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ABSTRACT

We propose a neural physics system for real-time, interactive fluid simulations. Tra-
ditional physics-based methods, while accurate, are computationally intensive and
suffer from latency issues. Recent machine-learning methods reduce computational
costs while preserving fidelity; yet most still fail to satisfy the latency constraints
for real-time use and lack support for interactive applications. To bridge this gap,
we introduce a novel hybrid method that integrates numerical simulation, neural
physics, and generative control. Our neural physics jointly pursues low-latency
simulation and high physical fidelity by employing a fallback safeguard to classical
numerical solvers. Furthermore, we develop a diffusion-based controller that is
trained using a revserve modeling strategy to generate external dynamic force fields
for fluid manipulation. Our system demonstrates robust performance across diverse
2D/3D scenarios, material types, and obstacle interactions, achieving real-time
simulations at high frame rates (11 ∼ 29% latency reduced) while enabling fluid
control guided by user-friendly freehand sketches. We present a significant step
towards practical, controllable, and physically plausible fluid simulations for real-
time interactive applications. We promise to release both models and data upon
acceptance.

Generative Force Fields
(Sec. 3.2)

Real-time Simulation
(Sec. 4.2)

Interactive Fluid Control (Sec. 4.3)

Latency
-11% ~ -29%

Real-Time & Interactive
Fluid SimulationsHybrid Solver

(MPM + Neural Physics)
(Sec. 3.1)

Figure 1: We target real-time, interactive fluid simulations. Our hybrid solver integrates a numerical simulator
and neural physics (Section 3.1), enabling real-time simulation (Section 4.2). In addition, we generate external
force fields (Section 3.2) to support users to control fluids interactively via freehand sketches (Section 4.3).

1 INTRODUCTION

Modeling fluid behavior is essential for advancing diverse engineering fields, including entertain-
ment (Stam, 2023), urban planning (Blocken & Stathopoulos, 2013), fashion design (Volino et al.,
2005), and virtual reality (VR) (Solmaz & Van Gerven, 2022). Moreover, controllability, aiming to
instruct movements and shapes of fluids, is also a very important attribute for volumetric effects,
character animations, and fluid-solid coupling (Raveendran et al., 2012). Realizing compelling and
interactive physics simulations in real-time has been the long-standing objective for years in order to
deliver transformative user experiences.

Traditional simulation methods, though powerful, often demand significant implementation efforts
and computational costs (Bridson, 2015). Recent neural physics and machine learning approaches
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present a promising path forward by learning from data, delivering transformative changes for use
cases such as fluid interactions and animations (Sanchez-Gonzalez et al., 2020). However, fidelity
and latency in these neural-based methods are not well-balanced. Moreover, most methods only focus
on the accuracy of non-interactive applications, and their computational complexity still remains
generally high for real-time scenarios (Brandstetter et al., 2022).

Motivated by the above challenges, we ask two scientific questions:

Q1: Can neural physics accelerate real-time fluid simulations and interactions?
Q2: Can neural physics and generative methods be optimized for interactive fluid control?

We aim to explore a novel paradigm: neural physics for interactive simulations in real-time (Figure 1).
We provide affirmative answers. The core idea is to proactively marry the strengths of numerical
simulation (high fidelity), neural physics (low latency), and generative control (interactivity)
to deliver authentic and diverse fluid simulations. Specifically, neural physics is responsible for
significantly low-latency fluid simulation with tolerant errors, and numerical simulation will serve
as a fallback solution when fluid dynamics is increasingly complex. Furthermore, to make fluid
animation compatible with user-friendly control, we introduce another diffusion-based controller to
generate external force fields to assist manipulations. We summarize our contributions below:

1. We improve the error-latency trade-off of fluid simulation. First, to accelerate neural physics, we
seek to build our graph neural network at low spatiotemporal resolution without substantial degra-
dation in simulation accuracy (Section 3.1.1). Second, to preserve simulation fidelity and avoid
error accumulation during unrolling, we make our neural physics hybrid with a safeguard condition
and fallback mechanism to the classic MPM (Material Point Method) algorithm (Section 3.1.2).

2. We further aim to support users’ flexible freehand sketches that specify desired trajectories or
shapes of fluid particles to be controlled. To this end, our novel reverse simulation strategy enables
the automated generation of realistic fluid control data (Section 3.2.2), which is used to train our
diffusion-based generative controller (Section 3.2.3).

3. Across diverse scenarios (2D/3D, particle materials, presence of rigid obstacles, see Table 2),
our hybrid simulator can significantly accelerate simulations (11 ∼ 29% latency reduced) while
maintaining low errors (Section 4.2), and can control fluid particles to align with user sketches
(Section 4.3), paving the way for promising advances towards engaging interactive simulations in
real-time.

2 BACKGROUND

We first introduce the necessary components on which our method is built, and how they can be made
real-time and controllable in Section 3.

2.1 FLUID SIMULATIONS WITH MATERIAL POINT METHOD (MPM)

The Material Point Method (MPM) (Jiang et al., 2015; Hu et al., 2019; 2020; 2021) is a hybrid
Eulerian-Lagrangian numerical technique for simulating complex interactions between solid and fluid
materials, especially under large deformations and topological changes (snow, landslides, cloth, etc.).
It extends the FLuids-Implicit-Particle (FLIP) (Brackbill & Ruppel, 1986) from Computational Fluid
Dynamics (CFD) to solid mechanics by representing materials as a set of Lagrangian particles that
carry mass, velocity (ṗi,t), position (pi,t), and possible internal states. These particle quantities are
first transferred to a background Eulerian grid using a particle-to-grid mapping (p2g). The equations
of motion are then solved on this grid, after which updated values are mapped back to particles
through grid-to-particle transfer (g2p). The particle positions (p) are then advanced using the updated
velocities (ṗ), e.g., pi,t+1 = pi,t +∆t · ṗi,t+1.

2.2 GNN-BASED NEURAL PHYSICS FOR PARTICLE SIMULATIONS

We denote the state of particle i at time step t as xi,t (position p, velocity ṗ, acceleration p̈, etc.),
and the state of N particles as Xt = [x1,t, . . . ,xN,t]. A simulator s maps Tin input states to causally
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consequent future states, and can iteratively compute XtTin+1
= s(Xt1 , Xt2 , · · · , XtTin

) to simulate
a rollout trajectory. Following (Sanchez-Gonzalez et al., 2020), our learnable simulator sθ adopts a
particle-based representation of the physical system, which can be viewed as message-passing via a
graph neural network (GNN).

Input. Our neural physics simulator sθ takes the input of particle i as: a sequence of 5 previous
velocities (via finite differences from Tin = 6 previous locations), and features for materials (e.g.,
water, sand, rigid, boundary), i.e., xi,tk−Tin :tk

= [ṗi,tk−Tin+2
, . . . , ṗi,tk ,fi] at time step tk (Figure 2).

...
[𝒑̇!,#!"#$%&' , … , 𝒑̇!,#! , 𝒇!]
Input feature for 
particle 𝑖:

𝒓!$ = [ 𝒑! − 𝒑$ , ||𝒑! − 𝒑$||]
𝐺(") 𝐺($)

𝒑̈-!,#!%&

Input feature for 
edge b/w node 𝑖 𝑗:

Output: 
predicted 
acceleration for 
particle 𝑖

L hidden G
N

N
 layers

Figure 2: GNN as our neural physics simulator.

GNN Design. We first build the initial
graph G(0) by assigning a node to each
particle and connecting particles as edges
within a fixed “connectivity radius” R. The
edge embeddings are learned from relative
positional displacement and the magnitude
ri,j = [(pi − pj), ∥pi − pj∥]. Our neural
physics consists of a stack of L = 10 GNN
layers. The decoder predicts the per-particle
acceleration, p̈i. The training loss is the particle-

level RMSEp̈ ≡ 1
N

∑N
i=1

∥ˆ̈pi−p̈i∥
2

∥p̈i∥2
, where ˆ̈pi

is the predicted acceleration from sθ. The future position and velocity are updated using an Euler
integrator. See Appendix B for further details.

3 METHODS

We aim at real-time fluid simulations (Section 3.1) with interactive control (Section 3.2). Our method
is overviewed in Figure 3.

MPM
High Fidelity

Neural Physics
Low Latency

(Sec. 3.1.1)

Trigger on
Fluid Complexity

User Sketch Force Field
Hybrid Simulation

(Sec. 3.1.2)

Generative
Control

Interactivity
(Sec. 3.2)

Figure 3: Method Overview. To achieve real-time simulations, we cut latency by learning neural physics at a
coarse spatiotemporal resolution, while safeguarding fidelity by automatically falling back to an MPM solver
when complex fluid phenomena arise (Section 3.1). For interactive control, we train a diffusion-based generative
model that infers external force fields directly from user sketches (Section 3.2).

3.1 HYBRID REAL-TIME FLUID SIMULATION

Traditional numerical methods such as MPM provide high-fidelity simulations, but their computa-
tional cost is prohibitively high. In contrast, neural physics models can achieve significantly faster
simulations by operating at low spatiotemporal resolution; however, this efficiency often comes at the
cost of increased simulation errors.

This trade-off highlights our central motivation for building hybrid simulations. By primarily
leveraging neural physics for efficient updates (Section 3.1.1) while incorporating a mechanism that
falls back to MPM in challenging scenarios for simulation fidelity (Section 3.1.2), we can empirically
ensure both efficiency and simulation quality. In this way, our simulator is designed as a hybrid
system that effectively fuses the strengths of both approaches:

Xt+1 =

{
Neural Physics Update if update is “good”

Fallback to MPM Update otherwise. (1)

3
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3.1.1 LEARNING REAL-TIME NEURAL PHYSICS AT LOW SPATIOTEMPORAL RESOLUTION

Original MPM

Our Neural Physics

Δ𝑡 = 𝑑𝑡

Δ𝑡 = 𝑟! ∗ 𝑑𝑡,			𝑟!> 1

𝑁!

𝑁" = 𝑟# ∗ 𝑁!, 𝑟# ∈ (0, 1)

Figure 4: Our neural physics acceler-
ates simulations by learning and in-
ferring at low spatial (Nl num. par-
ticles) and temporal (∆t time steps)
resolutions, with downsampling ra-
tios as rp, rt.

We first aim to accelerate efficient updates by neural physics, and
we choose to train our model at low spatiotemporal resolution.
As shown in Figure 4, we consider learning the neural physics on
simulations with both a downsampled number of particles (ratio
rp ∈ (0, 1)) and also with a larger time step (i.e. coarser temporal
discretization rate rt ∈ N, rt > 1).

However, a key pitfall is that once the number of particles is
downsampled (Nh particles are merged via clustering into Nl,
see Appendix C), we will lose the particle-wise correspondence,
i.e., ˆ̈pi (i ∈ [1, Nl]) and p̈j (j ∈ [1, Nh]) cannot align in the
particle-level RMSEp̈ (Section 2.2). As a result, RMSEp̈ can
no longer quantify the simulation’s fidelity to the ground truth
of the original spatial resolution. Inspired by Huang et al. (2021)1, to mitigate this issue, we use a

normalized grid-level RMSEm̃ ≡ 1
N

∑N
i=1

∥ ˆ̃mi−m̃i∥
2

∥m̃i∥2
as the evaluation metric, which essentially

quantifies the mass distribution. m̃ is the normalized grid mass (m̃i =
mi∑N
i=1 mi

) converted from

particles to the grid via p2g, and ˆ̃m is the prediction by sθ. m̃i and ˆ̃m share the same grid size but
can represent mass distributions from different resolutions (number of particles). A more detailed
discussion regarding RMSEm̃ can be found in Appendix D. During training, we continue to optimize
the surrogate loss RMSEp̈ at the low spatial resolution, thereby avoiding additional p2g operations.

In Figure 6 (a-c), we can see that by tuning spatiotemporal downsampling ratios rp, rt, we can
improve the trade-off between simulation errors and latency. Based on this ablation study, we will
choose rp = 1/1.75 and rt = 2. With this configuration, on Water 2D, we can reduce the latency of
the original neural physics (rp = rt = 1) by over 78.8% (from 1.954ms to 0.4048ms).

3.1.2 HYBRID SIMULATOR WITH SAFEGUARD

We now discuss how to actively interact our neural physics with MPM and fuse the strengths of both
approaches.

G
ri

d
 R

M
SE

Acceleration cosine similarity

1.0

0.8

0.6

0.4

0.2

0.0

0.2 0.4 0.6 0.8 1.0

Figure 5: Negative correlation between
“cosine similarity of particle accelera-
tions over frames” vs. “simulation er-
rors of neural physics”. Scenario: Wa-
ter 2D. Spearman correlation: -0.3902.

Fluid Complexity Measures. Intuitively, when the particle
system evolves smoothly, the neural model generalizes well. In
contrast, highly chaotic or abrupt behaviors, such as splashes,
collisions, or multiphase interactions, often correspond to out-
of-distribution (OOD) regimes, where learned models are more
prone to error, suggesting that we should fall back to MPM.

We thus trigger the fallback condition based on the complexity
of the current fluid dynamics being simulated by neural physics.
Our choice of fallback trigger is motivated by two key consid-
erations. First, this trigger should faithfully indicate the fluid
complexity. Second, the safeguard should be computationally
efficient, since we need to densely monitor them during the
simulation of neural physics.

Specifically, we consider the cosine similarity of per-particle acceleration over a window of history
(window size as δt = 10 steps by default): 1

N

∑N
i cos(p̈i,t−2δt:t−δt, p̈i,t−δt:t). In contrast, we also

tried to monitor the divergence of particles’ velocity, which is also used to quantify the quality of
incompressible fluid simulations in previous works (Gao et al., 2025). However, its computation is
significantly more expensive due to the use of finite difference methods, resulting in increased latency.
We show the negative correlation between this cosine similarity and the neural physics simulation
error in Figure 5, which indicates that whenever particles’ accelerations start diverging, we should
fall back to MPM.

1See Section 3.1 (page 4), paragraph “Goal and Reward” in Huang et al. (2021).
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(a) Temporal Reduction (𝑟𝑡) (b) Spatial Reduction(𝑟𝑝) (c) Spatiotemporal Reduction (d) Hybrid Simulation(𝑟𝑐)

𝑟𝑡 = 3

𝑟𝑡 = 10

MPM MPM MPM MPM

MPM
𝑟𝑝 = 1/1.75

𝑟𝑡 = 5

𝑟𝑡 = 2 𝑟𝑡 = 1

𝑟𝑝 = 1/8

𝑟𝑝 = 1/4

𝑟𝑝 = 1/2

𝑟𝑝 = 1/1.75

𝑟𝑝 = 1/1.5

𝑟𝑝 = 1/1.25

𝑟𝑝 = 1

𝑟𝑡 = 2
𝑟𝑝 = 1/1.75 𝑟𝑝 = 1/1.75

𝑟𝑡 = 2 𝑟𝑡 = 1
𝑟𝑝 = 1

𝑟𝑐 = 0.9

𝑟𝑐 = 0.8
𝑟𝑐 = 0.7

𝑟𝑐 = 0.6
𝑟𝑐 = 0.5

𝑟𝑐 = 
(0,0.4)

Time per step (ms) Time per step (ms) Time per step (ms) Time per step (ms)

Figure 6: Ablation studies of the trade-off between grid-level RMSEm̃ vs. simulation latency. Left to right:
temporal reduction rt (train neural physics with reduced particles Nl), spatial reduction rp (train neural physics
with larger time step ∆t), spatiotemporal reduction (combine rt = 2 and rp = 1/1.75), and hybrid with MPM
(at rp = 1/1.75) with different thresholds rc. Scenario: Water 2D.

Triggering MPM by Fluid Complexity. With our fluid complexity metric, we choose to trigger the
MPM fallback mechanism by a threshold rc:

Xt+1 =

{
Neural Physics Update if 1

N

∑N
i cos (p̈i,t−2δt:t−δt, p̈i,t−δt:t) > rc

Fallback to MPM Update otherwise.
(2)

In Table 1, we see that when increasing our threshold rc (i.e. MPM will be more frequently triggered),
the simulation fidelity will be corrected by MPM (RMSEm̃ is improved), and the latency will
increase due to heavy computations of MPM. Thus, we need to choose a threshold rc such that we
can improve our trade-off between RMSEm̃ and latency. In Figure 6 (d), we tune this threshold, and
choose rc = 0.8 to balance the improvements over RMSEm̃ and latency.
Table 1: Grid RMSEm̃ vs. time per step with hybrid simulations triggered by different thresholds (Water 2D).

Threshold rc 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Grid RMSEm̃ 0.0232 0.0230 0.0227 0.0223 0.0221 0.0215 0.0208 0.0192 0.0169 0.0144
Time per step (ms) 0.4048 0.4081 0.4147 0.4301 0.4516 0.4977 0.5509 0.6137 0.6966 0.7356

Figure 7: Error trajectories during simulation (Water 2D).
Simulating the same number of steps (T = 1000), our hy-
brid solver takes significantly less time (676.4ms) than the
original neural physics (1931.1ms), and the final error is also
reduced (grid RMSEm̃) (0.0109 vs. 0.0188).

We finalize our hybrid solver using this
threshold. In Figure 7, we demonstrate tra-
jectories simulated by the original neural
physics and our hybrid solver (from the same
initial condition, of the same number of steps
T ). Although the original neural physics
(rp = rt = 1) shows lower rollout errors
in the early stage (black curve, due to sim-
ulation at high resolution), it quickly accu-
mulates long-term errors. In contrast, after
triggering the fallback to MPM (yellow ar-
eas), our error is suppressed and we finish
the simulation much faster. Thus, our hybrid
solver improves both rollout RMSEm̃ and
latency.

3.2 INTERACTIVE FLUID CONTROL BY GENERATING DYNAMIC FORCE FIELDS

3.2.1 MOTIVATIONS

Fluid control is essential in computer graphics, where liquid animations convey expressive, story-
driven scenes and key visual ideas like splash shapes or motion (Yan et al., 2020). Manual fluid
control produces unnatural effects and forces artists to rely on slow, trial-and-error methods (Pan
et al., 2013). This underscores the need for intuitive tools that let users shape visuals directly, without
complex physics. Yet, achieving the desired appearance of fluid control remains difficult. Fluid
dynamics are intrinsically chaotic and unpredictable. Setup and tuning of fluid control is tedious and
repetitive. Moreover, recording real fluid motion is also expensive and hard to customize.

In our paper, we mainly consider the following use case: during a fluid simulation, a user would like
to draw a simple sketch and provide it as a control signal, following which the fluid particles should
move (Figure 8 bottom panel). However, how to artistically manipulate fluid particles to follow the
user’s sketch should be automatically designed by our system.
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Why Generative Fluid Control via Diffusion Models? Diffusion-based generative models are a
natural choice for fluid control because they combine strong conditional generation with temporal
coherence and spatial flexibility. Recent works show that diffusion can precisely steer motions when
conditioned on trajectories or region cues in video (Wang et al., 2024b; Zhang et al., 2024; Yang
et al., 2024) and predict spatiotemporal physics dynamics with high fidelity (Hu et al., 2024; Zhou
et al., 2024; Dong et al., 2025; Kohl et al., 2023). This suggests that diffusion models can map
sketch-like intent to physically meaningful velocity or force fields over time. In fact, recent works
have already learn to synthesize fluid velocities with deep generators (Chu et al., 2021; Yan et al.,
2020). In contrast, traditional control pipelines in computer graphics often require bespoke assets or
costly optimization, e.g., precomputed templates or offline heuristics (Schoentgen et al., 2020; Pan
et al., 2013), which limits interactivity and generalization.

3.2.2 DATA GENERATION VIA REVERSED SIMULATION

Reversed Simulation

Control Data

Solve
Force Field

Draw
User Sketch

Forward Simulation

Figure 8: We prepare training data for gener-
ative control via solving external force fields
that can reverse a forward simulation. We
also prepare user sketches (arrow, ellipse)
that depict movements or target shapes of
particles (implementations in Appendix C).

The key to training a generative model for our fluid con-
trol is to automatically collect training data in principle.
Specifically, we have two highly nontrivial sub-tasks:
1) Design a large number of diverse scenarios of fluid
particles with artistic control effects (i.e. fluid particles
move along a desired direction or fill a pre-defined shape,
in an organized instead of a chaotic manner); 2) Solve
a spatiotemporal external force field that will be applied
to the particles, such that the artistic control effect can
be fulfilled driven by the composition of gravity, particle
interactions, and the proposed force field.

We address these challenges with a reverse simulation
strategy. The core idea is to solve the required force fields
that can reverse the fluid dynamics of artistic effects. We
have the following steps:

1) Forward Simulation. We randomly simulate a trajec-
tory of fluid dynamics X = (X1, X2, · · · , XTctr), with
different initial conditions (positions or velocities of par-
ticles).

2) Reversed Simulation. We iteratively solve the required acceleration2 at that can restore positions
of each fluid particle reversely, from XTctr to X1:

(at + g)∆t =
pt−1 − pt

∆t
− ṗt

at =
(pt−1 − pt)− ṗt ·∆t

(∆t)2
− g.

(3)

Equation 3 stems from the discretized second-order difference equation of motion, and provides a
physically interpretable approximation of the acceleration needed to move from pt to pt−1, subtract-
ing out the known gravitational acceleration g. Our target force field can be non-linear (see Fig. 13 in
our Appendix for a simulation example). Moreover, in Fig. 15, the cases where fluid shapes change
during control indicate that our diffusion model is trained to predict these non-linear force fields.

3) Generation of Control Sketches. Finally, based on X , we generate the user’s sketch that depicts
the general movements of particles. We support both directional arrows for movement guidance and
one-stroke freehand oval shapes to indicate target regions, as shown in Figure 8. See our Appendix C
for details of implementing freehand arrows and oval shapes. Note that in 3D scenarios, we use the
arrow width to indicate depth (Pan et al., 2013).

For simplicity, we will by default control the fluid particles for 100 MPM steps (Tctr = 100). That
means all our control trajectories will have 100 steps. While it is possible to employ dynamic neural
architectures (Yu et al., 2018) to adaptively adjust the number of MPM steps for this control based on
the control complexity, we leave it as a future work.

2Equivalently, the force field if all particles have the same constant mass

6
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3.2.3 DIFFUSION-BASED FLUID CONTROLNET
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Fluid ControlNet
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Apply
MPM

User's Sketch

Figure 9: Architecture design of our Fluid ControlNet.

Conditioned on previous particle trajecto-
ries and a user’s sketch, our diffusion-based
Fluid ControlNet will predict a dynamic
force field (a in Equation 3). We control
fluid particles by applying this predicted
force field atop MPM, since MPM can ex-
plicitly take external forces and update the
velocity advection.

Our design follows standard practice in con-
trollable generation (Zhang et al., 2023;
Wang et al., 2024b). We accept user sketches
and extract features for spatially grounded
conditioning, enabling free-form arrows, re-
gions, and shapes.

We show our architecture design in Figure 9.
Specifically:

➀ Our diffusion-based Fluid ControlNet shares the same backbone and input particle features as our
neural physics (Section 2.2).

➁ Parallel to the backbone, we extract the embeddings of the user’s sketch input using a convolutional
neural network (CNN) and concatenate them with the diffusion timestep embeddings to guide the
generation process. We also embed the current control time step into a latent space and integrate it
into the initial noise.

➂ The training target will be the ground truth force fields we simulate in Section 3.2.2.

➃ During training, noise is added to the ground-truth force (or acceleration) field, which is then used
as input. The diffusion model’s inputs are: (1) the previous 6 positions and velocities, (2) the noisy
force field (Gaussian noise during inference), and (3) the embedding of the control timestep.

➄ The output of our Fluid ControlNet is an external force field that will be applied to particles during
MPM simulations.

➅ Along the MPM simulation, our Fluid ControlNet will unroll the subsequent temporal force fields.

See Appendix C for details of the architecture of our Fluid ControlNet.

4 EXPERIMENTS

4.1 SETTINGS

Table 2: Datasets. Nh: Max num-
ber of particles at the original spatial
resolution. T : total time steps. M :
number of simulation trajectories.

Domain Nh T M

Water (2D) 4k 1k 1k
WaterRamps (2D) 3.3k 600 1k
Sand (2D) 4k 320 1k
SandRamps (2D) 3.3k 400 1k
Water (3D) 4k 800 1k
Sand (3D) 4k 350 1k
Water-Sand (2D) 4k 500 1k

Physical Domains and Simulations. To build our hybrid sim-
ulator, we prepare our own ground truth simulations with the
Taichi package (Hu et al., 2019; 2020; 2021) on GPUs, with
settings closely aligned with (Sanchez-Gonzalez et al., 2020).
Different simulation scenarios are summarized in Table 2. We
include diverse initial conditions (position, velocity) and numbers
of particles. We fix our grid size as 128 × 128 for 2D and 64 × 64 × 64 for 3D, and use time step
dt = 2.5ms in simulations.

For different simulation scenarios, we train separate neural physics models and Fluid ControlNet.
This design choice follows prior work (Sanchez-Gonzalez et al., 2020) where a dedicated model is
also trained per scene to better capture scene-specific dynamics.

Evaluation. To report quantitative results, we evaluated our models by computing rollout metrics
on held-out test trajectories, drawn from the same distribution of initial conditions used for training.
As discussed in Section 3.1.1, we use grid-level RMSEm̃ to compare predictions at lower spatial
resolution with the original ground truth.
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Figure 10: Trade-off between simulation error (grid RMSEm̃) and latency, comparing different methods. (a)
Sand (2D); (b) SandRamps (2D); (c) WaterRamps (2D); (d) Water (3D); (e) Sand (3D); (f) Water-Sand (2D).
Overall, our hybrid solver achieves a balanced trade-off between RMSE and simulation latency, outperforming
both neural physics and MPM.

4.2 FLUID SIMULATION ACCELERATION

Our hybrid simulator can consistently achieve real-time fluid simulations with preserved simulation
fidelity across both 2D and 3D cases. We show the trade-off between simulation error and latency
in Figure 10, where we compare our hybrid solver with the original neural physics (rp = rt =
1) (Sanchez-Gonzalez et al., 2020), MPM (Hu et al., 2019; 2020; 2021), and another MPM that also
simulates at low spatial resolution (rp = 1/1.75). On 2D scenarios, our hybrid solver consistently
balances the neural physics and MPM, achieving both reduced simulation latency and preserved
simulation errors. For example, on multiple materials (Water-Sand 2D), our hybrid solver can
accelerate MPM from 0.114s per frame to 0.08s, with a 29.8% reduction. On 3D, the neural physics
at rp = rt = 1 is extremely slow, whereas our hybrid solver improves both latency and errors. For
example, on Sand 3D, we reduce the latency of MPM by 11.8%, from 1.02ms to 0.90ms. Additionally,
we compare with other previous methods in Appendix E.

Control Initial OursBaseline Ground Truth

Figure 11: Visualization of generative fluid control. Rows from top to bottom: Water (2D), Sand (2D), Water
(3D), Sand (3D).
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4.3 GENERATIVE FLUID CONTROL

We show visualizations of our generative fluid control in Figure 11. We compare with a baseline,
where particles are controlled with a spatiotemporal constant force field, with the force magnitude
and orientation solved by moving particles from XTctr to X1.

Table 3: Grid RMSEm̃ between ground truth and predictions at the last time during fluid control.
Method Water (2D) Sand (2D) Water (3D) Sand (3D)

Baseline 0.0908 0.1151 0.0019 0.0022
Ours 0.0802 0.0924 0.0013 0.0019

We also quantitatively evaluate the control in Table 3, where we calculate the grid-level RMSEm̃

between the ground truth and the prediction at the last time step, since our main concern is the
recovery of the shape of the ground truth at the end of the simulation. In sum, we can see that our
diffusion-based Fluid ControlNet can move particles to better align with the user sketches.

4.4 COMPLETE RESULTS: HYBRID SIMULATION + FLUID CONTROL

Finally, we present the result from our complete pipeline in Figure 12. Particles are first simulated
by our hybrid solver, where we start with the neural physics (at low spatiotemporal resolution) and
is triggered to MPM once the fluid complex is high. Then, a user draws a sketch to control, and
our diffusion-based Fluid ControlNet takes both this sketch and recent particle states as inputs, and
generates external force fields to control particles.

MPMNeural Physics Trigger on
Fluid Complexity

Generative Control
User Sketch

𝑡 = 1 𝑡 = 150 𝑡 = 250

Figure 12: Complete results: hybrid simulation + fluid control. We start the simulation with our neural physics,
which is then triggered to MPM. At t = 150, a user presents the control sketch.

5 RELATED WORKS

Our work builds upon recent advances in three key areas: fluid modeling and animation, fluid
control, and controllable video generation. Research in fluid simulation has progressed from
graph-based models like GNS to scalable, physics-informed hybrid solvers such as Neural SPH and
MPMNet, which balance accuracy and performance (Sanchez-Gonzalez et al., 2020; Li et al., 2023;
Toshev et al., 2024). Concurrently, fluid control has shifted from costly optimization towards artist-
friendly, generative methods that use sketches or templates to direct fluid behavior (Yan et al., 2020;
Chu et al., 2021; Schoentgen et al., 2020). We are also inspired by recent progress in controllable
video generation, where diffusion models now allow for fine-grained, disentangled control over object
and camera motion (Yin et al., 2023; Wang et al., 2024b; Zhang et al., 2024). A detailed discussion of
these related works is provided in Appendix A. In our work, we introduce a hybrid neural-numerical
framework that generates accelerated, high-fidelity, controllable fluid simulations from freehand
sketches by leveraging the neural-numerical simulator and diffusion-based generative controller.

6 CONCLUSION

In this work, we introduced a novel hybrid neural physics framework that effectively bridges the
gap between high-fidelity physical simulation and real-time interactive control. By combining
learned graph-based neural simulators with a fallback to classical MPM solvers, we achieved robust,
low-latency fluid dynamics capable of handling complex scenarios without sacrificing accuracy.
Additionally, we developed a diffusion-based generative controller trained via reverse modeling,
enabling intuitive user interaction through freehand sketches for dynamic fluid control. Extensive
experiments across 2D and 3D domains demonstrate that our approach not only accelerates fluid
simulations but also provides controllable and physically plausible outcomes. This hybrid paradigm
represents a step forward in making real-time, artist-friendly fluid simulation practical for applications
in graphics, design, and virtual environments.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs did not play a significant role in either the research ideation or the writing of this paper. Their
use was limited to correcting minor grammatical issues and typographical errors.
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A DETAILS OF RELATED WORKS

Fluid Modeling and Animation Learning-based fluid simulators have progressed from graph-
based models to hybrid, physics-informed approaches. DPI-Net (Li et al., 2018) introduced dynamic
interaction graphs with hierarchical message passing to model interactions across particles. This was
unified in GNS (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020; Kumar & Vantassel, 2022; Kumar
& Choi, 2023), enabling generalized simulation of fluids, solids, and deformables. Hybrid solvers
like MPMNet (Li et al., 2023) and NeuralMPM (Rochman-Sharabi et al., 2024) adopt the Material
Point Method for scalability. Neural SPH (Toshev et al., 2024) integrates SPH priors to stabilize
rollouts, while NeuroFluid (Guan et al., 2022) combines learned dynamics and rendering from videos.
These advances balance physical accuracy with real-time performance. In our work, we propose a
hybrid approach that combines neural and numerical methods to enable accelerated and high-fidelity
fluid simulation.

Fluid Control Recent work in fluid control aims to make simulation more intuitive and accessible.
Traditional methods using space-time optimization were costly and hard to tune. Yan et al.(Yan et al.,
2020) addressed this with a sketch-based system using conditional GANs to generate liquid splashes.
Pan et al.(Pan et al., 2013) enabled interactive control through sketching and mesh dragging. Chu et
al.(Chu et al., 2021) used GANs to infer fluid motion from static fields with semantically controllable
features. Schoentgen et al.(Schoentgen et al., 2020) introduced reusable templates for particle-based
animations. These approaches shift toward flexible, artist-friendly tools. We tackle the case where
only a freehand sketch is given, and the generative controller is tasked with producing the intended
artistic fluid behavior.

Controllable Video Generation Controllable video generation has advanced rapidly with diffusion
models, especially in disentangling motion control. DragNUWA (Yin et al., 2023) enabled trajectory-
based editing, while MotionCtrl (Wang et al., 2024b) and Direct-a-Video (Yang et al., 2024) decoupled
camera and object motion. CameraCtrl (He et al., 2024) and CamCo (Xu et al., 2024) refined camera
control using geometric cues. MotionDirector (Zhao et al., 2024) and Boximator (Wang et al., 2024a)
allowed user-customized motion, and SparseCtrl (Guo et al., 2024) enabled sparse, entity-level
conditioning. Tora (Zhang et al., 2024) unified text, image, and trajectory inputs for physics-aware
generation. Inspired by these approaches, we leverage forward simulations and compute control
forces via reversed simulation.

B DETAILS OF NEURAL PHYSICS SIMULATOR

B.1 PARTICLE SIMULATIONS AS MESSAGE-PASSING ON A GRAPH

We denote the state of a particle i at time step t as xi,t ∈ RD, and the collective state of N particles
as Xt = [x1,t, . . . ,xN,t] ∈ RN×D. Applying physical dynamics over multiple timesteps yields a
trajectory of particle states, Xt1:tTin

= [Xt1 , Xt2 , · · · , XtTin
] ∈ RTin×N×D. In essence, the simulator

s : RTin×N×D → RN×d (d = 2 or 3 for 2D/3D) leverages the current Tin particle states as input to
predict their future motion, capturing the underlying dynamics using methods ranging from simple
Euler integration to advanced numerical or data-driven techniques. If a simulator is learnable, it
can be represented as sθ, a parameterized function approximator. The simulator then iteratively
computes future states, such as X̃tTin+1

= s(X̃t1 , X̃t2 , · · · , X̃tTin
), where each newly predicted state

is appended to simulate a rollout trajectory over time.

Our learnable simulator sθ represents the physical system as interacting particles, where dynamics
emerge from exchanges of energy and momentum with neighbors. To ensure robust simulation
quality, sθ must generalize across diverse interaction patterns and physical scenarios. This particle-
based approach naturally maps to message passing on a graph, with particles as nodes and pairwise
interactions as edges, making graph neural networks (GNNs) a suitable modeling choice.
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B.2 DETAILS OF GRAPH-BASED NEURAL PHYSICS

Following (Sanchez-Gonzalez et al., 2020), we implement our neural physics with GNN, and use
standard nearest neighbor algorithms (Dong et al., 2011; Chen et al., 2009; Tang et al., 2016) to
construct the graph.

Input. In our learnable simulator sθ, the input state vector for each particle i at time step tk includes
a sequence of 5 previous velocities (via finite differences from Tin = 6 previous locations), and static
features representing material properties (e.g., water, sand, rigid, boundary particle). In practice, only
the position vectors pi are stored in our datasets; the velocities ṗi and accelerations p̈i are computed
on the fly using finite differences when needed. Formally, the node feature is defined as

xi,tk−Tin :tk
= [ṗi,tk−Tin+2

, . . . , ṗi,tk ,fi] ∈ RD,

where fi denotes the concatenated material-specific features and scene boundary indicators. Specif-
ically, the dimension of the encoded node feature vector is D = 30 for 2D simulations (5 2-dim
velocities by finite differences, i.e., 5× 2 = 10; 4 distances from the boundary; 16-dim embedding
for the particle type), or D = 37 for 3D simulations (5 3-dim velocities by finite differences, i.e.
5× 3 = 15; 6 distances from the boundary; 16-dim embedding for the particle type). See Figure 2
for an illustration. It is important to note that in our Fluid Controlnet (Section 3.2.3), the input feature
dimension D will increase by 16, where we embed the current control timestep into the latent space
with another 2-layer MLP with SiLU activation.

To obtain more informative edge features ri,j , we use the relative positional displacement between a
pair of adjacent particles i and j, along with its magnitude:

ri,j = [(pi − pj), ∥pi − pj∥].
Edges are added between particles that lie within a predefined connectivity radius R = 0.015,
which captures local particle interactions. R is kept constant for all 2D scenarios. In different 3D
scenarios, a larger radius can be used to accommodate higher-resolution environments. Although R
is fixed in simulations, edges in the graph are still dynamically updated by comparing the current
particle-wise distances to R. For full details of these input and target features, we refer readers
to (Sanchez-Gonzalez et al., 2020).

The ENCODER : RN×D → G embeds particle-based states, it can be formulated as:
G(0) = (V (0),E(0)) = ENCODER(X, ri,j) The node embeddings V (0) = ENCODERV (X)

are learned functions of the particles’ states. The edge embeddings, E(0)
i,j = ENCODERE(ri,j),

are learned functions of the pairwise properties of the corresponding particles. We implement
ENCODERV and ENCODERE as multilayer perceptrons (MLP), which encode node features and
edge features into the latent vectors, Vi and Ei,j , of size 128.

The PROCESSOR : G → G computes interactions among nodes through L steps of learned message
passing and outputs the final graph, G(L) = PROCESSOR(G(0)). Message passing enables infor-
mation propagation among particles. Our PROCESSOR consists of a stack of L = 10 GNN layers,
each using separate (non-shared) MLPs for updating node and edge features, along with residual
connections between the input and output latent attributes of both nodes and edges. For the Fluid
ControlNet setting, an additional MLP layer is used to encode the diffusion timestep and control
image features; see Appendix C.2 for details.

The DECODER : G → RN×d extracts dynamics information (of the future state) from the nodes of
the final latent graph, X̂ = DECODER(V (L)). Our DECODER is an MLP that outputs accelerations
p̈i. The future position and velocity are updated using an Euler integrator.

All MLPs in PROCESSORhave two hidden layers with ReLU, followed by an output layer without
activation, with a width of 128. All MLPs are followed by a LayerNorm (Ba et al., 2016).

C IMPLEMENTATIONS

C.1 LATENCY MEASUREMENTS

Latency of Neural Physics. We utilize the TensorRT library to convert the PyTorch model
into an ONNX model to accelerate model inference and align it with the acceleration of MPM on
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the Taichi kernel. However, since TensorRT does not support the aggregation operation in
GNNs (i.e., aggregating information from edges to adjacent nodes), when measuring the latency, we
approximate the time cost of this aggregation operation with a matrix multiplication between
an adjacency matrix A ∈ RN×N (where N denotes the number of nodes, i.e. particles), and node
features (o), such that the aggregation becomes A · o. All reported latency measurements are based
on the median number of nodes across different scenarios in our test datasets.

Latency of Taichi. To enable a fair comparison under MPM simulation setting, we applied a
matching latency reduction strategy to the Taichi implementation by skipping non-essential
overhead. Specifically, we excluded the time spent on initializing the MPM state (initial positions
and velocities of particles) and the cost of initializing the Taichi kernel at the beginning of the
simulation. As a result, our comparison focuses solely on the runtime per simulation step after the
CUDA or Taichi kernel has been initialized.

C.2 DESIGN OF FLUID CONTROLNET

In our Fluid ControlNet, the control signal C ∈ RH×W×3 is encoded using our Fluid ControlNet.
The encoded embedding is then injected into the graph-based diffusion model to guide the generation
of the external field of accelerations. The Fluid ControlNet consists of 8 convolutional layers and 3
downsampling operations. It extracts multi-scale features from the control signal C, projects each
scale to a different dimensional space, and then concatenates the projected features into control
embedding representation of dimension size 44. The resulting embedding is then integrated into the
PROCESSOR module of the graph-based diffusion model. Notably, to better condition the diffusion
process on the control signal, we draw inspiration from DiT (Peebles & Xie, 2023) and concatenate
the embedding of the control signal to the diffusion time step embedding. This design choice
ensures that the control condition is effectively incorporated at each diffusion step, thereby generating
high-fidelity acceleration fields that can align fluid particles to the target motion or shape.

C.3 TRAINING

Following (Sanchez-Gonzalez et al., 2020), we normalize the input velocity to the GNNs, and
apply random noises to input positions (pt1:tTin

) during training. For both neural physics and Fluid
ControlNet, we train with the Adam optimizer and a learning rate at 1× 10−4 with exponential decay.
Our training batch size is 1, and we train for 2 million gradient descent steps.

Table 4: Training Costs (GPU hours) across different scenarios.

GPU Hours Water (2D) Sand (2D) Water (3D) Sand (3D)

Neural Physics (Section 3.1) 17.27h 17.94h 19.71h 19.67h
Fluid ControlNet (Section 3.2) 69.87h 76.36h 184.12h 151.03h

We include our training costs in Table 4. Neural physics requires approximately one day on a single
NVIDIA 4090 GPU. For the Fluid ControlNet, training takes around three days for 2D scenarios
on a single NVIDIA 4090 and six days for 3D scenarios on a single NVIDIA A40. We train both
neural physics and Fluid ControlNet with the particle-level RMSE loss on predicted accelerations

RMSEp̈ ≡ 1
N

∑N
i=1

∥ˆ̈pi−p̈i∥
2

∥p̈i∥2
, which was defined in Section 2.2.

C.4 GENERATING USERS’ FREEHAND SKETCHES (ARROWS AND OVAL SHAPES)

Arrows are computed by connecting the centroid (p̄ = 1
N

∑N
i=1 pi) of fluid particles at t = 1

(p̄1) and t = Tctr (p̄Tctr ). Based on the mean displacement vector ∆p̄ = p̄1 − p̄Tctr , we derive
the arrow length ∥∆p̄∥ and orientation θ = tan−1(∆p̄y/∆p̄x). In 3D, we use the arrow width to
indicate depth (Pan et al., 2013). A multi-segment arrow with varying line width is implemented
as n-segment polyline with width modulation, where each segment’s width wi (i ∈ [1, n]) is
wi = wmin + (wmax − wmin) · ∆p̄z,i−∆p̄z,min

∆p̄z,max−∆p̄z,min
. The arrowhead adopts perspective-correct scaling.
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For 2D oval sketches, shapes of particles at t = Tctr are represented as elliptical outlines centered
at p̄Tctr , with radii corresponding to ±2σ, where σ is the standard deviation of particle positions
along each principal axis. This statistically-grounded ellipse captures approximately 95% particles’
positions while being visually simple. Meanwhile, 2D oval-shaped control sketches can indeed be
ambiguous in 3D, since it is infeasible to depict 3D volumes with a simple one-stroke 2D sketch.

C.5 ENFORCING SMOOTHNESS ON TARGET ACCELERATIONS

We observe that ground truth accelerations solved by Equation 3 are typically complicated (see the
temporal-wise cosine similarity in Figure 13), which will be challenging to learn. We thus further
enforce a certain level of smoothness of the acceleration across temporal steps:

ät,smooth = ät − λ · exp
(
−β · ät · ät+1

∥ät∥ · ∥ät+1∥

)
· (ät − ät+1) (4)

Essentially, Equation 4 enforce decoupled smoothness over the magnitude and the orientation of
accelerations over temporal steps. We choose λ = 0.1 and β = 2 in our work.

0 20 40 60 80
Frame Index

0
20

40
60

80
Fr

am
e 

In
de

x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Co
sin

e 
Si

m
ila

rit
y

0 20 40 60 80
Frame Index

0
20

40
60

80
Fr

am
e 

In
de

x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Co
sin

e 
Si

m
ila

rit
y

Figure 13: Step-wise correlations of ground-truth accelerations for fluid control. Left: before enforcing
smoothness; Right: after enforcing smoothness.

D MORE EXPLANATION ON GRID-RMSE

D.1 EXPLANATION OF GRID-RMSE

Grid-RMSE (RMSEm) is a normalized error metric used to evaluate the difference between the
predicted mass grid and the ground-truth mass grid in simulations. It is defined as the normalized

grid-level RMSEm̃ ≡ 1
N

∑N
i=1

∥ ˆ̃mi−m̃i∥
2

∥m̃i∥2
, which essentially quantifies the mass distribution. m̃ is

the normalized grid mass (m̃i =
mi∑N
i=1 mi

).

D.2 THE EFFECTIVENESS OF GRID-RMSE

Why we choose grid-RMSE as the metric? The main reason we use a mass-based RMSE is
that in low-resolution settings, directly computing a standard particle-level RMSE is not feasible
due to significant differences in the number of particles. Moreover, performing upsampling or
downsampling will break the particle alignments: the predicted and ground-truth particles will no
longer be one-to-one mappings, leaving particle-RMSE infeasible.

Instead, evaluating the normalized mass distribution on the grid offers a more stable and meaningful
approximation of the overall fluid shape. Essentially, it quantifies the IoU (intersection-over-union)
of the predicted and target fluids.

To further validate the reliability of this metric, we have added an additional experiment based on
Figure 6(d), where we compute RMSE directly at the original resolution (rp = 1). As shown in
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Table 5: Comparison of RMSE and mass-based RMSE (RMSEm) under different rc values for the WATER2D
setup (rt = 2, rp = 1).

rc = 0 rc = 0.3 rc = 0.5 rc = 0.6 rc = 0.7 rc = 0.8 rc = 0.9

Particle RMSE 0.2780 0.2741 0.2619 0.2528 0.2437 0.2112 0.1844
RMSEm 0.0238 0.0231 0.0225 0.0223 0.0208 0.0175 0.0132

Table 5, results from particle RMSE and grid-level RMSEm are consistent, which supports the
validity and robustness of using mass RMSE in our setting.

We study whether we can address the particle misalignment issue by downsampling the reference
MPM simulator to rp = 1/1.75, ensuring both methods operate on identical sparse particle dis-
tributions. Under this setting, we compare two metrics: particle RMSE (our method vs. MPM at
rp = 1/1.75) and grid-level mass RMSE. As shown in Table 6, both metrics exhibit consistent trends
across various rc values, providing additional validation for the reliability of mass-based RMSE in
our experimental framework.

Table 6: Comparison of Particle RMSE and mass-based RMSE (RMSEm) under different rc values for the
WATER2D setup (rt = 2, rp = 1/1.75).

rc = 0 rc = 0.3 rc = 0.5 rc = 0.6 rc = 0.7 rc = 0.8 rc = 0.9

Particle RMSE 0.2755 0.2610 0.2550 0.2603 0.2375 0.2176 0.1619
RMSEm 0.0232 0.0223 0.0214 0.0207 0.0192 0.0169 0.0144

We also need to emphasize that “applying G2P to obtain particle acceleration
at high particle resolution” requires introducing new particles. Refer to line88:
for p in x: # grid to particle (G2P) in mpm128.py from the taichi-dev

GitHub repository. This means that if no new particles are introduced, the number of particles in x
will remain unchanged, causing misalignment between simulation particles at different resolutions.

To implement the approach of “applying G2P to obtain particle acceleration at high particle resolution,”
we explored two methods for introducing new particles:

1. randomly seeding new particles, and

2. using a learned point-cloud upsampler (from the pointcloud-upsampling GitHub repository).

Our experiments revealed that both methods yield excessively high particle RMSE values (Table 7). A
relative RMSE greater than 1 clearly indicates that upsampling during G2P severely disrupts particle
alignment and is not a viable solution.

Table 7: Particle RMSE comparison for different upsampling methods in WATER2D setup (rt = 2, rp =
1/1.75).

Upsampling Method Random Upsampling Point Cloud Upsampling
Particle RMSE 1.3153 1.2335

However, if we do not upsample and directly compare GNN with the ground-truth MPM with the
same number of particles (i.e. particles are always aligned), the particle RMSE is much smaller.
(0.2755 vs. 0.2780). This indicates that misaligned particles introduced by upsampling dominate
the metric and lead to misleading evaluations. In contrast, our grid-level mass RMSE is computed
directly on the simulation output, without any heuristic postprocessing or resampling, and remains
stable across all tested resolutions. For this reason, we consider it a more reliable proxy for assessing
cross-resolution fidelity.
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Table 8: Comparison of recent neural physics methods.

Dataset Simulation Type Method Input Control
Physics
Correc-
tion

GNS (Li et al., 2018; Ku-
mar & Vantassel, 2022;
Li et al., 2023)

Neural Simulator GNN Particle states ✗ ✗

MPMNet (Sharabi et al.,
2024) Hybrid Simulator MPM + ConvLSTM Pressure fields ✗ ✓

NerualMPM (Han et al.,
2022) Neural Simulator Voxelized CNN Voxelized grid ✗ ✗

SGNN (Ma et al., 2023) Neural Simulator Subequivariant
GNN Particle states ✗ ✗

NCLaw (Viswanath et al.,
2024) Hybrid Simulator Neural Constitutive

Model + PDE
Deformation
gradient ✗ ✓

GIOROM (Viswanath
et al., 2024) Neural Simulator GNN + Neural

Fields Velocity fields ✗ ✗

Ours Hybrid Simulator GNN + MPM + Dif-
fusion

Particle states +
User action ✓ ✓

E MORE RESULTS

E.1 COMPARISON WITH PREVIOUS NEURAL PHYSICS METHODS.

We have listed and compared numerous related works in Table 8, highlighting key differences between
their approaches and ours, such as the use of misaligned input modalities. Among them, GIOROM
(Viswanath et al., 2024) and NeuralMPM (Sharabi et al., 2024) are the most closely related to our
work, as they also perform validations based on GNS (Sanchez-Gonzalez et al., 2020). In Tables9
and 10, we further report their performance on the WATER2D and SAND2D datasets, respectively.

Table 9: Comparison of grid RMSEm̃ and training GPU hours with recent neural physics methods (Water2D).

Water2D GNS GIOROM NeuralMPM Our Hybrid Solver

RMSEm̃ 0.0263 0.0804 0.0829 0.0186
GPU Hours 17.27h 28.37h 17.72h 17.27h

Table 10: Comparison of grid RMSEm̃ and training GPU hours with recent neural physics methods (Sand2D).

Sand2D GNS GIOROM NeuralMPM Our Hybrid Solver

RMSEm̃ 0.0125 0.2175 0.0785 0.0116
GPU Hours 17.94h 20.43h 15.62h 17.94h

On the WATER2D dataset, our hybrid solver achieves an RMSE of 0.0186, which is the lowest among
all compared methods. This result significantly outperforms GIOROM (0.0804) and NeuralMPM
(0.0829), and also shows a marked improvement over the GNS baseline (0.0263). Similarly, on
the SAND2D dataset, our method continues to demonstrate its superiority, achieving the lowest
RMSE of 0.0116. Moreover, the training cost of our solver, measured in GPU hours, remains on
par with the GNS baseline for both datasets. This indicates that our hybrid approach achieves a
substantial increase in simulation accuracy without incurring additional training overhead. It is
important to highlight that this quantitative comparison is limited to passive simulation scenarios. A
direct comparison of interactive, controllable simulations was not possible, as other methods like
GIOROM and NeuralMPM do not natively support user actions, a key feature of our framework.
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E.2 GRID RMSEm̃ OF FLUID SIMULATIONS OVER RANDOM SEEDS

To ensure a fairer comparison, we conducted experiments using three different random seeds. The
results, as shown in Table 11, demonstrate that our hybrid solver consistently outperforms the original
neural physics across all datasets.

Table 11: Grid RMSEm̃ of fluid simulations on different scenarios, over three random runs.

RMSEm̃ Water (2D) Sand (2D) SandRamps (2D) WaterRamps (2D) Water (3D) Sand (3D) Water-Sand (2D)

Neural Physics 0.0263 (1.15e-6) 0.0125 (2.59e-7) 0.0101 (3.23e-8) 0.0229 (2.09e-6) 0.0048 (6.58e-7) 0.0025 (2.11e-8) 0.0441 (3.51e-6)
Our Hybrid Solver 0.0186 (8.17e-6) 0.0116 (6.88e-8) 0.0096 (1.00e-9) 0.0171 (3.16e-6) 0.0022 (1.77e-8) 0.0013 (1.08e-7) 0.0149 (2.38e-6)

E.3 LATENCY OF FLUID CONTROLNET

For real-time performance, we report diffusion model inference time across scenes, as shown in
Table 12. The latency is measured after model compilation and kernel warm-up, ensuring that
initialization overhead is excluded. Further details of the latency measurement methodology are
provided in Appendix C.1.

Table 12: Latency of our Fluid ControlNet.

Dataset Water-2D Sand-2D Water-3D Sand-3D

Latency (ms) 18.714 20.724 20.316 27.026

E.4 MORE VISUALIZATIONS

Fluid Simulations. Figure 14 presents the visualizations of all models discussed throughout the
paper. Here, we show a comparison of intermediate frames from a single trajectory. It is evident
that, due to the hybrid design of our hybrid solver, our method produces visual results that are more
similar to MPM (rp = 1/1.75) simulations. Since MPM (rp = 1/1.75) is highly consistent with
MPM (ground truth), the outputs of our Hybrid solver also align better with MPM compared to the
original neural physics. This demonstrates that our approach effectively balances computational
efficiency and accuracy.

More Visualizations of Fluid Control. Figure 15 presents additional visualizations of generative
fluid control across a variety of tasks, both 2D and 3D control signals. We can see that our approach
consistently generates physically plausible and visually accurate outcomes that align closely with
the target controls across all fluid types and dimensions, demonstrating strong control capability.
These results further confirm the effectiveness of our method in achieving both visually appearing
and physically plausible fluid control.

Despite these issues, the generated force fields still guide the fluid in the intended direction, and
performance remains qualitatively acceptable. For high-precision or depth-sensitive 3D control, future
work could explore 3D-aware sketching or explicit 3D conditioning. We will include this discussion
in the camera-ready version to better explain current limitations and inform future improvements.

F LIMITATIONS

Our current limitations are: 1) The control step Tctl is fixed at 100 and is not adaptive to the difficulty
of the control scenario; 2) Errors are introduced by the inference of neural physics at low resolution.
The potential solutions are: 1) Training the diffusion-based controller to unroll different numbers
of steps to adapt to challenging control scenarios; 2) Training a super-resolution model to correct
errors introduced by simulating neural physics at low spatial resolution. However, addressing these
limitations is beyond the scope of this paper, and we plan to study them in our immediate future work.
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Figure 14: Visualizations of fluid simulations by different methods, over different scenarios. From left to right:
Water (2D), Sand (2D), SandRamps (2D), WaterRamps (2D), Water (3D), Sand (3D), Water-Sand (2D). From
top to bottom: Initial, MPM (ground truth), Original Neural Physics, MPM (rp = 1/1.75), Our Hybrid Solver.
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Figure 15: More visualization of generative fluid control. From top to bottom: Water2D, Sand2D, Water3D, and
Sand3D, each with two types of control signals (arrows for motion direction, and oval shapes for target spatial
positions). From left to right: control signal, initial, ours, ground truth.
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