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Not All Pairs are Equal: Hierarchical Learning for
Average-Precision-Oriented Video Retrieval

Anonymous Authors

ABSTRACT
The rapid growth of online video resources has significantly pro-
moted the development of video retrieval methods. As a standard
evaluation metric for video retrieval, Average Precision (AP) as-
sesses the overall rankings of relevant videos at the top list, making
the predicted scores a reliable reference for users. However, re-
cent video retrieval methods utilize pair-wise losses that treat all
sample pairs equally, leading to an evident gap between the train-
ing objective and evaluation metric. To effectively bridge this gap,
in this work, we aim to address two primary challenges: a) The
current similarity measure and AP-based loss are suboptimal for
video retrieval; b) The noticeable noise from frame-to-frame match-
ing introduces ambiguity in estimating the AP loss. In response to
these challenges, we propose the Hierarchical learning framework
for Average-Precision-oriented Video Retrieval (HAP-VR). For the
former challenge, we develop the TopK-Chamfer Similarity and
QuadLinear-AP loss to measure and optimize video-level similari-
ties in terms of AP. For the latter challenge, we suggest constraining
the frame-level similarities to achieve an accurate AP loss estima-
tion. Experimental results present that HAP-VR outperforms exist-
ing methods on several benchmark datasets, providing a feasible
solution for video retrieval tasks and thus offering potential benefits
for the multi-media application.

CCS CONCEPTS
• Information systems→ Video search; Learning to rank.

KEYWORDS
Video Retrieval; Average Precision; Hierarchical Similarity Opti-
mization; Self-supervised Learning

1 INTRODUCTION
The rapid expansion of online video resources has made content-
based video retrieval a crucial component for multi-media appli-
cations such as recommendation, video editing, and online edu-
cation [1, 25]. As a fundamental task, video retrieval, which aims
to efficiently and effectively rank candidate videos based on their
similarities to the query video, has raised a wave of studies in the
multi-media community.

Recent video retrieval methods [29, 31–33, 52] employ neural net-
work models to learn video similarities by aggregating fine-grained
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Figure 1: Average Precision (AP) measures the average rank-
ing of positive instances within a list, providing a comprehen-
sive evaluation of the overall performance of the retrieval re-
sults. Pair-wise training objectives focus solely on pulling the
positive instances closer while repelling the negative ones,
failing to align with the AP metric. In contrast, AP-based
objectives ensure this alignment by rectifying the rankings
of mis-ranked positive-negative pairs in the list.

embeddings of video frames, which have achieved a remarkable
success compared with the early hand-craft approaches [11, 15, 27,
55, 58]. Nevertheless, these models are typically optimized by
pair-wise training objectives such as triplet loss, which are
inconsistent with the evaluation metric. Concretely, as a stan-
dard evaluation metric, Average Precision (AP) focuses on the top
list by assigning larger weights to the top-ranked positive videos.
Since the retrieval results are commonly processed sequentially in
downstream tasks, the performance of the top list becomes crucial,
thus making AP a more comprehensive metric as it better reflects
this practical requirement. However, as shown in fig. 1, pair-wise
losses treat all mis-ranked video pairs equally, ignoring the relative
rankings among the instance list. This leads to an evident gap be-
tween the training objective and the evaluation metric, calling for
an effective AP-based objective function to bridge this gap.

To solve a similar problem in image retrieval, a promisingmethod
is to optimize AP directly. Due to the non-differentiability of AP,
existing methods concentrate on developing differential approxima-
tions of the AP [4, 6, 7, 46, 48, 57]. Although these AP optimization
methods have achieved notable success in the image field, they
cannot be directly applied to videos due to the complexity arising
from the additional temporal dimension. Generally, the challenges
are two-fold:

a) The current similarity measure and the surrogate AP
loss are suboptimal for AP-oriented video retrieval. Typically,
in mainstream frameworks, image similarities are measured with
the cosine similarity of an embedding pair, while video similarities
are aggregated from the redundant temporal-spatial features. Since

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: Two relevant videos might not exhibit consistent
relevance across all frame pairs due to the obvious redun-
dancy and noise in the temporal dimension. Specifically, only
a few consecutive frames in the candidate video are relevant
to a given query frame.

AP jointly considers the rankings of all instances rather than merely
distinguishing whether a pair of videos matches, it is necessary
to design a fine-grained similarity measure function for videos.
Additionally, existing surrogate AP losses like Smooth-AP [4] suffer
from a vanishing gradient when a sample pair is seriously mis-
ranked, leading to inefficient optimization. This phenomenon is
more obvious for videos since the various video similarities fall into
the gradient vanishing area more frequently.

b) The noisy frame-to-frame matching leads to a biased
AP estimation. As illustrated in fig. 2, two relevant videos may not
exhibit uniform relevance across all frames. Without fine-grained
annotations, this ambiguity leads to false positive matching. In
this case, the weights of the top-ranked videos might be reduced,
hindering the AP loss from concentrating on the top list.

Based on the above considerations, we propose the Hierarchical
learning framework for Average-Precision-oriented Video Retrieval
(HAP-VR), which contains video-level and frame-level constraints
as detailed following:

To tackle challenge a), we propose a topK-based similarity mea-
sure and a variant of AP loss with proper gradients. As a core
component of our framework, the proposed TopK-Chamfer Simi-
larity aggregates video-level similarities from frame-level similari-
ties. Compared with previous maximum/average aggregations, the
TopK-Chamfer Similarity retains fine-grained information while
filtering out false correlations, providing refined video similarity
for the following AP loss estimation. Another core component is
a new surrogate AP loss, namely QuadLinear-AP, which enjoys
a more reasonable distribution of gradients to rectify mis-ranked
positive-negative pairs efficiently.

In search of a solution to challenge b), we propose to correct
the frame-level similarities without requiring fine-grained anno-
tations. Motivated by the recent advance in self-supervised learn-
ing [9, 20, 24], we leverage the pre-trained vision model [8] to ex-
tract frame-level representations. Subsequently, we generate pseudo
labels indicating the matched frames from the gap between these
representations and distill the frame-level information to avoid
ambiguity, leading to a more precise estimation of AP loss.

To summarize, the contributions of this work are three-fold:

• We develop a self-supervised hierarchical learning frame-
work for Average-Precision-oriented video retrieval, named
HAP-VR, to fill the gap between training objectives and eval-
uation metrics that the previous work has overlooked.

• Within HAP-VR, we propose the TopK-Chamfer Similarity
and QuadLinear-AP loss to measure and optimize video-level
similarities of the AP metric, alongside constraining frame-
level similarities to produce a precise estimation of AP loss.

• Our experimental evaluation of HAP-VR across several large-
scale benchmark datasets often presents a superior perfor-
mance in terms of AP, ensuring its effectiveness for content-
based video retrieval tasks.

2 RELATEDWORK
In this section, we will introduce several previous works that con-
tribute to video retrieval and Average Precision optimization.

2.1 Video Retrieval
Based on the granularity of similarity processing, video retrieval
methods can be generally classified into two schemes, i.e. coarse-
grained method and fine-grained method.

2.1.1 Coarse-grained Method. This kind of method focuses on ex-
tracting and aggregating features into a vector space, representing
each video by a single vector to compute similarity at the video
level. In the early stage, methods such as Bag-of-Words [5, 50], code
books [30, 36] encode videos into a single vector by summarizing
the extracted features through statistical aggregation, which neglect
the temporal and spatial structures of the video. With the advent
of deep learning in the video field, later approaches have started
to train deep neural networks with metric learning [31, 35], pro-
moting the transition from coarse-grained methods to fine-grained
methods in the subsequent research.

2.1.2 Fine-grained Method. This kind of method typically extracts
features from frames and thus generates multiple vectors to rep-
resent a video. Due to the utilization of a more enriched feature
representation with spatial and temporal structures, fine-grained
methods typically outperform coarse-grained methods within the
same period. Early fine-grained methods focus on designing video
temporal alignment solutions, e.g. temporal Hough Voting [15, 27],
graph-based Temporal Network [55, 58] and Dynamic Program-
ming [11], to match similar segments within the videos through
hand-craft algorithms. Following the development of methods like
TMK [44] and LAMV [2], which use Fourier transform and kernel
tricks for spatio-temporal representation learning, there has been
a shift towards transformer-based architectures [16, 22, 23, 44, 52].
Among these methods, TCA [52] adopts a self-attention mechanism
to capture temporal relationships among fine-grained features and
utilizes a contrastive learning strategy for training, VRL [23] com-
bines CNN with a transformer structure to train a model without
labels. Recent methods concentrate on designing neural networks
to learn similarity functions for calculating video-level similari-
ties from original video representations. ViSiL [29] provides a su-
pervised learning method that designs a 4-layer CNN to obtain
video-level similarities from frame-level similarities. Additionally,



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Not All Pairs are Equal: Hierarchical Learning for Average-Precision-Oriented Video Retrieval ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 3: The architecture of our proposed framework. The data batch is processed through a feature extractor to obtain
patch-level embeddings. Afterward, we compute frame-level and video-level similarity matrices utilizing spatial and temporal
correlation aggregation modules in sequence. Simultaneously, the batch is fed into a pre-trained self-supervised model to
generate pseudo labels that indicate frame-level relevance. Ultimately, we apply the QuadLinear-AP to both the frame-level
and video-level similarity matrices and backpropagate the loss to optimize the model’s parameters.

DnS [33] employs knowledge distillation to train the student net-
works with ViSiL serving as a teacher network. More recently,
S2VS [32] proposes a self-supervised learning approach built on the
foundations of an improved structure of ViSiL. Despite previous
studies developing increasingly complex models, their reliance on
training with pair-wise objectives has led to a misalignment with
the evaluation metric. Furthermore, these efforts typically focus
solely on optimizing video-level similarity, neglecting the impor-
tance of frame-level similarity learning. In our work, we propose
a method that employs an AP-based objective to bridge this gap,
hierarchically optimizing AP for both frame-level and video-level
similarities during the learning process.

2.2 Average Precision Optimization
Traditional metric learning methods provide a learning paradigm
for retrieval tasks, mapping instances into an embedding space and
employing distance metrics to design pair-wise objective functions
such as contrastive loss [10] or triplet loss [59]. However, these
methods merely focus on increasing the distance between positive
and negative instances within pairs or tuples, neglecting to improve
the overall ranking of positives more comprehensively. This narrow
focus can lead to overfitting, particularly in the face of imbalanced
data distribution. A promising method is ranking-based metric
learning with AP as the target. However, the non-differentiability
of ranking terms in AP poses a challenge, obstructing the update of
model parameters during backpropagation. To address this issue,
numerous AP optimization methods have been developed. Listwise

approaches [6, 7, 46, 57] utilize differentiable histogram binning
to optimize loss functions based on ranking lists. Others provide
structured learning frameworks based on SVM [39, 60] or conduct
direct loss minimization [19, 53] to optimize AP. Moreover, Rolinek
et al. [48] introduce BlackBox combinatorial solvers [43] to differ-
entiate the ranking terms in AP. More recently, Brown et al. [4]
propose Smooth-AP to use the Sigmoid function for approximating
the indicator function, offering a simple and efficient way to dif-
ferentiate AP. However, approximation methods like Smooth-AP
neglect the gradient vanishing in the low AP area. To this end,
we propose QuadLinear-AP, a novel loss for AP optimization, to
designate appropriate gradients to the improperly ranked positive-
negative pairs, ensuring the efficiency of the optimization process.

3 METHODOLOGY
3.1 Task Definition
In the video space X, each video can be seen as a tensor 𝑽 =

{𝒗𝒋 ∈ R𝐻×𝑊 ×𝐶 }𝑇
𝑗=1 where𝑇 ,𝐻 ,𝑊 , and𝐶 represent the dimension

of time, height, width, and channel, respectively. Given a pair of
videos 𝑽1, 𝑽2 ∈ X, video similarity learning aims to learn a similarity
function 𝑓 : X×X → R, such that 𝑓 (𝑽1, 𝑽2) represents the relevance
between 𝑽1, 𝑽2. During the training stage, at each step, we sample
a batch of videos 𝑩 = {𝑽𝑖 ∈ X}𝑁

𝑖=1 where the length of 𝑽𝑖 is 𝑇𝑖 .
Let 𝒀 ∈ {0, 1}𝑁×𝑁 be the video-level relevance matrix, where
𝒀𝑖 𝑗 = 1 if 𝑽𝑖 and 𝑽𝑗 are relevant or 𝒀𝑖 𝑗 = 0 otherwise. For the sake
of presentation, we denote the similarity score as 𝑠𝑖 𝑗 = 𝑓 (𝑽𝑖 , 𝑽𝑗 ),
and denote the rankings among positive/negative subsets as 𝑺𝑘+ =
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{𝑠𝑘𝑖 = 𝑓 (𝑽𝑘 , 𝑽𝑖 )|𝑽𝑖 ∈ 𝑩, 𝒀𝑘𝑖 = 1, 𝑘 ≠ 𝑖}, 𝑺𝑘− = {𝑠𝑘𝑖 = 𝑓 (𝑽𝑘 , 𝑽𝑖 )|𝑽𝑖 ∈
𝑩, 𝒀𝑘𝑖 = 0}.

According to the above definition, we aim to optimize 𝑓 such that
𝑓 (𝑽𝑘 , 𝑽𝑖 ) > 𝑓 (𝑽𝑘 , 𝑽𝑗 ) if 𝒀𝑘𝑖 = 1 and 𝒀𝑘 𝑗 = 0, such that it achieves a
higher AP score:

max
𝑓

𝐴𝑃 (𝑓 ) =
1
𝑁

𝑁∑︁
𝑘=1

𝐴𝑃𝑘 (𝑓 ),

𝐴𝑃𝑘 (𝑓 ) =
1

|𝑺𝑘+ |

∑︁
𝑠𝑘𝑖 ∈𝑺𝑘+

R(𝑠𝑘𝑖 , 𝑺𝑘+)
R(𝑠𝑘𝑖 , 𝑺𝑘+ ∪ 𝑺𝑘−)

,

(1)

where R(𝑠, 𝑺) = 1 + ∑
𝑠′∈𝑺 H (𝑠′ − 𝑠) is the descending ranking of

𝑠 in 𝑺 , H (·) is the Heaviside function [45], i.e., H (𝑥) = 1 if 𝑥 > 0
otherwise H (𝑥 ) = 0.

3.2 Overview
We aim to design an AP-oriented framework for video similar-
ity learning to align the training objective with the evaluation
metric of video retrieval. As illustrated in fig. 3, given two videos
𝑽 , 𝑽 ′ ∈ X, we first utilize a feature extractor 𝑔(·) to extract patch-
level embeddings 𝑔(𝑽 ), 𝑔(𝑽 ′) ∈ R𝑇×𝑅×𝐷 , where 𝑇 , 𝑅, 𝐷 are the
number of frames, patches, and the embedding dimension, respec-
tively. Afterward, the patch-to-patch similarities are measured with
the cosine similarity, resulting in a patch-level similarity matrix
𝑆(𝑽 , 𝑽 ′) ∈ R𝑇×𝑅×𝑅×𝑇 ′

.
Next, we optimize the similarity measure in a hierarchical strat-

egy. At the video level, we aggregate the spatial and temporal cor-
relation to video-level similarities via the proposed TopK-Chamfer
Similarity (detailed in section 3.3). Following ViSiL [29], we also
apply a CNN to propagate the inter-frame similarities. Afterward,
the video-level similarities are input into the proposed QuadLinear-
AP loss. As outlined in section 3.4, for the frame-level constraint,
we leverage a pre-trained vision model to generate pseudo labels
and distill the frame-to-frame similarities to our feature extractor
with the QuadLinear-AP loss.

3.3 Video-oriented AP Optimization
In this subsection, we first implement the similarity function 𝑓

through a bottom-up video similarity measure to map patch-level
embeddings into similarities. Following this, we propose an AP sur-
rogate loss with appropriate gradients for optimization, instructing
𝑓 to rank the similarities accurately.

3.3.1 Bottom-up Video Similarity Measure. In this subsection, we
present the detailed process of feature aggregation. Specifically,
given a pair of videos, we first aggregate the patch-level similar-
ities 𝑆(𝑽 , 𝑽 ′) ∈ R𝑇×𝑅×𝑅×𝑇 ′

along the spatial dimension, leading
to a frame-level similarity matrix𝑚𝑠 (𝑽 , 𝑽 ′) ∈ R𝑇×𝑇 ′

. Afterward,
we aggregate the temporal dimension as the video-level similar-
ity 𝑓 (𝑽 , 𝑽 ′) = 𝑚𝑡 (𝑽 , 𝑽 ′). Consider a batch of videos 𝑩 = {𝑽𝑖 }𝑁𝑖=1,
similarities of all pairs form an 𝑁 ×𝑁 video-level similarity matrix.

Early work utilizes a maximum/average operator to gather the
fine-grained features. Kordopatis-Zilos et al. [29] suggest that two
relevant frames/videosmight be similar only in a part of region/period.
From this perspective, to gather the spatial features, they propose
to focus on the most similar region in 𝑔(𝑽 ′) for each query patch in

𝑔(𝑽 ), leading to the Chamfer-Similarity-based aggregation [3]:

𝑚𝑠 (𝑽 , 𝑽 ′)𝑥,𝑦 =
1
𝑅

𝑅∑︁
𝑖=1

max
𝑗=1,· · · ,𝑅

𝑆(𝑽 , 𝑽 ′)𝑥,𝑖, 𝑗,𝑦 . (2)

The above operator identifies the maximum score for each query
patch and averages these scores of all query patches in a frame to
reflect the similarity between two frames. A similar operation is
performed to gather the temporal features.

However, focusing on the maximum score makes the similar-
ity measure sensitive to spatial noises caused by distractors. Be-
sides, different from the patch-to-patch similarity matrix with a
fixed shape, the temporal dimension in videos is flexible and varies
greatly. Furthermore, given a query video 𝑽𝑘 and two relevant can-
didate videos 𝑽1, 𝑽2, the Chamfer Similarity might assign equal
similarities for both 𝑽1 and 𝑽2, even if 𝑽2 contains more relevant
frames. Such a phenomenon reduces the distinguishability of posi-
tive samples, leading to an ambiguous ranking estimation.

Therefore, we seek a fine-grained similarity measure to estimate
a precise AP loss. Specifically, rather than taking the maximum
value, we jointly consider the top K scores:

𝑚𝑠 (𝑽 , 𝑽 ′)𝑥,𝑦 =
1
𝑅𝐾

𝑅∑︁
𝑖=1

𝐾∑︁
𝑗=1

𝑆(𝑽 , 𝑽 ′)𝑥,𝑖,[𝑗],𝑦, (3)

where𝐾 = 𝑘𝑠 ×𝑅 and 𝑆(𝑽 , 𝑽 ′)𝑥,𝑖,[𝑗],𝑦 refers to the 𝑗-th largest value,
or formally: 𝑆(𝑽 , 𝑽 ′)𝑥,𝑖,[1],𝑦 ≥ · · · ≥ 𝑆(𝑽 , 𝑽 ′)𝑥,𝑖,[𝑅],𝑦 .

On top of the frame-level similarities, following ViSiL [29], we
utilize a CNN block𝜓 to fuse the frame-to-frame similarities:

�̄�𝑠 (𝑽 , 𝑽 ′) = 𝜓
(
𝑚𝑠 (𝑽 , 𝑽 ′)

)
∈ R

𝑇
𝑠
×𝑇

𝑠 , (4)

where 𝑠 > 1 is the downsampling factor of𝜓 . In this way, the frame-
level similarity is mapped into a learnable measure space. Addition-
ally, it downscales the similarity matrix to reduce the computational
burden. Afterward, we utilize the proposed TopK-Chamfer Similar-
ity in the temporal dimension, leading to the video-level similarity:

𝑓 (𝑉 ,𝑉 ′) =𝑚𝑡 (𝑽 , 𝑽 ′) =
1
𝑇

𝑇∑︁
𝑖=1

𝐾∑︁
𝑗=1

�̄�𝑠 (𝑽 , 𝑽 ′)𝑖,[𝑗], (5)

where𝐾 = 𝑘𝑡 ×𝑇 ′ and �̄�𝑠 (𝑽 , 𝑽 ′)𝑖,[1] ≥ · · · ≥ �̄�𝑠 (𝑽 , 𝑽 ′)𝑖,[𝑇 ′]. On one
hand, compared with the original Chamfer Similarity, the TopK-
Chamfer Similarity maintains fine-grained information; on the
other hand, compared with the average operator, it avoids the
disturbing noise introduced by the irrelevant frames.

3.3.2 Gradient-Enhanced AP Surrogate Loss. To effectively update
the fine-grained similarity measure, in this part, we propose a new
surrogate AP loss, such that it enjoys proper gradients in the mis-
ranked area.

For a batch of videos 𝑩 = {𝑽𝑖 ∈ X}𝑁
𝑖=1, recall that for a query

video 𝑽𝑘 , the similarity scores of the relevant and irrelevant videos
are denoted as 𝑺𝑘+ = {𝑠𝑘𝑖 = 𝑓 (𝑽𝑘 , 𝑽𝑖 )|𝑽𝑖 ∈ 𝑩, 𝒀𝑘𝑖 = 1, 𝑘 ≠ 𝑖} and
𝑺𝑘− = {𝑠𝑘𝑖 = 𝑓 (𝑽𝑘 , 𝑽𝑖 )|𝑽𝑖 ∈ 𝑩, 𝒀𝑘𝑖 = 0}, respectively. For the sake
of presentation, let 𝑑𝑘

𝑗𝑖
= 𝑠𝑘 𝑗 − 𝑠𝑘𝑖 . According to section 3.1, we aim

to maximize the AP score, or equivalently minimize the following
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AP risk of the query video 𝑽𝑘 :

𝐴𝑃
↓
𝑘

(𝑓 ) = 1 −𝐴𝑃𝑘 (𝑓 ) =
1

|𝑺𝑘+ |

∑︁
𝑠𝑘𝑖 ∈𝑺𝑘+

∑
𝑠𝑘 𝑗 ∈𝑺𝑘− H (𝑑𝑘

𝑗𝑖
)

1 +∑
𝑠𝑘 𝑗 ∈𝑺𝑘+∪𝑺𝑘− H (𝑑𝑘

𝑗𝑖
)
.

(6)
This AP risk is not differentiable due to the discontinuous func-

tion H (·). To this end, previous methods such as Smooth-AP [4]
employ the Sigmoid function as a surrogate function:

G(𝑥 ;𝜏) = (1 + exp(−𝑥/𝜏))−1 ≈ H (𝑥 ), (7)

which results in an approximation risk, i.e.,›𝐴𝑃↓𝑘 (𝑓 ). When 𝜏 → 0,

the›𝐴𝑃↓𝑘 (𝑓 ) → 𝐴𝑃
↓
𝑘

(𝑓 ), thus the approximation error of the Smooth-
AP loss is small.

Although Smooth-AP provides a straightforward solution
to address the non-differentiable problem of AP, it might
suffer from a gradient vanishing issue. Specifically, as shown in
fig. 4, when the score of a negative instance 𝑠𝑘 𝑗 significantly exceeds
that of a positive instance 𝑠𝑘𝑖 , i.e. 𝑑𝑘𝑗𝑖 ≫ 0, the corresponding
gradient is expected to be large such that the similarity function
𝑓 can be corrected. However, as depicted in fig. 4a, the gradient
magnitude tends to 0, leading to slow convergence and sub-optimal
solutions. This phenomenon is more evident in video similarity
learning since the partial matching property (see section 3.3.1)
makes 𝑑𝑘

𝑗𝑖
more likely to fall into the gradient-vanishing area.

To avoid this issue, we aim to propose a novel AP loss. To begin
with, we argue that it is unnecessary to replace allH (·). Notice that
the original AP risk in eq. (6) can be reformulated as:

𝐴𝑃
↓
𝑘

(𝑓 ) =
1

|𝑺𝑘+ |

∑︁
𝑠𝑘𝑖 ∈𝑺𝑘+

ℎ

Ñ ∑
𝑠𝑘 𝑗 ∈𝑺𝑘− H (𝑑𝑘

𝑗𝑖
)

1 +∑
𝑠𝑘 𝑗 ∈𝑺𝑘+ H (𝑑𝑘

𝑗𝑖
)

é
, (8)

where ℎ(𝑥) = 𝑥
1+𝑥 is a monotonically increasing function. Then,

the non-differentiable terms H (𝑑𝑘
𝑗𝑖

) can be divided into two types:
1) The positive-negative pair (𝑠𝑘 𝑗 ∈ 𝑺𝑘−) in the numerator, which
should be minimized to ensure the correct ranking; 2) The positive-
positive pair (𝑠𝑘 𝑗 ∈ 𝑺𝑘+) in the denominator, which plays a role of
weights. From this perspective, we only need to ensure that the
surrogate loss of the former has an appropriate gradient, while for
the latter we can directly use the original rankings such that the
importance of each term can be precisely measured.

Motivated by the above observation, for positive-positive pairs
we still utilize the Heaviside function:

R+(𝑥 ) = H (𝑥 ). (9)

As for the positive-negative pairs, the derivative of the surrogate
loss should be large for the wrongly ranked pairs, i.e. 𝑑𝑘

𝑗𝑖
+ 𝛿 ≥ 0

for a given margin 𝛿 > 0. Besides, the surrogate loss should be
convex such that the derivative is (non-strictly) monotonically
increasing. Therefore, we design the following surrogate loss for
positive-negative pairs:

R−(𝑥 ;𝛿) =
®

H (−𝑥 ) · 1
𝛿2 𝑥

2 + 2
𝛿
𝑥 + 1, if 𝑥 ≥ −𝛿.

0, if 𝑥 < −𝛿. (10)

The curves of R−(𝑥 ;𝛿) and its derivative are visualized in fig. 4c
and fig. 4d. Obviously, the above surrogate loss satisfies our design
principles. Furthermore, by introducing an extra parameter 𝜌 to

(a) G(𝑥 ;𝜏 ) in Smooth-AP. (b) Derivative of G(𝑥 ;𝜏 ).

(c) R− (𝑥 ;𝛿) in QuadLinear-AP. (d) Derivative of R− (𝑥 ;𝛿).

Figure 4: The curves of Sigmoid function in Smooth-AP (𝜏 =
0.03) and surrogate loss function for positive-negative pairs
in QuadLinear-AP (𝛿 = 0.18) and their derivative functions.
The colored parts in (b) and (d) represent non-zero gradient
areas of corresponding functions.

adjust the weight of positive-positive pairs, the score distribution
between positive and negative instances can be balanced well. The
analysis above induces the formulation of the following AP loss,
namely QuadLinear-AP:”𝐴𝑃↓𝑘 (𝑓 ) =

1
|𝑺𝑘+ |

∑︁
𝑠𝑘𝑖 ∈𝑺𝑘+

ℎ

Ñ ∑
𝑠𝑘 𝑗 ∈𝑺𝑘− R

−(𝑑𝑘
𝑗𝑖

;𝛿)

1 + 𝜌∑𝑠𝑘 𝑗 ∈𝑺𝑘+ R
+(𝑑𝑘

𝑗𝑖
)

é
, (11)

which enjoys the following attractive properties:
• Differentiable AP optimization QuadLinear-AP is differ-
entiable for AP term, making it possible to backpropagate
gradients in the learning process.

• Suitable gradients for lowAP area. Persistent and suitable
gradients in the loss function force model to correct wrongly
ranked positive-negative pairs, avoiding gradient vanishing
in the low AP area.

• Favorable mathematical properties. QuadLinear-AP is
continuous, convex, and (non-strictly) monotonically in-
creasing, ensuring a stable convergence during optimization.

As formulated in eq. (12), the final AP loss is calculated by aver-
aging QuadLinear-AP across all query videos, which is then applied
to the video-level similarity learning process. Clearly, this objective
is aligned with the evaluation metric.

L𝑉
𝑄𝐿𝐴𝑃

=
1
𝑁

𝑁∑︁
𝑘=1

”𝐴𝑃↓𝑘 (𝑓 ). (12)

3.4 Frame Similarity Distillation
As discussed in section 1, two relevant video instances may not be
completely relevant at the frame level due to the noticeable varia-
tion in the temporal dimension, i.e., only several frames are highly
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relevant with a query frame while the others are relatively low
in actual. Therefore, solely optimizing 𝑓 on video-level instances
proves inadequate. Next, we dive into the frame-level learning.

Given a query frame, it is hard to locate the relevant frames from
another video without fine-grained annotations. A possible route
is leveraging self-distillation methods [8, 56], which refines image
features by distilling ensemble information from a mean teacher
to the target model in a self-supervised manner. Unfortunately,
since our feature extractor 𝑔 is trained with video data, it might
ignore some image-level information. In this case, the pseudo labels
generated by 𝑔 cannot provide more informative supervision.

Consequently, we introduce another feature extractor 𝑔′ : X ↦→
R𝑇×𝐷

′
, where 𝐷′ is the embedding dimension. The feature extrac-

tor is pre-trained on image data with a self-supervised learning
algorithm DINO [8], and the parameters are frozen. Given a video
pair 𝑽 , 𝑽 ′, we use 𝑔′ to extract features for all frames and compute
the following frame-level similarities, where 𝑽𝑥 and 𝑽 ′

𝑦 are the 𝑥-th
frame of 𝑽 and 𝑦-th frame of 𝑽 ′, respectively.

𝑆 ′(𝑽 , 𝑽 ′)𝑥,𝑦 =
𝑔′(𝑽𝑥 )⊤𝑔′(𝑽 ′

𝑦 )
∥𝑔′(𝑽𝑥 )∥2∥𝑔′(𝑽 ′

𝑦 )∥2
. (13)

As shown in previous study [18], the similarities are highly corre-
lated to the relevance. However, for different queries, the similarity
distributions of its relevant/irrelevant frames are various, hence
discretizing them into binary pseudo labels with fixed thresholds is
impractical. Instead, we identify the frames with the highest/lowest
similarities as positive/negative, leading to the following pseudo
labels:

𝑌𝑥,𝑦 =

®
1, if 𝑆 ′(𝑽 , 𝑽 ′)𝑥,𝑦 ≥ 𝑆 ′(𝑽 , 𝑽 ′)𝑥,[𝑟𝑡×𝑇 ′],

0, if 𝑆 ′(𝑽 , 𝑽 ′)𝑥,𝑦 ≤ 𝑆 ′(𝑽 , 𝑽 ′)𝑥,[(1−𝑟𝑏 )×𝑇 ′],
(14)

where 𝑟𝑡 , 𝑟𝑏 < 1 are tunable hyperparameters, 𝑆 ′(𝑽 , 𝑽 ′)𝑥,[𝑘] refers
to the 𝑘-th largest value in {𝑆 ′(𝑽 , 𝑽 ′)𝑥,𝑦}𝑇

′
𝑦=1.

Notice the varying similarity distributions across different video
types, it’s suboptimal to set a fixed threshold for positive or nega-
tive frames to exceed during the training phase. A feasible solution
is training the model to learn to rank positive frames above the
negative ones. Resembling the method in video-level learning, we
optimize the frame-level similarities by L𝐹

𝑄𝐿𝐴𝑃
, which can be im-

plemented by substituting the video instances with frame instances.
Following previous methods on ranking optimization [13, 51],

we combine a basic loss L𝑏𝑎𝑠𝑒 with the AP losses to promote collab-
orative optimization between ranking and representation learning.
The basic loss comprises the InfoNCE loss [40] to support repre-
sentation learning and an SSHN loss [32] for hard negative mining.
Please refer to supplementary material for details.

Ultimately, the total loss for hierarchical similarity learning is
formulated in eq. (15), where 𝜆𝑓 and 𝜆𝑣 are hyperparameters for
the trade-off between components, leading to the final optimization
algorithm as summarized in algorithm 1.

L = 𝜆𝑓 L𝐹𝑄𝐿𝐴𝑃︸        ︷︷        ︸
𝑓 𝑟𝑎𝑚𝑒−𝑙𝑒𝑣𝑒𝑙

+ 𝜆𝑣L𝑉𝑄𝐿𝐴𝑃 + L𝑏𝑎𝑠𝑒︸                    ︷︷                    ︸
𝑣𝑖𝑑𝑒𝑜−𝑙𝑒𝑣𝑒𝑙

(15)

Algorithm 1 Hierarchical Average Precision Optimization

Input: Training set 𝑺 , maximum iterations 𝐿, learning rate {𝜂𝑙 }𝐿𝑙=1,
positive frame rate 𝑟𝑡 , negative frame rate 𝑟𝑏 .

Output: Model parameters 𝚯𝐿+1.
1: Initialize model parameters 𝚯1.
2: for 𝑙 = 1 to 𝐿 do
3: Sample a batch of videos {𝑽𝑖 }𝑁𝑖=1 form 𝑺 .
4: Extract video embeddings 𝑔(𝑽𝑖 ) and 𝑔′(𝑽𝑖 ).
5: Generate pseudo labels 𝑌 based on 𝑟𝑡 and 𝑟𝑏 .
6: Calculate similarities with function 𝑓 in eq. (5).
7: Compute”𝐴𝑃↓𝑘 (𝑓 ) with eq. (11) to form L𝑉

𝑄𝐿𝐴𝑃
and L𝐹

𝑄𝐿𝐴𝑃
.

8: Compute the total loss L by eq. (15).
9: Update parameters: 𝚯𝑙+1 = 𝚯𝑙 − 𝜂𝑙∇L.
10: end for

4 EXPERIMENTS
In this section, we begin with a brief overview of the basic settings,
including the datasets, evaluation metrics, and implementation
details. Next, we compare our proposed learning framework with
several previous methods on three benchmark datasets. Finally, we
conduct an ablation study to evaluate the performance of different
modules. For further details, please see the supplementary material.

4.1 Experimental Setup
Datasets. Our model is trained on the unlabeled subset of VCDB

dataset[27] (we denote the core data and distractors as C and D,
respectively) and evaluated on EVVE[47], SVD [26], and FIVR-
5K/FIVR-200K [28]. For the FIVR dataset, we report the results of
three specific subtasks: DSVR/DSVD, CSVR/CSVD, and ISVR/ISVD.

Evaluation Metrics. For retrieval tasks, we adopt Mean Average
Precision (mAP) as the evaluation metric. Specifically, mAP calcu-
lates the average AP scores for each query independently and then
averages these scores to reflect the model’s overall ranking perfor-
mance. For detection tasks, we employ Micro Average Precision
(𝝁AP), a metric widely used in previous studies [32, 34, 41, 42]. The
𝜇AP calculates the AP across all queries simultaneously, demon-
strating the model’s capability to consistently apply a uniform
threshold across various queries to detect relevant instances.

Implementation Details. Given an input video, we generate two
video clips by applying random augmentations that include tem-
poral manipulations [29, 32], spatial transformations [12, 42], and
other basic augmentations. For the feature extractor, we adopt
ResNet50 [21] following [29, 32, 33], and for the pseudo label gener-
ator, we utilize DINO [8] pretrained ViT-small [14] with a patch size
of 16. Our model is trained for 30,000 iterations with a batch size of
64. We use AdamW [38] with the Cosine Annealing scheduler for
parameters optimization. The learning rate is set to 4 × 10−5 with
a warm-up period [37], and weight decay is set to 1 × 10−2.

Competitors. We evaluate HAP-VR against various leading video
retrieval methods, categorized into two types. 1) Supervisedmeth-
ods include DML [31], TMK [44], TCA [52], ViSiL [29], DnS [33]
with an attention student network (𝑆𝑎) and with a binarization stu-
dent network (𝑆𝑏 ). 2) Unsupervised methods include LAMV [2],
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Table 1: Comparison between video retrieval methods on EVVE, SVD, and FIVR-200K with mAP (%) of retrieval task and 𝝁AP
(%) of detection task. † indicates the results taken from the original paper. Missing values indicate the lack of implementation
or original results. The first and second best results are highlighted in soft red and soft blue, respectively.

Method Label Trainset
Retrieval (mAP) Detection (𝝁AP)

EVVE SVD
FIVR-200K

EVVE SVD
FIVR-200K

DSVR CSVR ISVR DSVD CSVD ISVD

DML† [31] ✓ VCDB (C&D) 61.10 85.00 52.80 51.40 44.00 75.50 / 39.00 36.50 30.00
TMK† [44] ✓ internal 61.80 86.30 52.40 50.70 42.50 / / / / /
TCA [52] ✓ VCDB (C&D) 63.08 89.82 86.81 82.31 69.61 76.90 56.93 69.09 62.28 49.24
ViSiL† [29] ✓ VCDB (C&D) 65.80 88.10 89.90 85.40 72.30 79.10 / 75.80 69.00 53.00
DnS (𝑆𝑎 ) [33] ✓ DnS-100K 65.33 90.20 92.09 87.54 74.08 74.56 72.24 79.66 69.51 54.20
DnS (𝑆𝑏 ) [33] ✓ DnS-100K 64.41 89.12 90.89 86.28 72.87 75.80 66.53 78.05 68.52 53.48

LAMV† [2] ✗ YFCC100M 62.00 88.00 61.90 58.70 47.90 80.60 / 55.40 50.00 38.80
VRL† [23] ✗ internal / / 90.00 85.80 70.90 / / / / /

ViSiL𝑓
† [29] ✗ ImageNet 62.70 / 89.00 84.80 72.10 74.60 / 66.90 59.50 45.90

S2VS [32] ✗ VCDB (D) 67.17 88.40 92.53 87.73 74.51 80.72 65.04 86.12 77.41 63.26
HAP-VR (Ours) ✗ VCDB (D) 69.15 89.00 92.83 88.21 74.72 82.88 67.87 88.41 79.85 64.79

(a) Relevant pair distribution. (b) Irrelevant pair distribution.

Figure 5: Similarity distribution of relevant and irrelevant
instance pairs for HAP-VR, DnS, and TCA on the DSVD set
of FIVR-200K. All similarities are rescaled to [0, 1].

VRL [23], ViSiL𝑓 [29] (baseline of ViSiL without training), and
S2VS [32].

4.2 Evaluation Results
The overall performance on video retrieval and detection tasks
above is reported in table 1, leading to several key conclusions: 1)
HAP-VR stands out among other unsupervised or self-supervised
methods in both mAP and 𝜇AP metrics, with an average improve-
ment of 0.71% and 2.25%, respectively. These outcomes underscore
the effectiveness of aligning the training objectives with the evalua-
tion metrics, directly enhancing the average precision. 2) Detection
tasks enjoy larger performance gains than retrieval tasks. This is pri-
marily due to the more pronounced imbalance between instances in
detection tasks. By emphasizing the overall rankings of the positive
instances, HAP-VR achieves a more optimal similarity distribution
across all queries, resulting in a notable increase in 𝜇AP. 3) Com-
pared with supervised methods, HAP-VR achieves a better overall
performance. To investigate the underlying reason, we visualize

the video similarity distributions in fig. 5. Compared with the su-
pervised methods, HAP-VR establishes a clearer margin between
scores of relevant and irrelevant pairs. Since annotations are based
on the video categories, the supervised model tends to distinguish
the pre-defined categories but not video instances. Accordingly,
when encountering videos beyond these pre-defined categories, the
model is prone to overfit the categories, which hinders discrimi-
nating between negative instances, thereby reducing the model’s
transferability.

4.3 Ablation Study

Ablation results on proposed QuadLinear-AP loss. To validate the
effectiveness of the proposed QuadLinear-AP loss, we make a com-
parison with other commonly used losses, which can be categorized
into three types: 1) Point-wise losses, include Mean Absolute Er-
ror (MAE) and Mean Squared Error (MSE). These losses measure
the discrepancy between predicted scores and actual labels for
each item independently. 2) Pair-wise losses, include Contrastive
loss [17], Triplet loss [49] and Circle loss [54]. These losses focus on
distinguishing between the positive and negative instances in pairs.
3) List-wise losses, include FastAP [6], DIR [46], BlackBox [43],
and Smooth-AP [4]. These approaches optimize the model directly
based on ranking metrics such as AP.

For a straightforward comparison, we only combine these losses
with L𝑏𝑎𝑠𝑒 and train the models using 10% of the VCDB (D) for
10,000 iterations. Except for the specific hyperparameters associated
with each loss, all other settings remain constant to ensure a fair
comparison.

The comparison results are presented in table 2. From these re-
sults, we can draw the following conclusions: 1) In general, list-wise
losses outperform point-wise and pair-wise losses, supporting our
motivation to develop an AP-oriented method for video retrieval
tasks. 2)QuadLinear-AP achieves an average improvement of about



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 2: Comparison between QuadLinear-AP and other loss
functions on the FIVR-5K with mAP (%) of retrieval task and
𝝁AP (%) of detection task. The first and second best results
are highlighted in soft red and soft blue, respectively.

Losses
Retrieval (mAP) Detection (𝝁AP)

DSVR CSVR ISVR DSVD CSVD ISVD

MAE 89.07 88.03 80.86 78.08 75.69 65.26
MSE 89.22 88.26 80.80 78.66 76.07 65.44

Contrastive [17] 88.67 88.09 80.97 75.12 74.23 67.41
Triplet [49] 88.11 87.77 81.21 72.94 73.18 69.23
Circle [54] 87.53 86.11 78.77 73.26 71.15 59.33
FastAP [6] 89.30 88.42 81.16 78.83 77.51 69.95
DIR [46] 89.65 88.57 80.64 78.50 76.22 65.42

BlackBox [43] 89.70 88.55 80.53 80.07 77.37 66.00
Smooth-AP [4] 89.36 88.33 80.73 79.85 77.75 68.42

QuadLinear-AP (Ours) 90.80 89.68 81.31 82.92 80.03 71.45

Figure 6: Heatmaps of similarity matrices generated by var-
ious losses. In contrast, our QuadLinear-AP distinguishes
between relevant and irrelevant instances more clearly.

1.84% on mAP and 2.87% on 𝜇AP over other list-wise losses, re-
flecting the effectiveness of the proposed AP loss. The visualization
of frame-level similarity shown in fig. 6 illustrates that QuadLinear-
AP presents a clearer distinction between relevant and irrelevant
instances compared to other competitors.

Ablation results on proposed modules. Comparing Line 1 with
Line 2 in table 3, the application of the TopK-Chamfer Similarity
measure yields average boosts of 0.59% on mAP and 1.13% on
𝜇AP based on the baseline model. This suggests the efficacy of the
TopK-Chamfer Similarity measure, which will be further discussed
in the ablation study on similarity measures. Comparing Line 2
with Line 3 shows that incorporating video-level AP optimization
further enhances performance in retrieval and detection tasks, with
increases of 0.69% and 2.13% respectively. Such improvements
reveal the necessity of aligning training objectives with evaluation
metrics. Moreover, implementing a frame-level learning process
further improves the overall outcomes, emphasizing the value of
learning the internal similarity within the video precisely.

Ablation results on similarity measure. To validate the effective-
ness of the proposed TopK-Chamfer Similaritymeasure, we evaluate
the model performances varying the top-k rate 𝑘𝑡 . Note that when
𝑘𝑡 = 0.0, the measure can be seen as the original Chamfer Similarity;

Table 3: Results in the ablation study of modules includ-
ing TopK-Chamfer Similarity measure, video-level AP loss,
and frame-level AP loss. Improvements in performance com-
pared to the baseline are denoted with red subscripts.

L𝑏𝑎𝑠𝑒
TopK.
Sim.

L𝑉
𝑄𝐿𝐴𝑃

L𝐹
𝑄𝐿𝐴𝑃 EVVE

FIVR-5K
DSVR/DSVD CSVR/CSVD ISVR/ISVD

Retrieval (mAP)

✓ 67.64 88.18 87.16 80.14
✓ ✓ 69.41+1.77 88.36+0.18 87.42+0.26 80.30+0.16
✓ ✓ ✓ 69.55+1.91 89.39+1.21 88.54+1.38 80.79+0.65
✓ ✓ ✓ ✓ 69.58+1.94 89.75+1.57 88.59+1.43 80.72+0.58

Detection (𝝁AP)

✓ 79.13 75.49 73.84 63.50
✓ ✓ 80.67+1.54 76.23+0.74 74.77+0.93 64.81+1.31
✓ ✓ ✓ 81.09+1.96 78.64+3.15 77.04+3.20 68.23+4.73
✓ ✓ ✓ ✓ 82.96+3.83 81.56+6.07 78.32+4.48 66.87+3.37

Table 4: Results in the ablation study of similarity measure.
In particular, ∗ represents using Chamfer Similarity and †

represents using average pooling. The first and second best
results are highlighted in soft red and soft blue, respectively.

𝑘𝑡

Retrieval (mAP) Detection (𝝁AP)

EVVE FIVR-5K EVVE FIVR-5K
DSVR CSVR ISVR DSVD CSVD ISVD

0.00∗ 67.57 89.52 88.38 80.55 78.85 78.78 76.93 65.99
0.03 68.98 89.65 88.69 80.91 80.70 79.01 77.01 68.21
0.06 69.55 89.39 88.54 80.79 81.09 78.64 77.04 68.23
0.10 69.03 87.87 87.12 79.69 80.75 73.19 71.75 61.96
0.20 68.69 85.26 85.01 78.01 81.54 69.12 68.35 59.57
0.30 68.27 81.54 81.98 75.93 80.04 64.30 65.41 58.41
1.00† 55.49 61.29 64.25 62.84 77.32 37.57 44.27 42.92

when 𝑘𝑡 = 1.0, the measure is equal to average pooling. As indi-
cated by the results in table 3, the optimal performance is achieved
neither at 𝑘𝑡 = 0.0 nor at 𝑘𝑡 = 1.0. This outcome supports the
utility of selecting top-K values. From another perspective, the best
performance is obtained when 𝑘𝑡 is small, demonstrating the capa-
bility of the TopK-Chamfer Similarity in diminishing redundancy
and reducing the influence of noise, thereby ensuring robustness
in similarity calculation.

5 CONCLUSION
In this paper, we design a self-supervised framework for video
retrieval, which features a video-oriented similarity measure to
gather fine-grained features and a novel AP-based loss with rea-
sonable gradients to correct mis-ranked instance pairs efficiently,
filling the gap between the training objective and evaluation metric.
Within the framework, we propose a hierarchical learning strategy
to conduct AP optimization both on video and frame levels, which
generates precise estimations of the AP loss, thus enhancing the
accuracy of the similarity learning process. Experimental results
demonstrate that our framework often surpasses previous works in
several benchmark datasets, making it a feasible solution for video
retrieval tasks. In future work, we plan to extend our framework
to other applications, which we hope could support subsequent
research to further contribute to the multimedia community.



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Not All Pairs are Equal: Hierarchical Learning for Average-Precision-Oriented Video Retrieval ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Aasif Ansari and Muzammil H Mohammed. 2015. Content based video retrieval

systems-methods, techniques, trends and challenges. International Journal of
Computer Applications 112, 7 (2015).

[2] Lorenzo Baraldi, Matthijs Douze, Rita Cucchiara, and Hervé Jégou. 2018. LAMV:
Learning to align and match videos with kernelized temporal layers. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 7804–7813.

[3] Harry G Barrow, JayMTenenbaum, Robert C Bolles, andHelen CWolf. 1977. Para-
metric correspondence and chamfer matching: Two new techniques for image
matching. In Proceedings: Image Understanding Workshop. Science Applications,
Inc, 21–27.

[4] Andrew Brown, Weidi Xie, Vicky Kalogeiton, and Andrew Zisserman. 2020.
Smooth-ap: Smoothing the path towards large-scale image retrieval. In European
Conference on Computer Vision. Springer, 677–694.

[5] Yang Cai, Linjun Yang, Wei Ping, Fei Wang, Tao Mei, Xian-Sheng Hua, and
Shipeng Li. 2011. Million-scale near-duplicate video retrieval system. In ACM
International Conference on Multimedia. 837–838.

[6] Fatih Cakir, Kun He, Xide Xia, Brian Kulis, and Stan Sclaroff. 2019. Deep met-
ric learning to rank. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 1861–1870.

[7] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to
rank: from pairwise approach to listwise approach. In International Conference
on Machine Learning. 129–136.

[8] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr
Bojanowski, and Armand Joulin. 2021. Emerging properties in self-supervised
vision transformers. In International Conference on Computer Vision. 9650–9660.

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In Interna-
tional Conference on Machine Learning. PMLR, 1597–1607.

[10] Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005. Learning a similarity metric
discriminatively, with application to face verification. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Vol. 1. IEEE, 539–546.

[11] Chien-Li Chou, Hua-Tsung Chen, and Suh-Yin Lee. 2015. Pattern-based near-
duplicate video retrieval and localization on web-scale videos. IEEE Transactions
on Multimedia 17, 3 (2015), 382–395.

[12] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. 2020. Randaugment:
Practical automated data augmentation with a reduced search space. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshop. 702–703.

[13] Siran Dai, Qianqian Xu, Zhiyong Yang, Xiaochun Cao, and Qingming Huang.
2024. DRAUC: An Instance-wise Distributionally Robust AUC Optimization
Framework. Advances in Neural Information Processing Systems 36 (2024).

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[15] Matthijs Douze, Hervé Jégou, and Cordelia Schmid. 2010. An image-based
approach to video copy detection with spatio-temporal post-filtering. IEEE
Transactions on Multimedia 12, 4 (2010), 257–266.

[16] Yang Feng, Lin Ma, Wei Liu, Tong Zhang, and Jiebo Luo. 2018. Video re-
localization. In European Conference on Computer Vision. 51–66.

[17] Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006. Dimensionality reduction
by learning an invariant mapping. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Vol. 2. IEEE, 1735–1742.

[18] Mark Hamilton, Zhoutong Zhang, Bharath Hariharan, Noah Snavely, and
William T Freeman. 2022. Unsupervised Semantic Segmentation by Distilling
Feature Correspondences. In International Conference on Learning Representa-
tions.

[19] Tamir Hazan, Joseph Keshet, andDavidMcAllester. 2010. Direct lossminimization
for structured prediction. Advances in Neural Information Processing Systems 23
(2010).

[20] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-
mentum contrast for unsupervised visual representation learning. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 9729–9738.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 770–778.

[22] Sifeng He, Yue He, Minlong Lu, Chen Jiang, Xudong Yang, Feng Qian, Xiaobo
Zhang, Lei Yang, and Jiandong Zhang. 2023. TransVCL: attention-enhanced
video copy localization network with flexible supervision. In Association for the
Advancement of Artificial Intelligence, Vol. 37. 799–807.

[23] Xiangteng He, Yulin Pan, Mingqian Tang, Yiliang Lv, and Yuxin Peng. 2022.
Learn from unlabeled videos for near-duplicate video retrieval. In International
ACM SIGIR Conference on Research and Development in Information Retrieval.
1002–1011.

[24] Olivier Henaff. 2020. Data-efficient image recognition with contrastive predictive
coding. In International Conference on Machine Learning. PMLR, 4182–4192.

[25] Weiming Hu, Nianhua Xie, Li Li, Xianglin Zeng, and Stephen Maybank. 2011. A
survey on visual content-based video indexing and retrieval. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 41, 6 (2011),
797–819.

[26] Qing-Yuan Jiang, Yi He, Gen Li, Jian Lin, Lei Li, and Wu-Jun Li. 2019. SVD: A
large-scale short video dataset for near-duplicate video retrieval. In International
Conference on Computer Vision. 5281–5289.

[27] Yu-Gang Jiang, Yudong Jiang, and Jiajun Wang. 2014. VCDB: a large-scale
database for partial copy detection in videos. In European Conference on Computer
Vision. Springer, 357–371.

[28] Giorgos Kordopatis-Zilos, Symeon Papadopoulos, Ioannis Patras, and Ioannis
Kompatsiaris. 2019. FIVR: Fine-grained incident video retrieval. IEEE Transactions
on Multimedia 21, 10 (2019), 2638–2652.

[29] Giorgos Kordopatis-Zilos, Symeon Papadopoulos, Ioannis Patras, and Ioannis
Kompatsiaris. 2019. Visil: Fine-grained spatio-temporal video similarity learning.
In International Conference on Computer Vision. 6351–6360.

[30] Giorgos Kordopatis-Zilos, Symeon Papadopoulos, Ioannis Patras, and Yiannis
Kompatsiaris. 2017. Near-duplicate video retrieval by aggregating intermediate
cnn layers. In MultiMedia Modeling: 23rd International Conference, MMM 2017,
Reykjavik, Iceland, January 4-6, 2017, Proceedings, Part I 23. Springer, 251–263.

[31] Giorgos Kordopatis-Zilos, Symeon Papadopoulos, Ioannis Patras, and Yiannis
Kompatsiaris. 2017. Near-duplicate video retrieval with deep metric learning.
In Proceedings of the IEEE international conference on computer vision workshops.
347–356.

[32] Giorgos Kordopatis-Zilos, Giorgos Tolias, Christos Tzelepis, Ioannis Kompatsiaris,
Ioannis Patras, and Symeon Papadopoulos. 2023. Self-Supervised Video Similarity
Learning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition.
4755–4765.

[33] Giorgos Kordopatis-Zilos, Christos Tzelepis, Symeon Papadopoulos, Ioannis
Kompatsiaris, and Ioannis Patras. 2022. DnS: Distill-and-select for efficient and
accurate video indexing and retrieval. International Journal of Computer Vision
130, 10 (2022), 2385–2407.

[34] Julien Law-To, Li Chen, Alexis Joly, Ivan Laptev, Olivier Buisson, Valerie Gouet-
Brunet, Nozha Boujemaa, and Fred Stentiford. 2007. Video copy detection: a
comparative study. In Proceedings of the 6th ACM international conference on
Image and video retrieval. 371–378.

[35] Joonseok Lee, Sami Abu-El-Haija, Balakrishnan Varadarajan, and Apostol Natsev.
2018. Collaborative deep metric learning for video understanding. In Proceedings
of the 24th ACM SIGKDD International conference on knowledge discovery & data
mining. 481–490.

[36] Kaiyang Liao, Hao Lei, Yuanlin Zheng, Guangfeng Lin, Congjun Cao, Mingzhu
Zhang, and Jie Ding. 2018. IR feature embedded bof indexing method for near-
duplicate video retrieval. IEEE Transactions on Circuits and Systems for Video
Technology 29, 12 (2018), 3743–3753.

[37] Ilya Loshchilov and Frank Hutter. 2016. SGDR: Stochastic Gradient Descent with
Warm Restarts. In International Conference on Learning Representations.

[38] Ilya Loshchilov and Frank Hutter. 2018. Decoupled Weight Decay Regularization.
In International Conference on Learning Representations.

[39] Pritish Mohapatra, CV Jawahar, andM Pawan Kumar. 2014. Efficient optimization
for average precision svm. Advances in Neural Information Processing Systems 27
(2014).

[40] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[41] Florent Perronnin, Yan Liu, and Jean-Michel Renders. 2009. A family of contextual
measures of similarity between distributions with application to image retrieval.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2358–
2365.

[42] Ed Pizzi, Sreya Dutta Roy, Sugosh Nagavara Ravindra, Priya Goyal, and Matthijs
Douze. 2022. A self-supervised descriptor for image copy detection. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 14532–14542.

[43] Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil, Georg Martius, and Michal
Rolinek. 2019. Differentiation of blackbox combinatorial solvers. In International
Conference on Learning Representations.

[44] Sébastien Poullot, Shunsuke Tsukatani, Anh Phuong Nguyen, Hervé Jégou, and
Shin’Ichi Satoh. 2015. Temporal matching kernel with explicit feature maps. In
ACM International Conference on Multimedia. 381–390.

[45] Tao Qin, Tie-Yan Liu, and Hang Li. 2010. A general approximation framework
for direct optimization of information retrieval measures. Information retrieval
13 (2010), 375–397.

[46] Jerome Revaud, Jon Almazán, Rafael S Rezende, and Cesar Roberto de Souza.
2019. Learning with average precision: Training image retrieval with a listwise
loss. In International Conference on Computer Vision. 5107–5116.

[47] Jérôme Revaud, Matthijs Douze, Cordelia Schmid, and Hervé Jégou. 2013. Event
retrieval in large video collections with circulant temporal encoding. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2459–2466.

[48] Michal Rolínek, Vít Musil, Anselm Paulus, Marin Vlastelica, Claudio Michaelis,
and Georg Martius. 2020. Optimizing rank-based metrics with blackbox differ-
entiation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition.



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

7620–7630.
[49] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. Facenet: A

unified embedding for face recognition and clustering. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 815–823.

[50] Lifeng Shang, Linjun Yang, Fei Wang, Kwok-Ping Chan, and Xian-Sheng Hua.
2010. Real-time large scale near-duplicate web video retrieval. In ACM Interna-
tional Conference on Multimedia. 531–540.

[51] Huiyang Shao, Qianqian Xu, Zhiyong Yang, Peisong Wen, Gao Peifeng, and
Qingming Huang. 2024. Weighted roc curve in cost space: Extending auc to
cost-sensitive learning. Advances in Neural Information Processing Systems 36
(2024).

[52] Jie Shao, Xin Wen, Bingchen Zhao, and Xiangyang Xue. 2021. Temporal context
aggregation for video retrieval with contrastive learning. In Proceedings of the
IEEE/CVF winter conference on applications of computer vision. 3268–3278.

[53] Yang Song, Alexander Schwing, Raquel Urtasun, et al. 2016. Training deep neural
networks via direct loss minimization. In International Conference on Machine
Learning. PMLR, 2169–2177.

[54] Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang, Liang Zheng, Zhongdao
Wang, and Yichen Wei. 2020. Circle loss: A unified perspective of pair similarity
optimization. In IEEE/CVF Conference on Computer Vision and Pattern Recognition.

6398–6407.
[55] Hung-Khoon Tan, Chong-Wah Ngo, Richard Hong, and Tat-Seng Chua. 2009.

Scalable detection of partial near-duplicate videos by visual-temporal consistency.
In ACM International Conference on Multimedia. 145–154.

[56] Antti Tarvainen and Harri Valpola. 2017. Mean teachers are better role models:
Weight-averaged consistency targets improve semi-supervised deep learning
results. Advances in Neural Information Processing Systems 30 (2017).

[57] Evgeniya Ustinova and Victor Lempitsky. 2016. Learning deep embeddings with
histogram loss. Advances in Neural Information Processing Systems 29 (2016).

[58] Ling Wang, Yu Bao, Haojie Li, Xin Fan, and Zhongxuan Luo. 2017. Compact
CNN based video representation for efficient video copy detection. InMultiMedia
Modeling: 23rd International Conference, MMM 2017, Reykjavik, Iceland, January
4-6, 2017, Proceedings, Part I 23. Springer, 576–587.

[59] Kilian Q Weinberger and Lawrence K Saul. 2009. Distance metric learning for
large margin nearest neighbor classification. Journal of machine learning research
10, 2 (2009).

[60] Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten Joachims. 2007. A
support vector method for optimizing average precision. In International ACM
SIGIR Conference on Research and Development in Information Retrieval. 271–278.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Video Retrieval
	2.2 Average Precision Optimization

	3 Methodology
	3.1 Task Definition
	3.2 Overview
	3.3 Video-oriented AP Optimization
	3.4 Frame Similarity Distillation

	4 Experiments
	4.1 Experimental Setup
	4.2 Evaluation Results
	4.3 Ablation Study

	5 Conclusion
	References

