seek to build our graph neural network at low spatiotemporal resolution without substantial degra-
dation in simulation accuracy (Section 3.1.1). Second, to preserve simulation fidelity and avoid
error accumulation during unrolling, we make our neural physics hybrid with a safeguard condition
and fallback mechanism to the classic MPM (Material Point Method) algorithm (Section 3.1.2).

2. We further aim to support users’ flexible freehand sketches that specify desired trajectories or
shapes of fluid particles to be controlled. To this end, our novel reverse simulation strategy enables
the automated generation of realistic fluid control data (Section 3.2.2), which is used to train our
diffusion-based generative controller (Section 3.2.3).

3. Across diverse scenarios (2D/3D, particle materials, presence of rigid obstacles, see Table 2),
our hybrid simulator can significantly accelerate simulations (11 ∼ 29% latency reduced) while
maintaining low errors (Section 4.2), and can control fluid particles to align with user sketches
(Section 4.3), paving the way for promising advances towards engaging interactive simulations in
real-time.

2 BACKGROUND

We first introduce the necessary components on which our method is built, and how they can be made
real-time and controllable in Section 3.

2.1 FLUID SIMULATIONS WITH MATERIAL POINT METHOD (MPM)

The Material Point Method (MPM) (Jiang et al., 2015; Hu et al., 2019; 2020; 2021) is a hybrid
Eulerian-Lagrangian numerical technique for simulating complex interactions between solid and fluid
materials, especially under large deformations and topological changes (snow, landslides, cloth, etc.).
It extends the FLuids-Implicit-Particle (FLIP) (Brackbill & Ruppel, 1986) from Computational Fluid
Dynamics (CFD) to solid mechanics by representing materials as a set of Lagrangian particles that
carry mass, velocity (ṗi,t), position (pi,t), and possible internal states. These particle quantities are
first transferred to a background Eulerian grid using a particle-to-grid mapping (p2g). The equations
of motion are then solved on this grid, after which updated values are mapped back to particles
through grid-to-particle transfer (g2p). The particle positions (p) are then advanced using the updated
velocities (ṗ), e.g., pi,t+1 = pi,t +∆t · ṗi,t+1.

2.2 GNN-BASED NEURAL PHYSICS FOR PARTICLE SIMULATIONS

We denote the state of particle i at time step t as xi,t (position p, velocity ṗ, acceleration p̈, etc.),
and the state of N particles as Xt = [x1,t, . . . ,xN,t]. A simulator s maps Tin input states to causally

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

consequent future states, and can iteratively compute XtTin+1
= s(Xt1 , Xt2 , · · · , XtTin

) to simulate
a rollout trajectory. Following (Sanchez-Gonzalez et al., 2020), our learnable simulator sθ adopts a
particle-based representation of the physical system, which can be viewed as message-passing via a
graph neural network (GNN).

Input. Our neural physics simulator sθ takes the input of particle i as: a sequence of 5 previous
velocities (via finite differences from Tin = 6 previous locations), and features for materials (e.g.,
water, sand, rigid, boundary), i.e., xi,tk−Tin :tk

= [ṗi,tk−Tin+2
, . . . , ṗi,tk ,fi] at time step tk (Figure 2).

...
[𝒑̇!,#!"#$%&' , … , 𝒑̇!,#! , 𝒇!]
Input feature for
particle 𝑖:

𝒓!$ = [𝒑! − 𝒑$, ||𝒑! − 𝒑$||]
𝐺(") 𝐺($)

𝒑̈-!,#!%&

Input feature for
edge b/w node 𝑖 𝑗:

Output:
predicted
acceleration for
particle 𝑖

L hidden G
N

N
 layers

Figure 2: GNN as our neural physics simulator.

GNN Design. We first build the initial
graph G(0) by assigning a node to each
particle and connecting particles as edges
within a fixed “connectivity radius” R. The
edge embeddings are learned from relative
positional displacement and the magnitude
ri,j = [(pi − pj), ∥pi − pj∥]. Our neural
physics consists of a stack of L = 10 GNN
layers. The decoder predicts the per-particle
acceleration, p̈i. The training loss is the particle-

level RMSEp̈ ≡ 1
N

∑N
i=1

∥ˆ̈pi−p̈i∥
2

∥p̈i∥2
, where ˆ̈pi

is the predicted acceleration from sθ. The future position and velocity are updated using an Euler
integrator. See Appendix B for further details.

3 METHODS

We aim at real-time fluid simulations (Section 3.1) with interactive control (Section 3.2). Our method
is overviewed in Figure 3.

MPM
High Fidelity

Neural Physics
Low Latency

(Sec. 3.1.1)

Trigger on
Fluid Complexity

User Sketch Force Field
Hybrid Simulation

(Sec. 3.1.2)

Generative
Control

Interactivity
(Sec. 3.2)

Figure 3: Method Overview. To achieve real-time simulations, we cut latency by learning neural physics at a
coarse spatiotemporal resolution, while safeguarding fidelity by automatically falling back to an MPM solver
when complex fluid phenomena arise (Section 3.1). For interactive control, we train a diffusion-based generative
model that infers external force fields directly from user sketches (Section 3.2).

3.1 HYBRID REAL-TIME FLUID SIMULATION

Traditional numerical methods such as MPM provide high-fidelity simulations, but their computa-
tional cost is prohibitively high. In contrast, neural physics models can achieve significantly faster
simulations by operating at low spatiotemporal resolution; however, this efficiency often comes at the
cost of increased simulation errors.

This trade-off highlights our central motivation for building hybrid simulations. By primarily
leveraging neural physics for efficient updates (Section 3.1.1) while incorporating a mechanism that
falls back to MPM in challenging scenarios for simulation fidelity (Section 3.1.2), we can empirically
ensure both efficiency and simulation quality. In this way, our simulator is designed as a hybrid
system that effectively fuses the strengths of both approaches:

Xt+1 =

{
Neural Physics Update if update is “good”

Fallback to MPM Update otherwise. (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1.1 LEARNING REAL-TIME NEURAL PHYSICS AT LOW SPATIOTEMPORAL RESOLUTION

Original MPM

Our Neural Physics

Δ𝑡 = 𝑑𝑡

Δ𝑡 = 𝑟! ∗ 𝑑𝑡,			𝑟!> 1

𝑁!

𝑁" = 𝑟# ∗ 𝑁!, 𝑟# ∈ (0, 1)

Figure 4: Our neural physics acceler-
ates simulations by learning and in-
ferring at low spatial (Nl num. par-
ticles) and temporal (∆t time steps)
resolutions, with downsampling ra-
tios as rp, rt.

We first aim to accelerate efficient updates by neural physics, and
we choose to train our model at low spatiotemporal resolution.
As shown in Figure 4, we consider learning the neural physics on
simulations with both a downsampled number of particles (ratio
rp ∈ (0, 1)) and also with a larger time step (i.e. coarser temporal
discretization rate rt ∈ N, rt > 1).

However, a key pitfall is that once the number of particles is
downsampled (Nh particles are merged via clustering into Nl,
see Appendix C), we will lose the particle-wise correspondence,
i.e., ˆ̈pi (i ∈ [1, Nl]) and p̈j (j ∈ [1, Nh]) cannot align in the
particle-level RMSEp̈ (Section 2.2). As a result, RMSEp̈ can
no longer quantify the simulation’s fidelity to the ground truth
of the original spatial resolution. Inspired by Huang et al. (2021)1, to mitigate this issue, we use a

normalized grid-level RMSEm̃ ≡ 1
N

∑N
i=1

∥ ˆ̃mi−m̃i∥
2

∥m̃i∥2
as the evaluation metric, which essentially

quantifies the mass distribution. m̃ is the normalized grid mass (m̃i =
mi∑N
i=1 mi

) converted from

particles to the grid via p2g, and ˆ̃m is the prediction by sθ. m̃i and ˆ̃m share the same grid size but
can represent mass distributions from different resolutions (number of particles). A more detailed
discussion regarding RMSEm̃ can be found in Appendix D. During training, we continue to optimize
the surrogate loss RMSEp̈ at the low spatial resolution, thereby avoiding additional p2g operations.

In Figure 6 (a-c), we can see that by tuning spatiotemporal downsampling ratios rp, rt, we can
improve the trade-off between simulation errors and latency. Based on this ablation study, we will
choose rp = 1/1.75 and rt = 2. With this configuration, on Water 2D, we can reduce the latency of
the original neural physics (rp = rt = 1) by over 78.8% (from 1.954ms to 0.4048ms).

3.1.2 HYBRID SIMULATOR WITH SAFEGUARD

We now discuss how to actively interact our neural physics with MPM and fuse the strengths of both
approaches.

G
ri

d
 R

M
SE

Acceleration cosine similarity

1.0

0.8

0.6

0.4

0.2

0.0

0.2 0.4 0.6 0.8 1.0

Figure 5: Negative correlation between
“cosine similarity of particle accelera-
tions over frames” vs. “simulation er-
rors of neural physics”. Scenario: Wa-
ter 2D. Spearman correlation: -0.3902.

Fluid Complexity Measures. Intuitively, when the particle
system evolves smoothly, the neural model generalizes well. In
contrast, highly chaotic or abrupt behaviors, such as splashes,
collisions, or multiphase interactions, often correspond to out-
of-distribution (OOD) regimes, where learned models are more
prone to error, suggesting that we should fall back to MPM.

We thus trigger the fallback condition based on the complexity
of the current fluid dynamics being simulated by neural physics.
Our choice of fallback trigger is motivated by two key consid-
erations. First, this trigger should faithfully indicate the fluid
complexity. Second, the safeguard should be computationally
efficient, since we need to densely monitor them during the
simulation of neural physics.

Specifically, we consider the cosine similarity of per-particle acceleration over a window of history
(window size as δt = 10 steps by default): 1

N

∑N
i cos(p̈i,t−2δt:t−δt, p̈i,t−δt:t). In contrast, we also

tried to monitor the divergence of particles’ velocity, which is also used to quantify the quality of
incompressible fluid simulations in previous works (Gao et al., 2025). However, its computation is
significantly more expensive due to the use of finite difference methods, resulting in increased latency.
We show the negative correlation between this cosine similarity and the neural physics simulation
error in Figure 5, which indicates that whenever particles’ accelerations start diverging, we should
fall back to MPM.

1See Section 3.1 (page 4), paragraph “Goal and Reward” in Huang et al. (2021).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

G
ri

d
 R

M
SE

(a) Temporal Reduction (𝑟𝑡) (b) Spatial Reduction(𝑟𝑝) (c) Spatiotemporal Reduction (d) Hybrid Simulation(𝑟𝑐)

𝑟𝑡 = 3

𝑟𝑡 = 10

MPM MPM MPM MPM

MPM
𝑟𝑝 = 1/1.75

𝑟𝑡 = 5

𝑟𝑡 = 2 𝑟𝑡 = 1

𝑟𝑝 = 1/8

𝑟𝑝 = 1/4

𝑟𝑝 = 1/2

𝑟𝑝 = 1/1.75

𝑟𝑝 = 1/1.5

𝑟𝑝 = 1/1.25

𝑟𝑝 = 1

𝑟𝑡 = 2
𝑟𝑝 = 1/1.75 𝑟𝑝 = 1/1.75

𝑟𝑡 = 2 𝑟𝑡 = 1
𝑟𝑝 = 1

𝑟𝑐 = 0.9

𝑟𝑐 = 0.8
𝑟𝑐 = 0.7

𝑟𝑐 = 0.6
𝑟𝑐 = 0.5

𝑟𝑐 =
(0,0.4)

Time per step (ms) Time per step (ms) Time per step (ms) Time per step (ms)

Figure 6: Ablation studies of the trade-off between grid-level RMSEm̃ vs. simulation latency. Left to right:
temporal reduction rt (train neural physics with reduced particles Nl), spatial reduction rp (train neural physics
with larger time step ∆t), spatiotemporal reduction (combine rt = 2 and rp = 1/1.75), and hybrid with MPM
(at rp = 1/1.75) with different thresholds rc. Scenario: Water 2D.

Triggering MPM by Fluid Complexity. With our fluid complexity metric, we choose to trigger the
MPM fallback mechanism by a threshold rc:

Xt+1 =

{
Neural Physics Update if 1

N

∑N
i cos (p̈i,t−2δt:t−δt, p̈i,t−δt:t) > rc

Fallback to MPM Update otherwise.
(2)

In Table 1, we see that when increasing our threshold rc (i.e. MPM will be more frequently triggered),
the simulation fidelity will be corrected by MPM (RMSEm̃ is improved), and the latency will
increase due to heavy computations of MPM. Thus, we need to choose a threshold rc such that we
can improve our trade-off between RMSEm̃ and latency. In Figure 6 (d), we tune this threshold, and
choose rc = 0.8 to balance the improvements over RMSEm̃ and latency.
Table 1: Grid RMSEm̃ vs. time per step with hybrid simulations triggered by different thresholds (Water 2D).

Threshold rc 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Grid RMSEm̃ 0.0232 0.0230 0.0227 0.0223 0.0221 0.0215 0.0208 0.0192 0.0169 0.0144
Time per step (ms) 0.4048 0.4081 0.4147 0.4301 0.4516 0.4977 0.5509 0.6137 0.6966 0.7356

Figure 7: Error trajectories during simulation (Water 2D).
Simulating the same number of steps (T = 1000), our hy-
brid solver takes significantly less time (676.4ms) than the
original neural physics (1931.1ms), and the final error is also
reduced (grid RMSEm̃) (0.0109 vs. 0.0188).

We finalize our hybrid solver using this
threshold. In Figure 7, we demonstrate tra-
jectories simulated by the original neural
physics and our hybrid solver (from the same
initial condition, of the same number of steps
T). Although the original neural physics
(rp = rt = 1) shows lower rollout errors
in the early stage (black curve, due to sim-
ulation at high resolution), it quickly accu-
mulates long-term errors. In contrast, after
triggering the fallback to MPM (yellow ar-
eas), our error is suppressed and we finish
the simulation much faster. Thus, our hybrid
solver improves both rollout RMSEm̃ and
latency.

3.2 INTERACTIVE FLUID CONTROL BY GENERATING DYNAMIC FORCE FIELDS

3.2.1 MOTIVATIONS

Fluid control is essential in computer graphics, where liquid animations convey expressive, story-
driven scenes and key visual ideas like splash shapes or motion (Yan et al., 2020). Manual fluid
control produces unnatural effects and forces artists to rely on slow, trial-and-error methods (Pan
et al., 2013). This underscores the need for intuitive tools that let users shape visuals directly, without
complex physics. Yet, achieving the desired appearance of fluid control remains difficult. Fluid
dynamics are intrinsically chaotic and unpredictable. Setup and tuning of fluid control is tedious and
repetitive. Moreover, recording real fluid motion is also expensive and hard to customize.

In our paper, we mainly consider the following use case: during a fluid simulation, a user would like
to draw a simple sketch and provide it as a control signal, following which the fluid particles should
move (Figure 8 bottom panel). However, how to artistically manipulate fluid particles to follow the
user’s sketch should be automatically designed by our system.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Why Generative Fluid Control via Diffusion Models? Diffusion-based generative models are a
natural choice for fluid control because they combine strong conditional generation with temporal
coherence and spatial flexibility. Recent works show that diffusion can precisely steer motions when
conditioned on trajectories or region cues in video (Wang et al., 2024b; Zhang et al., 2024; Yang
et al., 2024) and predict spatiotemporal physics dynamics with high fidelity (Hu et al., 2024; Zhou
et al., 2024; Dong et al., 2025; Kohl et al., 2023). This suggests that diffusion models can map
sketch-like intent to physically meaningful velocity or force fields over time. In fact, recent works
have already learn to synthesize fluid velocities with deep generators (Chu et al., 2021; Yan et al.,
2020). In contrast, traditional control pipelines in computer graphics often require bespoke assets or
costly optimization, e.g., precomputed templates or offline heuristics (Schoentgen et al., 2020; Pan
et al., 2013), which limits interactivity and generalization.

3.2.2 DATA GENERATION VIA REVERSED SIMULATION

Reversed Simulation

Control Data

Solve
Force Field

Draw
User Sketch

Forward Simulation

Figure 8: We prepare training data for gener-
ative control via solving external force fields
that can reverse a forward simulation. We
also prepare user sketches (arrow, ellipse)
that depict movements or target shapes of
particles (implementations in Appendix C).

The key to training a generative model for our fluid con-
trol is to automatically collect training data in principle.
Specifically, we have two highly nontrivial sub-tasks:
1) Design a large number of diverse scenarios of fluid
particles with artistic control effects (i.e. fluid particles
move along a desired direction or fill a pre-defined shape,
in an organized instead of a chaotic manner); 2) Solve
a spatiotemporal external force field that will be applied
to the particles, such that the artistic control effect can
be fulfilled driven by the composition of gravity, particle
interactions, and the proposed force field.

We address these challenges with a reverse simulation
strategy. The core idea is to solve the required force fields
that can reverse the fluid dynamics of artistic effects. We
have the following steps:

1) Forward Simulation. We randomly simulate a trajec-
tory of fluid dynamics X = (X1, X2, · · · , XTctr), with
different initial conditions (positions or velocities of par-
ticles).

2) Reversed Simulation. We iteratively solve the required acceleration2 at that can restore positions
of each fluid particle reversely, from XTctr to X1:

(at + g)∆t =
pt−1 − pt

∆t
− ṗt

at =
(pt−1 − pt)− ṗt ·∆t

(∆t)2
− g.

(3)

Equation 3 stems from the discretized second-order difference equation of motion, and provides a
physically interpretable approximation of the acceleration needed to move from pt to pt−1, subtract-
ing out the known gravitational acceleration g. Our target force field can be non-linear (see Fig. 13 in
our Appendix for a simulation example). Moreover, in Fig. 15, the cases where fluid shapes change
during control indicate that our diffusion model is trained to predict these non-linear force fields.

3) Generation of Control Sketches. Finally, based on X , we generate the user’s sketch that depicts
the general movements of particles. We support both directional arrows for movement guidance and
one-stroke freehand oval shapes to indicate target regions, as shown in Figure 8. See our Appendix C
for details of implementing freehand arrows and oval shapes. Note that in 3D scenarios, we use the
arrow width to indicate depth (Pan et al., 2013).

For simplicity, we will by default control the fluid particles for 100 MPM steps (Tctr = 100). That
means all our control trajectories will have 100 steps. While it is possible to employ dynamic neural
architectures (Yu et al., 2018) to adaptively adjust the number of MPM steps for this control based on
the control complexity, we leave it as a future work.

2Equivalently, the force field if all particles have the same constant mass

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.2.3 DIFFUSION-BASED FLUID CONTROLNET

Noise

···

Control Time

···

Denoising Network

Force Field

······

La
st

 F
ra

m
es

 B
ef

or
e

C
on

tro
l

Fluid ControlNet

1	~	𝑇!"#

𝑡 − 1𝑡 − 𝑇$% ···

Apply
MPM

User's Sketch

Figure 9: Architecture design of our Fluid ControlNet.

Conditioned on previous particle trajecto-
ries and a user’s sketch, our diffusion-based
Fluid ControlNet will predict a dynamic
force field (a in Equation 3). We control
fluid particles by applying this predicted
force field atop MPM, since MPM can ex-
plicitly take external forces and update the
velocity advection.

Our design follows standard practice in con-
trollable generation (Zhang et al., 2023;
Wang et al., 2024b). We accept user sketches
and extract features for spatially grounded
conditioning, enabling free-form arrows, re-
gions, and shapes.

We show our architecture design in Figure 9.
Specifically:

➀ Our diffusion-based Fluid ControlNet shares the same backbone and input particle features as our
neural physics (Section 2.2).

➁ Parallel to the backbone, we extract the embeddings of the user’s sketch input using a convolutional
neural network (CNN) and concatenate them with the diffusion timestep embeddings to guide the
generation process. We also embed the current control time step into a latent space and integrate it
into the initial noise.

➂ The training target will be the ground truth force fields we simulate in Section 3.2.2.

➃ During training, noise is added to the ground-truth force (or acceleration) field, which is then used
as input. The diffusion model’s inputs are: (1) the previous 6 positions and velocities, (2) the noisy
force field (Gaussian noise during inference), and (3) the embedding of the control timestep.

➄ The output of our Fluid ControlNet is an external force field that will be applied to particles during
MPM simulations.

➅ Along the MPM simulation, our Fluid ControlNet will unroll the subsequent temporal force fields.

See Appendix C for details of the architecture of our Fluid ControlNet.

4 EXPERIMENTS

4.1 SETTINGS

Table 2: Datasets. Nh: Max num-
ber of particles at the original spatial
resolution. T : total time steps. M :
number of simulation trajectories.

Domain Nh T M

Water (2D) 4k 1k 1k
WaterRamps (2D) 3.3k 600 1k
Sand (2D) 4k 320 1k
SandRamps (2D) 3.3k 400 1k
Water (3D) 4k 800 1k
Sand (3D) 4k 350 1k
Water-Sand (2D) 4k 500 1k

Physical Domains and Simulations. To build our hybrid sim-
ulator, we prepare our own ground truth simulations with the
Taichi package (Hu et al., 2019; 2020; 2021) on GPUs, with
settings closely aligned with (Sanchez-Gonzalez et al., 2020).
Different simulation scenarios are summarized in Table 2. We
include diverse initial conditions (position, velocity) and numbers
of particles. We fix our grid size as 128 × 128 for 2D and 64 × 64 × 64 for 3D, and use time step
dt = 2.5ms in simulations.

For different simulation scenarios, we train separate neural physics models and Fluid ControlNet.
This design choice follows prior work (Sanchez-Gonzalez et al., 2020) where a dedicated model is
also trained per scene to better capture scene-specific dynamics.

Evaluation. To report quantitative results, we evaluated our models by computing rollout metrics
on held-out test trajectories, drawn from the same distribution of initial conditions used for training.
As discussed in Section 3.1.1, we use grid-level RMSEm̃ to compare predictions at lower spatial
resolution with the original ground truth.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Sand

(d) Water-3D

(b) SandRamps (c) WaterRamps

(f) Water-Sand

G
ri

d
 R

M
SE

G
ri

d
 R

M
SE

Our Hybrid
Solver

Original Neural Physics

MPM
(𝑟𝑝 = 1/1.75)

MPM

(e) Sand-3D

Original Neural
Physics

Our Hybrid
Solver

MPM
(𝑟𝑝 = 1/1.75)

MPM

Original Neural Physics

Our Hybrid Solver

MPM
(𝑟𝑝 = 1/1.75)

MPM

Original Neural
Physics

Our Hybrid
Solver

MPM (𝑟𝑝 = 1/1.75)

MPM

Our Hybrid Solver

Original Neural
Physics

MPM (𝑟𝑝 = 1/1.75)

MPM

Our Hybrid
Solver

Original Neural Physics

MPM (𝑟𝑝 = 1/1.75)

MPM

Time per step (ms) Time per step (ms) Time per step (ms)

Time per step (ms) Time per step (ms) Time per step (ms)

Figure 10: Trade-off between simulation error (grid RMSEm̃) and latency, comparing different methods. (a)
Sand (2D); (b) SandRamps (2D); (c) WaterRamps (2D); (d) Water (3D); (e) Sand (3D); (f) Water-Sand (2D).
Overall, our hybrid solver achieves a balanced trade-off between RMSE and simulation latency, outperforming
both neural physics and MPM.

4.2 FLUID SIMULATION ACCELERATION

Our hybrid simulator can consistently achieve real-time fluid simulations with preserved simulation
fidelity across both 2D and 3D cases. We show the trade-off between simulation error and latency
in Figure 10, where we compare our hybrid solver with the original neural physics (rp = rt =
1) (Sanchez-Gonzalez et al., 2020), MPM (Hu et al., 2019; 2020; 2021), and another MPM that also
simulates at low spatial resolution (rp = 1/1.75). On 2D scenarios, our hybrid solver consistently
balances the neural physics and MPM, achieving both reduced simulation latency and preserved
simulation errors. For example, on multiple materials (Water-Sand 2D), our hybrid solver can
accelerate MPM from 0.114s per frame to 0.08s, with a 29.8% reduction. On 3D, the neural physics
at rp = rt = 1 is extremely slow, whereas our hybrid solver improves both latency and errors. For
example, on Sand 3D, we reduce the latency of MPM by 11.8%, from 1.02ms to 0.90ms. Additionally,
we compare with other previous methods in Appendix E.

Control Initial OursBaseline Ground Truth

Figure 11: Visualization of generative fluid control. Rows from top to bottom: Water (2D), Sand (2D), Water
(3D), Sand (3D).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.3 GENERATIVE FLUID CONTROL

We show visualizations of our generative fluid control in Figure 11. We compare with a baseline,
where particles are controlled with a spatiotemporal constant force field, with the force magnitude
and orientation solved by moving particles from XTctr to X1.

Table 3: Grid RMSEm̃ between ground truth and predictions at the last time during fluid control.
Method Water (2D) Sand (2D) Water (3D) Sand (3D)

Baseline 0.0908 0.1151 0.0019 0.0022
Ours 0.0802 0.0924 0.0013 0.0019

We also quantitatively evaluate the control in Table 3, where we calculate the grid-level RMSEm̃

between the ground truth and the prediction at the last time step, since our main concern is the
recovery of the shape of the ground truth at the end of the simulation. In sum, we can see that our
diffusion-based Fluid ControlNet can move particles to better align with the user sketches.

4.4 COMPLETE RESULTS: HYBRID SIMULATION + FLUID CONTROL

Finally, we present the result from our complete pipeline in Figure 12. Particles are first simulated
by our hybrid solver, where we start with the neural physics (at low spatiotemporal resolution) and
is triggered to MPM once the fluid complex is high. Then, a user draws a sketch to control, and
our diffusion-based Fluid ControlNet takes both this sketch and recent particle states as inputs, and
generates external force fields to control particles.

MPMNeural Physics Trigger on
Fluid Complexity

Generative Control
User Sketch

𝑡 = 1 𝑡 = 150 𝑡 = 250

Figure 12: Complete results: hybrid simulation + fluid control. We start the simulation with our neural physics,
which is then triggered to MPM. At t = 150, a user presents the control sketch.

5 RELATED WORKS

Our work builds upon recent advances in three key areas: fluid modeling and animation, fluid
control, and controllable video generation. Research in fluid simulation has progressed from
graph-based models like GNS to scalable, physics-informed hybrid solvers such as Neural SPH and
MPMNet, which balance accuracy and performance (Sanchez-Gonzalez et al., 2020; Li et al., 2023;
Toshev et al., 2024). Concurrently, fluid control has shifted from costly optimization towards artist-
friendly, generative methods that use sketches or templates to direct fluid behavior (Yan et al., 2020;
Chu et al., 2021; Schoentgen et al., 2020). We are also inspired by recent progress in controllable
video generation, where diffusion models now allow for fine-grained, disentangled control over object
and camera motion (Yin et al., 2023; Wang et al., 2024b; Zhang et al., 2024). A detailed discussion of
these related works is provided in Appendix A. In our work, we introduce a hybrid neural-numerical
framework that generates accelerated, high-fidelity, controllable fluid simulations from freehand
sketches by leveraging the neural-numerical simulator and diffusion-based generative controller.

6 CONCLUSION

In this work, we introduced a novel hybrid neural physics framework that effectively bridges the
gap between high-fidelity physical simulation and real-time interactive control. By combining
learned graph-based neural simulators with a fallback to classical MPM solvers, we achieved robust,
low-latency fluid dynamics capable of handling complex scenarios without sacrificing accuracy.
Additionally, we developed a diffusion-based generative controller trained via reverse modeling,
enabling intuitive user interaction through freehand sketches for dynamic fluid control. Extensive
experiments across 2D and 3D domains demonstrate that our approach not only accelerates fluid
simulations but also provides controllable and physically plausible outcomes. This hybrid paradigm
represents a step forward in making real-time, artist-friendly fluid simulation practical for applications
in graphics, design, and virtual environments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs did not play a significant role in either the research ideation or the writing of this paper. Their
use was limited to correcting minor grammatical issues and typographical errors.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Bert Blocken and Ted Stathopoulos. Cfd simulation of pedestrian-level wind conditions around build-
ings: Past achievements and prospects. Journal of Wind Engineering and Industrial Aerodynamics,
121:138–145, 2013.

Jeremiah U Brackbill and Hans M Ruppel. Flip: A method for adaptively zoned, particle-in-cell
calculations of fluid flows in two dimensions. Journal of Computational physics, 65(2):314–343,
1986.

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. arXiv
preprint arXiv:2202.03376, 2022.

Robert Bridson. Fluid simulation for computer graphics. AK Peters/CRC Press, 2015.

Jie Chen, Haw-ren Fang, and Yousef Saad. Fast approximate kNN graph construction for high
dimensional data via recursive lanczos bisection. Journal of Machine Learning Research, 10(Sep):
1989–2012, 2009.

Mengyu Chu, Nils Thuerey, Hans-Peter Seidel, Christian Theobalt, and Rhaleb Zayer. Learning
meaningful controls for fluids. ACM Transactions on Graphics (TOG), 40(4):1–13, 2021.

Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest neighbor graph construction for generic
similarity measures. In Proceedings of the 20th International Conference on World Wide Web, pp.
577–586, 2011.

Xinghao Dong, Chuanqi Chen, and Jin-Long Wu. Data-driven stochastic closure modeling via
conditional diffusion model and neural operator. Journal of Computational Physics, 534:114005,
2025.

Yue Gao, Hong-Xing Yu, Bo Zhu, and Jiajun Wu. Fluidnexus: 3d fluid reconstruction and prediction
from a single video. arXiv preprint arXiv:2503.04720, 2025.

Shanyan Guan, Huayu Deng, Yunbo Wang, and Xiaokang Yang. Neurofluid: Fluid dynamics
grounding with particle-driven neural radiance fields. In International conference on machine
learning, pp. 7919–7929. PMLR, 2022.

Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai. Sparsectrl: Adding
sparse controls to text-to-video diffusion models. In European Conference on Computer Vision, pp.
330–348. Springer, 2024.

Jiaqi Han, Wenbing Huang, Hengbo Ma, Jiachen Li, Josh Tenenbaum, and Chuang Gan. Learning
physical dynamics with subequivariant graph neural networks. Advances in Neural Information
Processing Systems, 35:26256–26268, 2022.

Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, and Ceyuan Yang. Cam-
eractrl: Enabling camera control for text-to-video generation. arXiv preprint arXiv:2404.02101,
2024.

Peiyan Hu, Rui Wang, Xiang Zheng, Tao Zhang, Haodong Feng, Ruiqi Feng, Long Wei, Yue Wang,
Zhi-Ming Ma, and Tailin Wu. Wavelet diffusion neural operator. arXiv preprint arXiv:2412.04833,
2024.

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand. Taichi: a
language for high-performance computation on spatially sparse data structures. ACM Transactions
on Graphics (TOG), 38(6):201, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and Frédo
Durand. Difftaichi: Differentiable programming for physical simulation. ICLR, 2020.

Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai,
William T. Freeman, and Frédo Durand. Quantaichi: A compiler for quantized simulations.
ACM Transactions on Graphics (TOG), 40(4), 2021.

Zhiao Huang, Yuanming Hu, Tao Du, Siyuan Zhou, Hao Su, Joshua B Tenenbaum, and Chuang Gan.
Plasticinelab: A soft-body manipulation benchmark with differentiable physics. arXiv preprint
arXiv:2104.03311, 2021.

Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. The affine
particle-in-cell method. ACM Transactions on Graphics (TOG), 34(4):1–10, 2015.

Georg Kohl, Li-Wei Chen, and Nils Thuerey. Benchmarking autoregressive conditional diffusion
models for turbulent flow simulation. arXiv preprint arXiv:2309.01745, 2023.

Krishna Kumar and Yonjin Choi. Accelerating particle and fluid simulations with differentiable graph
networks for solving forward and inverse problems. In Proceedings of the SC’23 Workshops of the
International Conference on High Performance Computing, Network, Storage, and Analysis, pp.
60–65, 2023.

Krishna Kumar and Joseph Vantassel. Gns: A generalizable graph neural network-based simulator
for particulate and fluid modeling. arXiv preprint arXiv:2211.10228, 2022.

Jin Li, Yang Gao, Ju Dai, Shuai Li, Aimin Hao, and Hong Qin. Mpmnet: A data-driven mpm
framework for dynamic fluid-solid interaction. IEEE Transactions on Visualization and Computer
Graphics, 2023.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Torralba. Learning
particle dynamics for manipulating rigid bodies, deformable objects, and fluids. arXiv preprint
arXiv:1810.01566, 2018.

Pingchuan Ma, Peter Yichen Chen, Bolei Deng, Joshua B Tenenbaum, Tao Du, Chuang Gan, and
Wojciech Matusik. Learning neural constitutive laws from motion observations for generalizable
pde dynamics. In International Conference on Machine Learning, pp. 23279–23300. PMLR, 2023.

Zherong Pan, Jin Huang, Yiying Tong, Changxi Zheng, and Hujun Bao. Interactive localized liquid
motion editing. ACM Transactions on Graphics (TOG), 32(6):1–10, 2013.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In International conference on learning representations, 2020.

Karthik Raveendran, Nils Thuerey, Christopher J Wojtan, and Greg Turk. Controlling liquids using
meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
2012.

Omer Rochman-Sharabi, Sacha Lewin, and Gilles Louppe. A neural material point method for
particle-based simulations. 2024.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International conference
on machine learning, pp. 8459–8468. PMLR, 2020.

Arnaud Schoentgen, Pierre Poulin, Emmanuelle Darles, and Philippe Meseure. Particle-based liquid
control using animation templates. In Computer Graphics Forum, volume 39, pp. 79–88. Wiley
Online Library, 2020.

Omer Rochman Sharabi, Sacha Lewin, and Gilles Louppe. A neural material point method for
particle-based emulation. arXiv preprint arXiv:2408.15753, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Serkan Solmaz and Tom Van Gerven. Interactive cfd simulations with virtual reality to support
learning in mixing. Computers & Chemical Engineering, 156:107570, 2022.

Jos Stam. Stable fluids. In Seminal Graphics Papers: Pushing the Boundaries, Volume 2, pp. 779–786.
2023.

Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. Visualizing large-scale and high-dimensional
data. In Proceedings of the 25th International Conference on World Wide Web, pp. 287–297, 2016.

Artur P Toshev, Jonas A Erbesdobler, Nikolaus A Adams, and Johannes Brandstetter. Neural sph:
Improved neural modeling of lagrangian fluid dynamics. arXiv preprint arXiv:2402.06275, 2024.

Hrishikesh Viswanath, Yue Chang, Aleksey Panas, Julius Berner, Peter Yichen Chen, and Aniket
Bera. Reduced-order neural operators: Learning lagrangian dynamics on highly sparse graphs.
arXiv preprint arXiv:2407.03925, 2024.

Pascal Volino, Frederic Cordier, and Nadia Magnenat-Thalmann. From early virtual garment
simulation to interactive fashion design. Computer-aided design, 37(6):593–608, 2005.

Jiawei Wang, Yuchen Zhang, Jiaxin Zou, Yan Zeng, Guoqiang Wei, Liping Yuan, and Hang
Li. Boximator: Generating rich and controllable motions for video synthesis. arXiv preprint
arXiv:2402.01566, 2024a.

Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo, and
Ying Shan. Motionctrl: A unified and flexible motion controller for video generation. In ACM
SIGGRAPH 2024 Conference Papers, pp. 1–11, 2024b.

Dejia Xu, Weili Nie, Chao Liu, Sifei Liu, Jan Kautz, Zhangyang Wang, and Arash Vahdat. Camco:
Camera-controllable 3d-consistent image-to-video generation. arXiv preprint arXiv:2406.02509,
2024.

Guowei Yan, Zhili Chen, Jimei Yang, and Huamin Wang. Interactive liquid splash modeling by user
sketches. ACM Transactions on Graphics (TOG), 39(6):1–13, 2020.

Shiyuan Yang, Liang Hou, Haibin Huang, Chongyang Ma, Pengfei Wan, Di Zhang, Xiaodong Chen,
and Jing Liao. Direct-a-video: Customized video generation with user-directed camera movement
and object motion. In ACM SIGGRAPH 2024 Conference Papers, pp. 1–12, 2024.

Shengming Yin, Chenfei Wu, Jian Liang, Jie Shi, Houqiang Li, Gong Ming, and Nan Duan. Dragnuwa:
Fine-grained control in video generation by integrating text, image, and trajectory. arXiv preprint
arXiv:2308.08089, 2023.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks.
arXiv preprint arXiv:1812.08928, 2018.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 3836–3847, 2023.

Zhenghao Zhang, Junchao Liao, Menghao Li, Zuozhuo Dai, Bingxue Qiu, Siyu Zhu, Long Qin, and
Weizhi Wang. Tora: Trajectory-oriented diffusion transformer for video generation. arXiv preprint
arXiv:2407.21705, 2024.

Rui Zhao, Yuchao Gu, Jay Zhangjie Wu, David Junhao Zhang, Jia-Wei Liu, Weijia Wu, Jussi Keppo,
and Mike Zheng Shou. Motiondirector: Motion customization of text-to-video diffusion models.
In European Conference on Computer Vision, pp. 273–290. Springer, 2024.

Anthony Zhou, Zijie Li, Michael Schneier, John R Buchanan Jr, and Amir Barati Farimani. Text2pde:
Latent diffusion models for accessible physics simulation. arXiv preprint arXiv:2410.01153, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DETAILS OF RELATED WORKS

Fluid Modeling and Animation Learning-based fluid simulators have progressed from graph-
based models to hybrid, physics-informed approaches. DPI-Net (Li et al., 2018) introduced dynamic
interaction graphs with hierarchical message passing to model interactions across particles. This was
unified in GNS (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020; Kumar & Vantassel, 2022; Kumar
& Choi, 2023), enabling generalized simulation of fluids, solids, and deformables. Hybrid solvers
like MPMNet (Li et al., 2023) and NeuralMPM (Rochman-Sharabi et al., 2024) adopt the Material
Point Method for scalability. Neural SPH (Toshev et al., 2024) integrates SPH priors to stabilize
rollouts, while NeuroFluid (Guan et al., 2022) combines learned dynamics and rendering from videos.
These advances balance physical accuracy with real-time performance. In our work, we propose a
hybrid approach that combines neural and numerical methods to enable accelerated and high-fidelity
fluid simulation.

Fluid Control Recent work in fluid control aims to make simulation more intuitive and accessible.
Traditional methods using space-time optimization were costly and hard to tune. Yan et al.(Yan et al.,
2020) addressed this with a sketch-based system using conditional GANs to generate liquid splashes.
Pan et al.(Pan et al., 2013) enabled interactive control through sketching and mesh dragging. Chu et
al.(Chu et al., 2021) used GANs to infer fluid motion from static fields with semantically controllable
features. Schoentgen et al.(Schoentgen et al., 2020) introduced reusable templates for particle-based
animations. These approaches shift toward flexible, artist-friendly tools. We tackle the case where
only a freehand sketch is given, and the generative controller is tasked with producing the intended
artistic fluid behavior.

Controllable Video Generation Controllable video generation has advanced rapidly with diffusion
models, especially in disentangling motion control. DragNUWA (Yin et al., 2023) enabled trajectory-
based editing, while MotionCtrl (Wang et al., 2024b) and Direct-a-Video (Yang et al., 2024) decoupled
camera and object motion. CameraCtrl (He et al., 2024) and CamCo (Xu et al., 2024) refined camera
control using geometric cues. MotionDirector (Zhao et al., 2024) and Boximator (Wang et al., 2024a)
allowed user-customized motion, and SparseCtrl (Guo et al., 2024) enabled sparse, entity-level
conditioning. Tora (Zhang et al., 2024) unified text, image, and trajectory inputs for physics-aware
generation. Inspired by these approaches, we leverage forward simulations and compute control
forces via reversed simulation.

B DETAILS OF NEURAL PHYSICS SIMULATOR

B.1 PARTICLE SIMULATIONS AS MESSAGE-PASSING ON A GRAPH

We denote the state of a particle i at time step t as xi,t ∈ RD, and the collective state of N particles
as Xt = [x1,t, . . . ,xN,t] ∈ RN×D. Applying physical dynamics over multiple timesteps yields a
trajectory of particle states, Xt1:tTin

= [Xt1 , Xt2 , · · · , XtTin
] ∈ RTin×N×D. In essence, the simulator

s : RTin×N×D → RN×d (d = 2 or 3 for 2D/3D) leverages the current Tin particle states as input to
predict their future motion, capturing the underlying dynamics using methods ranging from simple
Euler integration to advanced numerical or data-driven techniques. If a simulator is learnable, it
can be represented as sθ, a parameterized function approximator. The simulator then iteratively
computes future states, such as X̃tTin+1

= s(X̃t1 , X̃t2 , · · · , X̃tTin
), where each newly predicted state

is appended to simulate a rollout trajectory over time.

Our learnable simulator sθ represents the physical system as interacting particles, where dynamics
emerge from exchanges of energy and momentum with neighbors. To ensure robust simulation
quality, sθ must generalize across diverse interaction patterns and physical scenarios. This particle-
based approach naturally maps to message passing on a graph, with particles as nodes and pairwise
interactions as edges, making graph neural networks (GNNs) a suitable modeling choice.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B.2 DETAILS OF GRAPH-BASED NEURAL PHYSICS

Following (Sanchez-Gonzalez et al., 2020), we implement our neural physics with GNN, and use
standard nearest neighbor algorithms (Dong et al., 2011; Chen et al., 2009; Tang et al., 2016) to
construct the graph.

Input. In our learnable simulator sθ, the input state vector for each particle i at time step tk includes
a sequence of 5 previous velocities (via finite differences from Tin = 6 previous locations), and static
features representing material properties (e.g., water, sand, rigid, boundary particle). In practice, only
the position vectors pi are stored in our datasets; the velocities ṗi and accelerations p̈i are computed
on the fly using finite differences when needed. Formally, the node feature is defined as

xi,tk−Tin :tk
= [ṗi,tk−Tin+2

, . . . , ṗi,tk ,fi] ∈ RD,

where fi denotes the concatenated material-specific features and scene boundary indicators. Specif-
ically, the dimension of the encoded node feature vector is D = 30 for 2D simulations (5 2-dim
velocities by finite differences, i.e., 5× 2 = 10; 4 distances from the boundary; 16-dim embedding
for the particle type), or D = 37 for 3D simulations (5 3-dim velocities by finite differences, i.e.
5× 3 = 15; 6 distances from the boundary; 16-dim embedding for the particle type). See Figure 2
for an illustration. It is important to note that in our Fluid Controlnet (Section 3.2.3), the input feature
dimension D will increase by 16, where we embed the current control timestep into the latent space
with another 2-layer MLP with SiLU activation.

To obtain more informative edge features ri,j , we use the relative positional displacement between a
pair of adjacent particles i and j, along with its magnitude:

ri,j = [(pi − pj), ∥pi − pj∥].
Edges are added between particles that lie within a predefined connectivity radius R = 0.015,
which captures local particle interactions. R is kept constant for all 2D scenarios. In different 3D
scenarios, a larger radius can be used to accommodate higher-resolution environments. Although R
is fixed in simulations, edges in the graph are still dynamically updated by comparing the current
particle-wise distances to R. For full details of these input and target features, we refer readers
to (Sanchez-Gonzalez et al., 2020).

The ENCODER : RN×D → G embeds particle-based states, it can be formulated as:
G(0) = (V (0),E(0)) = ENCODER(X, ri,j) The node embeddings V (0) = ENCODERV (X)

are learned functions of the particles’ states. The edge embeddings, E(0)
i,j = ENCODERE(ri,j),

are learned functions of the pairwise properties of the corresponding particles. We implement
ENCODERV and ENCODERE as multilayer perceptrons (MLP), which encode node features and
edge features into the latent vectors, Vi and Ei,j , of size 128.

The PROCESSOR : G → G computes interactions among nodes through L steps of learned message
passing and outputs the final graph, G(L) = PROCESSOR(G(0)). Message passing enables infor-
mation propagation among particles. Our PROCESSOR consists of a stack of L = 10 GNN layers,
each using separate (non-shared) MLPs for updating node and edge features, along with residual
connections between the input and output latent attributes of both nodes and edges. For the Fluid
ControlNet setting, an additional MLP layer is used to encode the diffusion timestep and control
image features; see Appendix C.2 for details.

The DECODER : G → RN×d extracts dynamics information (of the future state) from the nodes of
the final latent graph, X̂ = DECODER(V (L)). Our DECODER is an MLP that outputs accelerations
p̈i. The future position and velocity are updated using an Euler integrator.

All MLPs in PROCESSORhave two hidden layers with ReLU, followed by an output layer without
activation, with a width of 128. All MLPs are followed by a LayerNorm (Ba et al., 2016).

C IMPLEMENTATIONS

C.1 LATENCY MEASUREMENTS

Latency of Neural Physics. We utilize the TensorRT library to convert the PyTorch model
into an ONNX model to accelerate model inference and align it with the acceleration of MPM on

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

the Taichi kernel. However, since TensorRT does not support the aggregation operation in
GNNs (i.e., aggregating information from edges to adjacent nodes), when measuring the latency, we
approximate the time cost of this aggregation operation with a matrix multiplication between
an adjacency matrix A ∈ RN×N (where N denotes the number of nodes, i.e. particles), and node
features (o), such that the aggregation becomes A · o. All reported latency measurements are based
on the median number of nodes across different scenarios in our test datasets.

Latency of Taichi. To enable a fair comparison under MPM simulation setting, we applied a
matching latency reduction strategy to the Taichi implementation by skipping non-essential
overhead. Specifically, we excluded the time spent on initializing the MPM state (initial positions
and velocities of particles) and the cost of initializing the Taichi kernel at the beginning of the
simulation. As a result, our comparison focuses solely on the runtime per simulation step after the
CUDA or Taichi kernel has been initialized.

C.2 DESIGN OF FLUID CONTROLNET

In our Fluid ControlNet, the control signal C ∈ RH×W×3 is encoded using our Fluid ControlNet.
The encoded embedding is then injected into the graph-based diffusion model to guide the generation
of the external field of accelerations. The Fluid ControlNet consists of 8 convolutional layers and 3
downsampling operations. It extracts multi-scale features from the control signal C, projects each
scale to a different dimensional space, and then concatenates the projected features into control
embedding representation of dimension size 44. The resulting embedding is then integrated into the
PROCESSOR module of the graph-based diffusion model. Notably, to better condition the diffusion
process on the control signal, we draw inspiration from DiT (Peebles & Xie, 2023) and concatenate
the embedding of the control signal to the diffusion time step embedding. This design choice
ensures that the control condition is effectively incorporated at each diffusion step, thereby generating
high-fidelity acceleration fields that can align fluid particles to the target motion or shape.

C.3 TRAINING

Following (Sanchez-Gonzalez et al., 2020), we normalize the input velocity to the GNNs, and
apply random noises to input positions (pt1:tTin

) during training. For both neural physics and Fluid
ControlNet, we train with the Adam optimizer and a learning rate at 1× 10−4 with exponential decay.
Our training batch size is 1, and we train for 2 million gradient descent steps.

Table 4: Training Costs (GPU hours) across different scenarios.

GPU Hours Water (2D) Sand (2D) Water (3D) Sand (3D)

Neural Physics (Section 3.1) 17.27h 17.94h 19.71h 19.67h
Fluid ControlNet (Section 3.2) 69.87h 76.36h 184.12h 151.03h

We include our training costs in Table 4. Neural physics requires approximately one day on a single
NVIDIA 4090 GPU. For the Fluid ControlNet, training takes around three days for 2D scenarios
on a single NVIDIA 4090 and six days for 3D scenarios on a single NVIDIA A40. We train both
neural physics and Fluid ControlNet with the particle-level RMSE loss on predicted accelerations

RMSEp̈ ≡ 1
N

∑N
i=1

∥ˆ̈pi−p̈i∥
2

∥p̈i∥2
, which was defined in Section 2.2.

C.4 GENERATING USERS’ FREEHAND SKETCHES (ARROWS AND OVAL SHAPES)

Arrows are computed by connecting the centroid (p̄ = 1
N

∑N
i=1 pi) of fluid particles at t = 1

(p̄1) and t = Tctr (p̄Tctr). Based on the mean displacement vector ∆p̄ = p̄1 − p̄Tctr , we derive
the arrow length ∥∆p̄∥ and orientation θ = tan−1(∆p̄y/∆p̄x). In 3D, we use the arrow width to
indicate depth (Pan et al., 2013). A multi-segment arrow with varying line width is implemented
as n-segment polyline with width modulation, where each segment’s width wi (i ∈ [1, n]) is
wi = wmin + (wmax − wmin) · ∆p̄z,i−∆p̄z,min

∆p̄z,max−∆p̄z,min
. The arrowhead adopts perspective-correct scaling.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

For 2D oval sketches, shapes of particles at t = Tctr are represented as elliptical outlines centered
at p̄Tctr , with radii corresponding to ±2σ, where σ is the standard deviation of particle positions
along each principal axis. This statistically-grounded ellipse captures approximately 95% particles’
positions while being visually simple. Meanwhile, 2D oval-shaped control sketches can indeed be
ambiguous in 3D, since it is infeasible to depict 3D volumes with a simple one-stroke 2D sketch.

C.5 ENFORCING SMOOTHNESS ON TARGET ACCELERATIONS

We observe that ground truth accelerations solved by Equation 3 are typically complicated (see the
temporal-wise cosine similarity in Figure 13), which will be challenging to learn. We thus further
enforce a certain level of smoothness of the acceleration across temporal steps:

ät,smooth = ät − λ · exp
(
−β · ät · ät+1

∥ät∥ · ∥ät+1∥

)
· (ät − ät+1) (4)

Essentially, Equation 4 enforce decoupled smoothness over the magnitude and the orientation of
accelerations over temporal steps. We choose λ = 0.1 and β = 2 in our work.

0 20 40 60 80
Frame Index

0
20

40
60

80
Fr

am
e

In
de

x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Co
sin

e
Si

m
ila

rit
y

0 20 40 60 80
Frame Index

0
20

40
60

80
Fr

am
e

In
de

x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Co
sin

e
Si

m
ila

rit
y

Figure 13: Step-wise correlations of ground-truth accelerations for fluid control. Left: before enforcing
smoothness; Right: after enforcing smoothness.

D MORE EXPLANATION ON GRID-RMSE

D.1 EXPLANATION OF GRID-RMSE

Grid-RMSE (RMSEm) is a normalized error metric used to evaluate the difference between the
predicted mass grid and the ground-truth mass grid in simulations. It is defined as the normalized

grid-level RMSEm̃ ≡ 1
N

∑N
i=1

∥ ˆ̃mi−m̃i∥
2

∥m̃i∥2
, which essentially quantifies the mass distribution. m̃ is

the normalized grid mass (m̃i =
mi∑N
i=1 mi

).

D.2 THE EFFECTIVENESS OF GRID-RMSE

Why we choose grid-RMSE as the metric? The main reason we use a mass-based RMSE is
that in low-resolution settings, directly computing a standard particle-level RMSE is not feasible
due to significant differences in the number of particles. Moreover, performing upsampling or
downsampling will break the particle alignments: the predicted and ground-truth particles will no
longer be one-to-one mappings, leaving particle-RMSE infeasible.

Instead, evaluating the normalized mass distribution on the grid offers a more stable and meaningful
approximation of the overall fluid shape. Essentially, it quantifies the IoU (intersection-over-union)
of the predicted and target fluids.

To further validate the reliability of this metric, we have added an additional experiment based on
Figure 6(d), where we compute RMSE directly at the original resolution (rp = 1). As shown in

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 5: Comparison of RMSE and mass-based RMSE (RMSEm) under different rc values for the WATER2D
setup (rt = 2, rp = 1).

rc = 0 rc = 0.3 rc = 0.5 rc = 0.6 rc = 0.7 rc = 0.8 rc = 0.9

Particle RMSE 0.2780 0.2741 0.2619 0.2528 0.2437 0.2112 0.1844
RMSEm 0.0238 0.0231 0.0225 0.0223 0.0208 0.0175 0.0132

Table 5, results from particle RMSE and grid-level RMSEm are consistent, which supports the
validity and robustness of using mass RMSE in our setting.

We study whether we can address the particle misalignment issue by downsampling the reference
MPM simulator to rp = 1/1.75, ensuring both methods operate on identical sparse particle dis-
tributions. Under this setting, we compare two metrics: particle RMSE (our method vs. MPM at
rp = 1/1.75) and grid-level mass RMSE. As shown in Table 6, both metrics exhibit consistent trends
across various rc values, providing additional validation for the reliability of mass-based RMSE in
our experimental framework.

Table 6: Comparison of Particle RMSE and mass-based RMSE (RMSEm) under different rc values for the
WATER2D setup (rt = 2, rp = 1/1.75).

rc = 0 rc = 0.3 rc = 0.5 rc = 0.6 rc = 0.7 rc = 0.8 rc = 0.9

Particle RMSE 0.2755 0.2610 0.2550 0.2603 0.2375 0.2176 0.1619
RMSEm 0.0232 0.0223 0.0214 0.0207 0.0192 0.0169 0.0144

We also need to emphasize that “applying G2P to obtain particle acceleration
at high particle resolution” requires introducing new particles. Refer to line88:
for p in x: # grid to particle (G2P) in mpm128.py from the taichi-dev

GitHub repository. This means that if no new particles are introduced, the number of particles in x
will remain unchanged, causing misalignment between simulation particles at different resolutions.

To implement the approach of “applying G2P to obtain particle acceleration at high particle resolution,”
we explored two methods for introducing new particles:

1. randomly seeding new particles, and

2. using a learned point-cloud upsampler (from the pointcloud-upsampling GitHub repository).

Our experiments revealed that both methods yield excessively high particle RMSE values (Table 7). A
relative RMSE greater than 1 clearly indicates that upsampling during G2P severely disrupts particle
alignment and is not a viable solution.

Table 7: Particle RMSE comparison for different upsampling methods in WATER2D setup (rt = 2, rp =
1/1.75).

Upsampling Method Random Upsampling Point Cloud Upsampling
Particle RMSE 1.3153 1.2335

However, if we do not upsample and directly compare GNN with the ground-truth MPM with the
same number of particles (i.e. particles are always aligned), the particle RMSE is much smaller.
(0.2755 vs. 0.2780). This indicates that misaligned particles introduced by upsampling dominate
the metric and lead to misleading evaluations. In contrast, our grid-level mass RMSE is computed
directly on the simulation output, without any heuristic postprocessing or resampling, and remains
stable across all tested resolutions. For this reason, we consider it a more reliable proxy for assessing
cross-resolution fidelity.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Comparison of recent neural physics methods.

Dataset Simulation Type Method Input Control
Physics
Correc-
tion

GNS (Li et al., 2018; Ku-
mar & Vantassel, 2022;
Li et al., 2023)

Neural Simulator GNN Particle states ✗ ✗

MPMNet (Sharabi et al.,
2024) Hybrid Simulator MPM + ConvLSTM Pressure fields ✗ ✓

NerualMPM (Han et al.,
2022) Neural Simulator Voxelized CNN Voxelized grid ✗ ✗

SGNN (Ma et al., 2023) Neural Simulator Subequivariant
GNN Particle states ✗ ✗

NCLaw (Viswanath et al.,
2024) Hybrid Simulator Neural Constitutive

Model + PDE
Deformation
gradient ✗ ✓

GIOROM (Viswanath
et al., 2024) Neural Simulator GNN + Neural

Fields Velocity fields ✗ ✗

Ours Hybrid Simulator GNN + MPM + Dif-
fusion

Particle states +
User action ✓ ✓

E MORE RESULTS

E.1 COMPARISON WITH PREVIOUS NEURAL PHYSICS METHODS.

We have listed and compared numerous related works in Table 8, highlighting key differences between
their approaches and ours, such as the use of misaligned input modalities. Among them, GIOROM
(Viswanath et al., 2024) and NeuralMPM (Sharabi et al., 2024) are the most closely related to our
work, as they also perform validations based on GNS (Sanchez-Gonzalez et al., 2020). In Tables9
and 10, we further report their performance on the WATER2D and SAND2D datasets, respectively.

Table 9: Comparison of grid RMSEm̃ and training GPU hours with recent neural physics methods (Water2D).

Water2D GNS GIOROM NeuralMPM Our Hybrid Solver

RMSEm̃ 0.0263 0.0804 0.0829 0.0186
GPU Hours 17.27h 28.37h 17.72h 17.27h

Table 10: Comparison of grid RMSEm̃ and training GPU hours with recent neural physics methods (Sand2D).

Sand2D GNS GIOROM NeuralMPM Our Hybrid Solver

RMSEm̃ 0.0125 0.2175 0.0785 0.0116
GPU Hours 17.94h 20.43h 15.62h 17.94h

On the WATER2D dataset, our hybrid solver achieves an RMSE of 0.0186, which is the lowest among
all compared methods. This result significantly outperforms GIOROM (0.0804) and NeuralMPM
(0.0829), and also shows a marked improvement over the GNS baseline (0.0263). Similarly, on
the SAND2D dataset, our method continues to demonstrate its superiority, achieving the lowest
RMSE of 0.0116. Moreover, the training cost of our solver, measured in GPU hours, remains on
par with the GNS baseline for both datasets. This indicates that our hybrid approach achieves a
substantial increase in simulation accuracy without incurring additional training overhead. It is
important to highlight that this quantitative comparison is limited to passive simulation scenarios. A
direct comparison of interactive, controllable simulations was not possible, as other methods like
GIOROM and NeuralMPM do not natively support user actions, a key feature of our framework.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E.2 GRID RMSEm̃ OF FLUID SIMULATIONS OVER RANDOM SEEDS

To ensure a fairer comparison, we conducted experiments using three different random seeds. The
results, as shown in Table 11, demonstrate that our hybrid solver consistently outperforms the original
neural physics across all datasets.

Table 11: Grid RMSEm̃ of fluid simulations on different scenarios, over three random runs.

RMSEm̃ Water (2D) Sand (2D) SandRamps (2D) WaterRamps (2D) Water (3D) Sand (3D) Water-Sand (2D)

Neural Physics 0.0263 (1.15e-6) 0.0125 (2.59e-7) 0.0101 (3.23e-8) 0.0229 (2.09e-6) 0.0048 (6.58e-7) 0.0025 (2.11e-8) 0.0441 (3.51e-6)
Our Hybrid Solver 0.0186 (8.17e-6) 0.0116 (6.88e-8) 0.0096 (1.00e-9) 0.0171 (3.16e-6) 0.0022 (1.77e-8) 0.0013 (1.08e-7) 0.0149 (2.38e-6)

E.3 LATENCY OF FLUID CONTROLNET

For real-time performance, we report diffusion model inference time across scenes, as shown in
Table 12. The latency is measured after model compilation and kernel warm-up, ensuring that
initialization overhead is excluded. Further details of the latency measurement methodology are
provided in Appendix C.1.

Table 12: Latency of our Fluid ControlNet.

Dataset Water-2D Sand-2D Water-3D Sand-3D

Latency (ms) 18.714 20.724 20.316 27.026

E.4 MORE VISUALIZATIONS

Fluid Simulations. Figure 14 presents the visualizations of all models discussed throughout the
paper. Here, we show a comparison of intermediate frames from a single trajectory. It is evident
that, due to the hybrid design of our hybrid solver, our method produces visual results that are more
similar to MPM (rp = 1/1.75) simulations. Since MPM (rp = 1/1.75) is highly consistent with
MPM (ground truth), the outputs of our Hybrid solver also align better with MPM compared to the
original neural physics. This demonstrates that our approach effectively balances computational
efficiency and accuracy.

More Visualizations of Fluid Control. Figure 15 presents additional visualizations of generative
fluid control across a variety of tasks, both 2D and 3D control signals. We can see that our approach
consistently generates physically plausible and visually accurate outcomes that align closely with
the target controls across all fluid types and dimensions, demonstrating strong control capability.
These results further confirm the effectiveness of our method in achieving both visually appearing
and physically plausible fluid control.

Despite these issues, the generated force fields still guide the fluid in the intended direction, and
performance remains qualitatively acceptable. For high-precision or depth-sensitive 3D control, future
work could explore 3D-aware sketching or explicit 3D conditioning. We will include this discussion
in the camera-ready version to better explain current limitations and inform future improvements.

F LIMITATIONS

Our current limitations are: 1) The control step Tctl is fixed at 100 and is not adaptive to the difficulty
of the control scenario; 2) Errors are introduced by the inference of neural physics at low resolution.
The potential solutions are: 1) Training the diffusion-based controller to unroll different numbers
of steps to adapt to challenging control scenarios; 2) Training a super-resolution model to correct
errors introduced by simulating neural physics at low spatial resolution. However, addressing these
limitations is beyond the scope of this paper, and we plan to study them in our immediate future work.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 14: Visualizations of fluid simulations by different methods, over different scenarios. From left to right:
Water (2D), Sand (2D), SandRamps (2D), WaterRamps (2D), Water (3D), Sand (3D), Water-Sand (2D). From
top to bottom: Initial, MPM (ground truth), Original Neural Physics, MPM (rp = 1/1.75), Our Hybrid Solver.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 15: More visualization of generative fluid control. From top to bottom: Water2D, Sand2D, Water3D, and
Sand3D, each with two types of control signals (arrows for motion direction, and oval shapes for target spatial
positions). From left to right: control signal, initial, ours, ground truth.

21

	Introduction
	Background
	Fluid Simulations with Material Point Method (MPM)
	GNN-based Neural Physics for Particle Simulations

	Methods
	Hybrid Real-Time Fluid Simulation
	Learning Real-Time Neural Physics at Low Spatiotemporal Resolution
	Hybrid Simulator with Safeguard

	Interactive Fluid Control by Generating Dynamic Force Fields
	Motivations
	Data Generation via Reversed Simulation
	Diffusion-based Fluid ControlNet

	Experiments
	Settings
	Fluid Simulation Acceleration
	Generative Fluid Control
	Complete Results: Hybrid Simulation + Fluid Control

	Related Works
	Conclusion
	Details of Related Works
	Details of Neural Physics Simulator
	Particle Simulations as Message-Passing on a Graph
	Details of Graph-based Neural Physics

	Implementations
	Latency Measurements
	Design of Fluid ControlNet
	Training
	Generating Users' Freehand Sketches (Arrows and Oval Shapes)
	Enforcing Smoothness on Target Accelerations

	More Explanation on Grid-RMSE
	Explanation of Grid-RMSE
	The Effectiveness of Grid-RMSE

	More Results
	Comparison with Previous Neural Physics Methods.
	Grid RMSE of Fluid Simulations over Random Seeds
	Latency of Fluid ControlNet
	More Visualizations

	Limitations

