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Abstract

We develop methods for forming prediction sets in an online setting where the data
generating distribution is allowed to vary over time in an unknown fashion. Our
framework builds on ideas from conformal inference to provide a general wrapper
that can be combined with any black box method that produces point predictions of
the unseen label or estimated quantiles of its distribution. While previous conformal
inference methods rely on the assumption that the data points are exchangeable, our
adaptive approach provably achieves the desired coverage frequency over long-time
intervals irrespective of the true data generating process. We accomplish this by
modelling the distribution shift as a learning problem in a single parameter whose
optimal value is varying over time and must be continuously re-estimated. We test
our method, adaptive conformal inference, on two real world datasets and find that
its predictions are robust to visible and significant distribution shifts.

1 Introduction

Machine learning algorithms are increasingly being employed in high stakes decision making pro-
cesses. For instance, deep neural networks are currently being used in self-driving cars to detect
nearby objects [2] and parole decisions are being made with the assistance of complex models that
combine over a hundred features [1]. As the popularity of black box methods and the cost of making
wrong decisions grow it is crucial that we develop tools to quantify the uncertainty of their predictions.

In this paper we develop methods for constructing prediction sets that are guaranteed to contain the
target label with high probability. We focus specifically on an online learning setting in which we
observe covariate-response pairs {(Xt, Yt)}t2N ✓ Rd ⇥ R in a sequential fashion. At each time step
t 2 N we are tasked with using the previously observed data {(Xr, Yr)}1rt�1 along with the new
covariates, Xt, to form a prediction set Ĉt for Yt. Then, given a target coverage level ↵ 2 (0, 1) our
generic goal is to guarantee that Yt belongs to Ĉt at least 100(1� ↵)% of the time.

Perhaps the most powerful and flexible tools for solving this problem come from conformal inference
[see e.g. 34, 16, 32, 22, 31, 15, 3] . This framework provides a generic methodology for transforming
the outputs of any black box prediction algorithm into a prediction set. The generality of this approach
has facilitated the development of a large suite of conformal methods, each specialized to a specific
prediction problem of interest [e.g. 30, 11, 23, 8, 24, 21]. With only minor exceptions all of these
algorithms share the same common guarantee that if the training and test data are exchangeable, then
the prediction set has valid marginal coverage P(Yt 2 Ĉt) = 1� ↵.

While exchangeability is a common assumption, there are many real-world applications in which
we do not expect the marginal distribution of (Xt, Yt) to be stationary. For example, in finance
and economics market behaviour can shift drastically in response to new legislation or major world
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events. Alternatively, the distribution of (Xt, Yt) may change as we deploy our prediction model in
new environments. This paper develops adaptive conformal inference (ACI), a method for forming
prediction sets that are robust to changes in the marginal distribution of the data. Our approach is both
simple, in that it requires only the tracking of a single parameter that models the shift, and general as
it can be combined with any modern machine learning algorithm that produces point predictions or
estimated quantiles for the response. We show that over long time intervals ACI achieves the target
coverage frequency without any assumptions on the data-generating distribution. Moreover, when the
distribution shift is small and the prediction algorithm takes a certain simple form we show that ACI
will additionally obtain approximate marginal coverage at most time steps.

1.1 Conformal inference

Suppose we are given a fitted regression model for predicting the value of Y from X . Let y be a
candidate value for Yt. To determine if y is a reasonable estimate of Yt, we define a conformity score
S(X,Y ) that measures how well the value y conforms with the predictions of our fitted model. For
example, if our regression model produces point predictions µ̂(X) then we could use a conformity
score that measures the distance between µ̂(Xt) and y. One such example is

S(Xt, y) = |µ̂(Xt)� y|.
Alternatively, suppose our regression model outputs estimates q̂(X; p) of the pth quantile of the
distribution of Y |X . Then, we could use the method of conformal quantile regression (CQR) [28],
which examines the signed distance between y and fitted upper and lower quantiles through the score

S(Xt, y) = max{q̂(Xt;↵/2)� y, y � q̂(Xt; 1� ↵/2)}.
Regardless of what conformity score is chosen the key issue is to determine how small S(Xt, y)
should be in order to accept y as a reasonable prediction for Yt. Assume we have a calibration set
Dcal ✓ {(Xr, Yr)}1rt�1 that is different from the data that was used to fit the regression model.
Using this calibration set we define the fitted quantiles of the conformity scores to be

Q̂(p) := inf

8
<

:s :

0

@ 1

|Dcal|
X

(Xr,Yr)2Dcal

{S(Xr,Yr)s}

1

A � p

9
=

; , (1)

and say that y is a reasonable prediction for Yt if S(Xt, y)  Q̂(1� ↵).

The crucial observation is that if the data Dcal [ {(Xt, Yt)} are exchangeable and we break ties
uniformly at random then the rank of S(Xt, Yt) amongst the points {S(Xr, Yr)}(Xr,Yr)2Dcal [
{S(Xt, Yt)} will be uniform. Therefore,

P(S(Xt, Yt)  Q̂(1� ↵)) =
d|Dcal|(1� ↵)e

|Dcal|+ 1
.

Thus, defining our prediction set to be Ĉt := {y : S(Xt, y)  Q̂(1�↵)} gives the marginal coverage
guarantee

P(Yt 2 Ĉt) = P(S(Xt, Yt)  Q̂(1� ↵)) =
d|Dcal|(1� ↵)e

|Dcal|+ 1
.

By introducing additional randomization this generic procedure can be altered slightly to produce
a set Ĉt that satisfies the exact marginal coverage guarantee P(Yt 2 Ĉt) = 1 � ↵ [34]. For the
purposes of this paper this adjustment is not critical and so we omit the details here. Additionally, we
remark that the method outlined above is often referred to as split or inductive conformal inference
[27, 34, 26]. This refers to the fact that we have split the observed data between a training set used to
fit the regression model and a withheld calibration set. The adaptive conformal inference method
developed in this article can also be easily adjusted to work with full conformal inference in which
data splitting is avoided at the cost of greater computational resources [34].

2 Adapting conformal inference to distribution shifts

Up until this point we have been working with a single score function S(·) and quantile function Q̂(·).
In the general case where the distribution of the data is shifting over time both these functions should
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be regularly re-estimated to align with the most recent observations. Therefore, we assume that at
each time t we are given a fitted score function St(·) and corresponding quantile function Q̂t(·). We
define the realized miscoverage rate of the prediction set Ĉt(↵) := {y : St(Xt, y)  Q̂t(1� ↵)} as

Mt(↵) := P(St(Xt, Yt) > Q̂t(1� ↵)),

where the probability is over the test point (Xt, Yt) as well as the data used to fit St(·) and Q̂t(·).
Now, since the distribution generating the data is non-stationary we do not expect Mt(↵) to be equal,
or even close to, ↵. Even so, we can still postulate that if the conformity scores used to fit Q̂t(·) cover
the bulk of the distribution of St(Xt, Yt) then there may be an alternative value ↵

⇤
t 2 [0, 1] such that

Mt(↵⇤
t ) ⇠= ↵. More rigorously, assume that with probability one, Q̂t(·) is continuous, non-decreasing

and such that Q̂t(0) = �1 and Q̂t(1) = 1. This does not hold for the split conformal quantile
functions defined in (1), but in the case where there are no ties amongst the conformity scores we
can adjust our definition to guarantee this by smoothing over the jump discontinuities in Q̂(·). Then,
Mt(·) will be non-decreasing on [0, 1] with Mt(0) = 0 and Mt(1) = 1 and so we may define

↵
⇤
t := sup{� 2 [0, 1] : Mt(�)  ↵}.

Moreover, if we additionally assume that

P(St(Xt, Yt) = Q̂t(1� ↵
⇤
t )) = 0,

then we will have that Mt(↵⇤
t ) = ↵. So, in particular we find that by correctly calibrating the

argument to Q̂t(·) we can achieve either approximate or exact marginal coverage.

To perform this calibration we will use a simple online update. This update proceeds by examining the
empirical miscoverage frequency of the previous prediction sets and then decreasing (resp. increasing)
our estimate of ↵⇤

t if the prediction sets were historically under-covering (resp. over-covering) Yt. In
particular, let ↵1 denote our initial estimate (in our experiments we will choose ↵1 = ↵). Recursively
define the sequence of miscoverage events

errt :=
⇢
1, if Yt /2 Ĉt(↵t),
0, otherwise,

where Ĉt(↵t) := {y : St(Xt, y)  Q̂t(1� ↵t)}.

Then, fixing a step size parameter � > 0 we consider the simple online update

↵t+1 := ↵t + �(↵� errt). (2)

We refer to this algorithm as adaptive conformal inference. Here, errt plays the role of our estimate
of the historical miscoverage frequency. A natural alternative to this is the update

↵t+1 = ↵t + �

 
↵�

tX

s=1

wserrs

!
, (3)

where {ws}1st ✓ [0, 1] is a sequence of increasing weights with
Pt

s=1 ws = 1. This update has
the appeal of more directly evaluating the recent empirical miscoverage frequency when deciding
whether or not to lower or raise ↵t. In practice, we find that (2) and (3) produce almost identical
results. For example, in Section A.3 in the Appendix we show some sample trajectories for ↵t

obtained using the update (3) with

ws :=
0.95t�s

Pt
s0=1 0.95

t�s0
.

We find that these trajectories are very similar to those produced by (2). The main difference is that
the trajectories obtained with (3) are smoother with less local variation in ↵t. In the remainder of this
article we will focus on (2) for simplicity.

2.1 Choosing the step size

The choice of � gives a tradeoff between adaptability and stability. While raising the value of � will
make the method more adaptive to observed distribution shifts, it will also induce greater volatility in
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the value of ↵t. In practice, large fluctuations in ↵t may be undesirable as it allows the method to
oscillate between outputting small conservative and large anti-conservative prediction sets.

In Theorem 4.2 we give an upper bound on (Mt(↵t)�↵)2 that is optimized by choosing � proportional
to
p

|↵⇤
t+1 � ↵⇤

t |. While not directly applicable in practice, this result supports the intuition that in
environments with greater distributional shift the algorithm needs to be more adapatable and thus �
should be chosen to be larger. In our experiments we will take � = 0.005. This value was chosen
because it was found to give relatively stable trajectories for ↵t while still being sufficiently large as
to allow ↵t to adapt to observed shifts. In agreement with the general principles outlined above we
found that larger values of � also successfully protect against distribution shifts, while taking � to be
too small causes adaptive conformal inference to perform similar to non-adaptive methods that hold
↵t = ↵ constant across time.

2.2 Real data example: predicting market volatility

We apply ACI to the prediction of market volatility. Let {Pt}1tT denote a sequence of daily open
prices for a stock. For all t � 2, define the return Rt := (Pt � Pt�1)/Pt�1 and realized volatility
Vt = R

2
t . Our goal is to use the previously observed returns Xt := {Rs}1st�1 to form prediction

sets for Yt := Vt. More sophisticated financial models might augment Xt with additional market
covariates (available to the analyst at time t�1). As the primary purpose of this section is to illustrate
adaptive conformal inference we work with only a simple prediction method.

We start off by forming point predictions using a GARCH(1,1) model [4]. This method assumes that
Rt = �t✏t with ✏2, . . . , ✏T taken to be i.i.d. N (0, 1) and �t satisfying the recursive update

�
2
t = ! + ⌧Vt�1 + ��

2
t�1.

This is a common approach used for forecasting volatility in economics. In practice, shifting market
dynamics can cause the predictions of this model to become inaccurate over large time periods.
Thus, when forming point predictions we fit the model using only the last 1250 trading days (i.e.
approximately 5 years) of market data. More precisely, for all times t > 1250 we fit the coefficients
!̂t, ⌧̂t, �̂t as well as the sequence of variances {�̂t

s}1st�1 using only the data {Rr}t�1250r<t.
Then, our point prediction for the realized volatility at time t is

(�̂t
t)

2 := !̂t + ⌧̂tVt�1 + �̂t(�̂
t
t�1)

2
.

To form prediction intervals we define the sequence of conformity scores

St :=
|Vt � (�̂t

t)
2|

(�̂t
t)

2

and the corresponding quantile function

Q̂t(p) := inf

(
x :

1

1250

t�1X

r=t�1250

Srx � p

)
.

Then, our prediction set at time t is

Ĉt(↵t) :=

⇢
v :

|v � (�̂t
t)

2|
(�̂t

t)
2

 Q̂t(1� ↵t)

�
,

where {↵t} is initialized with ↵1250 = ↵ = 0.1 and then updated recursively as in (2).

We compare this algorithm to a non-adaptive alternative that takes ↵t = ↵ fixed. To measure the
performance of these methods across time we examine their local coverage frequencies defined as the
average coverage rate over the most recent two years, i.e.

localCovt := 1� 1

500

t+250X

r=t�250+1

errr. (4)

If the methods perform well then we expect the local coverage frequency to stay near the target value
1� ↵ across all time points.
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Figure 1: Local coverage frequencies for adaptive conformal (blue), a non-adaptive method that holds
↵t = ↵ fixed (red), and an i.i.d. Bernoulli(0.1) sequence (grey) for the prediction of stock market
volatility. The coloured dotted lines mark the average coverage obtained across all time points, while
the black line indicates the target level of 1� ↵ = 0.9.

Daily open prices were obtained from publicly available datasets published by The Wall Street Journal.
The realized local coverage frequencies for the non-adaptive and adaptive conformal methods on four
different stocks are shown in Figure 1. These stocks were selected out of a total of 12 stocks that
we examined because they showed a clear failure of the non-adaptive method. Adaptive conformal
inference was found to perform well in all cases (see Figure 9 in the appendix).

As a visual comparator, the grey curves show the moving average 1 � 1
500

Pt+250
r=t�250+1 Ir for

sequences {It}1tT that are i.i.d. Bernoulli(0.1). We see that the local coverage frequencies
obtained by adaptive conformal inference (blue lines) always stay within the variation that would be
expected from an i.i.d. Bernoulli sequence. On the other hand, the non-adaptive method undergoes
large excursions away from the target level of 1� ↵ = 0.9 (red lines). For example, in the bottom
right panel we can see that the non-adaptive method fails to cover the realized volatility of Fannie
Mae during the 2008 financial crisis, while the adaptive method is robust to this event (see Figure 4
in the Appendix for a plot of the price of Fannie Mae over this time period).

3 Related Work

Prior work on conformal inference has considered two different types of distribution shift [33, 10]. In
both cases the focus was on environments in which the calibration data is drawn i.i.d. from a single
distribution P0, while the test point comes from a second distribution P1. In this setting Tibshirani
et al. [33] showed that valid prediction sets can be obtained by re-weighting the calibration data using
the likelihood ratio between P1 and P0. However, this requires the conditional distribution of Y |X to
be constant between training and testing and the likelihood ratio P1(X)/P0(X) to be either known
or very accurately estimated. On the other hand, Cauchois et al. [10] develop methods for forming
prediction sets that are valid whenever P1 and P0 are close in f -divergence. Similar to our work, they
show that if Df (P1||P0)  ⇢ then there exists a conservative value ↵⇢ 2 (0, 1) such that

M(↵⇢) := P(S(Xt, Yt) > Q̂(1� ↵⇢))  ↵.

The difference between our approach and theirs is twofold. First, while they fix a single conservative
value ↵⇢ our methods aim to estimate the optimal choice ↵

⇤ satisfying M(↵⇤) = ↵. This is not
possible in the setting of [10] as they do not observe any data from which the size of the distribution
shift can be estimated. Second, while they consider only one training and one testing distribution we
work in a fully online setting in which the distribution is allowed to shift continuously over time.
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4 Coverage guarantees

4.1 Distribution-free results

In this section we outline the theoretical coverage guarantees of adaptive conformal inference. We will
assume throughout that with probability one ↵1 2 [0, 1] and Q̂t is non-decreasing with Q̂t(x) = �1
for all x < 0 and Q̂t(x) = 1 for all x > 1. Our first result shows that over long time intervals
adaptive conformal inference obtains the correct coverage frequency irrespective of any assumptions
on the data-generating distribution.

Lemma 4.1 With probability one we have that 8t 2 N, ↵t 2 [��, 1 + �].

Proof: Assume by contradiction that with positive probability {↵t}t2N is such that inft ↵t < ��

(the case where supt ↵t > 1 + � is identical). Note that supt |↵t+1 � ↵t| = supt �|↵ � errt| < �.
Thus, with positive probability we may find t 2 N such that ↵t < 0 and ↵t+1 < ↵t. However,

↵t < 0 =) Q̂t(1� ↵t) = 1 =) errt = 0 =) ↵t+1 = ↵t + �(↵� errt) � ↵t

and thus P(9t such that ↵t+1 < ↵t < 0) = 0. We have reached a contradiction. ⇤

Proposition 4.1 With probability one we have that for all T 2 N,�����
1

T

TX

t=1

errt � ↵

����� 
max{↵1, 1� ↵1}+ �

T�
. (5)

In particular, limT!1
1
T

PT
t=1 errt

a.s.
= ↵.

Proof: By expanding the recursion defined in (2) and applying Lemma 4.1 we find that

[��, 1 + �] 3 ↵T+1 = ↵1 +
TX

t=1

�(↵� errt).

Rearranging this gives the result. ⇤
Proposition 4.1 puts no constraints on the data generating distribution. One may immediately ask
whether these results can be improved by making mild assumptions on the distribution shifts. We
argue that without assumptions on the quality of the initialization the answer to this question is
negative. To understand this, consider a setting in which there is a single fixed optimal target
↵
⇤ 2 [0, 1] and assume that

Mt(p) = M(p) =

⇢
↵+ 1�↵

1�↵⇤ (p� ↵
⇤), if p > ↵

⇤
,

↵+ ↵
↵⇤ (p� ↵

⇤) if p  ↵
⇤
.

.

Suppose additionally that E[errt|↵t] = M(↵t).1 In order to simplify the calculations consider the
noiseless update ↵t+1 = ↵t + �(↵�M(↵t)) = ↵t + �(↵� E[errt|↵t]). Intuitively, the noiseless
update can be viewed as the average case behaviour of (2). Now, for any initialization ↵1 and any � 
min{ 1�↵⇤

1�↵ ,
↵⇤

↵ } there exists a constant c 2 { 1�↵
1�↵⇤ ,

↵
↵⇤ } such that for all t, M(↵t)�↵ = c(↵t�↵

⇤).
So, we have that
E[errt]� ↵ = cE[↵t � ↵

⇤] = cE[↵t�1 + �(↵�Mt�1(↵t�1))� ↵
⇤] = c(1� c�)E[↵t�1 � ↵

⇤].

Repeating this calculation recursively gives that
E[errt]� ↵ = c(1� c�)t�1E[↵1 � ↵

⇤] = c(1� c�)t�1(↵1 � ↵
⇤),

and thus, �����
1

T

TX

t=1

E[errt]� ↵

����� =
1� (1� c�)T

T�
|↵1 � ↵

⇤|.

The comparison of this bound to (5) is self-evident. The main difference is that we have replaced
max{1 � ↵1,↵1} with |↵1 � ↵

⇤|. This arises from the fact that ↵⇤ 2 (0, 1) is arbitrary and thus
max{1 � ↵1,↵1} is the best possible upper bound on |↵1 � ↵

⇤|. So, we view Proposition 4.1 as
both an agnostic guarantee that shows that our method gives the correct long-term empirical coverage
frequency irrespective of the true data generating process, and as an approximately tight bound on
the worst-case behaviour immediately after initialization.

1This last assumption is in general only true if Q̂t(·) and ↵t are fit independently of one another.
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4.2 Performance in a hidden Markov model

Although we believe Proposition 4.1 is an approximately tight characterization of the behaviour after
initialization, we can still ask whether better bounds can be obtained for large time steps. In this
section we answer this question positively by showing that if ↵1 is initialized appropriately and the
distribution shift is small, then tighter coverage guarantees can be given. In order to obtain useful
results we will make some simplifying assumptions about the data generating process. While we do
not expect these assumptions to hold exactly in any real-world setting, we do consider our results to
be representative of the true behaviour of adaptive conformal inference and we expect similar results
to hold under alternative models.

4.2.1 Setting

We model the data as coming from a hidden Markov model. In particular, we let {At}t2N ✓ A
denote the underlying Markov chain for the environment and we assume that conditional on {At}t2N,
{(Xt, Yt)}t2N is an independent sequence with (Xt, Yt) ⇠ PAt for some collection of distributions
{Pa : a 2 A}. In order to simplify our calculations, we assume additionally that the estimated
quantile function Q̂t(·) and score function St(·) do not depend on t and we denote them by Q̂(·) and
S(·). This occurs for example in the split conformal setting with fixed training and calibration sets.

In this setting, {(↵t, At)}t2N forms a Markov chain on [��, 1 + �]⇥A. We assume that this chain
has a unique stationary distribution ⇡ and that (↵1, A1) ⇠ ⇡. This implies that (↵t, At, errt) is a
stationary process and thus will greatly simplify our characterization of the behaviour of errt. While
there is little doubt that the theory can be extended, recall our that main goal is to get useful and
simple results. That said, what we really have in mind here is that {At}t2N is sufficiently well-
behaved to guarantee that (↵t, At) has a limiting stationary distribution. In Section A.5 we give
an example where this is indeed provably the case. Lastly, the assumption that (↵1, A1) ⇠ ⇡ is
essentially equivalent to assuming that we have been running the algorithm for long enough to exit
the initialization phase described in Section 4.1.

4.2.2 Large deviation bound for the errors

Our first observation is that errt has the correct average value. More precisely, by Proposition 4.1 we
have that limT!1 T

�1
PT

t=1 errt
a.s.
= ↵ and since errt is stationary it follows that E[errt] = ↵. Thus,

to understand the deviation of T�1
PT

t=1 errt from ↵ we simply need to characterize the dependence
structure of {errt}t2N.

We accomplish this in Theorem 4.1, which gives a large deviation bound on |T�1
PT

t=1 errt � ↵|.
The idea behind this result is to decompose the dependence in {errt}t2N into two parts. First, there is
dependence due to the fact that ↵t is a function of {errr}1rt�1. In Section A.7 in the Appendix
we argue that this dependence induces a negative correlation and thus the errors concentrate around
their expectation at a rate no slower than that of an i.i.d. Bernoulli sequence. This gives rise to the
first term in (6), which is what would be obtained by applying Hoeffding’s inequality to an i.i.d.
sequence. Second, there is dependence due to the fact that At depends on At�1. More specifically,
consider a setting in which the distribution of Y |X has more variability in some states than others.
The goal of adaptive conformal inference is to adapt to the level of variability and thus return larger
prediction sets in states where the distribution of Y |X is more spread. However, this algorithm is
not perfect and as a result there may be some states a 2 A in which E[errt|At = a] is biased away
from ↵. Furthermore, if the environment tends to spend long stretches of time in more variable (or
less variable) states this will induce a positive dependence in the errors and cause T

�1
PT

t=1 errt
to deviate from ↵. To control this dependence we use a Bernstein inequality for Markov chains to
bound |T�1

PT
t=1 E[errt|At]� ↵|. This gives rise to the second term in (6).

Theorem 4.1 Assume that {At}t2N has non-zero absolute spectral gap 1� ⌘ > 0. Let

B := sup
a2A

|E[errt|At = a]� ↵| and �
2
B := E[(E[errt|At]� ↵)2].

Then,

P
 �����

1

T

TX

t=1

errt � ↵

����� � ✏

!
 2 exp

✓
�T ✏

2

8

◆
+ 2 exp

✓
� T (1� ⌘)✏2

8(1 + ⌘)�2
B + 20B✏

◆
. (6)
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A formal proof of this result can be found in Section A.7. The quality of this concentration inequality
will depend critically on the size of the bias terms B and �

2
B . Before proceeding, it is important that

we emphasize that the definitions of B and �
2
B are independent of the choice of t owing to the fact

that (↵t, At, errt) is assumed stationary. Now, to understand these quantities, let

M(p|a) := P(S(Xt, Yt) > Q̂(1� p)|At = a)

denote the realized miscoverage level in state a 2 A obtained by the quantile Q̂(1� p). Assume that
M(p|a) is continuous. This will happen for example when Q̂(·) is continuous and S(Xt, Yt)|At = a

is continuously distributed. Then, there exists an optimal value ↵
⇤
a such that M(↵⇤

a|a) = ↵. Lemma
A.4 in the Appendix shows that if in addition M(·|a) admits a second order Taylor expansion, then

B  C

✓
� + �

�1 sup
a2A

sup
k2N

E[|↵⇤
At+1

� ↵
⇤
At
|
��At+k = a]

◆
and �

2
B  B

2
.

Here, the constant C will depend on how much M(·|a) differs from the ideal case in which Q̂(·) is
the true quantile function for S(Xt, Yt)|At = a. In this case we would have that M(·|a) is the linear
function M(p|a) = p, 8p 2 [0, 1] and C  2.

We remark that the term E[|↵⇤
At+1

� ↵
⇤
At
|
��At+k = a] can be seen as a quantitative measurement of

the size of the distribution shift in terms of the change in the critical value ↵
⇤
a. Thus, we interpret

these results as showing that if the distribution shift is small and 8a 2 A, Q̂(·) gives reasonable
coverage of the distribution of S(Xt, Yt)|At = a, then T

�1
PT

t=1 errt will concentrate well around
↵.

4.2.3 Achieving approximate marginal coverage

Theorem 4.1 bounds the distance between the average miscoverage rate and the target level over
long stretches of time. On the other hand, it provides no information about the marginal coverage
frequency at a single time step. The following result shows that if the distribution shift is small, the
realized marginal coverage rate M(↵t|At) will be close to ↵ on average.

Theorem 4.2 Assume that there exists a constant L > 0 such that for all a 2 A and all ↵1,↵2 2 R,

|M(↵2|a)�M(↵1|a)|  L|↵2 � ↵1|.
Assume additionally that for all a 2 A there exists ↵

⇤
a 2 (0, 1) such that M(↵⇤

a|a) = ↵. Then,

E[(M(↵t|At)� ↵)2]  L(1 + �)

�
E[|↵⇤

At+1
� ↵

⇤
At
|] + L

2
�. (7)

Once again we emphasize that (7) holds for any choice of t owing to the fact that (↵t, At, errt) is
assumed stationary and thus the quantities appearing in the bound are invariant across t. Proof of
this result can be found in Section A.8 of the Appendix. We remark that the right-hand side of (7) is
minimized by choosing � = (2E[|↵⇤

At+1
� ↵

⇤
At
|])1/2, which gives the inequality

E[(M(↵t|At)� ↵)2]  L(
p
2 + 1)

q
E[|↵⇤

At+1
� ↵⇤

At
|].

As above we have that in the ideal case Q̂(·) is a perfect estimate of the quantiles of S(Xt, Yt)|At = a

and thus M(p|a) = p and L = 1. Moreover, we once again have the interpretation that E[|↵⇤
At+1

�
↵
⇤
At
|] is a quantitative measurement of the distribution shift. Thus, this result can be interpreted as

bounding the average difference between the realized and target marginal coverage in terms of the
size of the underlying distribution shift. Finally, note that the choice � = (2E[|↵⇤

At+1
� ↵

⇤
At
|])1/2

formalizes our intuition that � should be chosen to be larger in domains with greater distribution shift,
while not being so large as to cause ↵t to be overly volatile.

5 Impact of StStSt(·) on the performance

The performance of all conformal inference methods depends heavily on the design of the conformity
score. Previous work has shown how carefully chosen scores or even explicit optimization of the
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Figure 2: Local coverage frequencies for adaptive conformal (blue), a non-adaptive method that holds
↵t = ↵ fixed (red), and an i.i.d. Bernoulli(0.1) sequence (grey) for the prediction of stock market
volatility with conformity score S̃t. The coloured dotted lines mark the average coverage obtained
across all time points, while the black line indicates the target level of 1� ↵ = 0.9.

interval width can be used to obtain smaller prediction sets [e.g. 28, 29, 20, 12]. Adaptive conformal
inference can work with any conformity score St(·) and quantile function Q̂t(·) and thus can be
directly combined with other improvements in conformal inference to obtain shorter intervals. One
important caveat here is that the lengths of conformal prediction sets depend directly on the quality
of the fitted regression model. Thus, to obtain smaller intervals one should re-fit the model at each
time step using the most recent data to build the most accurate predictions. This is exactly what we
have done in our experiments in Sections 2.2 and 6.

In addition to this, the choice of St(·) can also have a direct effect on the coverage properties of
adaptive conformal inference. Theorems 4.1 and 4.2 show that the performance of adaptive conformal
inference is controlled by the size of the shift in the optimal parameter ↵⇤

t across time. Moreover,
↵
⇤
t itself is in one-to-one correspondence with the 1� ↵ quantile of St(Xt, Yt). Thus, the coverage

properties of adaptive conformal inference depend on how close St(Xt, Yt) is to being stationary.

For a simple example illustrating the impact of this dependence, note that in Section 2.2 we formed
prediction sets using the conformity score

St :=
|Vt � �̂

2
t |

�̂2
t

.

An a priori reasonable alternative to this is the unnormalized score

S̃t := |Vt � �̂
2
t |.

However, after a more careful examination it becomes unsurprising that normalization by �̂
2
t is

critical for obtaining an approximately stationary conformity score and thus S̃t leads to much worse
coverage properties. Figure 2 shows the local coverage frequency (see (4)) of adaptive conformal
inference using S̃t. In comparison to Figure 1 the coverage now undergoes much wider swings away
from the target level of 0.9. This issue can be partially mitigated by choosing a larger value of � that
gives greater adaptivity to the algorithm.

6 Real data example: election night predictions

During the 2020 US presidential election The Washington Post used conformalized quantile regression
(CQR) (see (1) and Section 1.1) to produce county level predictions of the vote total on election night
[13]. Here we replicate the core elements of this method using both fixed and adaptive quantiles.
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Figure 3: Local coverage frequencies of adaptive conformal (blue), a non-adaptive method that holds
↵t = ↵ fixed (red), and an i.i.d. Bernoulli(0.1) sequence (grey) for county-level election predictions.
Coloured dotted lines show the average coverage across all time points, while the black line indicates
the target coverage level of 1� ↵ = 0.9.

To make the setting precise, let {Yt}1tT denote the number of votes cast for presidential candidate
Joe Biden in the 2020 election in each of approximately T = 3000 counties in the United States.
Let Xt denote a set of demographic covariates associated to the tth county. In our experiment Xt

will include information on the make-up of the county population by ethnicity, age, sex, median
income and education (see Section A.6.1 for details). On election night county vote totals were
observed as soon as the vote count was completed. If the order in which vote counts completed was
uniformly random {(Xt, Yt)}1tT would be an exchangeable sequence on which we could run
standard conformal inference methods. In reality, larger urban counties tend to report results later
than smaller rural counties and counties on the east coast of the US report earlier than those on the
west coast. Thus, the distribution of (Xt, Yt) can be viewed as drifting throughout election night.

We apply CQR to predict the county-level vote totals (see Section A.6.2 for details). To replicate
the east to west coast bias observed on election night we order the counties by their time zone with
eastern time counties appearing first and Hawaiian counties appearing last. Within each time zone
counties are ordered uniformly at random. Figure 3 shows the realized local coverage frequency over
the most recent 300 counties (see (4)) for the non-adaptive and adaptive conformal methods. We
find that the non-adaptive method fails to maintain the desired 90% coverage level, incurring large
troughs in its coverage frequency during time zone changes. On the other hand, the adaptive method
maintains approximate 90% coverage across all time points with deviations in its local coverage level
comparable to what is observed in Bernoulli sequences.

7 Discussion

There are still many open problems in this area. The methods we develop are specific to cases where
Yt is revealed at each time point. However, there are many settings in which we receive the response
in a delayed fashion or in large batches. In addition, our theoretical results in Section 4.2 are limited
to a single model for the data generating distribution and the special case where the quantile function
Q̂t(·) is fixed across time. It would be interesting to determine if similar results can be obtained in
settings where Q̂t(·) is fit in an online fashion on the most recent data. Another potential area for
improvement is in the choice of the step size �. In Section 2.1 we give some heuristic guidelines
for choosing � based on the size of the distribution shift in the environment. Ideally however we
would like to be able to determine � adaptively without prior knowledge. Finally, our experimental
results are limited to just two domains. Additional work is needed to determine if our methods can
successfully protect against a wider variety of real-world distribution shifts.
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