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Abstract
Adversarial patches are optimized contiguous
pixel blocks in an input image that cause a
machine-learning model to misclassify it. How-
ever, their optimization is computationally de-
manding, and requires careful hyperparameter
tuning. To overcome these issues, we propose
ImageNet-Patch, a dataset to benchmark machine-
learning models against adversarial patches. It
consists of a set of patches, optimized to general-
ize across different models, and applied to Ima-
geNet data after preprocessing them with affine
transformations. This process enables an approxi-
mate yet faster robustness evaluation, leveraging
the transferability of adversarial perturbations.

1. Introduction
Understanding the security of machine-learning models is
of paramount importance nowadays, as these algorithms
are used in a large variety of settings, including security-
related and mission-critical applications, to extract action-
able knowledge from vast amounts of data. Nevertheless,
such data-driven algorithms are not robust against attacks,
as malicious attackers can easily alter the behavior of state-
of-the-art models by carefully manipulating their input
data (Biggio et al., 2013; Szegedy et al., 2014; Carlini &
Wagner, 2017; Madry et al., 2018). In particular, attack-
ers can hinder the performance of classification algorithms
by means of adversarial patches (Brown et al., 2017), i.e.,
contiguous chunks of pixels which can be applied to any
input image to cause the target model to output an attacker-
chosen class. When embedded into input images, adversar-
ial patches produce out-of-distribution samples. The reason
is that the injected patch induces a spurious correlation with
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the target label, which is likely to shift the input sample off
the manifold of natural images. Adversarial patches can be
printed as stickers and physically placed on real objects, like
stop signs that are then recognized as speed limits (Eykholt
et al., 2018), and accessories that camouflage the identity
of a person, hiding their real identity (Sharif et al., 2016).
Therefore, the evaluation of the robustness against these
attacks is of the uttermost importance, as they can critically
impact real-world applications with physical consequences.
This process is costly, as adversarial patches should also be
effective under different transformations, including affine
transformations like translation, rotation and scale changes,
to be effective in the physical world, and should success-
fully transfer across different models, given that, in practical
scenarios, it is most likely that complete access to the target
model (i.e., access to its gradients) is not provided.
To overcome these issues, in this work we propose
ImageNet-Patch, a dataset of pre-optimized adversarial
patches that can be used to benchmark machine-learning
models with small computational overhead. This dataset
is constructed with a subset of the ImageNet validation set.
It consists of 10 patches that target 10 different classes,
applied on 5, 000 images each, for a total of 50, 000 sam-
ples. We create these patches by leveraging an ensemble
of models, forcing the algorithm to propose patches that
evade them all to improve transferability, also under dif-
ferent affine transformations (Sect. 2). Even though the
resulting robustness evaluation will be approximate, eval-
uating on a pre-defined dataset is extremely fast, and it
provides a first step to evaluate the robustness of mod-
els (Sect. 3). We test the efficacy of ImageNet-Patch by
evaluating the successful generalization of the patches to
unseen models (Sect. 4). We conclude by discussing re-
lated work (Sect. 5), as well as the limitations and future
directions of our work (Sect. 6). Our dataset is available
at https://zenodo.org/record/6568778.

2. Crafting Transferable Adversarial Patches
Attackers can compute adversarial patches by solving
an optimization problem with gradient-descent algo-
rithms (Brown et al., 2017). To be used in the real world,
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the patches should be robust to affine transformations, like
rotation, translation and scale, that are unavoidable when
dealing with this scenario. Hence, the optimization process
must include these perturbations as well, to force such in-
variance inside the resulting patches. Also, they can either
generate a general misclassification, i.e. an untargeted at-
tack, or force the model to predict a specific class, i.e. a
targeted attack. Formally, targeted adversarial patches are
computed by solving the optimization problem:

min
δ

EA∼T

 J∑
j=1

L(xj ⊕Aδ, yt;θ)

 , (1)

where δ is the adversarial patch to be computed, xj is one
of J samples of the training data, yt is the target label,1 θ is
the targeted model, A is an affine transformation randomly
sampled from a set of affine transformations T , L is a loss
function of choice, that quantifies the classification error
between the target label and the predicted one and ⊕ is a
function that applies the patch on the input images. The
latter is defined as: x⊕ δ = (1− µ)⊙ x+ µ⊙ δ, where
we introduce a mask µ that is a tensor with the same size of
the input data x, and whose components are ones where the
patch should be applied and zeros elsewhere (Karmon et al.,
2018). To produce a dataset that can be used as a benchmark
for robustness assessment, with adversarial patches effective
regardless of the target model, we consider an ensemble of
models inside the optimization process. This addition forces
the optimization algorithm to find effective solutions against
the ensemble, boosting the transferability of the produced
adversarial patches, i.e., the ability of the adversarial patch
optimized against a model (or a set of them) to be effective
against different models. Hence, the loss function to be
minimized can be written as:

min
δ

EA∼T

 M∑
m=1

J∑
j=1

L(xj ⊕Aδ, yt;θm)

 , (2)

where we modified Equation 1 to minimize the loss L over
M models, parameterized by θ1, ...,θM .
The objective function defined in Equation 2 can be opti-
mized through gradient-descent techniques, and thus we
use Algorithm 1 for minimizing it. After having randomly
initialized the patch (line 1), we loop through the number
of intended epochs (line 1), and the samples of the training
data (line 1). In each epoch, we sample a random affine
transformation that will be applied to the patch (line 1). We
iterate over all models of the ensemble (line 1) to calculate
the loss by accumulating its gradient w.r.t. the patch (line 1),
and using it to update the patch at the end of each epoch

1The same formulation holds for crafting untargeted attacks, by
simply substituting the target label yt with the ground truth label
of the samples y, and inverting the sign of the loss function.

Algorithm 1 Optimization of adversarial patches

1: Input:x, the training dataset containing J images; yt,
the target class; θ1, ..,θM , the ensemble of models; γ,
the learning rate; N , the number of epochs.

2: Output: δ, the adversarial patch
3: δ ∼ U(0, 1)
4: for i ∈ [1, N ] do
5: g ← 0
6: for j ∈ [1, J ] do
7: A← random-affine()
8: for m ∈ [1,M ] do
9: g ← g + 1

MJ∇δL(xj ⊕Aδ, yt;θm)
10: end for
11: end for
12: δ ← δ − γg
13: end for
14: return δ

soap dispenser cornet plate banana cup

typewriter keyboard electric guitar hair spray sock cellular telephone

Figure 1. The 10 optimized adversarial patches.

(line 1). After all the epochs have been consumed, the final
adversarial patch is returned (line 1).

3. The ImageNet-Patch Dataset
We now illustrate how we apply our methodology to gener-
ate the ImageNet-Patch dataset that will be used to evaluate
the robustness of classification models against patch attacks.
We start from the validation set of the original ImageNet
database, containing 1, 281, 167 training images, 50, 000
validation images and 100, 000 test images, divided into
1, 000 object classes. Then, we select the test set of 5, 000
images used in RobustBench (Croce et al., 2020) for testing
model robustness against adversarial attacks. We create the
corpus of images used to optimize adversarial patches from
the remaining part of the ImageNet validation set randomly
sampling 20 images from different classes.
We now define the ImageNet-Patch dataset. To optimize
the patches on an ensemble, we select three deep neural net-
work architectures trained on the ImageNet dataset, namely
AlexNet (Krizhevsky et al., 2012), ResNet18 (He et al.,
2016) and SqueezeNet (Iandola et al., 2016). We leverage
the pretrained models available inside the PyTorch TorchVi-
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sion zoo,2 trained to classify RGB images of size 224×224.
We run Algorithm 1 to create squared patches with a size of
50×50 pixels, with a learning rate of 1, 20 training samples,
5000 training epochs, and using the cross-entropy loss. We
include rotation and translation as affine transformations
during the optimization of the patch, constraining rotations
up to ±π

8 to mimic the setup applied by Brown et al. (2017),
and translations to a shift of ±68 pixels on both axes from
the center of the image (to avoid the patches being too
close to the borders of the image). We optimize 10 patches
with these settings, targeting 10 different classes of the
ImageNet dataset (“soap dispenser”, “cornet”, “plate”, “ba-
nana”, “cup”, “typewriter keyboard”, “electric guitar”, “hair
spray”, “sock”, “cellular phone”). The resulting patches
are shown in Fig. 1. We apply such patches to each of the
5, 000 images in the test set, generating a dataset of 50, 000
perturbed images with adversarial patches. We depict some
examples of the applied patches in Fig. 4.

4. Experimental Analysis
We evaluate the evasion performance of the ImageNet-Patch
dataset by considering three metrics: (i) the clean accuracy
Ck, which is the accuracy of the target model in absence of
attacks; (ii) the robust accuracy Rk, which is the accuracy
of the target model in presence of adversarial patches; and
(iii) the success rate Sk of a patch, that measures the per-
centage of samples for which the patch successfully altered
the prediction of the target model toward the intended class.
We denote with k the results obtained with the top-k scores,
i.e. by computing the metric in the set of k highest outputs
of the classification model θ when receiving the sample x
as input. We evaluate these three metrics for k ∈ {1, 5}.
To evaluate the effectiveness of the patches, we test
ImageNet-Patch against 127 deep neural networks trained
on the ImageNet dataset. To facilitate the discussion, we
group the models in 5 groups. We denote as ENSEMBLE
the models in the ensemble, STANDARD a set of standard-
trained models, ADV-ROBUST a set of robust-trained mod-
els, AUGMENTATION a set of models robust to image per-
turbations and corruptions, and MORE-DATA a set of mod-
els trained on datasets that utilize substantially more training
data than the standard ImageNet training set. We take all
models from RobustBench3 (Croce et al., 2020) and from
the ImageNet Testbed repository4 (Taori et al., 2020).

4.1. Experimental Results

We now detail the effectiveness of our dataset against the
groups we have defined, sharing the results in Fig. 2. The

2https://pytorch.org/vision
3https://robustbench.github.io/
4https://github.com/modestyachts/

imagenet-testbed
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Figure 2. Results of our analysis on 127 models. Top: top-1 (left)
and top-5 (right) clean accuracy vs robust accuracy. Bottom: top-1
(left) and top-5 (right) robust accuracy vs attack success rate.

ENSEMBLE group of models is characterized by low ro-
bust accuracy and the highest success rate of the adversarial
patch. Such a result is expected since we optimize our adver-
sarial patches to specifically mislead these models, as they
are part of the training ensemble. The STANDARD group is
characterized by a modest decrement of the robust accuracy,
highlighting errors caused by the patches. The success rate
is lower compared to those exhibited by the ENSEMBLE
group, since patches are not optimized on these models.
The ADV-ROBUST group is characterized by a drop of ro-
bust accuracy similar to the STANDARD group, but with a
low success rate for the adversarial patches. This implies
that robust models are affected by adversarial patches in
terms of untargeted attacks, but not by targeted ones. The
AUGMENTATION group contains mixed results, shifting
from a modest to a severe drop in terms of robust accuracy,
associated with an increment of the success rate, which is
slightly less than that achieved by the STANDARD group.
This might imply that augmentation techniques help the
model to score good results on regular images, but perfor-
mance drops when dealing with adversarial noise. Lastly,
the MORE-DATA group outperforms the others in clean and
robust accuracy while the success rate of the patches is
similar to the AUGMENTATION group results. To better
highlight the efficacy of our adversarial patches, we also
depict the difference in terms of accuracy of these target
models scored by applying our pre-optimized patches and
randomly-generated ones in Fig. 3. The top row shows the
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results for the pre-optimized patches, while the bottom row
focuses on the random ones, and each plot also shows a ro-
bust regression line, along with its 95% confidence interval.
The regression analysis highlights meaningful observations
we can extract from the benchmark. First, the robust ac-
curacy of each model evaluated with random patches can
be still computed as a linear function of clean accuracy, as
shown by the plot of the second row of Fig. 3. Hence, the
clean accuracy can be seen as an accurate estimator of the ro-
bust accuracy when using random patches, similarly to what
has been found by Taori et al. (2020). However, when we
evaluate the robustness with our pre-optimized patches, the
relation between robust and clean accuracy slightly diverges
from a linear regression model, as the distance of the points
from the interpolating line increases. Among the many
reasons behind this effect, we focus on the ADV-ROBUST
group, as it lays outside the confidence level, and towards
the bisector of the plot. Intuitively, models that are located
above the regression line can be considered more robust
when compared with the others, since their robust accuracy
is closer to their clean accuracy, i.e. closer to the bisec-
tor line. However, even if their robust training is aiding
their performances against patch attacks, their robustness is
not as evident as the one obtained when considering their
original threat model. Our dataset can help by providing
additional analysis of robustness against patch attacks to
assess for a more general and complete evaluation. Lastly,
we notice that the MORE-DATA group seems to present a
similar effect by distantiating from the regression line, but
with a much lower magnitude.

5. Related Work
We now discuss relevant work related to the optimization
of adversarial patches, and to the proposal of similar bench-
mark datasets. Brown et al. (2017) introduced the first
universal physical patch attack. In this work, we lever-
age the same model-ensemble attack to create adversarial
patches robust to affine transformations and applicable to
different source images to target different models. From
that, we publish a dataset that favors fast robustness evalua-
tion to patch attacks without requiring costly optimization
steps. Also, previous work proposed datasets for bench-
marking adversarial robustness. The APRICOT dataset,
proposed by Braunegg et al. (2020), contains 1, 000 anno-
tated photographs of printed adversarial patches targeting
object detection systems, i.e. producing targeted detections.
ImageNet-C and ImageNet-P, proposed by Hendrycks &
Dietterich (2018), are two datasets proposed to benchmark
neural network robustness to image corruptions and per-
turbations, respectively. Differently from these works, we
propose a dataset that can be used to benchmark the robust-
ness of image classifiers to adversarial patch attacks.

0.2 0.4 0.6 0.8 1.0
Clean Accuracy (C1)

0.0

0.2

0.4

0.6

0.8

1.0

R
ob

u
st

A
cc

u
ra

cy
(R

1)

top-1
ρ: 0.85 p: 1.44e-34

0.2 0.4 0.6 0.8 1.0
Clean Accuracy (C5)

0.0

0.2

0.4

0.6

0.8

1.0

R
ob

u
st

A
cc

u
ra

cy
(R

5)

top-5
ρ: 0.80 p: 4.46e-28

0.2 0.4 0.6 0.8 1.0
Clean Accuracy (C1)

0.0

0.2

0.4

0.6

0.8

1.0

R
ob

u
st

A
cc

u
ra

cy
(R

1)

top-1
ρ: 0.99 p: 3.69e-07

0.2 0.4 0.6 0.8 1.0
Clean Accuracy (C5)

0.0

0.2

0.4

0.6

0.8

1.0

R
ob

u
st

A
cc

u
ra

cy
(R

5)

top-5
ρ: 0.98 p: 2.32e-06

ENSEMBLE

STANDARD

ADV-ROBUST

AUGMENTATION

MORE-DATA

Figure 3. Clean vs robust accuracy for adversarial (top) and ran-
dom (bottom) patches. The grey line and shaded area show a
robust regression model fitted on the data along with the 95%
confidence intervals. The results highlight the effectiveness of our
pre-optimized strategy against choosing patches at random.

6. Conclusions, Limitations, and Future Work
We propose the ImageNet-Patch dataset, a collection of pre-
optimized adversarial patches that can be used to compute
an approximate-yet-fast robustness evaluation of machine-
learning models against patch attacks. This dataset is con-
structed by optimizing squared blocks of contiguous pixels
perturbed with affine transformations to mislead an ensem-
ble of differentiable models, forcing the optimization algo-
rithm to produce patches that can transfer across models,
gaining cross-model effectiveness. Finally, these adversarial
patches are attached to images sampled from the ImageNet
dataset, composing a benchmark dataset of 50,000 images.
While our methodology is efficient, it only provides an es-
timate of adversarial robustness, which can be computed
more accurately by performing adversarial attacks directly
against the target model. Hence, our analysis serves as a
first preliminary robustness evaluation, to highlight the most
promising defensive strategies. Moreover, we only release
patches that target 10 different classes, and this number
could be extended to target all the 1000 classes of the Ima-
geNet dataset. We envision the use of our ImageNet-Patch
dataset as a benchmark for machine-learning models. In
addition, our methodology can generate adversarial patches
for any kind of datasets of images, extending the achieved
results on ImageNet to other data sources as well.
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Learning and Knowledge Discovery in Databases (ECML
PKDD), Part III, volume 8190 of LNCS, pp. 387–402.
Springer Berlin Heidelberg, 2013.

Braunegg, A., Chakraborty, A., Krumdick, M., Lape, N.,
Leary, S., Manville, K., Merkhofer, E., Strickhart, L., and
Walmer, M. Apricot: A dataset of physical adversarial
attacks on object detection. In European Conference on
Computer Vision, pp. 35–50. Springer, 2020.
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A. Related Works on Patch Attacks
Aside from (Brown et al., 2017), there are other works that propose patch attacks, that are worth mentioning. The LaVAN
attack, proposed by Karmon et al. (2018), attempts to achieve the same goal of Brown et al. by also reducing the patch
size by placing it in regions of the target image where there are no other objects. The PS-GAN attack, proposed by Liu
et al. (2019), addresses the problem of minimizing the perceptual sensitivity of the patches by enforcing visual fidelity
while achieving the same misclassification objective. The DT-Patch attack, proposed by Benz et al. (2020), focuses on
finding universal patches that only redirect the output of some given classes to different target labels, while retaining
normal functioning of the model on the other classes. PatchAttack, proposed by Yang et al. (2020), leverages reinforcement
learning for selecting the optimal patch position and texture to use for perturbing the input image for targeted or untargeted
misclassification, in a black-box setting. The Inconspicuous Adversarial Patch Attack (IAPA), proposed by Bai et al. (2021),
generates difficult-to-detect adversarial patches with one single image by using generators and discriminators. Lennon et al.
(2021) analyze the robustness of adversarial patches and their invariance to 3D poses. Xiao et al. (2021) craft transferable
patches using a generative model to fool black-box face recognition systems. They use the same transformations as (Xie
et al., 2019), but unlike other attacks, they apply them to the input image with the patch attached, and not just on the patch.
Ye et al. (2021) study the specific application of patch attacks on traffic sign recognition and use an ensemble of models to
improve the attack success rate. The Generative Dynamic Patch Attack (GDPA), proposed by Li & Ji (2021), generates the
patch pattern and location for each input image simultaneously, reducing the runtime of the attack and making it hence a
good candidate to use for adversarial training.
We summarize in Table 1 these attacks, highlighting the main properties and comparing them with the attack we used
to create the adversarial patches. In particular, in the Cross-model column we report the capability of an attack to be
performed against multiple models (for black-box attacks we omit this information); in the Transfer column the proved
transferability of patches, if reported in each work (thus it is still possible that an attack could produce transferable patches
even if not tested on this setting); in Targeted and Untargeted columns the type of misclassification that patches can produce;
in Transformations column the transformations applied to the patch during the optimization process (if any), which can
increase the robustness of the patches with respect to them at test time.

Attack Cross-model Transfer Targeted Untargeted Transformations
Sharif et al. (2016) ✗ ✗ ✓ ✓ rot
Brown et al. (2017) ✓ ✓ ✓ ✗ loc, scl, rot

LaVAN (Karmon et al., 2018) ✗ ✗ ✓ ✗ loc
PS-GAN (Liu et al., 2019) ✗ ✓ ✗ ✓ loc

DT-Patch (Benz et al., 2020) ✗ ✗ ✓ ✗ ✗
PatchAttack (Yang et al., 2020) - ✓ ✓ ✓ loc, scl

IAPA (Bai et al., 2021) ✗ ✓ ✓ ✓ ✗
Lennon et al. (2021) ✗ ✓ ✓ ✗ loc, scl, rot

Xiao et al. (2021) - ✓ ✓ ✓ various
Ye et al. (2021) ✓ ✓ ✓ ✗ loc, scl, rot

GDPA (Li & Ji, 2021) ✗ ✗ ✓ ✓ loc
Ours ✓ ✓ ✓ ✓ loc, rot

Table 1. Patch attacks, compared based on their main features. loc refers to the location of the patch in the image, rot refers to rotation,
scl refers to scale variations, various include several image transformations (see (Xiao et al., 2021) for more details).

B. Additional Results
We briefly summarize here the results of our analysis, based on our ImageNet-Patch dataset to benchmark machine-learning
models. We observe that data augmentation techniques do not generally improve robustness to adversarial patches. Moreover,
we argue that real progress in robustness should be observed as a general property against different adversarial attacks, and
not only against one specific perturbation model with a given budget (e.g., ℓ∞-norm perturbations with maximum size of
8/255). We are not claiming that work done on defenses for adversarial attacks so far is useless. Conversely, there has been
great work and progress in this area, but it seems now that defenses are becoming too specific to current benchmarks and
fail to generalize against slightly-different perturbation models. To overcome this issue, we suggest to test the proposed
defenses on a wider set of robustness benchmarks, rather than over-specializing them on a specific scenario, and we believe
that our ImageNet-Patch benchmark dataset provides a useful contribution in this direction.

Finally, we report detailed results for 15 models taken from the different groups in Table 2. In particular, we consider the
three models used for the ensemble, AlexNet (Krizhevsky et al., 2012), ResNet18 (He et al., 2016) and SqueezeNet (Iandola
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top-1 top-5 top-10

Model C1 R1 S1 C5 R5 S5 C10 R10 S10

E
N
S
E
M
B
L
E AlexNet (Krizhevsky et al., 2012) 0.562 0.113 0.256 0.789 0.250 0.504 0.849 0.327 0.613

ResNet18 (He et al., 2016) 0.697 0.289 0.431 0.883 0.535 0.739 0.923 0.641 0.839

SqueezeNet (Iandola et al., 2016) 0.580 0.094 0.610 0.804 0.259 0.865 0.865 0.355 0.926
S
T
A
N
D
A
R
D GoogLeNet (Szegedy et al., 2015) 0.697 0.469 0.090 0.895 0.702 0.326 0.932 0.778 0.482

MobileNet (Howard et al., 2019) 0.737 0.541 0.017 0.910 0.764 0.083 0.945 0.826 0.141

Inception v3 (Szegedy et al., 2016) 0.696 0.412 0.106 0.883 0.628 0.317 0.921 0.703 0.426

A
D
V
-
R
O
B
U
S
T Engstrom et al. (Engstrom et al., 2019a) 0.625 0.495 0.005 0.838 0.720 0.026 0.887 0.789 0.051

Salman et al. (Salman et al., 2020) 0.641 0.486 0.003 0.845 0.711 0.017 0.894 0.780 0.034

Wong et al. (Wong et al., 2020) 0.535 0.385 0.003 0.765 0.612 0.020 0.833 0.695 0.039

A
U
G
M
.

Zhang et al. (Zhang, 2019) 0.566 0.191 0.093 0.790 0.370 0.241 0.848 0.459 0.330

Hendrycks et al (Hendrycks et al., 2021) 0.769 0.632 0.020 0.929 0.842 0.104 0.956 0.890 0.181

Engstrom et al (Engstrom et al., 2019b) 0.684 0.495 0.036 0.886 0.729 0.148 0.928 0.800 0.232

M
O
R
E
-
D
A
T
A Yalniz et al. (Yalniz et al., 2019)-a 0.813 0.726 0.029 0.958 0.911 0.217 0.976 0.943 0.328

Yalniz et al. (Yalniz et al., 2019)-b 0.838 0.774 0.008 0.970 0.936 0.073 0.984 0.962 0.125

Mahajan et al. (Mahajan et al., 2018) 0.735 0.507 0.104 0.914 0.748 0.357 0.949 0.826 0.491

Table 2. Evaluation of the ImageNet-Patch dataset using the chosen metrics. On the rows, we list 15 models used for testing, divided
into the isolated groups. On the columns, we detail the clean accuracy, the robust accuracy and the success rate of the adversarial patch,
repeated for top-1,5, and 10 accuracy.

et al., 2016), as the first group, ENSEMBLE. We consider for the second group, STANDARD, 3 standard-trained models, that
are GoogLeNet (Szegedy et al., 2015), MobileNet (Howard et al., 2019) and Inception v3 (Szegedy et al., 2016), available in
PyTorch Torchvision. We then consider 3 robust-trained models as the ADV-ROBUST available on RobustBench, specifically
a ResNet-50 proposed by Salman et al. (2020), a ResNet-50 proposed by Engstrom et al. (2019a) and a ResNet-50 proposed
by Wong et al. (2020). We also additionally consider a set of 6 models from the ImageNet Testbed repository5 proposed
by Taori et al. (2020), to analyze the effects of non-adversarial augmentation techniques and of training on bigger datasets.
We select 3 models specifically trained for being robust to common image perturbations and corruptions, namely the models
proposed by Zhang (2019), Hendrycks et al. (2021), and Engstrom et al. (2019b), that we group as AUGMENTATION group.
We further select other 3 models, namely two of the ones proposed by Yalniz et al. (2019) and one proposed by Mahajan
et al. (2018), that have been trained on datasets that utilize substantially more training data than the standard ImageNet
training set. We group these last models as the MORE-DATA group.

C. Visualization of Images with the Patches
Finally, we provide in Fig. 1 some example of images with the applied patches, classified by SqueezeNet (Iandola et al.,
2016). Note that for some images, e.g. the otter depicted in the fourth column, the patches seem to be less effective. For
other images, as for the guenon in the first column, the patches work well even when not superimposed directly on the
subject of the image.

5https://github.com/modestyachts/imagenet-testbed

https://github.com/modestyachts/imagenet-testbed
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Figure 4. A batch of clean images initially predicted correctly by a SqueezeNet (Iandola et al., 2016) model, and its perturbation with
5 different adversarial patches. Each row contains the original image with a different patch, whose target is displayed in the left. The
predictions are shown on top of each of the samples, in green for correct prediction, blue for misclassification, and in red for a prediction
that ends up in the target class of the attack.


